JP4487339B2 - Capacity control method and apparatus for gas pumping device - Google Patents

Capacity control method and apparatus for gas pumping device Download PDF

Info

Publication number
JP4487339B2
JP4487339B2 JP25488699A JP25488699A JP4487339B2 JP 4487339 B2 JP4487339 B2 JP 4487339B2 JP 25488699 A JP25488699 A JP 25488699A JP 25488699 A JP25488699 A JP 25488699A JP 4487339 B2 JP4487339 B2 JP 4487339B2
Authority
JP
Japan
Prior art keywords
gas
pressure
surging
amount
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25488699A
Other languages
Japanese (ja)
Other versions
JP2001082380A (en
Inventor
龍吾 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP25488699A priority Critical patent/JP4487339B2/en
Publication of JP2001082380A publication Critical patent/JP2001082380A/en
Application granted granted Critical
Publication of JP4487339B2 publication Critical patent/JP4487339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般製造、組立工場等で空気源や昇圧窒素の如き原料用気体源として用いる遠心圧縮機や送風機等の気体圧送装置の容量制御方法及び装置に関するものである。
【0002】
【従来の技術】
一例として、無負荷運転とすることにより使用量がサージング限界風量以下となったときサージング回避を行うようにした従来の圧縮機の容量制御について示すと、図9に示す如く、遠心式の圧縮機1に吸入される気体の吸入側配管2の途中に吸入弁3を設け、又、圧縮機1から吐出された圧縮気体をレシーバ4へ送る吐出側配管5の途中に分岐配管6を接続して、該分岐配管6に排気のための放風弁(排気弁)7を設け、更に、該分岐配管6以降の吐出側配管5の途中に逆止弁8を設けた構成において、レシーバ4内の気体の圧力、すなわち、負荷側となる工場での使用量と圧縮機の吐出量とのバランス状況によってきまる吐出圧力を検出する圧力伝送器9と、該圧力伝送器9からの信号を測定入力として吐出圧力を一定にするように作用する定風圧調節計(下限スイッチ付圧力指示調節計)10と、圧縮機1の駆動電動機へ供給する電流(又は電力)を検出する電流(又は電力)変換器11と、該変換器11からの信号を測定入力として電動機の定格をこえないように作用する過負荷防止調節計(下限スイッチ付電流又は電力指示調節計)12と、該過負荷防止調節計12からの出力信号(調節信号)の値と上記定風圧調節計10からの出力信号(調節信号)の値とを比較して常に小さい方の値を基に吸入弁3に開度位置調節信号αを送るようにしたローセレクタ13とを備えた構成とし、圧縮気体の使用量が減少してくると、図10に動作特性曲線を示す如く、ローセレクタ13を介しサージング領域に近くなるまで吸入弁3を絞って定風圧制御を維持するようにし、更に電流値(又は電力値)が下がって所定の下限値に達したことを検知すると、過負荷防止調節計12の下限スイッチからの制御指令で、直ちに吸入弁3を閉、放風弁7を全開にして無負荷運転を行わせるようにしてある。図10において、aは機械性能上のサージングライン、bはサージング防止ライン、cは動作線、dは負荷点、eは無負荷点を示す。又、SP12は過負荷防止調節計12の電流調節目標設定値、SP12Lは同じく電流下限スイッチ設定値、SP10は定風圧調節計10の圧力調節目標設定値、SP10Lは同じく圧力下限スイッチ設定値を示す。
【0003】
なお、図9において、分岐配管6及び放風弁7を設けることに代えて、二点鎖線で示す如く、圧縮機1の出側と吸入弁3の入側との間に、バイパス弁14を備えたバイパス配管15を設けて、電流値(又は電力値)が下限値に達したときに、圧縮空気をバイパス配管15を通して吸入側へ戻すようにする方式もある。
【0004】
又、図9に示す構成において、サージング検出を流量で行う場合は、過負荷防止調節計12の下限スイッチからの制御指令で吸入弁3を閉、放風弁7を開とするように制御することに代えて、図11に示す如く、圧縮機1の吐出側配管5内を流れる圧縮気体の流量を流量伝送器16で検出し、その流量値が所定の下限値に達したときに、下限スイッチ付流量指示計17の流量下限スイッチからの制御指令で上記吸入弁3を閉、放風弁7を開とするように制御することが行われている。
【0005】
一方、サージング回避を、サージング限界風量以下にならないようにしつつ、放風運転することにより行うようにした方式もある。すなわち、図9に示す構成において、過負荷防止調節計12からの指令で吸入弁3と放風弁7を開閉制御することに代えて、図12に示す如く、ローセレクタ13からの指令で吸入弁3の絞り開度を調節する絞り開度リミッタ(折線関数演算器)18と、同じくローセレクタ13からの指令で放風弁7の開度を調節する開度調節器(折線関数演算器)19とを設けた構成とし、予め絞り開度リミッタ18で吸入弁3の絞り開度をたとえば50%に固定し、サージング限界風量以下にならないようにした上で、圧力上昇等により放風弁7を部分開としてサージング突入を防止するようにしたものである。なお、図13は図12に示す装置の動作特性曲線図であり、fは放風弁開領域、gは吸入弁絞り領域を示す。
【0006】
【発明が解決しようとする課題】
ところが、サージング領域に近付くと直ちに無負荷運転に入れサージング回避を行う前者の方式の場合、負荷変動の激しい一般工場等では、サージング領域近傍の負荷に対して、定風圧調節信号による吸入弁の絞り込み動作が早過ぎるため、本来バランス整定できるような負荷でも電流や流量等の下限値にすぐ達して無負荷になってしまう等、省エネルギーの観点(放風ロスの増大)や制御弁類の寿命の点(開閉頻度の増大)で問題が多い。
【0007】
一方、吸入弁の絞り限界開度を固定する後者の方式の場合、吸入する気体の温度変化により流量が大幅に変化するため、絞り限界開度にどうしても裕度をもたさざるを得なく、絞り込み限界に達しない時点での放風運転となることから、やはり省エネルギーの観点(動力ロス)で問題がある。
【0008】
そこで、本発明は、サージング領域近傍の負荷でもバランス整定できるようにすると共に、吸入気体の温度の影響も殆ど受けずに機械性能上のサージングラインにできるだけ接近させたサージング限界風量を確保できるようにしようとするものである。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するために、負荷側での気体使用量の減少に伴い、気体圧送装置の吸入側配管に設けられている吸入弁の開度を定風圧調節信号で絞ることにより気体圧送装置の気体吐出量を気体使用量に合わせるようにする気体圧送装置の容量制御方法及び装置において、上記気体圧送装置の駆動電動機へ供給する電流又は電力を測定し、その信号を測定入力とする減量限界調節計によりサージング領域への接近とともに出力を増大させる調節信号を演算し、該調節信号が上記定風圧調節信号よりも大きくなったときに、該調節信号により上記吸入弁の開度の絞りを阻止してサージング限界風量以下とならないように制御する気体圧送装置の容量制御方法及び装置とする。
【0010】
運転点がサージング領域に接近するまでは、定風圧調節信号で吸入弁の開度が絞られる制御が行われるが、運転点がサージング領域に接近すると、減量限界調節計からの調節信号により吸入弁のそれ以上の絞りが阻止されるため、サージング限界風量以下に抑えられる。
【0011】
又、減量限界調節計により演算した調節信号が定風圧調節信号よりも大きくなって、該調節信号により吸入弁の開度の絞りを阻止してサージング限界風量以下とならないようにした後、気体圧送装置の吐出圧力が上昇して、気体の負荷側の使用量がサージング限界風量よりも小さくなったときに、気体の使用量からサージング限界風量を差し引いた残りの余剰分だけを放出又は吸入側へバイパスさせるようにする場合でも、定圧領域の拡大によって放風ロスを低減することができるようになる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0013】
図1は本発明の実施の一形態を示すもので、圧縮機1に吸入される気体の吸入側配管2の途中に吸入弁3を設け、又、圧縮機1から吐出された圧縮気体をレシーバ4へ送る吐出側配管5の途中に放風弁7を備えた分岐配管6を接続し、更に、該分岐配管6以降の吐出側配管5の途中に逆止弁8を設け、且つレシーバ4での吐出圧力を検出する圧力伝送器9と、該圧力伝送器9からの信号を測定入力として吐出圧力を一定にするように作用する定風圧調節計10と、圧縮機1の電動機へ供給する電流(又は電力)を検出する電流(又は電力)変換器11と、該変換器11からの信号を測定入力として電動機の定格をこえないように作用する過負荷防止調節計(指示調節計)12と、該過負荷防止調節計12からの出力信号(調節信号)の値と上記定風圧調節計10からの出力信号(調節信号)の値とを比較して常に小さい方の値を基に吸入弁3に開度位置調節信号αを送るようにしたローセレクタ13とを備えた構成を有する圧縮機の容量制御装置において、レシーバ4内の気体の圧力に応じて図2に示す動作特性曲線の機械性能上のサージングラインaに平行に必要最小の余裕をみたサージング防止ラインbを設定するようにした比率変換器20と、電流(又は電力)変換器11からの信号を測定入力とするようにし且つ上記比率変換器20による設定値としてのサージング防止ラインbに接近するにつれてその出力信号(調節信号)を増大させるようにした減量限界調節計としての電流(又は電力)指示調節計21と、該電流指示調節計21の出力信号(調節信号)βと上記ローセレクタ13を介し送られる調節信号αとを比較して常に大きい側の信号を優先して出力するようにしたハイセレクタ22とを備え、該ハイセレクタ22を介して出力された調節信号βによってサージング限界風量以下にならないように吸入弁3の絞り開度を制御できるようにする。
【0014】
なお、図2において、SP21は電流指示調節計21の電流調節目標設定値、SP10Hは定風圧調節計10の圧力上限スイッチ設定値を示し、他は図10に示したものと同じである。
【0015】
今、圧縮気体の使用量が減少してくると、ローセレクタ13にて選択された調節信号αにより、圧力が一定に保たれるように吸入弁3が徐々に閉じられ、図2に示す動作曲線Cの如く、その運転点が気体使用量に一致するように移動調節させられる。この際、減量限界調節計としての電流指示調節計21の出力信号βとローセレクタ13を介し送られた調節信号αとは、ハイセレクタ22によってその大小が連続的に比較されているが、電流指示調節計21の出力信号βは、運転点がサージング防止ラインbに接近するにつれて増大するようになっているので、この時点ではローセレクタ13を介し送られた調節信号αが選択されて吸入弁3の開度が制御されることになる。
【0016】
上記において、圧縮気体の使用量が更に減少して行くと、繰り返し行われる上記調節操作により、設定されている吐出圧一定線(圧力調節目標設定値SP10)上で運転点がサージング防止ラインbに接近してくることになる。このサージング接近に伴い電流指示調節計21の出力信号βが増大し、調節信号αよりも大きくなると、ハイセレクタ22により電流指示調節計21の出力信号βが選択されるため、吸入弁3は、調節信号αによる絞り制御が阻止され、電流指示調節計21の出力信号βによって制御されることになる。この際、電流指示調節計21はサージング防止ラインb上に運転点を留めるように作動するため、サージング限界風量以下にはならない。このことから、圧縮気体の使用量が更に減少しても、サージング防止ラインbに沿って圧力が上昇することになる。更に、圧力が定風圧調節計10の圧力上限スイッチ設定値のSP10Hまで上昇したところで圧力上限スイッチからの制御指令で吸入弁3を閉、放風弁7を開にして無負荷運転とするようにする。
【0017】
これにより、サージング領域近傍でもバランス整定できるようになり、吸入気体温度の影響も殆ど受けずに機械性能上のサージングラインにできるだけ接近させたサージング限界風量を確保することができる。
【0018】
次に、図3は本発明の実施の他の形態を示すもので、サージング検出を流量で行う場合について示す。すなわち、図1に示したと同様な構成において、電流(又は電力)変換器11からの信号を測定入力とするようにした電流(又は電力)指示調節計21を減量限界調節計として用いることに代えて、圧縮機1の吐出側配管5に設けた流量伝送器16からの信号を測定入力とするようにした流量指示調節計23を減量限界調節計として用いたものである。
【0019】
図3に示すような構成としても、図1に示したものと同様な作用効果を発揮することができる。
【0020】
次いで、図4は本発明の実施の更に他の形態を示すもので、使用量がサージング限界風量以下となって圧力上昇時にサージング回避を放風運転とする場合の例であり、図1に示したと同様な構成において、圧力上限スイッチのかわりに圧力伝送器9の信号を測定入力とする放風定圧調節計としての圧力指示調節計24を設け、図5に示す如く、定風圧調節計10の設定値SP10から一定圧力差をもったところに、該圧力指示調節計24の設定値SP24を設けて、圧力指示調節計24からの出力信号(調節信号)で放風弁7の開度を制御できるようにしたものである。
【0021】
図4に示すようにすると、圧力上昇時のサージング回避が放風運転となり、気体の工場での使用量がサージング限界風量よりも小さくなると、工場使用量からサージング限界風量を差し引いた残りの余剰分だけを、放風弁7で逃がすことができてサージング限界風量が機械性能上のサージングラインに接近しているため放風ロスを減少させることができる。
【0022】
又、図6は本発明の実施の更に別の形態を示すもので、サージング検出を電流(又は電力)で行う図4の実施の形態を変化させて、サージング検出を流量で行うようにしたものである。すなわち、図3に示したと同様な構成において、圧力伝送器9の信号を測定入力とする放風定圧調節計としての圧力指示調節計24を図4の場合と同様に設けて、該圧力指示調節計24からの出力信号(調節信号)で放風弁7の開度を制御できるようにしたものである。
【0023】
図6に示すようにしても、図4の実施の形態の場合と同様な作用効果が奏し得られる。
【0024】
因に、図7は使用量がサージング限界風量以下となって圧力上昇したときのサージング回避を無負荷運転とした場合の図1〜図3で示した本発明と図9〜図11で示した従来方式とを動力性能比較するものであり、又、図8は使用量がサージング限界風量以下となって圧力上昇したときのサージング回避を放風運転とした場合の図4〜図6で示した本発明と図12、図13で示した従来方式とを動力性能比較するものである。図7及び図8中、hは定格点iから機械性能上の減量限界点jまでの吸入絞り動作線、kは理想線、lは本発明による場合の動作線、mは従来方式による場合の動作線を示す。
【0025】
図7及び図8から明らかなように、本発明による動作線lの方が従来方式による動作線mよりも理想線kに近付いており、サージング限界点での実運用運転が可能となることがわかる。すなわち、動力低減を伴う定圧領域の拡大を図ることができる(□印→○印)と共に、放風ロスの低減を図ることができ(斜線部)、特に、サージング回避を無負荷運転で行う場合は、吸入弁、放風弁の開閉切り替わり時に発生する放風ロスをより低減できることになる。更に、サージング領域近傍でのバランス整定のチャンスが多く生まれることになり、弁の開閉頻度を低減できて弁の寿命を延ばすことができるようになる。
【0026】
なお、上記各実施の形態では、圧縮機1の吐出側配管5に放風弁7を備えた分岐配管6が接続してある場合について示したが、図9や図11等において二点鎖線で示したのと同様に、放風弁7を備えた分岐配管6に代えて、バイパス弁14を備えたバイパス配管15が組み込まれているライン構成についても適用できること、又、実施の形態では、減量限界調節計としての電流指示調節計21、流量指示調節計23とは別に比率変換器20を独立させて設けた場合を示したが、比率変換器20の機能を組み込ませた減量限界調節計を用いるようにしてもよいこと、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0027】
【発明の効果】
以上述べた如く、本発明によれば、負荷側での気体使用量の減少に伴い、気体圧送装置の吸入側配管に設けられている吸入弁の開度を定風圧調節信号で絞ることにより気体圧送装置の気体吐出量を気体使用量に合わせるようにする気体圧送装置の容量制御方法及び装置において、上記気体圧送装置の駆動電動機へ供給する電流又は電力を測定し、その信号を測定入力とする減量限界調節計によりサージング領域への接近とともに出力を増大させる調節信号を演算し、該調節信号が上記定風圧調節信号よりも大きくなったときに、該調節信号により上記吸入弁の開度の絞りを阻止してサージング限界風量以下とならないように制御する気体圧送装置の容量制御方法及び装置としてあるので、機械性能上のサージングラインにできるだけ接近させた動力低減を伴う定圧領域の拡大を図ることができて、サージング限界点での実運用運転が可能となると共に、サージング領域近傍でのバランス整定のチャンスが多く生まれることになって、弁の開閉頻度を低減できて、弁の寿命の延命化を図ることができ、又、減量限界調節計により演算した調節信号が定風圧調節信号よりも大きくなって、該調節信号により吸入弁の開度の絞りを阻止してサージング限界風量以下とならないようにした後、気体圧送装置の吐出圧力が上昇して、気体の負荷側の使用量がサージング限界風量よりも小さくなったときに、気体の使用量からサージング限界風量を差し引いた残りの余剰分だけを放出又は吸入側へバイパスさせるようにする場合でも、定圧領域の拡大によって放風ロスを低減することができる、等の優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の気体圧送装置の容量制御装置の実施の一形態を示す概略図である。
【図2】図1に示す装置による場合の動作特性曲線図である。
【図3】本発明の実施の他の形態を示す概略図である。
【図4】本発明の実施の更に他の形態を示す概略図である。
【図5】図4に示す装置による場合の動作特性曲線図である。
【図6】本発明の実施の更に別の形態を示す概略図である。
【図7】サージング回避を無負荷運転とした場合の本発明と従来方式とを比較する特性曲線図である。
【図8】サージング回避を放風運転とした場合の本発明と従来方式とを比較する特性曲線図である。
【図9】従来の圧縮機の容量制御装置の一例を示す概略図である。
【図10】図9に示す装置による動作特性曲線図である。
【図11】従来の圧縮機の容量制御装置の他の例を示す概略図である。
【図12】従来の圧縮機の容量制御装置の更に他の例を示す概略図である。
【図13】図12に示す装置の動作特性曲線図である。
【符号の説明】
1 圧縮機(気体圧送装置)
2 吸入側配管
3 吸入弁
5 吐出側配管
7 放風弁
10 定風圧調節計
21 電流指示調節計(減量限界調節計)
22 ハイセレクタ
23 流量指示調節計(減量限界調節計)
24 圧力指示調節計(放風定圧調節計)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacity control method and apparatus for a gas pumping device such as a centrifugal compressor or a blower used as a gas source for a raw material such as an air source or pressurized nitrogen in a general manufacturing or assembly factory.
[0002]
[Prior art]
As an example, the capacity control of a conventional compressor in which surging is avoided when the amount of use becomes equal to or less than the surging limit air volume by performing no-load operation. As shown in FIG. 9, a centrifugal compressor is shown. A suction valve 3 is provided in the middle of the suction side pipe 2 for the gas sucked into 1, and a branch pipe 6 is connected in the middle of the discharge side pipe 5 for sending the compressed gas discharged from the compressor 1 to the receiver 4. In the configuration in which the branch pipe 6 is provided with a discharge valve (exhaust valve) 7 for exhaust, and the check valve 8 is provided in the middle of the discharge side pipe 5 after the branch pipe 6, the receiver 4 The pressure transmitter 9 for detecting the discharge pressure determined by the balance of the gas pressure, that is, the amount used in the factory on the load side and the discharge amount of the compressor, and the signal from the pressure transmitter 9 as a measurement input Acts to keep discharge pressure constant A constant wind pressure controller (pressure indicating controller with a lower limit switch) 10, a current (or power) converter 11 for detecting a current (or power) supplied to the drive motor of the compressor 1, An overload prevention controller (current or power indicating controller with a lower limit switch) 12 that acts so as to prevent the motor rating from exceeding the signal as a measurement input, and an output signal (regulation signal) from the overload prevention controller 12 A low selector 13 which compares the value with the value of the output signal (control signal) from the constant wind pressure controller 10 and always sends the opening position adjustment signal α to the intake valve 3 based on the smaller value; When the amount of compressed gas used decreases, the constant air pressure control is maintained by narrowing the suction valve 3 through the low selector 13 until it approaches the surging region, as shown in the operating characteristic curve in FIG. To make more current When it is detected that the value (or power value) has decreased to reach a predetermined lower limit value, the intake valve 3 is immediately closed and the discharge valve 7 is fully opened by a control command from the lower limit switch of the overload prevention controller 12. So that no-load operation is performed. In FIG. 10, a is a surging line in mechanical performance, b is a surging prevention line, c is an operating line, d is a load point, and e is a no-load point. SP12 is a current adjustment target setting value of the overload prevention controller 12, SP12L is a current lower limit switch setting value, SP10 is a pressure adjustment target setting value of the constant wind pressure controller 10, and SP10L is a pressure lower limit switch setting value. .
[0003]
In FIG. 9, instead of providing the branch pipe 6 and the air discharge valve 7, a bypass valve 14 is provided between the outlet side of the compressor 1 and the inlet side of the intake valve 3 as indicated by a two-dot chain line. There is also a system in which the provided bypass pipe 15 is provided so that the compressed air is returned to the suction side through the bypass pipe 15 when the current value (or power value) reaches the lower limit value.
[0004]
In the configuration shown in FIG. 9, when surging is detected at a flow rate, control is performed so that the intake valve 3 is closed and the air discharge valve 7 is opened by a control command from the lower limit switch of the overload prevention controller 12. Instead, as shown in FIG. 11, when the flow rate of the compressed gas flowing through the discharge side pipe 5 of the compressor 1 is detected by the flow rate transmitter 16 and the flow rate value reaches a predetermined lower limit value, the lower limit is reached. Control is performed such that the intake valve 3 is closed and the air discharge valve 7 is opened by a control command from a flow rate lower limit switch of the flow rate indicator 17 with switch.
[0005]
On the other hand, there is also a method in which surging is avoided by performing a wind-off operation while preventing the surging from being below the surging limit air volume. That is, in the configuration shown in FIG. 9, instead of controlling the opening and closing of the intake valve 3 and the air discharge valve 7 with a command from the overload prevention controller 12, as shown in FIG. A throttle opening limiter (a broken line function calculator) 18 that adjusts the throttle opening of the valve 3 and an opening degree controller (a broken line function calculator) that similarly adjusts the opening of the discharge valve 7 by a command from the low selector 13. 19, the throttle opening degree of the intake valve 3 is fixed to, for example, 50% in advance by the throttle opening limiter 18 so that it does not become less than the surging limit air volume, and the discharge valve 7 is increased by increasing the pressure or the like. Is used as a partial opening to prevent surging. FIG. 13 is an operating characteristic curve diagram of the apparatus shown in FIG. 12, where f is a vent valve opening region and g is a suction valve throttle region.
[0006]
[Problems to be solved by the invention]
However, in the case of the former method, which immediately enters a no-load operation and avoids surging when approaching the surging area, in a general factory where the load fluctuates rapidly, the intake valve is narrowed down by a constant wind pressure adjustment signal for loads near the surging area Because the operation is too early, even with loads that can be balanced, the lower limit of current and flow rate will be reached immediately and no load will be applied. There are many problems with points (increased opening and closing frequency).
[0007]
On the other hand, in the case of the latter method in which the throttle opening of the suction valve is fixed, the flow rate changes greatly due to the temperature change of the gas to be sucked. There is a problem from the point of view of energy saving (power loss) because it is a wind-release operation at the time when the limit is not reached.
[0008]
Therefore, the present invention makes it possible to set the balance even with a load in the vicinity of the surging region, and to ensure a surging limit air volume that is as close as possible to the surging line in mechanical performance without being affected by the temperature of the intake gas. It is something to try.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention reduces the opening degree of the suction valve provided in the suction side piping of the gas pressure feeding device with the constant wind pressure adjustment signal as the amount of gas used on the load side decreases. the gas discharge amount of the gas pumping unit in a volume control method and apparatus for a gas pumping device to ensure that fit the gas use amount, the measurement of the current or power supplied to the drive motor of the gas pumping device, measuring inputs the signal When the adjustment signal that increases the output with the approach to the surging region is calculated by the weight loss limit controller, and when the adjustment signal becomes larger than the constant wind pressure adjustment signal , the opening degree of the intake valve is calculated by the adjustment signal The capacity control method and apparatus of the gas pressure feeding device is controlled so as to prevent the throttling of the gas so as not to be less than the surging limit air volume.
[0010]
Until the operating point approaches the surging area, the control is performed to reduce the opening of the intake valve with the constant wind pressure adjustment signal, but when the operating point approaches the surging area, the intake valve is controlled by the adjustment signal from the weight loss limit controller. Further throttling is prevented, so that it is suppressed to the surging limit air volume or less.
[0011]
In addition, after the adjustment signal calculated by the reduction limit controller becomes larger than the constant wind pressure adjustment signal, the adjustment signal prevents the opening of the intake valve from being throttled so that it does not become less than the surging limit air volume. When the discharge pressure of the device rises and the amount of gas used on the load side becomes smaller than the surging limit air volume, only the remaining surplus, which is obtained by subtracting the surging limit air volume from the gas usage, is discharged or sucked. Even in the case of bypassing, it is possible to reduce the air discharge loss by expanding the constant pressure region.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 shows an embodiment of the present invention. A suction valve 3 is provided in the middle of a suction side pipe 2 for gas sucked into the compressor 1, and the compressed gas discharged from the compressor 1 is received by a receiver. A branch pipe 6 provided with a discharge valve 7 is connected in the middle of the discharge side pipe 5 to be sent to 4, and a check valve 8 is provided in the middle of the discharge side pipe 5 after the branch pipe 6. A pressure transmitter 9 that detects the discharge pressure of the compressor, a constant wind pressure controller 10 that acts to make the discharge pressure constant by using a signal from the pressure transmitter 9 as a measurement input, and a current supplied to the motor of the compressor 1 A current (or power) converter 11 for detecting (or power), and an overload prevention controller (indicating controller) 12 which acts so as not to exceed the rating of the motor using a signal from the converter 11 as a measurement input; The value of the output signal (control signal) from the overload prevention controller 12 and the above A low selector 13 that compares the value of the output signal (regulation signal) from the constant wind pressure controller 10 and always sends the opening position adjustment signal α to the intake valve 3 based on the smaller value. In the compressor capacity control apparatus having the configuration, a surging prevention line b having a minimum required margin parallel to the surging line a on the mechanical performance of the operating characteristic curve shown in FIG. 2 according to the gas pressure in the receiver 4 is provided. The ratio converter 20 to be set, and the signal from the current (or power) converter 11 are used as measurement inputs, and the output thereof becomes closer to the surging prevention line b as a set value by the ratio converter 20. A current (or power) indicating controller 21 as a weight loss limit controller that increases the signal (control signal), an output signal (control signal) β of the current indicating controller 21 and the rose And a high selector 22 which always compares the adjustment signal α sent via the Kuta 13 and outputs the signal on the larger side with priority, and surging by the adjustment signal β outputted via the high selector 22 The throttle opening of the intake valve 3 can be controlled so that it does not become less than the limit air volume.
[0014]
In FIG. 2, SP21 indicates the current adjustment target setting value of the current indicating controller 21, SP10H indicates the pressure upper limit switch setting value of the constant wind pressure controller 10, and the other components are the same as those shown in FIG.
[0015]
Now, when the amount of compressed gas used decreases, the suction valve 3 is gradually closed by the adjustment signal α selected by the low selector 13 so that the pressure is kept constant, and the operation shown in FIG. As indicated by curve C, the movement is adjusted so that the operating point matches the amount of gas used. At this time, the output signal β of the current indicating controller 21 as the weight reduction limit controller and the adjustment signal α sent via the low selector 13 are continuously compared in magnitude by the high selector 22. Since the output signal β of the indicator controller 21 increases as the operating point approaches the surging prevention line b, the adjustment signal α sent via the low selector 13 is selected at this time, and the intake valve 3 is controlled.
[0016]
In the above, when the use amount of the compressed gas further decreases, the operating point moves to the surging prevention line b on the set discharge pressure constant line (pressure adjustment target set value SP10) by the adjustment operation that is repeatedly performed. You will approach. As the surging approaches, the output signal β of the current indicating controller 21 increases and becomes larger than the adjusting signal α, so that the output signal β of the current indicating controller 21 is selected by the high selector 22, so that the intake valve 3 The diaphragm control by the adjustment signal α is blocked and is controlled by the output signal β of the current indicating controller 21. At this time, since the current indicating controller 21 operates so as to keep the operating point on the surging prevention line b, it does not fall below the surging limit air volume. From this, even if the amount of compressed gas used is further reduced, the pressure increases along the surging prevention line b. Further, when the pressure rises to the pressure upper limit switch setting value SP10H of the constant air pressure controller 10, the suction valve 3 is closed and the air discharge valve 7 is opened by the control command from the pressure upper limit switch so that no-load operation is performed. To do.
[0017]
As a result, the balance can be set even in the vicinity of the surging region, and the surging limit air volume that is as close as possible to the surging line in mechanical performance can be secured without being affected by the intake gas temperature.
[0018]
Next, FIG. 3 shows another embodiment of the present invention, and shows a case where surging detection is performed with a flow rate. That is, instead of using a current (or power) indicating controller 21 having a signal from the current (or power) converter 11 as a measurement input in the same configuration as shown in FIG. Thus, a flow rate indicating controller 23 in which a signal from the flow transmitter 16 provided in the discharge side pipe 5 of the compressor 1 is used as a measurement input is used as a reduction limit controller.
[0019]
Even with the configuration as shown in FIG. 3, the same effects as those shown in FIG. 1 can be exhibited.
[0020]
Next, FIG. 4 shows still another embodiment of the present invention, which is an example in the case where the usage amount is equal to or less than the surging limit air amount and the surging avoidance operation is performed when the pressure rises, and is shown in FIG. In the same configuration as the above, a pressure indicating controller 24 is provided as an air discharge constant pressure controller using the signal of the pressure transmitter 9 as a measurement input instead of the pressure upper limit switch, and as shown in FIG. A set value SP24 of the pressure indicating controller 24 is provided at a position having a certain pressure difference from the set value SP10, and the opening degree of the discharge valve 7 is controlled by an output signal (control signal) from the pressure indicating controller 24. It is something that can be done.
[0021]
As shown in FIG. 4, when surging avoidance at the time of pressure rise is a ventilating operation, and the amount of gas used in the factory is smaller than the surging limit air volume, the remaining surplus obtained by subtracting the surging limit air volume from the factory use amount Since the surging limit air volume is close to the surging line in mechanical performance, the air discharge loss can be reduced.
[0022]
FIG. 6 shows still another embodiment of the present invention, in which surging detection is performed at a flow rate by changing the embodiment of FIG. 4 in which surging detection is performed by current (or power). It is. That is, in the same configuration as shown in FIG. 3, a pressure indicating controller 24 as an air discharge constant pressure controller using the signal of the pressure transmitter 9 as a measurement input is provided in the same manner as in FIG. The opening degree of the air discharge valve 7 can be controlled by an output signal (regulation signal) from the total 24.
[0023]
Even if it is shown in FIG. 6, the same effect as the case of embodiment of FIG. 4 can be show | played.
[0024]
Incidentally, FIG. 7 shows the present invention shown in FIG. 1 to FIG. 3 and FIG. 9 to FIG. 11 in the case where the surging avoidance when the amount of use is below the surging limit air volume and the pressure rises is set to no-load operation. The power performance is compared with the conventional method, and FIG. 8 is shown in FIGS. 4 to 6 in the case where the surging avoidance when the amount of use is less than the surging limit air volume and the pressure rises is set as the discharge operation. The power performance is compared between the present invention and the conventional system shown in FIGS. 7 and 8, h is the suction throttle operation line from the rated point i to the weight loss limit point j in the machine performance, k is the ideal line, l is the operation line according to the present invention, and m is the case according to the conventional method. The operation line is shown.
[0025]
As apparent from FIGS. 7 and 8, the operation line l according to the present invention is closer to the ideal line k than the operation line m according to the conventional method, and it is possible to perform actual operation at the surging limit point. Recognize. In other words, it is possible to expand the constant pressure region with power reduction (□ mark → ○ mark) and to reduce the discharge loss (shaded area), especially when performing surging avoidance with no-load operation This can further reduce the air loss that occurs when the intake valve and the air release valve are switched. Furthermore, many opportunities for balance settling in the vicinity of the surging region are created, and the valve opening / closing frequency can be reduced, thereby extending the life of the valve.
[0026]
In each of the above embodiments, the case where the branch pipe 6 provided with the discharge valve 7 is connected to the discharge side pipe 5 of the compressor 1 is shown, but in FIG. 9 and FIG. In the same manner as shown, it can be applied to a line configuration in which a bypass pipe 15 having a bypass valve 14 is incorporated instead of the branch pipe 6 having the discharge valve 7. Although the case where the ratio converter 20 is provided separately from the current indicating controller 21 and the flow indicating controller 23 as limit controllers is shown, a weight loss limit controller incorporating the function of the ratio converter 20 is shown. Of course, various modifications may be made without departing from the scope of the present invention.
[0027]
【The invention's effect】
As described above, according to the present invention, as the amount of gas used on the load side decreases, the opening of the suction valve provided in the suction side piping of the gas pressure feeding device is reduced by the constant wind pressure adjustment signal. in the capacity control method and apparatus for a gas pumping device to ensure that fit the gas use amount of gas discharge amount of the pumping device, a current or power supplied to the drive motor of the gas pumping unit is measured, the measurement inputs the signal When the adjustment signal becomes larger than the constant wind pressure adjustment signal , the adjustment signal is used to calculate the opening degree of the suction valve. Since it is a capacity control method and device for a gas pumping device that controls the throttle so that it does not fall below the surging limit air flow, it is as close as possible to the surging line in mechanical performance. It is possible to expand the constant pressure region with power reduction, enabling actual operation at the surging limit point, and creating more opportunities for balance setting near the surging region. In addition, the life of the valve can be extended, and the adjustment signal calculated by the weight reduction limit controller becomes larger than the constant wind pressure adjustment signal, and the adjustment signal reduces the opening of the intake valve. After the discharge pressure of the gas pumping device rises and the usage amount on the gas load side becomes smaller than the surging limit air volume, Even when only surplus after subtracting the surging limit air volume is discharged or bypassed to the suction side, it is possible to reduce the air discharge loss by expanding the constant pressure region. It exhibits an excellent effect of.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a capacity control device of a gas pressure feeding device of the present invention.
FIG. 2 is an operating characteristic curve diagram when the apparatus shown in FIG. 1 is used.
FIG. 3 is a schematic view showing another embodiment of the present invention.
FIG. 4 is a schematic view showing still another embodiment of the present invention.
5 is an operating characteristic curve diagram when the apparatus shown in FIG. 4 is used. FIG.
FIG. 6 is a schematic view showing still another embodiment of the present invention.
FIG. 7 is a characteristic curve diagram comparing the present invention and a conventional method when surging avoidance is performed in a no-load operation.
FIG. 8 is a characteristic curve diagram comparing the present invention and a conventional method when the surging avoidance is set as a wind discharge operation.
FIG. 9 is a schematic view showing an example of a conventional compressor capacity control device;
10 is an operating characteristic curve diagram of the apparatus shown in FIG. 9. FIG.
FIG. 11 is a schematic view showing another example of a conventional compressor capacity control apparatus.
FIG. 12 is a schematic view showing still another example of a conventional compressor capacity control apparatus.
13 is an operating characteristic curve diagram of the apparatus shown in FIG.
[Explanation of symbols]
1 Compressor (gas pumping device)
2 Suction side piping 3 Suction valve 5 Discharge side piping 7 Air discharge valve 10 Constant air pressure controller 21 Current indicating controller (weight reduction limit controller)
22 High selector 23 Flow rate indicating controller (weight reduction limit controller)
24 Pressure indicating controller (Ventilation constant pressure controller)

Claims (4)

負荷側での気体使用量の減少に伴い、気体圧送装置の吸入側配管に設けられている吸入弁の開度を定風圧調節信号で絞ることにより気体圧送装置の気体吐出量を気体使用量に合わせるようにする気体圧送装置の容量制御方法において、上記気体圧送装置の駆動電動機へ供給する電流又は電力を測定し、その信号を測定入力とする減量限界調節計によりサージング領域への接近とともに出力を増大させる調節信号を演算し、該調節信号が上記定風圧調節信号よりも大きくなったときに、該調節信号により上記吸入弁の開度の絞りを阻止してサージング限界風量以下とならないように制御することを特徴とする気体圧送装置の容量制御方法。As the amount of gas used on the load side decreases, the amount of gas discharged from the gas pumping device is reduced to the amount of gas used by restricting the opening of the suction valve provided in the suction side piping of the gas pumping device with a constant air pressure control signal. in the capacity control method of a gas pumping device to ensure that align the current or power supplied to the drive motor of the gas pumping unit is measured, output together with access to the surging area by reduction limit controllers to measure inputs the signal When the adjustment signal becomes larger than the constant wind pressure adjustment signal, the adjustment signal prevents the opening of the intake valve from being throttled so that it does not fall below the surging limit air volume. A capacity control method for a gas pressure feeding device, characterized by controlling the capacity. 減量限界調節計により演算した調節信号が定風圧調節信号よりも大きくなって、該調節信号により吸入弁の開度の絞りを阻止してサージング限界風量以下とならないようにした後、気体圧送装置の吐出圧力が上昇して、気体の負荷側の使用量がサージング限界風量よりも小さくなったときに、気体の使用量からサージング限界風量を差し引いた残りの余剰分だけを放出又は吸入側へバイパスさせるようにする請求項1記載の気体圧送装置の容量制御方法。 After the adjustment signal calculated by the reduction limit controller becomes larger than the constant wind pressure adjustment signal, the adjustment signal prevents the opening of the intake valve from being throttled so that it does not fall below the surging limit air volume. When the discharge pressure rises and the amount of gas used on the load side becomes smaller than the surging limit air volume, only the remaining excess of the gas usage minus the surging limit air volume is bypassed to the discharge or suction side The capacity | capacitance control method of the gas pressure feeder of Claim 1 made to do. 負荷側での気体使用量の減少に伴い、気体圧送装置の吸入側配管に設けられている吸入弁の開度を定風圧調節信号で絞ることにより気体圧送装置の気体吐出量を気体使用量に合わせるようにする気体圧送装置の容量制御装置において、上記気体圧送装置の駆動電動機へ供給する電流又は電力を測定入力とし且つ運転点がサージング領域へ接近するにつれて出信号を増大させるようにした減量限界調節計と、該減量限界調節計の出力信号と上記定風圧調節信号とを比較して大きい方を優先して出力するようにしたハイセレクタとを備え、該ハイセレクタを介して出力された信号により、サージング限界風量以下にならないように上記吸入弁の開度を制御できるようにした構成を有することを特徴とする気体圧送装置の容量制御装置。As the amount of gas used on the load side decreases, the amount of gas discharged from the gas pumping device is reduced to the amount of gas used by restricting the opening of the suction valve provided in the suction side piping of the gas pumping device with a constant air pressure control signal. the capacity control device, the gas pumping device to ensure that align the current or power supplied to the drive motor of the gas pumping unit as a measurement input, and the operating point is to increase the hand output signal as it approaches the surging area And a high selector that outputs the larger one by giving priority to comparing the output signal of the weight loss limit controller and the constant wind pressure adjustment signal, and through the high selector A capacity control device for a gas pressure feeding device, characterized in that the opening of the suction valve can be controlled by an output signal so as not to be less than a surging limit air volume. 気体圧送装置の吐出圧力を測定入力とし且つ定風圧調節の設定値よりも高い所要の設定値をもった放風定圧調節計を備え、ハイセレクタによる制御により上記放風定圧調節計の設定値まで上記気体圧送装置の吐出圧力が上昇したときに、該放風定圧調節によって、気体の使用量からサージング限界風量を差し引いた残りの余剰分だけを、放出又は吸入側へバイパスさせるようにした請求項3記載の気体圧送装置の容量制御装置。Comprises a blow-off pressure controllers with high required set value than the discharge pressure as the measurement input and the Teifuatsu Controller set value of the gas pumping unit, the blow-off pressure controllers setting under the control of the high selector When the discharge pressure of the gas pumping device rises up to this point, only the remaining surplus obtained by subtracting the surging limit air volume from the gas use amount is bypassed to the discharge or suction side by the constant air pressure adjustment. Item 4. A capacity control device for a gas pressure feeding device according to Item 3.
JP25488699A 1999-09-08 1999-09-08 Capacity control method and apparatus for gas pumping device Expired - Fee Related JP4487339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25488699A JP4487339B2 (en) 1999-09-08 1999-09-08 Capacity control method and apparatus for gas pumping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25488699A JP4487339B2 (en) 1999-09-08 1999-09-08 Capacity control method and apparatus for gas pumping device

Publications (2)

Publication Number Publication Date
JP2001082380A JP2001082380A (en) 2001-03-27
JP4487339B2 true JP4487339B2 (en) 2010-06-23

Family

ID=17271214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25488699A Expired - Fee Related JP4487339B2 (en) 1999-09-08 1999-09-08 Capacity control method and apparatus for gas pumping device

Country Status (1)

Country Link
JP (1) JP4487339B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782495B2 (en) * 2005-07-13 2011-09-28 株式会社山武 Compressor system
JP5871157B2 (en) 2011-10-03 2016-03-01 株式会社Ihi Method for preventing surging of centrifugal compression equipment
CN105889051B (en) * 2015-02-16 2019-11-15 创科(澳门离岸商业服务)有限公司 Air inlet for air compressor controls
CN116447155A (en) * 2022-01-10 2023-07-18 重庆美的通用制冷设备有限公司 Method and device for detecting surge of compressor and electronic equipment
CN114876846B (en) * 2022-06-01 2024-03-26 西安陕鼓动力股份有限公司 Full-automatic constant-pressure control system and control method for centrifugal compressor unit

Also Published As

Publication number Publication date
JP2001082380A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
EP0398436B1 (en) Compressor control system to improve turndown and reduce incidents of surging
US7922457B2 (en) System and method for controlling a variable speed compressor during stopping
KR100726203B1 (en) Method for controlling a compressed air installation comprising several compressors, control box applied thereby and compressed air installation applying this method
KR101167556B1 (en) Number-of-compressors controlling system
CA1121487A (en) Compressore surge control
JPH08208206A (en) Air compression equipment and nitrogen extractor from compressed air
EP2212631B1 (en) Refrigerating system and method for controlling the same
JPH0438919B2 (en)
US6293766B1 (en) Process for operating a compressor with a downstream user, and unit operating according to this process
JP4487339B2 (en) Capacity control method and apparatus for gas pumping device
CN115539210A (en) Method for controlling a gas turbine power plant and gas turbine power plant
US4976588A (en) Compressor control system to improve turndown and reduce incidents of surging
KR20160022510A (en) Surge prevention apparatus and method for centrifugal compressor
JP6612412B1 (en) Compressor
JP2508695B2 (en) Method and apparatus for operating a plurality of compressors in parallel
JP2006316759A (en) Compression device
JP3384894B2 (en) Turbo compressor capacity control method
JPH0350919B2 (en)
JP2757426B2 (en) Operation control method of centrifugal compressor
JPH02123299A (en) Controller for centrifugal compressor
JP2655431B2 (en) Constant flow control device for centrifugal compressor
JP2774433B2 (en) Centrifugal compressor capacity control device
JP5518683B2 (en) Compressor system and control method of compressor system
JP3368480B2 (en) Compressor control method and device
JPH0158353B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4487339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees