JP4487591B2 - Resin pipe having shape memory characteristics and inner surface resin-lined steel pipe using the resin pipe - Google Patents

Resin pipe having shape memory characteristics and inner surface resin-lined steel pipe using the resin pipe Download PDF

Info

Publication number
JP4487591B2
JP4487591B2 JP2004049035A JP2004049035A JP4487591B2 JP 4487591 B2 JP4487591 B2 JP 4487591B2 JP 2004049035 A JP2004049035 A JP 2004049035A JP 2004049035 A JP2004049035 A JP 2004049035A JP 4487591 B2 JP4487591 B2 JP 4487591B2
Authority
JP
Japan
Prior art keywords
resin
shape memory
pipe
steel pipe
resin tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004049035A
Other languages
Japanese (ja)
Other versions
JP2005240865A (en
Inventor
克彦 西野
望 三坂
英之 和田
雅仁 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004049035A priority Critical patent/JP4487591B2/en
Publication of JP2005240865A publication Critical patent/JP2005240865A/en
Application granted granted Critical
Publication of JP4487591B2 publication Critical patent/JP4487591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/903Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/904Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using dry calibration, i.e. no quenching tank, e.g. with water spray for cooling or lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/905Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using wet calibration, i.e. in a quenching tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material

Description

本発明は、形状記憶特性を有する樹脂管及びその製造方法に関する。また、本発明は、前記樹脂管を鋼管内面にライニングした内面樹脂ライニング鋼管に関する。   The present invention relates to a resin tube having shape memory characteristics and a manufacturing method thereof. The present invention also relates to an inner surface resin-lined steel pipe obtained by lining the resin pipe on the inner surface of the steel pipe.

近年、防食などを目的に、例えば、給水、給湯、空調、排水等に使用される鋼管内面に樹脂ライニング層を形成した内面樹脂ライニング鋼管が使用されている。鋼管内面に樹脂ライニング層を形成する方法として、樹脂粉体を鋼管内面に吹き付ける方法があるが、この方法は、生産性が悪く、厚肉のライニング層を得るのに適した方法とは言い難い。   In recent years, for the purpose of corrosion prevention, for example, an inner surface resin-lined steel pipe in which a resin lining layer is formed on the inner surface of a steel pipe used for water supply, hot water supply, air conditioning, drainage, and the like has been used. As a method of forming a resin lining layer on the inner surface of a steel pipe, there is a method of spraying resin powder onto the inner surface of the steel pipe. However, this method is poor in productivity and is not a suitable method for obtaining a thick lining layer. .

そのため、生産性のより優れたライニング層形成方法として、鋼管内径よりやや小さな外径で、加熱により鋼管内径以上に外径膨張する形状記憶特性を有した樹脂管を鋼管内に配置後、加熱することにより、該樹脂管を膨張させ鋼管内面に貼りつける方法が用いられている。この場合、樹脂管は、加熱により記憶した外径に回復するものである。   Therefore, as a lining layer forming method with higher productivity, a resin tube having an outer diameter slightly smaller than the inner diameter of the steel pipe and having a shape memory characteristic that expands outside the inner diameter of the steel pipe by heating is placed in the steel pipe and then heated. Thus, a method is used in which the resin tube is expanded and attached to the inner surface of the steel tube. In this case, the resin tube recovers to the memorized outer diameter by heating.

形状記憶特性を有した樹脂管は次の方法で製造される。まず、形状記憶特性を有していない一般の樹脂管と同様に、溶融樹脂を押出機のダイより押出し、真空冷却槽に導き、該真空冷却槽の入口に配したサイジングダイにより樹脂管の外径を固定する。真空冷却槽は、所望する冷却に応じて複数個配置される。次に、形状記憶特性を付与するために、外径を固定した樹脂管を再加熱し、縮径加工を行い、その後再び冷却して形状を固定する。このような工程により製造された樹脂管は高い残留応力を有し、該樹脂管を加熱すると、残留応力を開放し、縮径加工前の形状にもどろうとする性質(形状記憶特性)を示す。   A resin tube having shape memory characteristics is manufactured by the following method. First, in the same manner as general resin pipes that do not have shape memory characteristics, the molten resin is extruded from a die of an extruder, led to a vacuum cooling tank, and a sizing die arranged at the inlet of the vacuum cooling tank is used to remove the resin pipe. Fix the diameter. A plurality of vacuum cooling tanks are arranged according to the desired cooling. Next, in order to impart shape memory characteristics, the resin tube having a fixed outer diameter is reheated, subjected to diameter reduction processing, and then cooled again to fix the shape. The resin tube manufactured by such a process has a high residual stress, and when the resin tube is heated, the resin tube exhibits a property (shape memory characteristic) of releasing the residual stress and returning to the shape before the diameter reduction processing.

縮径加工には、2台の引取り機に引取速度差を生じさせることにより、樹脂管を縮径させる方法がある(以下、先行技術1)。また、これに代わる方法として、特許文献1には、押出機直後に、冷却水がシャワー状に噴射している真空冷却槽(シャワー式真空冷却槽)の入り側にテーパ付サイジングダイを設け、その中を、樹脂管を冷却させながら通過させることにより樹脂管を縮径させ、形状記憶特性の付与に必要な残留応力を付与する方法が提案されている(以下、先行技術2)。
特開2002−234067号公報(第3頁)
In the diameter reduction processing, there is a method of reducing the diameter of a resin pipe by causing a difference in take-up speed between two take-up machines (hereinafter referred to as Prior Art 1). As an alternative method, Patent Document 1 provides a taper sizing die immediately after the extruder on the entrance side of a vacuum cooling tank (shower type vacuum cooling tank) in which cooling water is sprayed in a shower shape. A method of reducing the diameter of the resin tube by passing through the resin tube while cooling the resin tube and applying a residual stress necessary for imparting shape memory characteristics has been proposed (hereinafter, Prior Art 2).
JP 2002-234067 A (page 3)

しかし、先行技術1では、2台の引取機の速度差のみで縮径するため、所望の縮径率を得るには、軸方向により大きい延伸率を必要とする。この方法で形状記憶特性が付与された樹脂管は、所望の外径膨張を得るにはより大きい軸方向収縮を必要とするので、ライニング工程において、鋼管内面との摩擦による抵抗により軸方向収縮に必要な時間が長くなり、外径膨張の時間も長くなるため、結果としてライニング工程の生産性を上げられないという問題がある。   However, in prior art 1, since the diameter is reduced only by the speed difference between the two take-up machines, a larger drawing ratio is required in the axial direction in order to obtain a desired diameter reduction ratio. The resin pipe to which shape memory characteristics are imparted by this method requires a larger axial shrinkage in order to obtain a desired outer diameter expansion. Therefore, in the lining process, the resin pipe is caused to shrink in the axial direction due to resistance caused by friction with the inner surface of the steel pipe. Since the required time becomes longer and the time for expanding the outer diameter also becomes longer, there is a problem that the productivity of the lining process cannot be increased as a result.

また、先行技術2に記載される方法は、縮径加工する際にテーパ付サイジングダイのテーパ部で樹脂管が詰まり易く、樹脂管に形状記憶特性を付与する工程の生産性を低下させる問題がある。   Further, the method described in Prior Art 2 has a problem that the resin tube is easily clogged by the tapered portion of the tapered sizing die when the diameter is reduced, and the productivity of the process of imparting shape memory characteristics to the resin tube is lowered. is there.

本発明は、前記問題点を解決し、樹脂管に形状記憶特性を付与する工程で生産性を低下させる問題がなく、また該樹脂管を鋼管内面にライニングする際にライニング工程で生産性を向上できる形状記憶特性を有する樹脂管及びその樹脂管を用いた内面樹脂ライニング鋼管を提供するものである。 The present invention solves the above problems, has no problem of reducing productivity in the process of imparting shape memory characteristics to the resin pipe, and improves the productivity in the lining process when lining the resin pipe to the inner surface of the steel pipe. inner surface plastic lined steel pipe with plastic pipe and its tree fat tube having a can shape memory properties is to provide.

上記の課題を解決する本発明の要旨は次のとおりである。   The gist of the present invention for solving the above problems is as follows.

第1発明は、押出機より押し出され、水冷され、真空引きでサイジングダイに密着させて冷却、硬化され、さらに加熱炉において、所定の形状記憶特性付与温度に加熱され、テーパ付きサイジングダイ表面に密着させて冷却、硬化されつつ、縮径して形状記憶特性が付与された樹脂管であって、前記所定の形状記憶特性付与温度に加熱して60秒保持したときの径方向膨張率Rdが1%以上30%以下、軸方向収縮率R1が30%以下、かつ前記径方向膨張率Rdと前記軸方向収縮率R1の比Rd/R1が0.8以上であることを特徴とする形状記憶特性を有する樹脂管である。
但し、
Rd=(da−ds)/da×100(%)
Rl=(La−Ls)/La×100(%)
ds:形状記憶特性付与温度に再加熱前の樹脂管の外径
da:形状記憶特性付与温度に60秒保持後の樹脂管の外径
Ls:形状記憶特性付与温度に再加熱前の樹脂管の長さ
La:形状記憶特性付与温度に60秒保持後の樹脂管の長さ
The first invention is extruded from an extruder, water-cooled, brought into close contact with a sizing die by vacuum drawing, cooled and cured, and further heated to a predetermined shape memory characteristic imparting temperature in a heating furnace, to a tapered sizing die surface close contact allowed to cool, while being cured, reduced diameter to a shape resin tube storage characteristics are imparted, the radial expansion ratio Rd at the time of re-heated to 60 seconds held in the predetermined shape memory properties imparted temperature 1 to 30%, axial shrinkage R1 is 30% or less, and the ratio Rd / R1 of the radial expansion coefficient Rd and the axial shrinkage ratio R1 is 0.8 or more. It is a resin tube having memory characteristics.
However,
Rd = (da−ds) / da × 100 (%)
Rl = (La−Ls) / La × 100 (%)
ds: outer diameter of resin tube before reheating to shape memory property imparting temperature da: outer diameter of resin tube after holding for 60 seconds at shape memory property imparting temperature Ls: resin tube before reheating to shape memory property imparting temperature Length La: Length of the resin tube after holding for 60 seconds at the shape memory property imparting temperature

発明は、第1発明の樹脂管を加熱してなる樹脂層が鋼管内面に被覆されていることを特徴とする内面樹脂ライニング鋼管である。 A second invention is an inner surface resin-lined steel pipe characterized in that a resin layer formed by heating the resin pipe of the first invention is coated on the inner surface of the steel pipe.

発明は、鋼管内面が樹脂層により被覆された内面樹脂ライニング鋼管であって、鋼管内に外鋼管の内径より小さい外径を有する第1発明の樹脂管を配し、その後、該樹脂管を加熱してその外径を膨張させ該鋼管内面に被覆して製造されたことを特徴とする内面樹脂ライニング鋼管である。 A third invention is an inner surface resin-lined steel pipe whose inner surface is covered with a resin layer , the resin pipe according to the first invention having an outer diameter smaller than the inner diameter of the outer steel pipe disposed in the steel pipe , and then the resin pipe It is an inner surface resin-lined steel pipe manufactured by heating the tube and expanding its outer diameter to coat the inner surface of the steel pipe.

第1発明の樹脂管によれば、樹脂管を加熱して外径を膨張させた時の軸方向収縮が小さいので、該樹脂管を鋼管内面にライニングする際にライニング工程での生産性を向上できる。 According to the first shot bright resin pipe, the axial shrinkage is small when the inflated outside diameter by heating the resin tube, the productivity in the lining process when lining the resin pipe inner surface of the steel pipe Can be improved.

第1発明の樹脂管を鋼管内面にライニングすることによって、内面樹脂ライニング鋼管を製造する際の生産性が良好になる(第発明、第発明)。 By lining the first shot Ming resin pipe inner surface of the steel pipe, the productivity in manufacturing the inner surface plastic lined steel pipe is improved (the second invention, the third invention).

本発明者らは、テーパ付サイジングダイを用いて形状記憶特性を付与した樹脂管は、内面樹脂ライニング鋼管を製造する際の生産性に優れている点に着目し、テーパ付サイジングダイを用いて形状記憶特性を有する樹脂管を製造する際の先行技術2の課題を解決する方法を検討した。その結果、テーパ付サイジングダイで縮径加工して形状記憶特性を付与する際に、先行技術2は、溶融樹脂の固化を進行させながら縮径加工を能率的に行うために、冷却水をシャワー状に噴射して樹脂管を直接冷却しているが、樹脂管を冷却水で直接冷却しなければ、テーパ部における樹脂管の詰まりを防止できることを知見し、さらに検討した結果、形状記憶特性を有する樹脂管を製造する際の生産性に優れ、また、内面樹脂ライニング鋼管を製造する際のライニング工程の生産性にも優れる形状記憶特性を有する樹脂管についても知見した。本発明は、この知見に基づくものである。   The present inventors paid attention to the fact that the resin pipe provided with shape memory characteristics using a tapered sizing die is excellent in productivity when manufacturing an inner surface resin-lined steel pipe, and using the tapered sizing die. A method for solving the problem of Prior Art 2 when manufacturing a resin pipe having shape memory characteristics was examined. As a result, when imparting shape memory characteristics by reducing the diameter with a tapered sizing die, Prior Art 2 showers the cooling water in order to efficiently reduce the diameter while solidifying the molten resin. Although the resin tube is directly cooled by spraying in the shape of a tube, if the resin tube is not directly cooled with cooling water, it is found that the clogging of the resin tube in the taper portion can be prevented, and further investigation results. The present inventors have also found a resin pipe having shape memory characteristics that is excellent in productivity when manufacturing a resin pipe having the above and also has excellent productivity in a lining process when manufacturing an inner surface resin-lined steel pipe. The present invention is based on this finding.

以下、本発明の限定理由について説明する。   Hereinafter, the reasons for limitation of the present invention will be described.

本発明に係る形状記憶特性を有する樹脂管は、所定の形状記憶特性付与温度に加熱して60秒保持したときの径方向膨張率Rdが1%以上30%以下、軸方向収縮率Rlが30%以下、かつ前記径方向膨張率Rdと前記軸方向収縮率Rlの比Rd/Rlが0.8以上であることを特徴とする。
但し、
Rd=(da−ds)/da×100(%)
Rl=(La−Ls)/La×100(%)
ds:形状記憶特性付与温度に再加熱前の樹脂管の外径
da:形状記憶特性付与温度に60秒保持後の樹脂管の外径
Ls:形状記憶特性付与温度に再加熱前の樹脂管の長さ
La:形状記憶特性付与温度に60秒保持後の樹脂管の長さ
本発明において、樹脂管の径方向膨張率Rdと軸方向収縮率Rlとを形状記憶特性付与温度に加熱して60秒保持したときの数値で規定するのは以下の理由による。
Resin tube having shape memory properties according to the present invention, the radial expansion ratio when reheated to 60 seconds held in a predetermined shape memory characteristic applying temperature Rd is less than 30% 1%, the axial shrinkage Rl 30% or less, and the ratio Rd / Rl of the radial expansion rate Rd and the axial shrinkage rate Rl is 0.8 or more.
However,
Rd = (da−ds) / da × 100 (%)
Rl = (La−Ls) / La × 100 (%)
ds: outer diameter of resin tube before reheating to shape memory property imparting temperature da: outer diameter of resin tube after holding for 60 seconds at shape memory property imparting temperature Ls: resin tube before reheating to shape memory property imparting temperature length La: length of the resin tube after shape memory properties imparted temperature 60 seconds hold in the present invention, by reheating the radial expansion of the resin tube Rd and the axial shrinkage Rl shape memory properties imparted temperature The reason why it is defined by the numerical value when held for 60 seconds is as follows.

形状記憶特性付与温度とは、樹脂管に形状記憶特性を付与する際に樹脂管を加熱する温度であり、良好な形状復元性を付与するには、形状記憶特性付与温度を、Teg以上、Teg+50℃以下とすることが好ましい。但し、Tegは樹脂のガラス転移終了温度である。ガラス転移開始温度以上、ガラス転移終了温度(Teg)未満の温度範囲では、樹脂のガラス状態からゴム状態への変化の途上であるため、付与される形状記憶特性が不安定であり、形状記憶特性を付与した樹脂管を加熱したときに安定した形状復元性を得られない。また、Teg+50℃超となるとゴム弾性率が低下し、樹脂管を加熱したときに良好な形状復元性を得られない。形状記憶特性付与温度のより好ましい温度は、Teg以上、Teg+10℃以下である。 The shape memory property imparting temperature is a temperature at which the resin tube is heated when the shape memory property is imparted to the resin tube. In order to impart a good shape restoration property, the shape memory property imparting temperature is Teg or higher, Teg + 50 It is preferable to set it as below ℃. Where Teg is the glass transition end temperature of the resin. In the temperature range above the glass transition start temperature and below the glass transition end temperature (Teg), the resin is in the process of changing from the glass state to the rubber state. not obtained a stable shape recovery properties when reheated imparting resin tube. Moreover, when it exceeds Teg + 50 ° C., the rubber elastic modulus is lowered, and when the resin tube is heated, a good shape restoring property cannot be obtained. A more preferable temperature of the shape memory property imparting temperature is Teg or more and Teg + 10 ° C. or less.

鋼管内面に樹脂管をライニングするライニング工程では、通常、樹脂管の加熱温度を形状記憶特性付与温度以上の温度とする。したがって、樹脂管を形状記憶特性付与温度に加熱したときの径方向膨張率Rdと軸方向収縮率Rlとを評価することで、ライニング工程における形状復元性を適切に評価できる。加熱時間を60秒に規定したのは、この加熱時間での評価結果がライニング工程における形状復元性を適切に評価できたことに基づく。 In the lining process in which the resin pipe is lined on the inner surface of the steel pipe, the heating temperature of the resin pipe is usually set to a temperature equal to or higher than the shape memory characteristic imparting temperature. Therefore, by evaluating the radial expansion ratio Rd at the time of re-heating the resin tube shape memory imparted temperature and axial shrinkage Rl, the shape recovery property in the lining process can be properly evaluated. The reason for setting the heating time to 60 seconds is that the evaluation result at this heating time was able to appropriately evaluate the shape restoration property in the lining process.

径方向膨張率Rd:1%以上30%以下
径方向膨張率Rdが1%未満になると、ライニング工程で、鋼管内への樹脂管装入が困難になる。一方、径方向膨張率Rdを30%超にするためには樹脂管製造時の縮径加工の加工度を大きくしなければならない。その結果、樹脂管製造時にテーパ部で詰まりや折れこみが発生しやすくなり、樹脂管製造が困難になる。径方向膨張率Rdは3%以上25%以下がより好ましい。
Radial expansion coefficient Rd: 1% or more and 30% or less When the radial expansion coefficient Rd is less than 1%, it becomes difficult to insert the resin pipe into the steel pipe in the lining process. On the other hand, in order to increase the radial expansion coefficient Rd to more than 30%, it is necessary to increase the processing degree of the diameter reduction processing at the time of manufacturing the resin pipe. As a result, clogging or folding is likely to occur at the tapered portion during the production of the resin tube, making it difficult to produce the resin tube. The radial expansion coefficient Rd is more preferably 3% or more and 25% or less.

軸方向収縮率Rl:30%以下
軸方向収縮率Rlが30%以下であると、ライニング工程の生産性に優れる。軸方向収縮率Rlが30%超になると、ライニング工程で、鋼管内面との摩擦による抵抗が大きくなり、軸方向の収縮に時間を要し、外径膨張にも時間を要するようになる結果、ライニング工程の生産性の低下を招く。軸方向収縮率Rlは25%以下がより好ましい。
Axial shrinkage rate Rl: 30% or less When the axial shrinkage rate Rl is 30% or less, the productivity of the lining process is excellent. When the axial shrinkage ratio Rl exceeds 30%, the resistance due to friction with the inner surface of the steel pipe increases in the lining process, and time is required for axial contraction and time is required for expansion of the outer diameter. The productivity of the lining process is reduced. The axial shrinkage ratio Rl is more preferably 25% or less.

径方向膨張率Rdと軸方向収縮率Rlの比(Rd/Rl):0.8以上
2台の引取機を用いる単純引張りでの縮径の場合、径方向の変形と軸方向の変形の比(径方向変形/軸方向変形)は一定(材料毎のポアソン比で決定される)で、通常0.8未満である。Rd/Rlを0.8以上にすることで、軸方向の収縮を抑えながら径方向に復元しうる樹脂管となり、ライニング工程の生産性を向上できる。なお、本発明では、樹脂管を所定の形状記憶特性付与温度でテーパ付サイジングダイを通して縮径加工して形状記憶特性を付与することで、Rd/Rlを0.8以上にすることができる。ライニング工程での生産性のさらなる向上を図るためには、Rd/Rlを1.0以上とすることがより好ましい。
Ratio of radial expansion rate Rd and axial contraction rate Rl (Rd / Rl): 0.8 or more In the case of diameter reduction by simple pulling using two take-up machines, the ratio of radial deformation to axial deformation (Radial deformation / axial deformation) is constant (determined by Poisson's ratio for each material) and is usually less than 0.8. By setting Rd / Rl to 0.8 or more, it becomes a resin pipe that can be restored in the radial direction while suppressing shrinkage in the axial direction, and the productivity of the lining process can be improved. In the present invention, Rd / Rl can be made 0.8 or more by reducing the diameter of a resin tube through a tapered sizing die at a predetermined shape memory characteristic application temperature to give the shape memory characteristic. In order to further improve the productivity in the lining process, it is more preferable that Rd / Rl is 1.0 or more.

本発明が対象とする樹脂種については特に規定しない。形状記憶特性に優れたスチレン−ブタジエン共重合体、ポリウレタン、ポロルボルネン等、形状記憶特性が乏しいポリスチレン、ポリカーボネート、エンジニアリングプラスチック(例えば、ポリスルホン、ポリカーボネイト、変性ポリフェニレンエーテルなど)等を使用することが可能である。   The resin species targeted by the present invention is not particularly defined. It is possible to use polystyrene, polycarbonate, engineering plastics (for example, polysulfone, polycarbonate, modified polyphenylene ether, etc.) having poor shape memory characteristics, such as styrene-butadiene copolymers having excellent shape memory characteristics, polyurethane, and pororbornene. .

また、本発明では、樹脂の密度、MFR、分子量などの特性を規定する必要はない。可塑剤、顔料、充填剤、難燃剤、酸化防止剤、紫外線吸収剤、帯電剤、滑剤、粘着付与剤などの添加剤を加えることは差し支えなく、他の樹脂を加えたブレンド樹脂としてもよい。   In the present invention, it is not necessary to define characteristics such as resin density, MFR, and molecular weight. Additives such as plasticizers, pigments, fillers, flame retardants, antioxidants, ultraviolet absorbers, charging agents, lubricants, and tackifiers may be added, and blend resins may be added with other resins.

次に、本発明の形状記憶特性を有する樹脂管の製造方法について説明する。   Next, the manufacturing method of the resin pipe | tube which has the shape memory characteristic of this invention is demonstrated.

図1は、本発明の形状記憶特性を有する樹脂管の製造に使用する樹脂管製造設備の一構成例を示す図である。図1において、1は押出機、2は樹脂管、3は真空冷却槽、4は第一引取機、5は加熱炉、6はテーパ付サイジングダイ、7はドライ真空槽、8は冷却槽、9は第二引取機である。   FIG. 1 is a diagram showing a configuration example of a resin pipe manufacturing facility used for manufacturing a resin pipe having shape memory characteristics of the present invention. In FIG. 1, 1 is an extruder, 2 is a resin tube, 3 is a vacuum cooling tank, 4 is a first take-up machine, 5 is a heating furnace, 6 is a tapered sizing die, 7 is a dry vacuum tank, 8 is a cooling tank, 9 is a second take-up machine.

真空冷却槽3は、入側に、管外面に冷却水を直接シャワー状に噴射して冷却するシャワー装置(図示なし)を備える。真空冷却槽の入口にサイジングダイ3aが配置されている。サイジングダイ3aはその内部に冷却水が供給される水冷ジャケットを備える。加熱炉5とドライ真空槽7との間には、樹脂管2表面に冷却水を直接噴射して冷却するシャワー装置は配置されていない。なお、本明細書において、ドライ真空槽とは、樹脂管を直接水冷する水シャワー設備を備えない真空槽という意味である。   The vacuum cooling tank 3 is provided with a shower device (not shown) on the inlet side for cooling by spraying cooling water directly on the outer surface of the tube in a shower shape. A sizing die 3a is disposed at the entrance of the vacuum cooling bath. The sizing die 3a includes a water cooling jacket in which cooling water is supplied. Between the heating furnace 5 and the dry vacuum tank 7, the shower apparatus which cools by injecting cooling water directly on the resin pipe 2 surface is not arrange | positioned. In addition, in this specification, a dry vacuum tank means the vacuum tank which does not have the water shower equipment which water-cools a resin pipe | tube directly.

図2は、図1の設備に配置されているドライ真空槽7および冷却槽8部分の詳細構造を説明する断面拡大図である。テーパ付サイジングダイ6は、ドライ真空槽7部分に配置されており、テーパ部6bを挟んで入側と出側に各々平行部6a及び6cを有する。   FIG. 2 is an enlarged cross-sectional view illustrating the detailed structure of the dry vacuum chamber 7 and the cooling bath 8 arranged in the facility of FIG. The tapered sizing die 6 is disposed in the dry vacuum chamber 7 and has parallel portions 6a and 6c on the entry side and the exit side, respectively, across the taper portion 6b.

テーパ付サイジングダイ6には、樹脂管通過部分からドライ真空槽7の真空室15につながる複数の吸引孔16が設けられている。真空室15内雰囲気を真空ポンプ17で吸引することで、テーパ付サイジングダイ6を通過する樹脂管2を真空引きしてテーパ付サイジングダイ6表面に密着させ、冷却して硬化させる。   The tapered sizing die 6 is provided with a plurality of suction holes 16 that lead from the resin tube passage portion to the vacuum chamber 15 of the dry vacuum chamber 7. By sucking the atmosphere in the vacuum chamber 15 with the vacuum pump 17, the resin tube 2 passing through the tapered sizing die 6 is evacuated and brought into close contact with the surface of the tapered sizing die 6, and is cooled and cured.

テーパ付サイジングダイ6は、内部に冷却水が供給される冷却ジャケット13を備える。本装置では、水シャワーで樹脂管を直接水冷しないので、テーパ付サイジングダイ6の冷却ジャケット13に供給する冷却水の温度を下げてテーパ付サイジングダイ6を冷却し、その表面温度を所定温度以下の低温に保持する。冷却水は、温度調整装置(図示なし)で所定温度に冷却され、冷却水供給口12からテーパ付サイジングダイ6の水冷ジャケット13に供給され、冷却水排出口14から排出される。   The tapered sizing die 6 includes a cooling jacket 13 to which cooling water is supplied. In this apparatus, since the resin tube is not directly cooled by water in the water shower, the temperature of the cooling water supplied to the cooling jacket 13 of the tapered sizing die 6 is lowered to cool the tapered sizing die 6, and the surface temperature thereof is lower than a predetermined temperature. Keep it at a low temperature. The cooling water is cooled to a predetermined temperature by a temperature adjusting device (not shown), supplied from the cooling water supply port 12 to the water cooling jacket 13 of the tapered sizing die 6, and discharged from the cooling water discharge port 14.

冷却槽8では樹脂管を水中に没して冷却する、または樹脂管を水シャワーで冷却する。   In the cooling tank 8, the resin tube is submerged and cooled, or the resin tube is cooled by a water shower.

図1の設備を用いて、押出機1より、溶融した樹脂が管状となるように押出され、押し出された管状の樹脂は、真空冷却槽入側のシャワー装置(図示なし)で直接水冷されながら真空冷却槽3に案内される。真空冷却槽3で真空引きされて周囲のサイジングダイ3aに密着させることで冷却、硬化され、樹脂管の引取に支障がない温度、通常20℃程度又はそれ以下の温度まで冷却され、第一引取機4に引き取られる。   1, the extruded resin is extruded from the extruder 1 so as to form a tubular shape, and the extruded tubular resin is directly water-cooled by a shower device (not shown) on the inlet side of the vacuum cooling tank. Guided to the vacuum cooling bath 3. It is cooled and hardened by being vacuumed in the vacuum cooling tank 3 and closely contacting the surrounding sizing die 3a, and cooled to a temperature at which there is no problem in taking up the resin tube, usually about 20 ° C. or lower. Taken by the machine 4.

次に、加熱炉5で、所定の形状記憶特性付与温度まで加熱され、テーパ付サイジングダイ6が設置されたドライ真空槽7に導かれる。   Next, it is heated to a predetermined shape memory characteristic imparting temperature in the heating furnace 5 and guided to a dry vacuum chamber 7 in which a tapered sizing die 6 is installed.

樹脂管2は、形状記憶特性付与に好適な温度範囲内に保持された状態でドライ真空槽7のテーパ付サイジングダイ6のテーパ部6bを通過する。この間に、軸方向延伸率を抑えた状態で径方向に縮径され、残留応力が付与される。また、真空室15内雰囲気を真空ポンプ17で吸引することで、テーパ付サイジングダイ6を通過する樹脂管を真空引きしてテーパ付サイジングダイ6表面に密着させ、樹脂管2は冷却して硬化される。   The resin tube 2 passes through the tapered portion 6b of the tapered sizing die 6 of the dry vacuum chamber 7 while being held in a temperature range suitable for imparting shape memory characteristics. During this time, the diameter is reduced in the radial direction while the axial stretching rate is suppressed, and residual stress is applied. Further, by sucking the atmosphere in the vacuum chamber 15 with the vacuum pump 17, the resin tube passing through the tapered sizing die 6 is evacuated and brought into close contact with the surface of the tapered sizing die 6, and the resin tube 2 is cooled and cured. Is done.

本実施の形態に係る装置では、ドライ真空槽7の入側にシャワー装置を備えないので、ドライ真空槽7の入側及びドライ真空槽7で縮径加工中、樹脂管はドライ状態で冷却される。なお、本発明において、ドライ状態とは、樹脂管を水シャワーで直接水冷しないという意味である。この区間で、樹脂管2は冷却ジャケットを備えるテーパ付サイジングダイ6で間接冷却される。樹脂管2をドライ状態で冷却することで、テーパ部6bでの樹脂管2の詰まりを防止できる。テーパ部6bでの樹脂管2の詰まりを防止できる理由は、樹脂管2が冷却水で直接冷却されなくなったため、樹脂管2が局部的にガラス転移温度以下に冷却されることがなくなったためと考えられる。   In the apparatus according to the present embodiment, since the shower device is not provided on the entry side of the dry vacuum chamber 7, the resin tube is cooled in a dry state while the diameter is reduced in the entry side of the dry vacuum chamber 7 and the dry vacuum chamber 7. The In the present invention, the dry state means that the resin tube is not directly cooled with a water shower. In this section, the resin tube 2 is indirectly cooled by a tapered sizing die 6 having a cooling jacket. By cooling the resin tube 2 in a dry state, the resin tube 2 can be prevented from being clogged with the tapered portion 6b. The reason that the clogging of the resin tube 2 at the taper portion 6b can be prevented is because the resin tube 2 is no longer directly cooled by the cooling water, so that the resin tube 2 is not locally cooled below the glass transition temperature. It is done.

本実施の形態に係る装置では、テーパ付サイジングダイ6はテーパ部6bの前方および後方に平行部6a及び6cを有することで、樹脂管2は、縮径前後の外径の安定性が確保される。また、樹脂管2は、テーパ部6bにおいて、所定の形状記憶特性付与温度に保持された状態で縮径加工される結果、付与される形状記憶特性の変動が低減される。   In the apparatus according to the present embodiment, the tapered sizing die 6 has parallel portions 6a and 6c in front and rear of the taper portion 6b, so that the resin tube 2 can ensure the stability of the outer diameter before and after the diameter reduction. The Further, as a result of the diameter reduction processing of the resin tube 2 in a state where the resin tube 2 is held at a predetermined shape memory characteristic application temperature in the tapered portion 6b, fluctuations in the applied shape memory characteristics are reduced.

該テーパ付サイジングダイ6を通過する樹脂管を冷却する能力を強化する観点から、テーパ付サイジングダイ6のダイ表面温度(金型表面温度)は、50℃以下が好ましく、20℃以下がより好ましい。冷却ジャケット13に供給する冷却水温度を調整することにより、テーパ付サイジングダイ6の温度を容易に調整できる。   From the viewpoint of enhancing the ability to cool the resin pipe passing through the tapered sizing die 6, the die surface temperature (mold surface temperature) of the tapered sizing die 6 is preferably 50 ° C. or less, more preferably 20 ° C. or less. . By adjusting the temperature of the cooling water supplied to the cooling jacket 13, the temperature of the tapered sizing die 6 can be easily adjusted.

テーパ付サイジングダイ6を通過した樹脂管2は、隣接する冷却槽8を通過し、下流の第2引取機9が引き取るのに支障ない温度まで、通常20℃程度又はそれ以下の温度まで冷却され、外径が固定され、所定の寸法の樹脂管2となり、第二引取機9によって引き取られる。   The resin pipe 2 that has passed through the tapered sizing die 6 passes through the adjacent cooling tank 8 and is cooled to a temperature that is not hindered by the downstream second take-up machine 9 and is usually about 20 ° C. or lower. The outer diameter is fixed, the resin pipe 2 has a predetermined size, and is taken up by the second take-up machine 9.

本発明においては、本発明の効果を損なわない範囲で、冷却能力を改善する観点から、必要に応じて、空気等の気体を樹脂管に吹き付けてもよい。また、潤滑性を改善する観点から自己潤滑性の材料を樹脂管にコーティングしてもよく、潤滑剤を樹脂管やテーパ付サイジングダイの表面に供給してもよい。   In the present invention, a gas such as air may be blown onto the resin tube as necessary from the viewpoint of improving the cooling capacity within a range not impairing the effects of the present invention. Further, from the viewpoint of improving lubricity, a self-lubricating material may be coated on the resin tube, and a lubricant may be supplied to the surface of the resin tube or the tapered sizing die.

なお、図1に示した設備では、ドライ真空槽7の上流に、真空冷却槽3、第一引取機4及び加熱炉5が配置されていたが、これらの装置を省略し、押出機1から管状に押し出した樹脂を、ドライ真空槽7のテーパ付サイジングダイ6に導入して形状記憶特性を付与してもよい。   In the facility shown in FIG. 1, the vacuum cooling tank 3, the first take-up machine 4, and the heating furnace 5 are disposed upstream of the dry vacuum tank 7. The resin extruded into a tubular shape may be introduced into the tapered sizing die 6 of the dry vacuum chamber 7 to impart shape memory characteristics.

本発明に係る形状記憶特性を有する樹脂管を鋼管内面にライニングすることで、内面樹脂ライニング鋼管の製造が可能である。鋼管内に該鋼管の内径より小さい外径を有する第1発明の樹脂管を配し、その後、該樹脂管を加熱してその外径を膨張させ該鋼管内面に被覆させて内面樹脂ライニング鋼管を製造する。具体的には、上述の本発明の樹脂管の製造方法に従って、樹脂管の外径を鋼管内径よりも大きな外径に固定した後、鋼管内径よりも小さな外形に縮径して形状記憶特性を有する樹脂管を製造する。該樹脂管を鋼管内部に挿入し、その後、該樹脂管のガラス転移終了温度(Teg)以上、形状記憶特性付与温度+50℃以下の範囲内に加熱する。加熱された樹脂管は、その形状記憶特性から、長さ方向の収縮を伴いながら、径方向に膨張し、鋼管の内側に貼りつく。 By lining the resin pipe having shape memory characteristics according to the present invention on the inner surface of the steel pipe, it is possible to manufacture the inner surface resin-lined steel pipe. Disposing a first shot bright tree fat tube having an outer diameter smaller than the inner diameter of the steel pipe in the steel, then, the inner surface resin lining was coated on the steel tube surface to expand the outer diameter by heating the resin tube Manufacture steel pipes. Specifically, in accordance with the method for manufacturing a resin pipe of the present invention described above, after fixing the outer diameter of the resin pipe to an outer diameter larger than the inner diameter of the steel pipe, the diameter is reduced to an outer diameter smaller than the inner diameter of the steel pipe to obtain shape memory characteristics. The resin pipe which has is manufactured. The resin tube is inserted into the steel tube, and then heated within the range of the glass transition end temperature (Teg) of the resin tube to the shape memory property imparting temperature + 50 ° C. or less. The heated resin tube expands in the radial direction while being contracted in the length direction due to its shape memory characteristics, and sticks to the inside of the steel tube.

内面樹脂ライニング鋼管に用いる鋼管は、内面をメッキ、化成処理、またはプライマー処理したものでも良い。   The steel pipe used for the inner surface resin-lined steel pipe may be one whose inner surface is plated, chemically treated, or primed.

外径φ32mm、肉厚0.8mmの変性ポリフェニレンエーテル樹脂(Teg:170℃)からなる樹脂管を、図1に示したテーパ付サイジングダイ6を備える樹脂管製造設備を用いて、形状記憶特性付与温度:180℃に加熱した後に縮径して形状記憶特性を付与した樹脂管を製造した。冷却槽8は水シャワー装置を用いた。テーパ付サイジングダイ6の形状を表1に示す。その際、テーパ付サイジングダイ6を冷却する冷却ジャケットに供給する冷却水の温度を調整してテーパ付サイジングダイ6の表面温度(金型表面温度)を変えた(冷却状態:ドライ)。比較のために、図1に示した設備において、ドライ真空槽7の入側に、シャワー装置を設置して樹脂管を直接水冷した後、形状記憶特性を付与した樹脂管を製造した(冷却状態:ウェット)。前記樹脂管製造時のテーパ付サイジングダイ6での詰まり有無を調査した。詰まりの発生しなかった樹脂管は、付与された形状記憶特性を調査した。形状記憶特性を付与した樹脂管の製造条件及び特性の調査結果を表2に示す。なお、表2には、比較のために、先行技術1の方法で縮径して樹脂管に形状記憶特性を付与した場合(従来製造方法)についても記載した。   A resin tube made of a modified polyphenylene ether resin (Teg: 170 ° C.) having an outer diameter of 32 mm and a wall thickness of 0.8 mm is provided with shape memory characteristics using a resin tube manufacturing facility including the tapered sizing die 6 shown in FIG. Temperature: A resin tube having a shape memory characteristic was produced by reducing the diameter after heating to 180 ° C. The cooling tank 8 used a water shower device. Table 1 shows the shape of the tapered sizing die 6. At that time, the temperature of the cooling water supplied to the cooling jacket for cooling the tapered sizing die 6 was adjusted to change the surface temperature (mold surface temperature) of the tapered sizing die 6 (cooling state: dry). For comparison, in the equipment shown in FIG. 1, a shower device was installed on the inlet side of the dry vacuum chamber 7 and the resin tube was directly water-cooled, and then a resin tube having shape memory characteristics was produced (cooled state). : Wet). The presence or absence of clogging with the tapered sizing die 6 during the production of the resin pipe was investigated. Resin pipes in which clogging did not occur were examined for shape memory characteristics. Table 2 shows the manufacturing conditions and the investigation results of the characteristics of the resin pipe to which the shape memory characteristics are imparted. For comparison, Table 2 also shows a case where the diameter is reduced by the method of the prior art 1 and shape memory characteristics are imparted to the resin pipe (conventional manufacturing method).

製造した樹脂管を、内径φ27.5mm、肉厚3.2mmの鋼管内面に挿入し、樹脂管の温度が180℃になるように加熱し、樹脂管を鋼管内面にライニングした。ライニング工程における生産性の評価結果を表2に併せて記載した。   The manufactured resin tube was inserted into the inner surface of a steel pipe having an inner diameter of φ27.5 mm and a wall thickness of 3.2 mm, and heated so that the temperature of the resin tube became 180 ° C., and the resin tube was lined on the inner surface of the steel pipe. The productivity evaluation results in the lining process are also shown in Table 2.

Figure 0004487591
Figure 0004487591

Figure 0004487591
Figure 0004487591

比較例ではテ−パ付サイジングダイのテ−パ部で樹脂管の詰まりが発生し、樹脂管を製造できなかったが、本発明例では詰まりの発生は無く、問題なく樹脂管を製造できた。本発明例の樹脂管は、従来例の樹脂管に比べ軸方向収縮率が小さく、Rd/Rlが0.8以上となっている。さらに本発明例の樹脂管を鋼管内面にライニングして内面樹脂ライニング鋼管を製造する際のライニング性(生産性)は、従来例の樹脂管を鋼管内面にライニングして内面樹脂ライニング鋼管を製造する際のライニング性に比べて優れており、生産性が従来例の2倍に向上している。   In the comparative example, clogging of the resin tube occurred in the taper portion of the sizing die with taper, and the resin tube could not be manufactured. However, in the present invention example, there was no clogging and the resin tube could be manufactured without any problem. . The resin pipe of the present invention example has a smaller axial shrinkage than the conventional resin pipe, and Rd / Rl is 0.8 or more. Furthermore, the lining property (productivity) when the resin pipe of the present invention is lined on the inner surface of the steel pipe to produce the inner surface resin-lined steel pipe is manufactured by lining the resin pipe of the conventional example on the inner surface of the steel pipe. Compared to the conventional lining, the productivity is improved twice as much as the conventional example.

外径φ59mm、肉厚0.8mmの変性ポリフェニレンエーテル樹脂(Teg:170℃)からなる樹脂管を、図1に示したテーパ付サイジングダイ6を備える樹脂管製造設備を用いて、形状記憶特性付与温度:180℃に加熱した後に縮径して形状記憶特性を付与した樹脂管を製造した。冷却槽8は水シャワー装置を用いた。テーパ付サイジングダイ6の形状を表3に示す。その際、テーパ付サイジングダイ6を冷却する冷却ジャケットに供給する冷却水の温度を調整してテーパ付サイジングダイ6の表面温度(金型表面温度)を変えた(冷却状態:ドライ)。比較のために、図1に示した設備において、ドライ真空槽7の入側に、シャワー装置を設置して樹脂管を直接水冷した後、形状記憶特性を付与した樹脂管を製造した(冷却状態:ウェット)。前記樹脂管製造時のテーパ付サイジングダイ6での詰まり有無を調査した。詰まりの発生しなかった樹脂管は、付与された形状記憶特性を調査した。形状記憶特性を付与した樹脂管の製造条件及び特性の調査結果を表4に示す。なお、表4には、比較のために、先行技術1の方法で縮径して樹脂管に形状記憶特性を付与した場合(従来製造方法)についても記載した。   A resin tube made of a modified polyphenylene ether resin (Teg: 170 ° C.) having an outer diameter of φ59 mm and a wall thickness of 0.8 mm is provided with shape memory characteristics using a resin tube manufacturing facility including the tapered sizing die 6 shown in FIG. Temperature: A resin tube having a shape memory characteristic was produced by reducing the diameter after heating to 180 ° C. The cooling tank 8 used a water shower device. Table 3 shows the shape of the tapered sizing die 6. At that time, the temperature of the cooling water supplied to the cooling jacket for cooling the tapered sizing die 6 was adjusted to change the surface temperature (mold surface temperature) of the tapered sizing die 6 (cooling state: dry). For comparison, in the equipment shown in FIG. 1, a shower device was installed on the inlet side of the dry vacuum chamber 7 and the resin tube was directly water-cooled, and then a resin tube having shape memory characteristics was produced (cooled state). : Wet). The presence or absence of clogging with the tapered sizing die 6 during the production of the resin pipe was investigated. Resin pipes in which clogging did not occur were examined for shape memory characteristics. Table 4 shows the manufacturing conditions of the resin pipe to which the shape memory characteristics are imparted and the investigation results of the characteristics. For comparison, Table 4 also describes the case where the diameter is reduced by the method of the prior art 1 and shape memory characteristics are imparted to the resin pipe (conventional manufacturing method).

前記で製造した樹脂管を、内径φ52.9mm、肉厚3.8mmの鋼管内面に挿入し、樹脂管の温度が180℃になるように加熱し、樹脂管を鋼管内面にライニングした。ライニング工程における生産性の評価結果を表4に併せて記載した。   The resin pipe produced above was inserted into the inner surface of a steel pipe having an inner diameter of 52.9 mm and a wall thickness of 3.8 mm, and heated so that the temperature of the resin pipe reached 180 ° C., and the resin pipe was lined on the inner surface of the steel pipe. The evaluation results of productivity in the lining process are also shown in Table 4.

Figure 0004487591
Figure 0004487591

Figure 0004487591
Figure 0004487591

比較例ではテ−パ付サイジングダイのテ−パ部で樹脂管の詰まりが発生し、樹脂管を製造できなかったが、本発明例では詰まりの発生は無く、問題なく樹脂管を製造できた。本発明例の樹脂管は、従来例の樹脂管に比べ軸方向収縮率が小さく、Rd/Rlが0.8以上となっている。さらに本発明例の樹脂管を鋼管内面にライニングして内面樹脂ライニング鋼管を製造する際のライニング性(生産性)は、従来例の樹脂管を鋼管内面にライニングして内面樹脂ライニング鋼管を製造する際のライニング性に比べて優れており、生産性が従来例の2倍以上に向上している。   In the comparative example, clogging of the resin tube occurred in the taper portion of the sizing die with taper, and the resin tube could not be manufactured. However, in the present invention example, there was no clogging and the resin tube could be manufactured without any problem. . The resin pipe of the present invention example has a smaller axial shrinkage than the conventional resin pipe, and Rd / Rl is 0.8 or more. Furthermore, the lining property (productivity) when the resin pipe of the present invention is lined on the inner surface of the steel pipe to produce the inner surface resin-lined steel pipe is manufactured by lining the resin pipe of the conventional example on the inner surface of the steel pipe. It is superior to the conventional lining, and the productivity is more than twice that of the conventional example.

本発明の樹脂管の製造方法は、テーパ付サイジングダイで縮径して形状記憶特性を有する樹脂管を製造する方法として利用することができる。   The resin pipe manufacturing method of the present invention can be used as a method of manufacturing a resin pipe having a shape memory characteristic by reducing its diameter with a tapered sizing die.

本発明の樹脂管、本発明法で製造された樹脂管は、給水、給湯、空調、排水等の配管等に使用される内面樹脂ライニング鋼管の内面にライニングする樹脂管として利用することができる。   The resin pipe of the present invention and the resin pipe produced by the method of the present invention can be used as a resin pipe lining on the inner surface of an inner surface resin-lined steel pipe used for piping for water supply, hot water supply, air conditioning, drainage and the like.

本発明の形状記憶特性を有する樹脂管の製造に使用する樹脂管製造設備の一構成例を示す図である。It is a figure which shows one structural example of the resin pipe manufacturing equipment used for manufacture of the resin pipe which has the shape memory characteristic of this invention. 図1の設備に配置されているドライ真空槽および冷却槽部分の詳細構造を説明する断面拡大図である。It is a cross-sectional enlarged view explaining the detailed structure of the dry vacuum tank and cooling tank part arrange | positioned at the installation of FIG.

符号の説明Explanation of symbols

1 押出機
2 樹脂管
3 真空冷却槽
3a サイジングダイ
4 第一引取機
5 加熱炉
6 テーパ付サイジングダイ
7 ドライ真空槽
8 冷却槽
9 第二引取機
12 冷却水供給口
13 冷却ジャケット
14 冷却水排出口
15 真空室
16 吸引孔
17 真空ポンプ
DESCRIPTION OF SYMBOLS 1 Extruder 2 Resin pipe 3 Vacuum cooling tank 3a Sizing die 4 First take-up machine 5 Heating furnace 6 Tapered sizing die 7 Dry vacuum tank 8 Cooling tank 9 Second take-up machine 12 Cooling water supply port 13 Cooling jacket 14 Cooling water discharge Outlet 15 Vacuum chamber 16 Suction hole 17 Vacuum pump

Claims (3)

押出機より押し出され、水冷され、真空引きでサイジングダイに密着させて冷却、硬化され、さらに加熱炉において、所定の形状記憶特性付与温度に加熱され、テーパ付きサイジングダイ表面に密着させて冷却、硬化されつつ、縮径して形状記憶特性が付与された樹脂管であって、前記所定の形状記憶特性付与温度に加熱して60秒保持したときの径方向膨張率Rdが1%以上30%以下、軸方向収縮率R1が30%以下、かつ前記径方向膨張率Rdと前記軸方向収縮率R1の比Rd/R1が0.8以上であることを特徴とする形状記憶特性を有する樹脂管。
但し、
Rd=(da−ds)/da×100(%)
Rl=(La−Ls)/La×100(%)
ds:形状記憶特性付与温度に再加熱前の樹脂管の外径
da:形状記憶特性付与温度に60秒保持後の樹脂管の外径
Ls:形状記憶特性付与温度に再加熱前の樹脂管の長さ
La:形状記憶特性付与温度に60秒保持後の樹脂管の長さ
Extruded from an extruder, cooled with water, cooled and hardened by being in close contact with a sizing die by vacuuming, and further heated in a heating furnace to a predetermined shape memory property imparting temperature, and in close contact with the surface of the tapered sizing die, cooling while being cured, a resin tube shape memory characteristics are imparted reduced in diameter, the radial expansion ratio Rd at the time of re-heated to 60 seconds held in the predetermined shape memory properties imparted temperature over 1% 30 % Or less, an axial shrinkage ratio R1 of 30% or less, and a ratio Rd / R1 of the radial expansion coefficient Rd and the axial shrinkage ratio R1 is 0.8 or more. tube.
However,
Rd = (da−ds) / da × 100 (%)
Rl = (La−Ls) / La × 100 (%)
ds: outer diameter of resin tube before reheating to shape memory property imparting temperature da: outer diameter of resin tube after holding for 60 seconds at shape memory property imparting temperature Ls: resin tube before reheating to shape memory property imparting temperature Length La: Length of the resin tube after holding for 60 seconds at the shape memory property imparting temperature
請求項1記載の樹脂管を加熱してなる樹脂層が鋼管内面に被覆されていることを特徴とする内面樹脂ライニング鋼管。 An inner surface resin-lined steel pipe, wherein a resin layer formed by heating the resin pipe according to claim 1 is coated on the inner surface of the steel pipe. 鋼管内面が樹脂層により被覆された内面樹脂ライニング鋼管であって、鋼管内に外鋼管の内径より小さい外径を有する請求項1記載の樹脂管を配し、その後、該樹脂管を加熱してその外径を膨張させ該鋼管内面に被覆して製造されたことを特徴とする内面樹脂ライニング鋼管。 An inner surface resin-lined steel pipe whose inner surface is coated with a resin layer, the resin pipe according to claim 1 having an outer diameter smaller than the inner diameter of the outer steel pipe in the steel pipe , and then the resin pipe is heated to An inner surface resin-lined steel pipe produced by expanding its outer diameter and coating the inner surface of the steel pipe.
JP2004049035A 2004-02-25 2004-02-25 Resin pipe having shape memory characteristics and inner surface resin-lined steel pipe using the resin pipe Expired - Fee Related JP4487591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049035A JP4487591B2 (en) 2004-02-25 2004-02-25 Resin pipe having shape memory characteristics and inner surface resin-lined steel pipe using the resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049035A JP4487591B2 (en) 2004-02-25 2004-02-25 Resin pipe having shape memory characteristics and inner surface resin-lined steel pipe using the resin pipe

Publications (2)

Publication Number Publication Date
JP2005240865A JP2005240865A (en) 2005-09-08
JP4487591B2 true JP4487591B2 (en) 2010-06-23

Family

ID=35022818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049035A Expired - Fee Related JP4487591B2 (en) 2004-02-25 2004-02-25 Resin pipe having shape memory characteristics and inner surface resin-lined steel pipe using the resin pipe

Country Status (1)

Country Link
JP (1) JP4487591B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20120299A1 (en) * 2012-02-28 2013-08-29 Gimac Di Maccagnan Giorgio DRY CALIBRATION DEVICE FOR EXTRUDERS
CN103171120B (en) * 2013-03-12 2015-03-11 德科摩橡塑科技(东莞)有限公司 Pipe extrusion production line
CN109878065B (en) * 2019-04-02 2024-02-13 青岛维思顿智能新材料有限公司 Shape memory columnar rubber cylinder deforming device

Also Published As

Publication number Publication date
JP2005240865A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP3315123B2 (en) Pipe liner composition
JP4487591B2 (en) Resin pipe having shape memory characteristics and inner surface resin-lined steel pipe using the resin pipe
IL29315A (en) Production of blown tubular foils
JP6989678B2 (en) Fluororesin tear tube
CA2091488C (en) Method and apparatus for the orientation of a plastic pipe
EP0477081B1 (en) Method for producing a resin pipe for use as the inner lining of existing pipes
CN101559644A (en) Manufacturing method for high strength polyphenylene sulfide tube
CN100404940C (en) Composite pipe
CN107427781A (en) The manufacture method of hollow fiber membrane
JP3900082B2 (en) Foam rubber sponge roller manufacturing method and foam extrusion molding apparatus used therefor
JP5630857B2 (en) Manufacturing method of resin molded products
KR100977378B1 (en) Method for coating the inside of an extruder die and a die coated thereby
JP4346579B2 (en) Manufacturing method of composite pipe
KR100631473B1 (en) a manufacture method of a rubber hose for the car
JPS62140816A (en) Manufacture of theremoplastic resin pipe and device therefor
JPH0866963A (en) Thermal expansion resin pipe and manufacture thereof and manufacture of composite pipe
JPH04358823A (en) Method and apparatus for manufacture of heat-shrinkable tube
JP4404732B2 (en) Synthetic resin liner material for pipes
CN111556942B (en) Thermoplastic fluorine-containing resin pipe
JP7417374B2 (en) Piping
JP2002234067A (en) Method for manufacturing resin tube having excellent shape memory properties and inner surface resin lining steel tube using the resin tube
JP2007290192A (en) Manufacturing method of resin pipe
JP5255339B2 (en) Mandrel wire for manufacturing hose and method for manufacturing the same
JP2003200492A (en) Method and apparatus for molding liner material for inner surface of duct
JPH0994867A (en) Preparation of hollow molded article

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees