JP4487619B2 - Power supply circuit for electronic equipment with built-in secondary battery - Google Patents

Power supply circuit for electronic equipment with built-in secondary battery Download PDF

Info

Publication number
JP4487619B2
JP4487619B2 JP2004123338A JP2004123338A JP4487619B2 JP 4487619 B2 JP4487619 B2 JP 4487619B2 JP 2004123338 A JP2004123338 A JP 2004123338A JP 2004123338 A JP2004123338 A JP 2004123338A JP 4487619 B2 JP4487619 B2 JP 4487619B2
Authority
JP
Japan
Prior art keywords
voltage
output
current
circuit
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004123338A
Other languages
Japanese (ja)
Other versions
JP2005312134A (en
Inventor
浩二 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004123338A priority Critical patent/JP4487619B2/en
Publication of JP2005312134A publication Critical patent/JP2005312134A/en
Application granted granted Critical
Publication of JP4487619B2 publication Critical patent/JP4487619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明はカムコーダ等に適用して好適な、2次電池を内蔵した電子機器の電源回路に関する。   The present invention relates to a power supply circuit for an electronic device incorporating a secondary battery, which is suitable for application to a camcorder or the like.

従来カムコーダ等の2次電池を内蔵した電子機器の電源回路として図5に示す如きものが提案されている。図5において、1は商用電源が供給される電源プラグを示し、この電源プラグ1に供給される商用電源を入力フィルタ2を介して整流回路3に供給する。   Conventionally, as shown in FIG. 5, a power supply circuit for an electronic apparatus incorporating a secondary battery such as a camcorder has been proposed. In FIG. 5, reference numeral 1 denotes a power plug to which commercial power is supplied. The commercial power supplied to the power plug 1 is supplied to the rectifier circuit 3 through the input filter 2.

この整流回路3の出力側に得られる直流電圧Vinをトランス4の一次巻線4aを介してスイッチング素子を構成するnpn形トランジスタ5のコレクタに供給する。このトランジスタ5のエミッタを接地し、このトランジスタ5のベースに後述するパルス幅変調制御回路6よりのパルス幅変調信号を供給する如くする。また整流回路3の出力側に得られる直流電圧Vinを起動回路を構成する抵抗器7を介してこのパルス幅変調制御回路6に供給する。   The DC voltage Vin obtained on the output side of the rectifier circuit 3 is supplied to the collector of the npn transistor 5 constituting the switching element via the primary winding 4a of the transformer 4. The emitter of the transistor 5 is grounded, and a pulse width modulation signal from a pulse width modulation control circuit 6 described later is supplied to the base of the transistor 5. Further, the DC voltage Vin obtained on the output side of the rectifier circuit 3 is supplied to the pulse width modulation control circuit 6 through the resistor 7 constituting the starting circuit.

またトランス4の2次巻線4bの一端を整流回路8を構成するダイオード8a及び平滑用コンデンサ8bを介してこの2次巻線4bの他端に接続する。この整流回路8の出力直流電圧を内蔵した2次電池9aを含む例えばカムコーダ等の電子機器の負荷回路9に供給する。   Further, one end of the secondary winding 4b of the transformer 4 is connected to the other end of the secondary winding 4b via a diode 8a and a smoothing capacitor 8b constituting the rectifier circuit 8. The output DC voltage of the rectifier circuit 8 is supplied to a load circuit 9 of an electronic device such as a camcorder including a secondary battery 9a with a built-in output.

即ちダイオード8a及びコンデンサ8bの接続点をDC接続コードの抵抗成分10を介して負荷回路9の一方の電源端子に接続し、この負荷回路9の他方の電源端子をDC接続コードの抵抗成分11及び電流検出用の抵抗器12の直列回路を介して2次巻線4bの他端に接続する。   That is, the connection point of the diode 8a and the capacitor 8b is connected to one power supply terminal of the load circuit 9 via the resistance component 10 of the DC connection cord, and the other power supply terminal of the load circuit 9 is connected to the resistance component 11 of the DC connection cord and The other end of the secondary winding 4b is connected through a series circuit of a resistor 12 for current detection.

また、整流回路8の一方の出力端即ちダイオード8a及びコンデンサ8bの接続点を出力直流電圧検出用の抵抗器13及び14の直列回路を介して接地し、この抵抗器14の接地側を抵抗器12を介して、2次巻線4bの他端に接続する。   Further, one output terminal of the rectifier circuit 8, that is, a connection point between the diode 8a and the capacitor 8b is grounded through a series circuit of resistors 13 and 14 for detecting output DC voltage, and the ground side of the resistor 14 is connected to the resistor. 12 is connected to the other end of the secondary winding 4b.

この出力直流電圧検出用の抵抗器13及び14の接続中点に得られる検出電圧を誤差電圧検出手段を構成する演算増幅回路15の反転入力端子−に供給する。またこの演算増幅回路15の非反転入力端子+に基準電圧発生源16よりの基準電圧REF1を供給する。   The detection voltage obtained at the connection midpoint of the output DC voltage detection resistors 13 and 14 is supplied to the inverting input terminal − of the operational amplifier circuit 15 constituting the error voltage detection means. Further, the reference voltage REF 1 from the reference voltage generation source 16 is supplied to the non-inverting input terminal + of the operational amplifier circuit 15.

この場合、この基準電圧発生源16よりの基準電圧REF1は整流回路8の出力側に所定の定電圧V01例えば8.40Vを得る直流電圧値とする。 In this case, the reference voltage REF1 from the reference voltage generation source 16 is a DC voltage value that obtains a predetermined constant voltage V 0 1 such as 8.40 V on the output side of the rectifier circuit 8.

この誤差電圧検出手段を構成する演算増幅回路15の出力側に得られる誤差信号をダイオード17のカソードに供給する。このダイオード17のアノードをホトカプラ18を構成する誤差信号に応じた輝度で発光する発光ダイオード18aのカソードに接続し、この発光ダイオード18aのアノードを抵抗器19を介して整流回路8の出力側であるダイオード8a及びコンデンサ8bの接続点に接続する。   An error signal obtained on the output side of the operational amplifier circuit 15 constituting this error voltage detection means is supplied to the cathode of the diode 17. The anode of the diode 17 is connected to the cathode of a light emitting diode 18a that emits light with a luminance corresponding to the error signal constituting the photocoupler 18, and the anode of the light emitting diode 18a is connected to the output side of the rectifier circuit 8 via a resistor 19. Connected to the connection point of the diode 8a and the capacitor 8b.

このホトカプラ18の受光ダイオード18bに得られる受光信号をパルス幅変調制御回路6に供給し、この受光信号に応じて、スイッチング素子を構成するトランジスタ5のベースに供給するパルス幅変調信号のパルス幅を変調し、この演算増幅回路15の出力側に得られる誤差信号により、整流回路8の出力側に得られる出力直流電圧を一定電圧V01例えば8.40Vにする如く制御する。この場合このパルス幅変調制御回路6よりのパルス幅変調信号の周波数を所定周波数例えば100kHzとする。 The light reception signal obtained by the light receiving diode 18b of the photocoupler 18 is supplied to the pulse width modulation control circuit 6, and the pulse width of the pulse width modulation signal supplied to the base of the transistor 5 constituting the switching element is set according to the light reception signal. The output DC voltage obtained on the output side of the rectifier circuit 8 is controlled to be a constant voltage V 0, for example, 8.40 V, based on the error signal obtained on the output side of the operational amplifier circuit 15 after modulation. In this case, the frequency of the pulse width modulation signal from the pulse width modulation control circuit 6 is set to a predetermined frequency, for example, 100 kHz.

また、負荷電流検出用の抵抗器(抵抗値をR1とする)12の両端間に得られる、この負荷電流I0 に応じた電圧(I0 ×R1)を誤差電流検出手段を構成する演算増幅回路20の反転入力端子−に抵抗器21を介して供給する。また、この演算増幅回路20の非反転入力端子+に基準電圧発生源22よりの基準電圧REF2を抵抗器23を介して供給する如くする。 Further, a voltage (I 0 × R1) corresponding to the load current I 0 obtained between both ends of a load current detection resistor (resistance value R 1) 12 is an operational amplification constituting the error current detection means. The voltage is supplied to the inverting input terminal − of the circuit 20 through the resistor 21. Further, the reference voltage REF2 from the reference voltage generation source 22 is supplied to the non-inverting input terminal + of the operational amplifier circuit 20 through the resistor 23.

この場合、この基準電圧発生源22よりの基準電圧REF2はこの電流検出用の抵抗器12に流れる電流が一定電流I0 例えば1.6Aとなる直流電圧値とする。 In this case, the reference voltage REF2 from the reference voltage generation source 22 is a DC voltage value at which the current flowing through the current detection resistor 12 becomes a constant current I 0, for example, 1.6A.

この誤差電流検出手段を構成する演算増幅回路20の出力側に得られる誤差信号をダイオード24のカソードに供給する。このダイオード24のアノードをホトカプラ18を構成する誤差信号に応じた輝度で発光する発光ダイオード18aのカソードに接続する。   An error signal obtained on the output side of the operational amplifier circuit 20 constituting the error current detection means is supplied to the cathode of the diode 24. The anode of the diode 24 is connected to the cathode of a light emitting diode 18a that emits light with a luminance corresponding to an error signal constituting the photocoupler 18.

また、この場合、この誤差電流検出手段を構成する演算増幅回路20の出力側に得られる誤差信号により、トランジスタ5のベースに供給するパルス幅変調信号を制御し電流検出用の抵抗器12に流れる負荷電流が一定電流I0 例えば1.6Aとなる如く制御する。 In this case, the pulse width modulation signal supplied to the base of the transistor 5 is controlled by the error signal obtained on the output side of the operational amplifier circuit 20 constituting the error current detecting means and flows to the resistor 12 for current detection. Control is performed so that the load current is a constant current I 0, for example, 1.6 A.

またトランス4の3次巻線4cの一端を整流回路25を構成するダイオード25a及び平滑用コンデンサ25bを介して接地すると共に、この3次巻線4cの他端を接地し、このダイオード25a及びコンデンサ25bの接続点に得られる直流電圧を電源としてパルス幅変調制御回路6に供給する。   One end of the tertiary winding 4c of the transformer 4 is grounded via a diode 25a and a smoothing capacitor 25b constituting the rectifier circuit 25, and the other end of the tertiary winding 4c is grounded. The diode 25a and the capacitor The DC voltage obtained at the connection point 25b is supplied to the pulse width modulation control circuit 6 as a power source.

以上述べた如く、図5に示す如き従来の2次電池を内蔵した電子機器の電源回路においては、比較的簡単な構成で演算増幅回路15は整流回路8の出力直流電圧が所定の一定電圧V01例えば8.40Vになるように制御し、演算増幅回路20は抵抗器12を流れる負荷電流(出力電流)I0 が所定の一定電流例えば1.6Aになるように制御する。 As described above, in the power supply circuit of the electronic device incorporating the conventional secondary battery as shown in FIG. 5, the operational amplifier circuit 15 has a relatively simple configuration and the output DC voltage of the rectifier circuit 8 is a predetermined constant voltage V. 0 1 example controlled to be 8.40V, the operational amplifier circuit 20 controls so that the load current flowing through the resistor 12 (the output current) I 0 is a predetermined constant current example 1.6A.

従って図5に示す如き2次電池を内蔵した電子機器の電源回路の出力電流対出力電圧特性は図6に示す如くである。この図5に示す如く2次電池を内蔵した電子機器においては整流回路8と2次電池9aを含む負荷回路9との間はDC接続コードで接続される場合が一般的である。このDC接続コードの抵抗成分10及び11の抵抗値をrs1及びrs2とする。   Therefore, the output current vs. output voltage characteristics of the power supply circuit of the electronic device incorporating the secondary battery as shown in FIG. 5 are as shown in FIG. As shown in FIG. 5, in an electronic device incorporating a secondary battery, the rectifier circuit 8 and the load circuit 9 including the secondary battery 9a are generally connected by a DC connection cord. The resistance values of the resistance components 10 and 11 of the DC connection cord are rs1 and rs2.

この整流回路8よりDC接続コードを経由して、2次電池9aを含む負荷回路9へ電力を供給する場合、このDC接続コードの抵抗成分10及び11により電圧降下Vdが発生する。この電圧降下Vdにつき図6の出力電流対出力電圧特性に示す。   When power is supplied from the rectifier circuit 8 to the load circuit 9 including the secondary battery 9a via the DC connection cord, a voltage drop Vd is generated by the resistance components 10 and 11 of the DC connection cord. This voltage drop Vd is shown in the output current vs. output voltage characteristics of FIG.

整流回路8の出力直流電圧は例えば8.40Vの一定電圧V01に負荷電流例えば0Aから1.6Aまで制御する(図6のVCモード、破線参照)。ところが、DC接続コードの抵抗成分10,11による電圧降下Vdが発生し、負荷回路9には出力直流電圧V01よりこの電圧降下Vd分が下がった電圧例えば負荷電流(出力電流)が1.6Aのとき出力電圧が8.20V供給されることになる。 The output DC voltage of the rectifier circuit 8 is controlled to a constant current V 0 1 of 8.40 V, for example, from 0 A to 1.6 A (see VC mode in FIG. 6, broken line). However, a voltage drop Vd due to the resistance components 10 and 11 of the DC connection cord is generated, and the load circuit 9 is supplied with a voltage, for example, a load current (output current), which is reduced by the voltage drop Vd from the output DC voltage V 0 1. At 6A, an output voltage of 8.20V is supplied.

一方、負荷回路9内には2次電池9aが組み込まれており、この2次電池9aへの充電(本体内充電)も行われる。このときの充電特性を図7に示す。   On the other hand, the secondary battery 9a is incorporated in the load circuit 9, and the secondary battery 9a is charged (in-body charging). The charging characteristics at this time are shown in FIG.

この図5において、2次電池9aに充電を行うときは定電圧(VCモード)、定電流(CCモード)充電を行う。即ち図7に示す如く、充電開始直後は定電流(CCモード)での充電が開始され、充電が進むにつれて、図7Aに示す如く負荷回路9内の2次電池9aの電池電圧V02が上昇するが、この電池電圧V02は整流回路8の出力直流電圧V01よ
りもDC接続コードの抵抗成分10,11による電圧降下Vd分電圧が下がる。
In FIG. 5, when charging the secondary battery 9a, constant voltage ( VC mode) and constant current (CC mode) charging are performed. That is, as shown in FIG. 7, immediately after the start of charging, charging at a constant current (CC mode) is started, and as the charging proceeds, the battery voltage V 0 2 of the secondary battery 9a in the load circuit 9 is increased as shown in FIG. 7A. Although the battery voltage V 0 2 rises, the voltage drop Vd due to the resistance components 10 and 11 of the DC connection cord is lower than the output DC voltage V 0 1 of the rectifier circuit 8.

従って、この2次電池9aの充電電流I0 は図7Bの曲線aに示す如くなり、充電時間T2は、この電圧降下Vdがないとき(電圧降下Vdのないときの充電電流Isは破線bに示す如くである。)の充電時間T1に比較し長くなる。 Accordingly, the charging current I 0 of the secondary battery 9a is as shown by the curve a in FIG. 7B, and the charging time T2 is when there is no voltage drop Vd (the charging current Is when there is no voltage drop Vd is shown by the broken line b. It is longer than the charging time T1).

ところで、この充電時間T2を短くするようにした充電装置が特許文献1に提案されている。   Incidentally, Patent Document 1 proposes a charging device in which the charging time T2 is shortened.

この特許文献1に記載された充電装置は、接続された2次電池に対して定電圧以下の定電流で充電を行い、この2次電池の端子電圧が、この定電圧に上昇したとき、この定電流以下の定電圧で充電を行うように制御する充電装置であり、充電電流をある周期で遮断するスイッチ手段と、この充電電流の遮断時におけるこのスイッチ手段より電源側の第1の電圧及びこの2次電池側の第2の電圧の電圧差と、基準電圧とを比較する比較手段と、この充電電流の通電時にはこの第1の電圧より高い電圧に切り替え、この充電電流の遮断時にはこの第1の電圧と同一の電圧に切り替えると共に、この比較の結果に従って、充電を終了するときにはこの第1の電圧と同一の電圧に切り替える制御手段とを備えるものである。
特開平10−32938号公報
The charging device described in Patent Document 1 charges a connected secondary battery with a constant current equal to or lower than a constant voltage, and when the terminal voltage of the secondary battery rises to the constant voltage, A charging device that controls charging at a constant voltage equal to or lower than a constant current, a switching unit that cuts off the charging current at a certain period, a first voltage on a power source side from the switching unit when the charging current is cut off, The comparison means for comparing the voltage difference between the second voltage on the secondary battery side and the reference voltage, and switching to a voltage higher than the first voltage when the charging current is energized, and the first voltage when the charging current is interrupted. And a control means for switching to the same voltage as the first voltage when charging is terminated according to the result of the comparison.
JP 10-32938 A

然しながら、この特許文献1に記載された充電装置は充電電流をある周期で遮断するスイッチ手段、充電電流の通電時には第1の電圧より高い電圧に切り替え、この充電電流の遮断時にはこの第1の電圧と同一の電圧に切り替えると共に、比較の結果に従って充電を終了するときにはこの第1の電圧と同一の電圧に切り替える制御手段とを必要とし、構成が複雑となる不都合があった。   However, the charging device described in Patent Document 1 is a switching means that cuts off the charging current at a certain period. When the charging current is energized, the charging device switches to a voltage higher than the first voltage, and when the charging current is cut off, the first voltage. When the charging is terminated according to the result of the comparison, a control means for switching to the same voltage as the first voltage is required, resulting in a complicated configuration.

本発明は斯る点に鑑み、比較的簡単な構成で、2次電池の充電時間を短縮できるようにすることを目的とする。   In view of the above, an object of the present invention is to reduce the charging time of a secondary battery with a relatively simple configuration.

上記課題を解決し、本発明の目的を達成するため、本発明の2次電池を内蔵した電子機器の電源回路は、出力直流電圧を検出する電圧検出手段と、該電圧検出手段よりの検出電圧と第1の基準電圧とから第1の誤差信号を得る誤差電圧検出手段と、該誤差電圧検出手段の第1の誤差信号により出力直流電圧を一定とする定電圧制御手段と、負荷電流を検出する電流検出手段と、該電流検出手段よりの電流検出信号に応じた電圧と第2の基準電圧とから第2の誤差信号を得る誤差電流検出手段と、該誤差電流検出手段の第2の誤差信号により前記負荷電流を一定にするようにした定電流制御手段と、を有する2次電池を内蔵した電子機器の電源回路である。そして、さらに、第1及び第2の誤差信号を比較する比較手段を備え、この比較手段の比較出力を、電圧検出手段に帰還させて、第1の誤差信号より第2の誤差信号が小さくなる定電流制御のときに、電圧検出手段の出力直流電圧に負荷電流による電圧降下分を加算して、電圧検出手段の検出電圧をこの電圧降下に対応する分小さくすることを特徴としている。 In order to solve the above-described problems and achieve the object of the present invention, a power supply circuit for an electronic device incorporating the secondary battery of the present invention includes a voltage detection means for detecting an output DC voltage, and a detection voltage from the voltage detection means. Error voltage detecting means for obtaining a first error signal from the first reference voltage, a constant voltage control means for making the output DC voltage constant by the first error signal of the error voltage detecting means, and detecting a load current Current detecting means for detecting, an error current detecting means for obtaining a second error signal from a voltage corresponding to a current detection signal from the current detecting means and a second reference voltage, and a second error of the error current detecting means And a constant current control means for making the load current constant according to a signal. Further, a comparison means for comparing the first and second error signals is provided, and a comparison output of the comparison means is fed back to the voltage detection means so that the second error signal becomes smaller than the first error signal. In the constant current control, the voltage drop due to the load current is added to the output DC voltage of the voltage detection means, and the detection voltage of the voltage detection means is reduced by an amount corresponding to this voltage drop .

本発明によれば、誤差電圧検出手段の出力の第1の誤差信号と誤差電流検出手段の出力の第2の誤差信号とを比較し、この比較出力が、この第1の誤差信号よりこの第2の誤差信号が大きく定電流制御のときに、定電圧制御手段は出力直流電圧が定常の定電圧に負荷電流による電圧降下分を加算した電圧になるように制御しているので、比較的簡単な構成で2次電池の充電時間を短くすることができる。 According to the present invention, the first error signal output from the error voltage detector is compared with the second error signal output from the error current detector, and the comparison output is compared with the first error signal. When the error signal of 2 is large and constant current control is performed , the constant voltage control means is controlled so that the output DC voltage becomes a voltage obtained by adding the voltage drop due to the load current to the steady constant voltage. With this configuration, the charging time of the secondary battery can be shortened.

以下図1〜図3を参照して本発明2次電池を内蔵した電子機器の電源回路を実施するための最良の形態の例を説明する。
図1において、図5に対応する部分には同一符号を付して示す。
Hereinafter, an example of the best mode for implementing a power supply circuit of an electronic apparatus incorporating a secondary battery of the present invention will be described with reference to FIGS.
In FIG. 1, parts corresponding to those in FIG.

図1において、1は商用電源が供給される電源プラグを示し、この電源プラグ1に供給される商用電源を入力フィルタ2を介して整流回路3に供給する。   In FIG. 1, reference numeral 1 denotes a power plug to which commercial power is supplied. The commercial power supplied to the power plug 1 is supplied to the rectifier circuit 3 through the input filter 2.

この整流回路3の出力側に得られる直流電圧Vinをトランス4の一次巻線4aを介してスイッチング素子を構成するnpn形トランジスタ5のコレクタに供給する。このトランジスタ5のエミッタを接地し、このトランジスタ5のベースに後述するパルス幅変調制御回路6よりのパルス幅変調信号を供給する如くする。また整流回路3の出力側に得られる直流電圧Vinを起動回路を構成する抵抗器7を介してこのパルス幅変調制御回路6に供給し、このパルス幅変調制御回路6を起動する如くする。   The DC voltage Vin obtained on the output side of the rectifier circuit 3 is supplied to the collector of the npn transistor 5 constituting the switching element via the primary winding 4a of the transformer 4. The emitter of the transistor 5 is grounded, and a pulse width modulation signal from a pulse width modulation control circuit 6 described later is supplied to the base of the transistor 5. The DC voltage Vin obtained on the output side of the rectifier circuit 3 is supplied to the pulse width modulation control circuit 6 via the resistor 7 constituting the start circuit, so that the pulse width modulation control circuit 6 is started.

またトランス4の2次巻線4bの一端を整流回路8を構成するダイオード8a及び平滑用コンデンサ8bを介してこの2次巻線4bの他端に接続する。この整流回路8の出力直流電圧を内蔵した2次電池9aを含む例えばカムコーダ等の電子機器の負荷回路9に供給する。   Further, one end of the secondary winding 4b of the transformer 4 is connected to the other end of the secondary winding 4b via a diode 8a and a smoothing capacitor 8b constituting the rectifier circuit 8. The output DC voltage of the rectifier circuit 8 is supplied to a load circuit 9 of an electronic device such as a camcorder including a secondary battery 9a with a built-in output.

即ちダイオード8a及びコンデンサ8bの接続点をDC接続コードの抵抗成分10を介して負荷回路9の一方の電源端子に接続し、この負荷回路9の他方の電源端子をDC接続コードの抵抗成分11及び電流検出用の抵抗器12の直列回路を介して2次巻線4bの他端に接続する。   That is, the connection point of the diode 8a and the capacitor 8b is connected to one power supply terminal of the load circuit 9 via the resistance component 10 of the DC connection cord, and the other power supply terminal of the load circuit 9 is connected to the resistance component 11 of the DC connection cord and The other end of the secondary winding 4b is connected through a series circuit of a resistor 12 for current detection.

また、整流回路8の一方の出力端即ちダイオード8a及びコンデンサ8bの接続点を出力直流電圧検出用の抵抗器13及び14の直列回路を介して接地し、この抵抗器14の接地側を抵抗器12を介して、2次巻線4bの他端に接続する。   Further, one output terminal of the rectifier circuit 8, that is, a connection point between the diode 8a and the capacitor 8b is grounded through a series circuit of resistors 13 and 14 for detecting output DC voltage, and the ground side of the resistor 14 is connected to the resistor. 12 is connected to the other end of the secondary winding 4b.

この出力直流電圧検出用の抵抗器13及び14の接続中点に得られる検出電圧を誤差電圧検出手段を構成する演算増幅回路15の反転入力端子−に供給する。またこの演算増幅回路15の非反転入力端子+に基準電圧発生源16よりの基準電圧REF1を供給する。   The detection voltage obtained at the connection midpoint of the output DC voltage detection resistors 13 and 14 is supplied to the inverting input terminal − of the operational amplifier circuit 15 constituting the error voltage detection means. Further, the reference voltage REF 1 from the reference voltage generation source 16 is supplied to the non-inverting input terminal + of the operational amplifier circuit 15.

この場合、この基準電圧発生源16よりの基準電圧REF1は整流回路8の出力側に所定の定電圧V01例えば8.40Vを得る直流電圧値とする。 In this case, the reference voltage REF1 from the reference voltage generation source 16 is a DC voltage value that obtains a predetermined constant voltage V 0 1 such as 8.40 V on the output side of the rectifier circuit 8.

この誤差電圧検出手段を構成する演算増幅回路15の出力側に得られる誤差信号をダイオード17のカソードに供給する。このダイオード17のアノードをホトカプラ18を構成する誤差信号に応じた輝度で発光する発光ダイオード18aのカソードに接続し、この発光ダイオード18aのアノードを抵抗器19を介して整流回路8の出力側であるダイオード8a及びコンデンサ8bの接続点に接続する。   An error signal obtained on the output side of the operational amplifier circuit 15 constituting this error voltage detection means is supplied to the cathode of the diode 17. The anode of the diode 17 is connected to the cathode of a light emitting diode 18a that emits light with a luminance corresponding to the error signal constituting the photocoupler 18, and the anode of the light emitting diode 18a is connected to the output side of the rectifier circuit 8 via a resistor 19. Connected to the connection point of the diode 8a and the capacitor 8b.

このホトカプラ18の受光ダイオード18bに得られる受光信号をパルス幅変調制御回路6に供給し、この受光信号に応じて、スイッチング素子を構成するトランジスタ5のベースに供給するパルス幅変調信号のパルス幅を変調し、この演算増幅回路15の出力側に得られる誤差信号により、整流回路8の出力側に得られる出力直流電圧を一定電圧V01例えば8.40Vにする如く制御する。この場合このパルス幅変調制御回路6よりのパルス幅変調信号の周波数を所定周波数例えば100kHzとする。 The light reception signal obtained by the light receiving diode 18b of the photocoupler 18 is supplied to the pulse width modulation control circuit 6, and the pulse width of the pulse width modulation signal supplied to the base of the transistor 5 constituting the switching element is set according to the light reception signal. The output DC voltage obtained on the output side of the rectifier circuit 8 is controlled to be a constant voltage V 0, for example, 8.40 V, based on the error signal obtained on the output side of the operational amplifier circuit 15 after modulation. In this case, the frequency of the pulse width modulation signal from the pulse width modulation control circuit 6 is set to a predetermined frequency, for example, 100 kHz.

また、負荷電流検出用の抵抗器(抵抗値をR1とする)12の両端間に得られる、この負荷電流I0 に応じた電圧(I0 ×R1)を誤差電流検出手段を構成する演算増幅回路20の反転入力端子−に抵抗器21を介して供給する。また、この演算増幅回路20の非反転入力端子+に基準電圧発生源22よりの基準電圧REF2を抵抗器23を介して供給する如くする。 Further, a voltage (I 0 × R1) corresponding to the load current I 0 obtained between both ends of a load current detection resistor (resistance value R 1) 12 is an operational amplification constituting the error current detection means. The voltage is supplied to the inverting input terminal − of the circuit 20 through the resistor 21. Further, the reference voltage REF2 from the reference voltage generation source 22 is supplied to the non-inverting input terminal + of the operational amplifier circuit 20 through the resistor 23.

この場合、この基準電圧発生源22よりの基準電圧REF2はこの電流検出用の抵抗器12に流れる電流が一定電流I0 例えば1.6Aとなる直流電圧値とする。 In this case, the reference voltage REF2 from the reference voltage generation source 22 is a DC voltage value at which the current flowing through the current detection resistor 12 becomes a constant current I 0, for example, 1.6A.

この誤差電流検出手段を構成する演算増幅回路20の出力側に得られる誤差信号をダイオード24のカソードに供給する。このダイオード24のアノードをホトカプラ18を構成する誤差信号に応じた輝度で発光する発光ダイオード18aのカソードに接続する。   An error signal obtained on the output side of the operational amplifier circuit 20 constituting the error current detection means is supplied to the cathode of the diode 24. The anode of the diode 24 is connected to the cathode of a light emitting diode 18a that emits light with a luminance corresponding to an error signal constituting the photocoupler 18.

また、この場合、この誤差電流検出手段を構成する演算増幅回路20の出力側に得られる誤差信号により、トランジスタ5のベースに供給するパルス幅変調信号を制御し電流検出用の抵抗器12に流れる負荷電流が一定電流I0 例えば1.6Aとなる如く制御する。 In this case, the pulse width modulation signal supplied to the base of the transistor 5 is controlled by the error signal obtained on the output side of the operational amplifier circuit 20 constituting the error current detecting means and flows to the resistor 12 for current detection. Control is performed so that the load current is a constant current I 0, for example, 1.6 A.

またトランス4の3次巻線4cの一端を整流回路25を構成するダイオード25a及び平滑用コンデンサ25bを介して接地すると共に、この3次巻線4cの他端を接地し、このダイオード25a及び平滑用コンデンサ25bの接続点に得られる直流電圧を電源として、パルス幅変調制御回路6に供給する。   One end of the tertiary winding 4c of the transformer 4 is grounded via a diode 25a and a smoothing capacitor 25b constituting the rectifier circuit 25, and the other end of the tertiary winding 4c is grounded. The DC voltage obtained at the connection point of the capacitor 25b is supplied to the pulse width modulation control circuit 6 as a power source.

本例においては誤差電圧検出手段を構成する演算増幅回路15の出力側に得られる誤差信号を比較手段を構成する演算増幅回路30の反転入力端子−に供給する。また、誤差電流検出手段を構成する演算増幅回路20の出力側に得られる誤差信号をこの比較手段を構成する演算増幅回路30の非反転入力端子+に供給する。   In this example, the error signal obtained on the output side of the operational amplifier circuit 15 constituting the error voltage detecting means is supplied to the inverting input terminal − of the operational amplifier circuit 30 constituting the comparing means. Further, an error signal obtained on the output side of the operational amplifier circuit 20 constituting the error current detecting means is supplied to the non-inverting input terminal + of the operational amplifier circuit 30 constituting the comparing means.

また、この演算増幅回路30の出力端子を抵抗器31を介して抵抗器13及び14の接続中点と演算増幅回路15の反転入力端子−との接続点に接続する。   Further, the output terminal of the operational amplifier circuit 30 is connected via a resistor 31 to the connection point between the connection midpoint of the resistors 13 and 14 and the inverting input terminal − of the operational amplifier circuit 15.

この場合、比較手段を構成する演算増幅回路30の出力側がローレベル“0”のときは抵抗器14と抵抗器31とが並列接続されたこととなり、この並列接続の抵抗値R2は抵抗器14の抵抗値R3より小さくなる。   In this case, when the output side of the operational amplifier circuit 30 constituting the comparison means is at a low level “0”, the resistor 14 and the resistor 31 are connected in parallel, and the resistance value R2 of this parallel connection is the resistor 14 The resistance value R3 becomes smaller.

この抵抗値R2の抵抗値R3より小さい値は整流回路8の出力直流電圧V01がDC接続コードの抵抗成分10,11による電圧降下
Vd=I0(rs1+rs2)
分だけ高い電圧値
01+Vd
となるように制御する検出電圧となる如くする。
When the resistance value R2 is smaller than the resistance value R3, the output DC voltage V 0 1 of the rectifier circuit 8 is a voltage drop due to the resistance components 10 and 11 of the DC connection cord Vd = I 0 (rs1 + rs2)
Higher voltage value V 0 1 + Vd
The detection voltage is controlled so that

また比較手段を構成する演算増幅回路30の出力側がハイレベル“1”のときは、演算増幅回路30の出力側はオープンコレクタ出力となっており、抵抗器31はオープン状態となり抵抗器14と抵抗器31の並列接続は無い状態となり、整流回路8の出力直流電圧がV01となるように制御する検出電圧となる。 When the output side of the operational amplifier circuit 30 constituting the comparison means is at a high level “1”, the output side of the operational amplifier circuit 30 is an open collector output, the resistor 31 is in an open state, and the resistor 14 and the resistor Thus, the detector 31 is not connected in parallel and becomes a detection voltage for controlling the output DC voltage of the rectifier circuit 8 to be V 0 1.

図1に示す如き本例の2次電池を内蔵した電子機器の電源回路において、演算増幅回路15は整流回路8の出力直流電圧(出力電圧)が所定の一定電圧(V01又はV01+Vd)になるように制御し、一方出力電流が増加して抵抗器12に流れる電流量を検出し、ある一定の電流量に達すると、出力電圧制御の演算増幅回路15の動作が電流制御の演算増幅回路20の動作に切り替わる。演算増幅回路20は抵抗器12を流れる負荷電流(出力電流)I0 が所定の一定電流例えば1.6Aになるように制御する。 In the power supply circuit of the electronic apparatus incorporating the secondary battery of this example as shown in FIG. 1, the operational amplifier circuit 15 has an output DC voltage (output voltage) of the rectifier circuit 8 that is a predetermined constant voltage (V 0 1 or V 0 1 + Vd). On the other hand, when the output current increases and the amount of current flowing through the resistor 12 is detected and reaches a certain amount of current, the operation of the operational amplifier circuit 15 for output voltage control is calculated for current control. The operation is switched to the operation of the amplifier circuit 20. The operational amplifier circuit 20 controls so that the load current (output current) I 0 flowing through the resistor 12 becomes a predetermined constant current, for example, 1.6A.

このとき電流量を一定にすると電圧が降下するために演算増幅回路15の出力はローレベルからハイレベルへ変化する。この結果から、演算増幅回路15の動作中は演算増幅回路15の出力(誤差信号)は演算増幅回路20の出力(誤差信号)と比べて電圧が低くなり、また演算増幅回路20の動作中は演算増幅回路20の出力(誤差信号)は演算増幅回路15の出力(誤差信号)に比べて電圧が低くなる。この出力電圧制御の演算増幅回路15の動作中をVCモード、出力電流制御の演算増幅回路20の動作中をCCモードという。 At this time, if the amount of current is made constant, the voltage drops, so the output of the operational amplifier circuit 15 changes from low level to high level. From this result, during operation of the operational amplifier circuit 15, the output (error signal) of the operational amplifier circuit 15 is lower in voltage than the output (error signal) of the operational amplifier circuit 20, and during operation of the operational amplifier circuit 20, The output (error signal) of the operational amplifier circuit 20 is lower in voltage than the output (error signal) of the operational amplifier circuit 15. The operation of the operational amplifier circuit 15 for output voltage control is referred to as a VC mode, and the operational amplifier circuit 20 for output current control is referred to as a CC mode.

この図1に示す如き2次電池を内蔵した電子機器の電源回路の出力電流対出力電圧特性は図2に示す如くである。   The output current vs. output voltage characteristics of the power supply circuit of the electronic device incorporating the secondary battery as shown in FIG. 1 are as shown in FIG.

この演算増幅回路15及び20の夫々の出力(誤差信号)を比較手段である演算増幅回路30の出力側がハイレベル“1”のときは、演算増幅回路15の動作中となり、定電圧制御動作(VCモード)となり、この演算増幅回路30の出力側がローレベル“0”のときは演算増幅回路20の動作中となり、定電流制御動作(CCモード)となっている。 When the output side of each of the operational amplifier circuits 15 and 20 (error signal) is high level “1”, the operational amplifier circuit 15 is in operation and the constant voltage control operation ( VC mode), and when the output side of the operational amplifier circuit 30 is at a low level “0”, the operational amplifier circuit 20 is in operation and is in constant current control operation (CC mode).

この演算増幅回路30の出力がローレベル“0”のときは抵抗器14と抵抗器31とが並列接続となり、この抵抗器14及び31の合成抵抗値R2は抵抗器14の抵抗値R3よりも小さな抵抗値となる。   When the output of the operational amplifier circuit 30 is at a low level “0”, the resistor 14 and the resistor 31 are connected in parallel, and the combined resistance value R2 of the resistors 14 and 31 is greater than the resistance value R3 of the resistor 14. Small resistance value.

結果、電圧検出用の抵抗器13及び14の接続点から演算増幅回路15の反転入力端子−に供給される検出電圧は減少し、このため電源回路は演算増幅回路15により、この反転入力端子−に供給される検出電圧が上昇するように制御される。またこの演算増幅回路30の出力がハイレベル“1”のときは抵抗器31はオープン状態となる。   As a result, the detection voltage supplied from the connection point of the voltage detection resistors 13 and 14 to the inverting input terminal − of the operational amplifier circuit 15 decreases, and therefore the power supply circuit is connected to the inverting input terminal − by the operational amplifier circuit 15. The detection voltage supplied to is controlled so as to increase. When the output of the operational amplifier circuit 30 is at a high level “1”, the resistor 31 is in an open state.

この図1に示す如き電源回路は電圧制御動作中は、演算増幅回路15が動作中となり比較手段を構成する演算増幅回路30の出力はハイレベル“1”状態となり、図2の出力特性図のVCモードとなって、整流回路8の出力直流電圧を定常の定電圧V01例えば8.40Vになるように制御する。 In the power supply circuit as shown in FIG. 1, during the voltage control operation, the operational amplifier circuit 15 is in operation and the output of the operational amplifier circuit 30 constituting the comparison means is in a high level “1” state. In the VC mode, the output DC voltage of the rectifier circuit 8 is controlled to be a constant constant voltage V 0 1 such as 8.40V.

また、この図1に示す如き電源回路が電流制御動作中は演算増幅回路20が動作中となり、比較手段を構成する演算増幅回路30の出力はローレベル“0”状態となり抵抗器14及び31は並列接続となって整流回路8の出力直流電圧は上昇した電圧V01+Vdに制御される。 Further, during the current control operation of the power supply circuit as shown in FIG. 1, the operational amplifier circuit 20 is in operation, and the output of the operational amplifier circuit 30 constituting the comparison means becomes a low level “0” state, and the resistors 14 and 31 are In parallel connection, the output DC voltage of the rectifier circuit 8 is controlled to the increased voltage V 0 1 + Vd.

本例2次電池を内蔵した電子機器の電源回路によれば負荷回路9の2次電池9aの充電時にこのDC接続コードの抵抗成分10及び11の抵抗値rs1及びrs2例えば夫々0.1Ωとしたとき、この電圧降下Vdは
Vd=(rs1+rs2)×I0
例えばVd=(0.1Ω+0.1Ω)×1.6A=0.32V
となる。
According to the power supply circuit of the electronic device incorporating the secondary battery of this example, when the secondary battery 9a of the load circuit 9 is charged, the resistance values rs1 and rs2 of the resistance components 10 and 11 of the DC connection cord are set to 0.1Ω, for example, respectively. The voltage drop Vd is Vd = (rs1 + rs2) × I 0
For example, Vd = (0.1Ω + 0.1Ω) × 1.6A = 0.32V
It becomes.

図2によればVCモード時は整流回路8の出力直流電圧を一定電圧V01例えば8.40Vになる如く制御し、CCモード時はこの整流回路8の出力直流電圧を電圧V01+Vd例えば8.40V+0.32V=8.72Vになる如く制御する(図3A参照)。 According to FIG. 2, in the VC mode, the output DC voltage of the rectifier circuit 8 is controlled to be a constant voltage V 0 1 such as 8.40V, and in the CC mode, the output DC voltage of the rectifier circuit 8 is set to the voltage V 0 1 + Vd such as Control is performed so that 8.40V + 0.32V = 8.72V (see FIG. 3A).

図3に、この負荷回路9の2次電池9aを充電したときの充電特性を示す。これによると、放電された2次電池9aの充電は充電開始時、定電流制御(CCモード)で充電されて、図3Bに示す如く充電が進むにつれ、2次電池9aの電池電圧V02も上昇する。 FIG. 3 shows the charging characteristics when the secondary battery 9a of the load circuit 9 is charged. According to this, charging of the discharged secondary battery 9a is performed by constant current control (CC mode) at the start of charging, and as the charging proceeds as shown in FIG. 3B, the battery voltage V 0 2 of the secondary battery 9a. Also rises.

この場合本例においては、整流回路8の出力直流電圧がV01+Vd例えば8.72Vになる如く電圧制御される。よって、図3Aに示す如く定電流制御(CCモード)から定電圧制御(VCモード)へ切り替わる直前まで、この整流回路8の出力直流電圧がV01+Vd例えば8.72Vになるように電圧制御し、定電圧制御(VCモード)へ切り替わったところで、この整流回路8の出力直流電圧が一定電圧V01例えば8.40Vになるように電圧制御する。 In this case, in this example, voltage control is performed so that the output DC voltage of the rectifier circuit 8 becomes V 0 1 + Vd, for example, 8.72V. Therefore, as shown in FIG. 3A, voltage control is performed so that the output DC voltage of the rectifier circuit 8 becomes V 0 1 + Vd, for example, 8.72 V until immediately before switching from constant current control (CC mode) to constant voltage control ( VC mode). When switching to constant voltage control ( VC mode), voltage control is performed such that the output DC voltage of the rectifier circuit 8 becomes a constant voltage V 0 1, for example, 8.40V.

従って本例によれば充電時間は図3Cの曲線cに示す如く、充電電流値である一定の収束電流値で従来例と比較すれば従来時間T2例えば1.5時間に対し、本例電源回路による充電時間T3ではDC接続コードの抵抗成分10,11による電圧降下Vdのないときと同じ充電時間T1例えば1時間と充電時間を短縮することができる。   Therefore, according to the present example, as shown by a curve c in FIG. 3C, the power supply circuit of this example is compared with the conventional time T2, for example, 1.5 hours when compared with the conventional example at a constant convergence current value that is a charging current value. In the charging time T3, the charging time can be shortened to the same charging time T1, for example 1 hour, when there is no voltage drop Vd due to the resistance components 10 and 11 of the DC connection cord.

本例によれば、誤差電圧検出手段を構成する演算増幅回路15の出力の誤差信号と誤差電流検出手段を構成する演算増幅回路20の出力の誤差信号とを比較し、この比較出力に応じて定電圧制御手段は出力直流電圧が定常の定電圧V01に負荷電流I0 による電圧降下Vd分を加算した電圧V01+Vdになるように制御しているので、比較的簡単な構成で2次電池9aの充電時間を短縮することができる。 According to this example, the error signal output from the operational amplifier circuit 15 constituting the error voltage detecting means is compared with the error signal output from the operational amplifier circuit 20 constituting the error current detecting means, and according to the comparison output. Since the constant voltage control means controls the output DC voltage to be a voltage V 0 1 + Vd obtained by adding the voltage drop Vd due to the load current I 0 to the steady constant voltage V 0 1, the constant voltage control means 2 has a relatively simple configuration. The charging time of the secondary battery 9a can be shortened.

また、図4は本発明を実施するための最良の形態の他の例を示す。この図4例は基準電圧REF1を定電流制御動作中と定電圧制御動作中とで変えるようにしたものである。この図4につき説明するに図1に対応する部分には同一符号を付し、その詳細説明は省略する。   FIG. 4 shows another example of the best mode for carrying out the present invention. In the example of FIG. 4, the reference voltage REF1 is changed between the constant current control operation and the constant voltage control operation. In FIG. 4, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

この図4例においては、図1において基準電圧発生源16を設けずに、比較手段を構成する演算増幅回路30の出力端子をスイッチを構成するpnp形トランジスタ32のベースに接続し、このトランジスタ32のエミッタを抵抗器33を介して整流回路8のダイオード8a及びコンデンサ8bの接続点に接続し、この抵抗器33及びトランジスタ32のエミッタとの接続点をシャントレギュレータを構成するツェナーダイオード34のカソードに接続し、このツェナーダイオード34のアノードを接地する。   In the example of FIG. 4, without providing the reference voltage generating source 16 in FIG. 1, the output terminal of the operational amplifier circuit 30 constituting the comparing means is connected to the base of the pnp transistor 32 constituting the switch. Is connected to the connection point of the diode 8a and the capacitor 8b of the rectifier circuit 8 via the resistor 33, and the connection point of the resistor 33 and the emitter of the transistor 32 is connected to the cathode of the Zener diode 34 constituting the shunt regulator. The anode of this Zener diode 34 is grounded.

またこのトランジスタ32のエミッタを分圧用の抵抗器35及び36の直列回路を介して接地し、このトランジスタ32のコレクタを抵抗器37を介して、この抵抗器35及び36の接続中点に接続し、この抵抗器35及び36の接続中点を演算増幅回路15の非反転入力端子+に接続し、その他は図1と同様に構成したものである。   The emitter of the transistor 32 is grounded through a series circuit of resistors 35 and 36 for voltage division, and the collector of the transistor 32 is connected to a connection midpoint of the resistors 35 and 36 through a resistor 37. The connection midpoint of the resistors 35 and 36 is connected to the non-inverting input terminal + of the operational amplifier circuit 15, and the rest is configured in the same manner as in FIG.

この場合、演算増幅回路30の出力側がハイレベル“1”のときはトランジスタ32がオフとなり、ツェナーダイオード34による定電圧が抵抗器35及び36で分圧された第1の基準電圧REF3が、この演算増幅回路15の非反転入力端子+に供給される。   In this case, when the output side of the operational amplifier circuit 30 is at the high level “1”, the transistor 32 is turned off, and the first reference voltage REF3 obtained by dividing the constant voltage by the Zener diode 34 by the resistors 35 and 36 is This is supplied to the non-inverting input terminal + of the operational amplifier circuit 15.

またこの演算増幅回路30の出力側がローレベル“0”のときはトランジスタ32がオンとなり、抵抗器35及び37の並列回路の合成抵抗値と抵抗器36とによるツェナーダイオード34による定電圧の分圧が第2の基準電圧REF4として、この演算増幅回路15の非反転入力端子+に供給される。   When the output side of the operational amplifier circuit 30 is at a low level “0”, the transistor 32 is turned on, and the constant voltage is divided by the Zener diode 34 by the combined resistance value of the parallel circuit of the resistors 35 and 37 and the resistor 36. Is supplied to the non-inverting input terminal + of the operational amplifier circuit 15 as the second reference voltage REF4.

このときの抵抗器35及び37の並列回路の合成抵抗値R4は抵抗器35の抵抗値R5より小さくなるので、第1の基準電圧REF3は第2の基準電圧REF4より小さくなる。   Since the combined resistance value R4 of the parallel circuit of the resistors 35 and 37 at this time is smaller than the resistance value R5 of the resistor 35, the first reference voltage REF3 is smaller than the second reference voltage REF4.

本例においては、この第1の基準電圧REF3の値は、この第1の基準電圧REF3が供給されたとき、整流回路8の出力直流電圧がある定常の定電圧V01になるように制御する電圧とし、この第2の基準電圧REF4の値は、この第2の基準電圧REF4が演算増幅回路15の非反転入力端子+に供給されたとき、整流回路8の出力直流電圧がこの定常の定電圧V01にDC接続コードの抵抗成分10,11による電圧降下Vdを加算した定電圧(V01+Vd)になるように制御する電圧とする。 In this example, the value of the first reference voltage REF3 is controlled so that when the first reference voltage REF3 is supplied, the output DC voltage of the rectifier circuit 8 becomes a certain constant voltage V 0 1. The value of the second reference voltage REF4 is such that when the second reference voltage REF4 is supplied to the non-inverting input terminal + of the operational amplifier circuit 15, the output DC voltage of the rectifier circuit 8 is constant. a voltage controlled to be constant voltage V 0 1 to the constant voltage obtained by adding the voltage drop Vd caused by the resistance component 10, 11 of the DC connecting cord (V 0 1 + Vd).

斯る図4例の電源回路においても、電圧制御動作中は、演算増幅回路15が動作中となり比較手段を構成する演算増幅回路30の出力はハイレベル“1”状態となり、トランジスタ32はオフで基準電圧は第1の基準電圧REF3となり図2の出力特性図のCVモードとなって、整流回路8の出力直流電圧を定常の定電圧V01例えば8.40Vになるように制御する。 In the power supply circuit of FIG. 4 as well, during the voltage control operation, the operational amplifier circuit 15 is in operation, the output of the operational amplifier circuit 30 constituting the comparison means is in the high level “1” state, and the transistor 32 is off. The reference voltage becomes the first reference voltage REF3, the CV mode of the output characteristic diagram of FIG. 2 is entered, and the output DC voltage of the rectifier circuit 8 is controlled to be a constant constant voltage V 0 1 such as 8.40V.

また、この図4例の電源回路が電流制御動作中は演算増幅回路20が動作中となり比較手段を構成する演算増幅回路30の出力はローレベル“0”状態となり、トランジスタ32はオンで基準電圧は第2の基準電圧REF4となり、図2の出力特性図のCCモードとなって、整流回路8の出力直流電圧は上昇した電圧V01+Vdに制御される。 Further, during the current control operation of the power supply circuit of FIG. 4, the operational amplifier circuit 20 is in operation, the output of the operational amplifier circuit 30 constituting the comparison means is in a low level “0” state, the transistor 32 is on and the reference voltage is Becomes the second reference voltage REF4, the CC mode of the output characteristic diagram of FIG. 2, and the output DC voltage of the rectifier circuit 8 is controlled to the increased voltage V 0 1 + Vd.

従って図4例においても、図1例と同様の作用効果が得られることは容易に理解できよう。   Therefore, it can be easily understood that the same effect as in the example of FIG. 1 can be obtained in the example of FIG.

尚本発明は上述例に限ることなく、本発明の要旨を逸脱することなく、その他種々の構成が採り得ることは勿論である。   Of course, the present invention is not limited to the above-mentioned examples, and various other configurations can be adopted without departing from the gist of the present invention.

本発明2次電池を内蔵した電子機器の電源回路を実施するための最良の形態の例を示す構成図である。It is a block diagram which shows the example of the best form for implementing the power supply circuit of the electronic device which incorporated the secondary battery of this invention. 本発明の説明に供する線図である。It is a diagram with which it uses for description of this invention. 本発明の説明に供する線図である。It is a diagram with which it uses for description of this invention. 本発明を実施するための最良の形態の他の例を示す構成図である。It is a block diagram which shows the other example of the best form for implementing this invention. 従来の2次電池を内蔵した電子機器の電源回路の例を示す構成図である。It is a block diagram which shows the example of the power supply circuit of the electronic device incorporating the conventional secondary battery. 図5の説明に供する線図である。It is a diagram with which it uses for description of FIG. 図5の説明に供する線図である。It is a diagram with which it uses for description of FIG.

符号の説明Explanation of symbols

1‥‥電源プラグ、2‥‥入力フィルタ、3,8,25‥‥整流回路、4‥‥トランス、5‥‥トランジスタ、6‥‥パルス幅変調制御回路、9‥‥負荷回路、9a‥‥2次電池、10,11‥‥DC接続ケーブルの抵抗成分、12,13,14,19,31‥‥抵抗器、15,20,30‥‥演算増幅回路、16,21‥‥基準電圧発生源、17,24‥‥ダイオード、18‥‥ホトカプラ   DESCRIPTION OF SYMBOLS 1 ... Power plug, 2 ... Input filter, 3, 8, 25 ... Rectifier circuit, 4 ... Transformer, 5 ... Transistor, 6 ... Pulse width modulation control circuit, 9 ... Load circuit, 9a ... Secondary battery, 10, 11... DC connection cable resistance component, 12, 13, 14, 19, 31... Resistor, 15, 20, 30... Operational amplifier circuit, 16, 21. , 17, 24 ... Diode, 18 ... Photocoupler

Claims (1)

出力直流電圧を検出する電圧検出手段と、
該電圧検出手段よりの検出電圧と第1の基準電圧とから第1の誤差信号を得る誤差電圧検出手段と、
該誤差電圧検出手段の第1の誤差信号により出力直流電圧を一定とする定電圧制御手段と、
負荷電流を検出する電流検出手段と、
該電流検出手段よりの電流検出信号に応じた電圧と第2の基準電圧とから第2の誤差信号を得る誤差電流検出手段と、
該誤差電流検出手段の第2の誤差信号により前記負荷電流を一定にするようにした定電流制御手段と、を有する2次電池を内蔵した電子機器の電源回路であって、
前記第1及び第2の誤差信号を比較する比較手段を備え、
前記比較手段の比較出力を、前記電圧検出手段に帰還させて、前記第1の誤差信号より前記第2の誤差信号が小さくなる定電流制御のときに、前記電圧検出手段の出力直流電圧に前記負荷電流による電圧降下分を加算して、前記電圧検出手段の検出電圧を前記電圧降下に対応する分小さくすることを特徴とする、
2次電池を内蔵した電子機器の電源回路。
Voltage detection means for detecting the output DC voltage;
An error voltage detection means for obtaining a first error signal from the detection voltage and a first reference voltage from said voltage detecting means,
Constant voltage control means for making the output DC voltage constant by the first error signal of the error voltage detection means;
Current detection means for detecting a load current;
Error current detection means for obtaining a second error signal from a voltage according to a current detection signal from the current detection means and a second reference voltage;
A constant current control means for making the load current constant by a second error signal of the error current detection means;
Comparing means for comparing the first and second error signals ;
The comparison output of the comparison means is fed back to the voltage detection means, and in the constant current control in which the second error signal is smaller than the first error signal , the output DC voltage of the voltage detection means is The voltage drop due to the load current is added, and the detection voltage of the voltage detection means is reduced by an amount corresponding to the voltage drop ,
Power supply circuit for electronic devices with a built-in secondary battery.
JP2004123338A 2004-04-19 2004-04-19 Power supply circuit for electronic equipment with built-in secondary battery Expired - Fee Related JP4487619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123338A JP4487619B2 (en) 2004-04-19 2004-04-19 Power supply circuit for electronic equipment with built-in secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123338A JP4487619B2 (en) 2004-04-19 2004-04-19 Power supply circuit for electronic equipment with built-in secondary battery

Publications (2)

Publication Number Publication Date
JP2005312134A JP2005312134A (en) 2005-11-04
JP4487619B2 true JP4487619B2 (en) 2010-06-23

Family

ID=35440276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123338A Expired - Fee Related JP4487619B2 (en) 2004-04-19 2004-04-19 Power supply circuit for electronic equipment with built-in secondary battery

Country Status (1)

Country Link
JP (1) JP4487619B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728270B2 (en) * 2011-03-31 2015-06-03 富士重工業株式会社 Charging system
JP7223660B2 (en) * 2019-08-06 2023-02-16 日立Geニュークリア・エナジー株式会社 Charger controller and charging equipment

Also Published As

Publication number Publication date
JP2005312134A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US7545654B2 (en) Control circuit for current and voltage control in a switching power supply
JP4238914B2 (en) Switching power supply circuit
US7948780B2 (en) Semiconductor device for switching power supply control, startup circuit, and startup method for switching power supply device
US6452820B2 (en) Power supplying apparatus and method having a primary side insulated from a secondary side
JPH06165491A (en) Power-supply circuit and control circuit used for it
JP4457014B2 (en) Capacitively coupled power supply
JP3219145B2 (en) Switching power supply
JPS6360634B2 (en)
US6961255B2 (en) Switching power supply using controlled negative feedback in series with a switching device and responsive to the voltage and/or current to a load
JP4862362B2 (en) Switching power supply
JP4487619B2 (en) Power supply circuit for electronic equipment with built-in secondary battery
KR101216677B1 (en) A Controller of AC-DC Converter for LED lighting
US7564197B2 (en) Discharge tube operation device
JP4114238B2 (en) Switching regulator
JPH06261542A (en) Switching power source
JP2000209850A (en) Switching power source
US20120074871A1 (en) Apparatus for controlling power supplied to discharge lamp in response to command supplied from outside the apparatus
CN1333514C (en) Switching power source circuit
JP7332532B2 (en) switching power supply
JP7275764B2 (en) Correction circuit and power supply
US20240022176A1 (en) Integrated circuit and power supply circuit
JPH06284595A (en) Automatic voltage switching type power supply circuit
JPH06225523A (en) Regulated power supply
JP2009095182A (en) Switching power-supply device
JPH06284714A (en) Insulated dc-dc converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees