JP4487303B2 - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP4487303B2
JP4487303B2 JP2003389922A JP2003389922A JP4487303B2 JP 4487303 B2 JP4487303 B2 JP 4487303B2 JP 2003389922 A JP2003389922 A JP 2003389922A JP 2003389922 A JP2003389922 A JP 2003389922A JP 4487303 B2 JP4487303 B2 JP 4487303B2
Authority
JP
Japan
Prior art keywords
layer
electrode
light emitting
main
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003389922A
Other languages
Japanese (ja)
Other versions
JP2005142515A (en
Inventor
雅人 山田
雅宣 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003389922A priority Critical patent/JP4487303B2/en
Publication of JP2005142515A publication Critical patent/JP2005142515A/en
Application granted granted Critical
Publication of JP4487303B2 publication Critical patent/JP4487303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

この発明は発光素子の製造方法に関する。 The present invention relates to a method for manufacturing a light emitting device.

特開2001−339100号公報JP 2001-339100 A 日経エレクトロニクス2002年10月21日号124頁〜132頁Nikkei Electronics October 21, 2002, pages 124-132

発光ダイオードや半導体レーザー等の発光素子に使用される材料及び素子構造は、長年にわたる進歩の結果、素子内部における光電変換効率が理論上の限界に次第に近づきつつある。従って、一層高輝度の素子を得ようとした場合、素子からの光取出し効率が極めて重要となる。例えば、AlGaInP混晶により発光層部が形成された発光素子は、薄いAlGaInP(あるいはGaInP)活性層を、それよりもバンドギャップの大きいn型AlGaInPクラッド層とp型AlGaInPクラッド層とによりサンドイッチ状に挟んだダブルへテロ構造を採用することにより、高輝度の素子を実現できる。このようなAlGaInPダブルへテロ構造は、AlGaInP混晶がGaAsと格子整合することを利用して、GaAs単結晶基板上にAlGaInP混晶からなる各層をエピタキシャル成長させることにより形成できる。そして、これを発光素子として利用する際には、通常、GaAs単結晶基板をそのまま素子基板として利用することも多い。しかしながら、発光層部を構成するAlGaInP混晶はGaAsよりもバンドギャップが大きいため、発光した光がGaAs基板に吸収されて十分な光取出し効率が得られにくい難点がある。   As a result of many years of progress in materials and element structures used in light-emitting elements such as light-emitting diodes and semiconductor lasers, the photoelectric conversion efficiency inside the elements is gradually approaching the theoretical limit. Therefore, when an element with higher luminance is to be obtained, the light extraction efficiency from the element is extremely important. For example, in a light emitting device having a light emitting layer portion formed of AlGaInP mixed crystal, a thin AlGaInP (or GaInP) active layer is sandwiched between an n-type AlGaInP cladding layer and a p-type AlGaInP cladding layer having a larger band gap. By adopting a sandwiched double hetero structure, a high-luminance element can be realized. Such an AlGaInP double heterostructure can be formed by epitaxially growing each layer of an AlGaInP mixed crystal on a GaAs single crystal substrate by utilizing the lattice matching of the AlGaInP mixed crystal with GaAs. When this is used as a light emitting element, a GaAs single crystal substrate is usually used as an element substrate as it is. However, since the AlGaInP mixed crystal constituting the light emitting layer has a larger band gap than GaAs, the emitted light is absorbed by the GaAs substrate, and it is difficult to obtain sufficient light extraction efficiency.

そこで、特許文献1には、成長用のGaAs基板を剥離する一方、補強用の素子基板(導電性を有するもの)を、反射用のAu層を介して剥離面に貼り合わせる技術が開示されている。また、非特許文献1には、反射率の波長依存性がAuよりも小さいAlにて反射層を構成することにより、反射強度を高めるようにした発光素子が開示されている。該非特許文献1の素子構造においては、発光層部とシリコン基板からなる素子基板との間にAl反射層が配置され、さらに、Al反射層とシリコン基板との間には、シリコン基板と発光層部との貼り合わせ接合を容易にするために、Au層を介在させている。具体的には、発光層部側に形成したAl反射層を覆うようにAu層を形成し、他方シリコン基板側にもAu層を形成して、それらAu層同士を密着させて貼り合わせを行なうようにしている。   Therefore, Patent Document 1 discloses a technique in which a growth GaAs substrate is peeled off while a reinforcing element substrate (having conductivity) is bonded to a peeled surface through a reflective Au layer. Yes. Non-Patent Document 1 discloses a light-emitting element in which the reflection intensity is increased by forming a reflective layer with Al whose wavelength dependency of reflectance is smaller than that of Au. In the element structure of Non-Patent Document 1, an Al reflective layer is disposed between a light emitting layer portion and an element substrate made of a silicon substrate, and further, a silicon substrate and a light emitting layer are disposed between the Al reflective layer and the silicon substrate. In order to facilitate the bonding and bonding with the part, an Au layer is interposed. Specifically, an Au layer is formed so as to cover the Al reflective layer formed on the light emitting layer side, and an Au layer is also formed on the other silicon substrate side, and the Au layers are adhered to each other and bonded together. I am doing so.

特許文献1及び非特許文献1は、いずれも発光素子の光取出し効率の向上を図る観点において、光吸収性のGaAs基板は「百害あって一利なし」の技術思想に立脚しており、GaAs基板は完全除去することに主眼が置かれている。シリコン基板などと比較すればかなり高価な成長用のGaAs基板を、何ら利用の考慮もなく全て除去し、別に補強用の基板を設けるというのは、光取出効率を優先させるためとはいえ、いかにも無駄が多すぎるといえる。また、発光層部成長用のGaAs基板は、素子製造時に必要なハンドリングのための強度を担う役割も有するのであるが、これを除去すれば、ごく薄い発光層部のみでハンドリング等に耐えうる強度を到底確保できるはずもない。従って、上記文献では、GaAs基板を発光層部から除去したあと、Au層を介してシリコン基板を発光層部に貼り合せ、このシリコン基板をGaAs基板に代わる補強用の基板として利用するのであるが、新たな基板の貼り合わせ工程が必要となる。   Both Patent Document 1 and Non-Patent Document 1 are based on the technical idea that a light-absorbing GaAs substrate is “no harm and no advantage” in terms of improving the light extraction efficiency of the light-emitting element. The focus is on removing the substrate completely. Compared with silicon substrates, etc., removing all GaAs substrates for growth, which are considerably expensive without considering any use, and providing a separate substrate for reinforcement, even though priority is given to light extraction efficiency, It can be said that there is too much waste. In addition, the GaAs substrate for the growth of the light emitting layer also has a role of handling strength necessary for manufacturing the device, but if this is removed, the strength that can withstand handling etc. with only a very thin light emitting layer portion. There is no way we can ensure it. Therefore, in the above document, after removing the GaAs substrate from the light emitting layer portion, the silicon substrate is bonded to the light emitting layer portion through the Au layer, and this silicon substrate is used as a reinforcing substrate in place of the GaAs substrate. A new substrate bonding process is required.

本発明の課題は、これまで全面的に除去されていた発光層部成長用のGaAs基板を、機能的素子構成要素として有効利用することができ、しかも、発光光束の外部への取出効率も大幅に高めることができる発光素子の製造方法を提供することにある。 The object of the present invention is to effectively use the GaAs substrate for growing the light emitting layer part, which has been completely removed so far, as a functional element component, and also to greatly take out the luminous flux to the outside. Another object of the present invention is to provide a method for manufacturing a light-emitting element that can be improved.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の発光素子の製造方法は、上記の課題を解決するために、
AlGaInPからなる発光層部を有した主化合物半導体層をエピタキシャル成長によってGaAs基板の第一主表面上に形成し、
GaAs基板の一部が主化合物半導体層上の残留基板部となり、主化合物半導体層のGaAs基板側の一部の面が露出するように、GaAs基板の一部を切り欠いて切欠き部を形成し、
GaAs基板の一部を切り欠いた結果として形成される残留基板部の表面であって、GaAs基板の第一主表面の反対側に位置する第二主表面に、発光層部へ発光駆動電圧を印加するための光取出側電極を形成するとともに、
主化合物半導体層の一部の面が露出する切欠き部の底面を、発光層部を有した主化合物半導体層からの主光取出面として利用することを特徴とする。
なお、素子の「光取出面」とは、発光光束が外部に取出可能となっている素子表面のことであり、「主光取出面」とは、化合物半導体層の第一主表面又は第二主表面に形成される光取出面のことをいう。また、上記主光取出面以外にも、化合物半導体層に含まれる後述の透明厚膜半導体層あるいは補助電流拡散層の側面などが光取出面を構成可能である。また、「主化合物半導体層」は、発光層部を含む化合物半導体の積層体を、切欠き部底面を含む平面にて厚さ方向に二分したとき、発光層部を含んでいる部分のことをいう。
In order to solve the above problems, a method for manufacturing a light emitting device of the present invention is as follows.
A main compound semiconductor layer having a light emitting layer portion made of AlGaInP is formed on the first main surface of the GaAs substrate by epitaxial growth,
A part of the GaAs substrate is notched so that a part of the GaAs substrate becomes a residual substrate part on the main compound semiconductor layer and a part of the main compound semiconductor layer on the GaAs substrate side is exposed. And
A light emission driving voltage is applied to the light emitting layer portion on the surface of the remaining substrate portion formed as a result of cutting out a part of the GaAs substrate, which is opposite to the first main surface of the GaAs substrate. While forming the light extraction side electrode for applying,
The bottom surface of the notch portion at which a part of the surface of the main compound semiconductor layer is exposed is used as a main light extraction surface from the main compound semiconductor layer having the light emitting layer portion.
The “light extraction surface” of the element refers to the surface of the element from which the emitted light beam can be extracted to the outside, and the “main light extraction surface” refers to the first main surface or the second main surface of the compound semiconductor layer. A light extraction surface formed on the main surface. In addition to the main light extraction surface, a transparent thick film semiconductor layer described later included in the compound semiconductor layer or a side surface of the auxiliary current diffusion layer can constitute the light extraction surface. In addition, the “main compound semiconductor layer” refers to a portion including the light emitting layer portion when the compound semiconductor stack including the light emitting layer portion is bisected in the thickness direction by a plane including the bottom surface of the cutout portion. Say.

特許文献1及び非特許文献1においては、発光層部のGaAs基板に面しているのと反対側の主表面(第一主表面)を主光取出面とし、GaAs基板が除去された第二主表面側は金属層の配置により反射面として利用する、というのが基本的な考え方である。この場合、反射面積をなるべく大きくしたほうが光取出効率の向上には好都合であるから、GaAs基板を一部でも残せばその分だけ反射面積は減少し、しかもそれが光吸収性であることを考えれば、基板の一部を敢えて残すような思想が生まれるはずもなかった。   In Patent Document 1 and Non-Patent Document 1, the main surface (first main surface) opposite to the light emitting layer portion facing the GaAs substrate is the main light extraction surface, and the second GaAs substrate is removed. The basic idea is that the main surface side is used as a reflecting surface by arranging a metal layer. In this case, it is convenient to increase the reflection area as much as possible to improve the light extraction efficiency. Therefore, if a part of the GaAs substrate is left, the reflection area is reduced by that amount, and it is considered that it is light absorbing. In this case, the idea of leaving a part of the board was not born.

本発明者はそこで発想を転換し、発光層部を含む主化合物半導体層の、GaAs基板に面している第二主表面を主光取出面として利用する構成について検討した。光吸収部として作用する成長用のGaAs基板は、これを除去することで発光層部からの発光光束を取り出すことができる。ただし、そのGaAs基板の全てを除去するのではなく、GaAs基板の一部が主化合物半導体層の第二主表面上への残留基板部となるように、その一部のみを切り欠くようにすれば、形成される切欠き部の底面を主光取出面として利用することができ、該部分へ向かう発光光束も外部へ取り出すことが可能となるので、光取出し効率を高めることができる。また、主化合物半導体層の第二主表面側には、発光駆動用の光取出側電極を形成する必要がある。該光取出側電極の直下領域では、ここに向かう発光光束が存在しても電極に遮られるため、いずれにしろ直接光としては取り出すことができない。そこで、本発明者は、残留基板部の第二主表面を該光取出側電極の形成領域として活用すれば、該残留基板部による光吸収作用を、光取出側電極による光遮断作用により埋没させることができ、その実害を大幅に軽減できることを見出して、本発明を完成させるに至ったのである。これにより、GaAsからなる残留基板部は、光吸収の影響がそれほど顕著化することがなくなり、GaAs特有の物性をむしろ積極利用して、素子構成要素として有効活用するようなことも可能となる。   Therefore, the present inventor changed the way of thinking and examined a configuration in which the second main surface facing the GaAs substrate of the main compound semiconductor layer including the light emitting layer portion was used as the main light extraction surface. The growth GaAs substrate acting as the light absorbing portion can be removed to take out the luminous flux from the light emitting layer portion. However, instead of removing all of the GaAs substrate, only a part of the GaAs substrate is cut out so that a part of the GaAs substrate becomes a residual substrate portion on the second main surface of the main compound semiconductor layer. In this case, the bottom surface of the formed notch can be used as the main light extraction surface, and the emitted light flux toward the portion can be extracted to the outside, so that the light extraction efficiency can be increased. Further, it is necessary to form a light extraction side electrode for driving light emission on the second main surface side of the main compound semiconductor layer. In the region immediately below the light extraction side electrode, even if there is a luminous flux directed toward this area, it is blocked by the electrode, so in any case it cannot be extracted as direct light. In view of this, when the present inventor uses the second main surface of the residual substrate portion as the formation region of the light extraction side electrode, the light absorption effect of the residual substrate portion is buried by the light blocking effect of the light extraction side electrode. The present invention has been completed by finding that the actual damage can be greatly reduced. As a result, the effect of light absorption on the residual substrate portion made of GaAs does not become so significant, and it is possible to effectively utilize the physical properties peculiar to GaAs and effectively use them as element components.

上記の光取出側電極には通電用ワイヤを接合することができる。発光層部と光取出側電極との間に介在する化合物半導体層(例えば後述の補助電流拡散層)の厚さが小さい場合(特に、2μm以下の場合)、電極ワイヤを光取出側電極へ接合しようとすると、接合による損傷の影響が発光層部に及びやすく、不良を生じやすい欠点がある。例えばワイヤの接合を、超音波溶接や、これにさらに熱を付加するサーモソニックボンディングにより行なう場合、ボンディングパッド直下の化合物半導体層には、超音波や加熱(さらには加圧)による衝撃応力が集中し、転位などの結晶欠陥が損傷として導入される。その損傷領域が発光層部に及んだ場合、具体的には次のような不具合につながる。
(1)発光輝度の直接的な低下。結晶欠陥による非発光遷移過程の増加が原因として考えられる。
(2)損傷領域が発光層部に及ぶと素子ライフが低下することにつながる。転位の形成された発光層に通電を継続すると、転位に電流が集中して転位の増殖が起こりやすくなり、発光輝度の経時的な劣化を引き起こす。
An energizing wire can be joined to the light extraction side electrode. When the thickness of the compound semiconductor layer (for example, an auxiliary current diffusion layer described later) interposed between the light emitting layer and the light extraction side electrode is small (especially in the case of 2 μm or less), the electrode wire is bonded to the light extraction side electrode. If it is going to be, the influence of the damage by joining tends to reach the light emitting layer part, and there exists a fault which tends to produce a defect. For example, when wire bonding is performed by ultrasonic welding or thermosonic bonding that adds heat to this, impact stress due to ultrasonic waves or heating (and pressurization) is concentrated on the compound semiconductor layer directly under the bonding pad. Then, crystal defects such as dislocations are introduced as damage. When the damaged area reaches the light emitting layer portion, specifically, the following problems are caused.
(1) Direct decrease in emission luminance. This is thought to be due to an increase in the non-luminescent transition process due to crystal defects.
(2) If the damaged region reaches the light emitting layer portion, the device life is reduced. If energization is continued in the light emitting layer in which dislocations are formed, current concentrates on the dislocations, and dislocations are likely to proliferate, which causes deterioration in emission luminance over time.

また、光取出側電極の直下に位置する化合物半導体層(例えば後述の補助電流拡散層)にドーパントの濃度不均一部が形成されていると、損傷領域が発光層部にまでは及ばなくとも、上記濃度不均一部に大きな抉れが生じ、不良を引き起こす惧れがある。   Further, if a dopant concentration nonuniformity portion is formed in a compound semiconductor layer (for example, an auxiliary current diffusion layer described later) located immediately below the light extraction side electrode, even if the damaged region does not reach the light emitting layer portion, There is a possibility that a large wrinkle occurs in the non-uniform density portion, causing a defect.

しかし、光取出側電極の直下に残留基板部が存在していれば、接合時に損傷領域が仮に生じても、その大半は残留基板部内部に留まり、発光層部や電流拡散層等にその影響が及びにくくなり、不良低減を図ることができる。この効果を顕著に達成するには、残留基板部の厚さを3μm以上確保しておくことが望ましい。   However, if there is a residual substrate portion directly under the light extraction side electrode, even if a damaged region occurs during bonding, most of it remains inside the residual substrate portion, and this affects the light emitting layer portion, current diffusion layer, etc. This makes it difficult to reduce defects. In order to achieve this effect remarkably, it is desirable to secure a thickness of the residual substrate portion of 3 μm or more.

主化合物半導体層は、残留基板部と発光層部との間に位置する補助電流拡散層を有するものとして形成できる。これにより、切欠き部底面部への電流拡散効果が高められ、該切欠き部に対応した主光取出面領域への分配電流が増加するので、該主光取出面から取り出される発光光束をより増加することができる。また、光取出側電極に通電用ワイヤを接合する場合は、この補助電流拡散層は前述の残留基板部とともに、接合による損傷の影響が発光層部へ及ぶことを抑制するクッション層としての機能も果たしうる。なお、発光層部が、後述のAlGaInP等により、残留基板部に近い側から第一導電型クラッド層、活性層及び第二導電型クラッド層がこの順序で積層されたダブルへテロ構造を有するものとして構成される場合、該補助電流拡散層は、第一導電型クラッド層よりも有効キャリア濃度を高めておくことで、電流拡散効果をより顕著なものとすることができる。また、補助電流拡散層を設ける代わりに、第一導電型クラッド層が第二導電型クラッド層よりも厚く形成することもできる。該構成では、第一導電型クラッド層の第二主表面側の部分(主光取出面側の表層部)が電流拡散層の役割を果たしていると見ることもできる。そして、該部分の有効キャリア濃度を残余の部分よりも高めておくことで、電流拡散効果をより顕著なものとすることができる。   The main compound semiconductor layer can be formed as having an auxiliary current diffusion layer located between the residual substrate portion and the light emitting layer portion. This enhances the current diffusion effect to the bottom surface of the notch and increases the distribution current to the main light extraction surface area corresponding to the notch, so that the emitted light flux extracted from the main light extraction surface is more Can be increased. In addition, when a current-carrying wire is bonded to the light extraction side electrode, this auxiliary current diffusion layer functions as a cushion layer that suppresses the influence of damage caused by bonding to the light-emitting layer portion together with the above-described residual substrate portion. It can be done. In addition, the light emitting layer portion has a double hetero structure in which the first conductivity type cladding layer, the active layer, and the second conductivity type cladding layer are laminated in this order from the side close to the residual substrate portion by AlGaInP or the like described later. In this case, the auxiliary current diffusion layer can make the current diffusion effect more remarkable by increasing the effective carrier concentration than the first conductivity type cladding layer. Further, instead of providing the auxiliary current diffusion layer, the first conductivity type cladding layer can be formed thicker than the second conductivity type cladding layer. In this configuration, it can also be considered that a portion on the second main surface side of the first conductivity type cladding layer (a surface layer portion on the main light extraction surface side) plays a role of a current diffusion layer. Further, by increasing the effective carrier concentration of the portion higher than that of the remaining portion, the current spreading effect can be made more remarkable.

次に、光取出側電極の直下領域では、発光層部をいくら光らせても発光光束の多くが光取出側電極に遮られ、外部に効率よく取り出すことができない。従って、光取出側電極の直下領域にて通電電流をなるべく少なくすることが望ましくなる。具体的には次のような構成を採用できる。すなわち、光取出側電極を、残留基板部を覆う主電極と、該主電極に導通するとともに切欠き部の底面のうち残留基板部の周囲に位置する一部領域を覆う副電極とを有するものとして形成する。また、接触抵抗低減用の接合合金化層を副電極と接する切欠き部の底面領域に形成する。これにより、光取出側電極は残留基板部外の接合合金化層を介して化合物半導体層と導通する。そして、該構造を前提として、第一の態様では、残留基板部を、発光層部にてp−n接合を形成するp型層部とn型層部とのうち、該残留基板部に近い側のものと逆の導電型を有するものとして構成する。また第二の態様では、残留基板部を、発光層部にてp−n接合を形成するp型層部とn型層部とのうち、該残留基板部に近い側のものと同一の導電型を有するものとし、かつ、発光層部と残留基板部との間に、残留基板部を被覆する形で、該残留基板部と逆の導電型を有する化合物半導体からなる反転層部を介挿する。いずれの構成においても、残留基板部と発光層部との間には、素子に発光駆動電圧(つまり、発光層部をなすp−n接合部に対し順方向となる電圧)を印加したとき、逆バイアス状態となる反転p−n接合部が介在することになるので、発光光束が遮光されやすい光取出側電極直下領域への分配電流(すなわち発光)が抑制され、光取出し効率のさらなる向上に寄与する。   Next, in the region immediately below the light extraction side electrode, no matter how much the light emitting layer portion is illuminated, most of the luminous flux is blocked by the light extraction side electrode and cannot be efficiently extracted outside. Therefore, it is desirable to reduce the energization current as much as possible in the region immediately below the light extraction side electrode. Specifically, the following configuration can be adopted. That is, the light extraction side electrode has a main electrode that covers the residual substrate portion, and a sub-electrode that is connected to the main electrode and covers a partial region of the bottom surface of the notch portion that is located around the residual substrate portion Form as. Further, a bonding alloying layer for reducing contact resistance is formed in the bottom surface region of the notch that is in contact with the sub electrode. Thereby, the light extraction side electrode is electrically connected to the compound semiconductor layer through the bonding alloyed layer outside the residual substrate portion. And on the premise of this structure, in the first aspect, the residual substrate portion is close to the residual substrate portion among the p-type layer portion and the n-type layer portion that form a pn junction in the light emitting layer portion. It is configured to have a conductivity type opposite to that of the side. In the second embodiment, the residual substrate portion has the same conductivity as that of the p-type layer portion and the n-type layer portion that form a pn junction in the light emitting layer portion, closer to the residual substrate portion. An inversion layer portion made of a compound semiconductor having a conductivity type opposite to that of the residual substrate portion is interposed between the light emitting layer portion and the residual substrate portion so as to cover the residual substrate portion. To do. In any configuration, when a light emission driving voltage (that is, a voltage in a forward direction with respect to a pn junction portion forming the light emitting layer portion) is applied between the residual substrate portion and the light emitting layer portion, Since the reverse pn junction that is in the reverse bias state is interposed, the distribution current (that is, light emission) to the region immediately below the light extraction side electrode where the luminous flux is likely to be blocked is suppressed, and the light extraction efficiency is further improved. Contribute.

なお、上記のいずれの構成においても、光取出面側電極と残留基板部との間に、両者の接触抵抗を低減するための接合合金化層を形成するか否かは任意に選択できる。すなわち、いずれの構成においても、上記の反転p−n接合部が介在するため、光取出面側電極と残留基板部との間が接合合金化層を介して導通していても、上記の反転p−n接合部により光取出面側電極直下領域への電流は遮断できる。   In any of the above configurations, whether or not to form a bonding alloyed layer for reducing the contact resistance between the light extraction surface side electrode and the residual substrate portion can be arbitrarily selected. That is, in any configuration, since the above-described inversion pn junction is interposed, even if the light extraction surface side electrode and the residual substrate portion are electrically connected through the bonding alloying layer, the inversion is performed. The current to the region immediately below the light extraction surface side electrode can be cut off by the pn junction.

また、光取出側電極が、残留基板部を覆う主電極と、該主電極に導通するとともに切欠き部の底面のうち残留基板部の周囲に位置する一部領域を覆う副電極とを有し、接触抵抗低減用の接合合金化層が、主電極と接する残留基板部には形成されず、副電極と接する切欠き部の底面領域には形成される構成とすることもできる。光取出側電極に上記のような副電極を設け、光取出側電極と主化合物半導体層との電気的な接続を、残留基板部外の切欠部底面に形成された接合合金化層との間でのみ確保することで、発光駆動時における残留基板部での電流密度を効果的に低減できる(この場合、残留基板部と主化合物半導体層との間に前述のような反転p−n接合部が特に形成されていなくともよい)。また、残留基板部を主電極で覆う場合、その主電極は面積を比較的大きくできるので、通電用ワイヤの接続も容易である。そして主電極が、残留基板部の周側面を覆う部分にて副電極と接続されると、通電用ワイヤから接合合金化層への給電部としての役割を果たす。通電用ワイヤの接合時に、残留基板部が損傷吸収効果をもたらすことは既に説明した通りである。   Further, the light extraction side electrode has a main electrode that covers the residual substrate portion, and a sub-electrode that is connected to the main electrode and covers a part of the bottom surface of the notch portion that is located around the residual substrate portion. The bonding alloying layer for reducing the contact resistance may not be formed on the remaining substrate portion in contact with the main electrode, but may be formed in the bottom surface region of the notch portion in contact with the sub electrode. The sub electrode as described above is provided on the light extraction side electrode, and the electrical connection between the light extraction side electrode and the main compound semiconductor layer is made between the bonding alloying layer formed on the bottom surface of the notch portion outside the residual substrate portion. By ensuring only in the above, the current density in the residual substrate portion during light emission driving can be effectively reduced (in this case, the inversion pn junction as described above between the residual substrate portion and the main compound semiconductor layer). May not be formed in particular). Further, when the residual substrate portion is covered with the main electrode, the main electrode can have a relatively large area, and therefore the connection of the energization wire is easy. And if a main electrode is connected with a subelectrode in the part which covers the surrounding side surface of a residual board | substrate part, it will play the role of the electric power feeding part from a wire for electricity supply to a joining alloying layer. As described above, the residual substrate portion provides a damage absorbing effect when the energizing wire is joined.

例えば、残留基板部の第二主表面には、光取出側電極との接触抵抗を減ずるための接合合金化層を形成することもできる。GaAsはバンドギャップエネルギーが小さく耐酸化性にも優れるので、他のIII−V族化合物半導体(例えば発光層部を形成するAlGaInPや、電流拡散層を形成するGaP、AlGaAs、GaAsPあるいはInGaPなど)と比較して、金属電極との間で格段にオーミックコンタクトを取りやすい利点がある。従って、該GaAsからなる残留基板部を接合合金化層の形成領域として利用することで、素子の光取出側電極との接触抵抗を効果的に低減でき、ひいては素子の順方向電圧を低減できるようになる。   For example, a bonding alloying layer for reducing the contact resistance with the light extraction side electrode can be formed on the second main surface of the residual substrate portion. Since GaAs has a small band gap energy and excellent oxidation resistance, other III-V group compound semiconductors (for example, AlGaInP forming a light emitting layer portion, GaP, AlGaAs, GaAsP, or InGaP forming a current diffusion layer) and the like In comparison, there is an advantage that an ohmic contact can be easily made with the metal electrode. Therefore, by using the residual substrate portion made of GaAs as the formation region of the bonding alloying layer, the contact resistance with the light extraction side electrode of the element can be effectively reduced, and consequently the forward voltage of the element can be reduced. become.

光取出側電極は、具体的には、残留基板部の第二主表面及び周側面とを覆う主電極と、切欠き部の底面のうち残留基板部の周側面に連なる一部領域を覆う副電極とを有するものとして形成できる。この場合、残留基板部の第二主表面の面積が第一主表面の面積よりも小となるように、該残留基板部の周側面を傾斜面として形成し、光取出側電極をなす主電極と副電極とを一体の金属膜として形成することが望ましい。このようにすると、蒸着やスパッタ等の指向性の強い成膜法により金属膜(光取出側電極)を形成する場合、残留基板部の周側面を上記のような傾斜面としておくことで、該周側面にも金属膜を十分な厚さにて形成することができ、主電極と副電極との電気的導通をより確実なものとすることができる。   Specifically, the light extraction side electrode includes a main electrode that covers the second main surface and the peripheral side surface of the residual substrate portion, and a sub-cover that covers a part of the bottom surface of the notch portion that is continuous with the peripheral side surface of the residual substrate portion. It can form as what has an electrode. In this case, the main electrode forming the light extraction side electrode is formed by forming the peripheral side surface of the residual substrate portion as an inclined surface so that the area of the second main surface of the residual substrate portion is smaller than the area of the first main surface. It is desirable to form the sub-electrode and the sub-electrode as an integral metal film. In this case, when a metal film (light extraction side electrode) is formed by a highly directional film forming method such as vapor deposition or sputtering, the peripheral side surface of the residual substrate portion is set as the inclined surface as described above. A metal film can be formed on the peripheral side surface with a sufficient thickness, and the electrical continuity between the main electrode and the sub electrode can be made more reliable.

なお、光取出側電極とは異極性となる側の電極部(以下、異極性電極部ともいう)は、主化合物半導体層の第一主表面側に形成することができる。この構成によると、光取出側電極から異極性電極部に至る発光通電経路が主化合物半導体の積層方向に主体的に形成され、順方向電圧の低減に有効である。また、主光取出面が形成される主化合物半導体の第二主表面側に異極性電極部が形成されないので、該第二主表面に主光取出面を大きく確保でき、ひいては光取出し効率の向上に寄与する。   In addition, the electrode part (henceforth a different polarity electrode part) by the side which becomes a different polarity from the light extraction side electrode can be formed in the 1st main surface side of the main compound semiconductor layer. According to this configuration, the light-emission energization path from the light extraction side electrode to the heteropolar electrode portion is mainly formed in the stacking direction of the main compound semiconductor, which is effective in reducing the forward voltage. In addition, since the different polarity electrode portion is not formed on the second main surface side of the main compound semiconductor where the main light extraction surface is formed, a large main light extraction surface can be secured on the second main surface, and thus the light extraction efficiency is improved. Contribute to.

発光層部が、残留基板部に近い側から第一導電型クラッド層、活性層及び第二導電型クラッド層がこの順序で積層されたダブルへテロ構造を有する場合、主化合物半導体層の第二主表面側から少なくとも活性層の第一主表面までの区間を、第二主表面の一部領域において切り欠くことにより電極用切欠き部を形成し、その電極用切欠き部の底面に異極性電極(光取出側電極とは異極性となる側の電極)を配置することもできる(以下、同面側電極取出構造ともいう)。この構成は、主化合物半導体の第二主表面側の一部が異極性電極の形成スペースとして消費される難点はあるが、発光駆動用の電極を同一主表面側に形成できる利点を生ずる。   When the light emitting layer portion has a double heterostructure in which the first conductivity type cladding layer, the active layer, and the second conductivity type cladding layer are laminated in this order from the side close to the residual substrate portion, A section from the main surface side to at least the first main surface of the active layer is cut out in a part of the second main surface to form a notch for the electrode, and the bottom surface of the notch for the electrode has a different polarity. An electrode (an electrode having a polarity different from that of the light extraction side electrode) may be disposed (hereinafter also referred to as a same-surface side electrode extraction structure). This configuration has the disadvantage that a part of the second main surface side of the main compound semiconductor is consumed as the space for forming the different polarity electrode, but has the advantage that the electrode for driving light emission can be formed on the same main surface side.

例えば、III族窒化物系の青色発光素子は、III族窒化物のエピタキシャル成長用の基板としてサファイア基板を使用するが、サファイア基板は絶縁体であり、しかもエッチング等による除去も困難なため、発光層部の下に該サファイア基板を残した形で素子化されるケースが多い。この場合、発光層部とサファイア基板との間に導電性の電極取出層を形成し、発光層部の一部を切り欠いて電極取出層を露出させ、ここに異極性電極を形成することが必須となる。こうした窒化物系青色発光素子のように、製造工程上、同面側電極取出構造を取らざるを得ない発光素子と、本発明の製造方法による発光素子とを組み合わせて一体の発光モジュールを構成する場合に、本発明の製造方法による発光素子に敢えて上記同面側電極取出構造を採用すれば、該別種の発光素子の光取出側電極又は異極性電極のうち、接地側となる電極を共通結線することができ、ワイヤボンディング等のアセンブリ工程を簡略化できる利点がある。また、RGBフルカラー発光素子モジュールのように、この種の発光素子を3個以上組み合わせてモジュール化する場合、それらの素子の接地側の電極電位は全て等しくなるため、これら電極をワイヤにより順次連結し、その末端に位置する電極のみを、素子チップを接着するステージ側の端子に接続する構成が可能となり、ステージ側端子の面積縮小、ひいてはモジュールの小型化にも寄与する。 For example, a group III nitride blue light emitting device uses a sapphire substrate as a substrate for epitaxial growth of group III nitride, but the sapphire substrate is an insulator and is difficult to remove by etching or the like. In many cases, the sapphire substrate is left under the part to form an element. In this case, a conductive electrode extraction layer is formed between the light emitting layer portion and the sapphire substrate, a part of the light emitting layer portion is notched to expose the electrode extraction layer, and a different polarity electrode is formed here. Required. Like such a nitride-based blue light-emitting element, a light-emitting element that must have the same-surface-side electrode extraction structure in the manufacturing process and a light-emitting element according to the manufacturing method of the present invention are combined to form an integrated light-emitting module. In this case, if the same-surface-side electrode extraction structure is used for the light-emitting element according to the manufacturing method of the present invention, the ground-side electrode of the light-extraction-side electrode or the different-polarity electrode of the different type of light-emitting element is commonly connected. There is an advantage that an assembly process such as wire bonding can be simplified. In addition, when three or more light emitting elements of this type are combined to form a module, such as an RGB full color light emitting element module, the electrode potentials on the ground side of these elements are all equal, so these electrodes are sequentially connected by wires. Thus, it is possible to connect only the electrode located at the end of the terminal to the terminal on the stage side to which the element chip is bonded, which contributes to the reduction of the area of the stage side terminal and the miniaturization of the module.

本発明の製造方法による発光素子においては、発光層部の第一主表面側に、発光層部からの発光光束のピーク波長に相当する光量子エネルギーよりも大きなバンドギャップエネルギーを有するIII−V族化合物半導体からなる厚さ10μm以上の透明厚膜半導体層を設けることができる。このような透明厚膜半導体層を設けることで、薄い発光層部に対し面内方向により均一に発光駆動電流を供給でき、該透明厚膜半導体層の側面からの取出光束も増加するので、素子全体としての光取出し効率を大幅に高めることができる。また、透明厚膜半導体層が素子全体の補強効果を高め、素子製造時のハンドリングがより容易になる。さらに、該透明厚膜半導体層の側で発光素子を、金属ペースト層を介して金属ステージ上に接着する構成とする場合、接着時に金属ペースト層がつぶれて変形して主化合物半導体層の周側面側に這い上がることがある。この這い上がった金属ペーストが発光層部のp−n接合部側面に達すると、p−n接合部が短絡するなどの不具合を生ずることがある。しかし、上記のように、この接着側に設ける透明厚膜半導体層の厚さを10μm以上(上限値に制限はないが、例えば200μm以下である)に確保すれば、仮に金属ペーストが這い上がってもp−n接合部にまで達する確率は小さくなり、上記短絡等の不具合を効果的に防止できる。 In the light emitting device according to the manufacturing method of the present invention, a III-V group compound having a band gap energy larger than the photon energy corresponding to the peak wavelength of the luminous flux from the light emitting layer portion on the first main surface side of the light emitting layer portion. A transparent thick film semiconductor layer made of a semiconductor and having a thickness of 10 μm or more can be provided. By providing such a transparent thick film semiconductor layer, the light emission drive current can be supplied uniformly to the thin light emitting layer portion in the in-plane direction, and the extracted light flux from the side surface of the transparent thick film semiconductor layer also increases. The light extraction efficiency as a whole can be greatly increased. Further, the transparent thick film semiconductor layer enhances the reinforcing effect of the entire device, and handling during device manufacture becomes easier. Further, when the light-emitting element is bonded on the metal stage via the metal paste layer on the transparent thick film semiconductor layer side, the metal paste layer is crushed and deformed during bonding, and the peripheral side surface of the main compound semiconductor layer May crawl to the side. When this scooped up metal paste reaches the pn junction side surface of the light emitting layer, there may be a problem such as a short circuit of the pn junction. However, as described above, if the thickness of the transparent thick film semiconductor layer provided on the bonding side is secured to 10 μm or more (the upper limit is not limited, but is, for example, 200 μm or less), the metal paste will rise. However, the probability of reaching the pn junction is reduced, and the above short circuit and other problems can be effectively prevented.

特に、上記の同面側電極取出構造を有する発光素子の場合、発光層部が接する層が導電性の透明厚膜半導体層であるから、これを上記の異極性電極を配置するための電極取出層として活用できる。透明厚膜半導体層は層厚が大きいため(10μm以上)、シート抵抗の低減が容易であり、素子の順方向電圧の増加も招きにくい。さらに、基板に相当する部分が上記のように導電性の透明厚膜半導体層にて構成されていることで、該透明厚膜半導体層が静電気の放電路として機能するので、発光層部の帯電が軽減できる。
※「接地」と「カソード端子」は電気的に一致している必要はありません。中の説明でも書きましたが、直流電源の正極(つまりアノード)を接地し、負極(カソード)電圧をコントロールすることもできます。しかし、一般的には電源は負極を接地することが多いです。
In particular, in the case of a light-emitting element having the above-described same-surface electrode extraction structure, the layer in contact with the light-emitting layer portion is a conductive transparent thick film semiconductor layer. Can be used as a layer. Since the transparent thick film semiconductor layer has a large thickness (10 μm or more), it is easy to reduce the sheet resistance and hardly increase the forward voltage of the device. Furthermore, since the portion corresponding to the substrate is composed of the conductive transparent thick film semiconductor layer as described above, the transparent thick film semiconductor layer functions as an electrostatic discharge path. Can be reduced.
* “Grounding” and “Cathode terminal” do not need to match electrically. As described in the explanation above, you can also control the negative (cathode) voltage by grounding the positive electrode (that is, the anode) of the DC power supply. However, in general, the power supply often grounds the negative electrode.

また、主化合物半導体層は、透明厚膜半導体層よりも薄い化合物半導体層よりなる補助電流拡散層を有するものとして構成できる。
ただし、上記構成では、発光層部の第一主表面側に設ける補助電流拡散の厚さは小さくなるので、電流拡散効果は透明厚膜半導体層よりも劣る。そこで、これを補うために光取出側電極を、残留基板部の第二主表面及び周側面とを覆う主電極と、切欠き部の底面をなす補助電流拡散層の第二主表面の一部領域を覆うとともに、主電極の外周縁から延出する線状の副電極とを有するものとして構成することが有効である。上記のような副電極を設けることで、駆動電圧を印加した際に、主光取出面内の電界分布の偏りを軽減することができ、主光取出面全体に、より一様に電圧印加することができるので、電流拡散効果を高めることがでできる。また、主電極の直下に位置する残留基板部を前述のごとく電流阻止層として機能させれば、主電極の直下に向かう電流を遮断でき、主光取出面をなす主電極の背景領域への電流分配量を増加できるので、光取出し効率を高めることができる。この場合、前述のごとく、残留基板部の第二主表面の面積が第一主表面の面積よりも小となるように、該残留基板部の周側面が傾斜面として形成し、光取出側電極をなす主電極と副電極を一体の金属膜として形成すれば、主電極と副電極との電気的導通をより確実なものとすることができる。
The main compound semiconductor layer can be configured to have an auxiliary current diffusion layer made of a compound semiconductor layer thinner than the transparent thick film semiconductor layer.
However, in the above configuration, since the thickness of the auxiliary current diffusion provided on the first main surface side of the light emitting layer portion is small, the current diffusion effect is inferior to that of the transparent thick film semiconductor layer. Therefore, in order to compensate for this, the light extraction side electrode, the main electrode that covers the second main surface and the peripheral side surface of the residual substrate portion, and a part of the second main surface of the auxiliary current diffusion layer that forms the bottom surface of the notch portion It is effective to cover the region and have a linear sub-electrode extending from the outer peripheral edge of the main electrode. By providing the sub-electrode as described above, the bias of the electric field distribution in the main light extraction surface can be reduced when a drive voltage is applied, and the voltage is applied more uniformly across the main light extraction surface. Therefore, the current spreading effect can be enhanced. In addition, if the residual substrate portion located immediately below the main electrode functions as a current blocking layer as described above, the current flowing directly below the main electrode can be cut off, and the current to the background area of the main electrode forming the main light extraction surface can be cut off. Since the amount of distribution can be increased, the light extraction efficiency can be increased. In this case, as described above, the peripheral side surface of the residual substrate portion is formed as an inclined surface so that the area of the second main surface of the residual substrate portion is smaller than the area of the first main surface, and the light extraction side electrode If the main electrode and the sub electrode forming the above are formed as an integral metal film, the electrical continuity between the main electrode and the sub electrode can be further ensured.

次に、本発明に関連する発光素子の構成として
AlGaInPからなる発光層部を有した主化合物半導体層をGaAs基板の第一主表面上にエピタキシャル成長し、GaAs基板の一部が主化合物半導体層の第二主表面上への残留基板部となるように、該GaAs基板の一部を切り欠いて切欠き部を形成し、該切欠きの結果として形成される残留基板部の第二主表面を覆うように、発光層部へ発光駆動電圧を印加するための第一電極部を形成する一方、
発光層部が、残留基板部に近い側から第一導電型クラッド層、活性層及び第二導電型クラッド層をこの順序で積層したダブルへテロ構造を有してなり、発光層部の第一主表面側には、発光層部からの発光光束のピーク波長に相当する光量子エネルギーよりも大きなバンドギャップエルギーを有するIII−V族化合物半導体からなる透明半導体層が形成されてなり、さらに、主化合物半導体層の第二主表面側から少なくとも活性層の第一主表面までの区間を、第二主表面の一部領域において切り欠くことにより電極用切欠き部を形成し、該電極用切欠き部の底面に第一電極部とは異極性となる第二電極部を配置するとともに、主化合物半導体層の第一主表面を主光取出面とすることが考えられる
Next, as a configuration of the light emitting element related to the present invention,
A main compound semiconductor layer having a light emitting layer portion made of AlGaInP is epitaxially grown on the first main surface of the GaAs substrate so that a part of the GaAs substrate becomes a residual substrate portion on the second main surface of the main compound semiconductor layer. Next, a part of the GaAs substrate is notched to form a notch, and a light emission driving voltage is applied to the light emitting layer so as to cover the second main surface of the remaining substrate formed as a result of the notch. While forming a first electrode part for
The light emitting layer portion has a double hetero structure in which the first conductive type cladding layer, the active layer, and the second conductive type cladding layer are laminated in this order from the side close to the residual substrate portion, On the main surface side, a transparent semiconductor layer made of a III-V group compound semiconductor having a band gap energy larger than the photon energy corresponding to the peak wavelength of the luminous flux from the light emitting layer portion is formed. An electrode notch is formed by notching a section from the second main surface side of the semiconductor layer to at least the first main surface of the active layer in a partial region of the second main surface, and the electrode notch It is conceivable that a second electrode part having a polarity different from that of the first electrode part is disposed on the bottom surface of the first compound part and that the first main surface of the main compound semiconductor layer is a main light extraction surface.

この構成は、同面側電極取出構造を採用した本発明の製造方法による発光素子の上下を反転し、透明半導体層の第一主表面側に電極を形成せず、該第一主表面側から発光光束を主に取り出すようにしたものに相当する。同面側電極取出構造では、2つの電極を同一面側に形成する必要があるので、電極形成スペースも限られたものとなる。前述の本発明に関連する発光素子の構成によると、そのうちの第一電極部を残留基板部の第二主表面に形成する。GaAsはバンドギャップエネルギーが小さく耐酸化性にも優れるので、他のIII−V族化合物半導体(例えば発光層部を形成するAlGaInPや、電流拡散層を形成するGaP、AlGaAs、GaAsPあるいはInGaPなど)と比較して、金属電極との間で格段にオーミックコンタクトを取りやすい利点がある。従って、該GaAsからなる残留基板部を第一電極部の形成領域として利用することで、素子の第一電極部との接触抵抗を効果的に低減でき、素子の順方向電圧を低減できるようになる。また、第一電極部の形成領域以外にてGaAs基板を切り欠くことで、該領域でのGaAs基板による光吸収が抑制され、反射光等の形で外部に取り出すことで光取出し効率の向上に寄与する。そして、電極形成されない透明厚膜半導体層の第一主表面が主光取出面となるので、該主光取出面の面積が拡大され、光取出し効率が大幅に向上する。さらに、主化合物半導体層の第二主表面側に全ての電極が形成されるので、例えば素子チップを基板上に面実装する構成も容易となり、素子チップのアセンブリ工程の簡略化にも寄与する。 In this configuration, the light emitting element according to the manufacturing method of the present invention adopting the same side electrode extraction structure is turned upside down, no electrode is formed on the first main surface side of the transparent semiconductor layer, and the first main surface side is not formed. This corresponds to the one in which the luminous flux is mainly extracted. In the same surface side electrode extraction structure, since it is necessary to form two electrodes on the same surface side, an electrode forming space is limited. According to the structure of the light emitting element related to the present invention described above, the first electrode portion is formed on the second main surface of the residual substrate portion. Since GaAs has a small band gap energy and excellent oxidation resistance, other III-V group compound semiconductors (for example, AlGaInP forming a light emitting layer portion, GaP, AlGaAs, GaAsP, or InGaP forming a current diffusion layer) and the like In comparison, there is an advantage that an ohmic contact can be easily made with the metal electrode. Therefore, by utilizing the residual substrate portion made of GaAs as the formation region of the first electrode portion, the contact resistance with the first electrode portion of the element can be effectively reduced, and the forward voltage of the element can be reduced. Become. In addition, by cutting out the GaAs substrate outside the region where the first electrode is formed, light absorption by the GaAs substrate in this region is suppressed, and the light extraction efficiency is improved by taking it out in the form of reflected light or the like. Contribute. And since the 1st main surface of the transparent thick film semiconductor layer in which an electrode is not formed turns into a main light extraction surface, the area of this main light extraction surface is expanded and light extraction efficiency improves significantly. Furthermore, since all the electrodes are formed on the second main surface side of the main compound semiconductor layer, for example, a configuration in which the element chip is surface-mounted on the substrate is facilitated, which contributes to simplification of the assembly process of the element chip.

また、透明半導体層は、厚さ10μm以上とすることで、薄い発光層部に対し面内方向により均一に発光駆動電流を供給でき、該透明厚膜半導体層の側面からの取出光束も増加するので、素子全体としての光取出し効率を大幅に高めることができる。また、発光層部に対する補強効果も高められ、素子製造時のハンドリングがより容易になる。   In addition, by setting the thickness of the transparent semiconductor layer to 10 μm or more, a light emission drive current can be supplied uniformly to the thin light emitting layer portion in the in-plane direction, and the extracted light flux from the side surface of the transparent thick film semiconductor layer also increases. Therefore, the light extraction efficiency of the entire device can be greatly increased. In addition, the reinforcing effect on the light emitting layer portion is enhanced, and handling during device manufacture becomes easier.

本発明の製造方法による発光素子及び前述の本発明に関連する発光素子の構成においては、発光層部と残留基板部との間に、屈折率の相違する半導体膜を複数積層することにより、ブラッグ反射を利用して光を反射させるDBR(Distributed Bragg Reflector)層を設けることもできる。DBR層は残留基板部上にエピタキシャル成長可能であり、光吸収性の残留基板部の直下に位置する領域であっても、発光光束をDBR層により下向きに反射することができるので、発光光束が残留基板部への吸収により損失する不具合を解消することができる。反射された発光光束は残留基板部等に吸収されない限り、素子の別部分での反射等を利用して素子外へ取り出すことが可能になるので(吸収されれば素子外へ取り出せる可能性は本質的に喪失する)、素子の光取出し効率向上に寄与する。 In the structure of the light emitting device according to the manufacturing method of the present invention and the light emitting device related to the above-described present invention, a plurality of semiconductor films having different refractive indexes are laminated between the light emitting layer portion and the residual substrate portion, thereby A DBR (Distributed Bragg Reflector) layer that reflects light using reflection can also be provided. The DBR layer can be epitaxially grown on the residual substrate portion, and even in a region located directly below the light-absorbing residual substrate portion, the emitted light beam can be reflected downward by the DBR layer. The problem of loss due to absorption into the substrate portion can be solved. As long as the reflected luminous flux is not absorbed by the residual substrate, etc., it can be taken out of the element by using reflection at another part of the element. This contributes to improving the light extraction efficiency of the device.

なお、残留基板部は主化合物半導体層よりも厚さを小とすることにより、発光素子のチップ部分の低背化を図ることができ、ひいては素子の小型化に寄与する。また、残留基板部の厚みが減じられることで、切欠き部形成により通電断面積が減少しているにもかかわらず、素子の直列抵抗が増加しにくくなり、順方向電圧低減や発光効率向上に寄与する。   Note that the residual substrate portion can be made thinner than the main compound semiconductor layer, so that the height of the chip portion of the light emitting element can be reduced, thereby contributing to the miniaturization of the element. In addition, by reducing the thickness of the residual substrate, the series resistance of the element is less likely to increase despite the reduced cross-sectional area due to the formation of the notch, which reduces forward voltage and improves luminous efficiency. Contribute.

以下、本発明の実施形態を添付の図面を用いて説明する。本実施形態において各層及び基板の主表面は、図1のごとく、発光素子100の主光取出面EAを上側にした状態を正置状態として、該正置状態における図面下側に表れる面を第一主表面、上側に表れる面を第二主表面として統一的に記載する。従って、工程説明の都合上、上記正置状態に対し上下を反転した転置状態にて図示を行なう場合は、該図示における第一主表面と第二主表面の上下関係も反転する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the present embodiment, as shown in FIG. 1, the main surface of each layer and the substrate is a state where the main light extraction surface EA of the light emitting element 100 is set to the upper side and the surface appearing on the lower side of the drawing in the normal state is the first side. One main surface and the surface appearing on the upper side are collectively described as the second main surface. Therefore, for convenience of description of the process, when the drawing is performed in a transposed state that is upside down with respect to the above-described normal state, the vertical relationship between the first main surface and the second main surface in the drawing is also reversed.

図1は本発明の一実施形態である発光素子100を模式的に示すものである。発光素子100において発光層部24を有した主化合物半導体層40は、GaAs基板10(図2の工程2参照)の第二主表面上にエピタキシャル成長されたものである。そして、該GaAs基板10の周縁部が切り欠かれることにより切欠き部1jが形成され(図2の工程5参照)、当該切欠き部1jの周縁に残された基板部分が残留基板部1とされている。図2の工程2は層成長時の上下関係で描いており、図1はこれと上下反転している(従って、第一主表面は、図1中にて層や基板の下面として表れる)。切欠き部1jの底面は主光取出面EAを形成し、発光層部24に発光駆動電圧を印加するための光取出側電極9が残留基板部1の第二主表面を覆うように形成されている。図1において、透明厚膜半導体層90、結合層7、発光層部24及び補助電流拡散層91は主化合物半導体層40に属し、バッファ層2及び残留基板部1は主化合物半導体層40に属さない。   FIG. 1 schematically shows a light emitting device 100 according to an embodiment of the present invention. The main compound semiconductor layer 40 having the light emitting layer portion 24 in the light emitting element 100 is epitaxially grown on the second main surface of the GaAs substrate 10 (see Step 2 in FIG. 2). Then, the notched portion 1j is formed by cutting the peripheral portion of the GaAs substrate 10 (see step 5 in FIG. 2), and the substrate portion left on the peripheral portion of the notched portion 1j is the residual substrate portion 1. Has been. Step 2 in FIG. 2 is drawn in a vertical relationship during layer growth, and FIG. 1 is vertically inverted (the first main surface appears as the lower surface of the layer or substrate in FIG. 1). The bottom surface of the cutout portion 1j forms a main light extraction surface EA, and the light extraction side electrode 9 for applying a light emission driving voltage to the light emitting layer portion 24 is formed so as to cover the second main surface of the residual substrate portion 1. ing. In FIG. 1, the transparent thick film semiconductor layer 90, the bonding layer 7, the light emitting layer portion 24, and the auxiliary current diffusion layer 91 belong to the main compound semiconductor layer 40, and the buffer layer 2 and the remaining substrate portion 1 belong to the main compound semiconductor layer 40. Absent.

発光層部24は、ノンドープ(AlGa1−xIn1−yP(ただし、0≦x≦0.55,0.45≦y≦0.55)混晶からなる活性層5を、第一導電型クラッド層、本実施形態ではp型(AlGa1−zIn1−yP(ただしx<z≦1)からなるp型クラッド層6と、前記第一導電型クラッド層とは異なる第二導電型クラッド層、本実施形態ではn型(AlGa1−zIn1−yP(ただしx<z≦1)からなるn型クラッド層4とにより挟んだ構造を有し、活性層5の組成に応じて、発光波長を、緑色から赤色領域(発光波長(ピーク発光波長)が550nm以上670nm以下)にて調整できる。 The light emitting layer portion 24 includes the active layer 5 made of a non-doped (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 0.55, 0.45 ≦ y ≦ 0.55) mixed crystal. , the first-conductivity-type cladding layer, in this embodiment the p-type cladding layer 6 made of p-type (Al z Ga 1-z) y in 1-y P ( except x <z ≦ 1), wherein the first conductivity type the second-conductivity-type cladding layer different from the clad layer, in this embodiment interposed by an n-type (Al z Ga 1-z) y in 1-y P ( except x <z ≦ 1) n-type cladding layer 4 made of According to the composition of the active layer 5, the emission wavelength can be adjusted in the green to red region (the emission wavelength (peak emission wavelength) is 550 nm or more and 670 nm or less).

発光素子100においては、発光層部24の第一主表面側にp型AlGaInPクラッド層6が配置されており、第二主表面側(つまり、主光取出面側)にn型AlGaInPクラッド層4が配置されている。従って、通電極性は光取出側電極9が負である。なお、ここでいう「ノンドープ」とは、「ドーパントの積極添加を行なわない」との意味であり、通常の製造工程上、不可避的に混入するドーパント成分の含有(例えば1013〜1016/cm程度を上限とする)をも排除するものではない。また、残留基板部1はn型GaAsからなり、光取出側電極9はAu薄膜により形成されている。残留基板部1と光取出側電極9との間には、両者の接触抵抗を減ずるための接合合金化層9aが形成されている。接合合金化層9aは、Au又はAgを主成分として(50質量%以上)、これに、コンタクト先となる半導体の種別及び導電型に応じ、オーミックコンタクトを取るための合金成分を適量配合したコンタクト用金属を半導体表面上に膜形成した後、合金化熱処理(いわゆるシンター処理)を施すことにより形成されたものである。n型層とのコンタクトを取るために、ここでは接合合金化層9aをAuGeNi合金(例えばGe:15質量%、Ni:10質量%、残部Au)を用いて形成している。 In the light emitting element 100, the p-type AlGaInP cladding layer 6 is disposed on the first main surface side of the light emitting layer portion 24, and the n-type AlGaInP cladding layer 4 is disposed on the second main surface side (that is, the main light extraction surface side). Is arranged. Therefore, the light extraction side electrode 9 is negative in the energization polarity. The term “non-dope” as used herein means “does not actively add a dopant”, and contains a dopant component inevitably mixed in a normal manufacturing process (for example, 10 13 to 10 16 / cm 3). It is not excluded that the upper limit is about 3 ). The residual substrate portion 1 is made of n-type GaAs, and the light extraction side electrode 9 is formed of an Au thin film. Between the residual substrate part 1 and the light extraction side electrode 9, a bonding alloyed layer 9a is formed for reducing the contact resistance between them. The bonded alloyed layer 9a is a contact containing Au or Ag as a main component (50% by mass or more), and an appropriate amount of an alloy component for taking ohmic contact according to the type and conductivity type of the semiconductor to be contacted. It is formed by forming a metal film on the semiconductor surface and then performing an alloying heat treatment (so-called sintering process). Here, in order to make contact with the n-type layer, the bonded alloyed layer 9a is formed using an AuGeNi alloy (for example, Ge: 15% by mass, Ni: 10% by mass, balance Au).

主化合物半導体層40においては、発光層部24の第一主表面上に、GaP(あるいはGaAsPやAlGaAsでもよい:ここではp型)よりなる透明厚膜半導体層90が形成されている。透明厚膜半導体層90は接合合金化層21によりオーミック接触が形成できる程度に有効キャリア濃度(従って、p型ドーパント濃度)が高められている(例えばp型クラッド層6と同等以上であって2×1018/cm以下)。透明厚膜半導体層90は、例えば10μm以上200μm以下(好ましくは40μm以上200μm以下)の厚膜に形成されることで、層側面からの取出光束も増加させ、発光素子全体の輝度(積分球輝度)を高める役割も担う。また、発光層部24からの発光光束のピーク波長に相当する光量子エネルギーよりも大きなバンドギャップエネルギーを有するIII−V族化合物半導体にて構成することで、発光光束に対する吸収も抑制されている。 In the main compound semiconductor layer 40, a transparent thick film semiconductor layer 90 made of GaP (or GaAsP or AlGaAs may be used here: p-type) is formed on the first main surface of the light emitting layer portion 24. The transparent thick film semiconductor layer 90 has an effective carrier concentration (and hence a p-type dopant concentration) increased to such an extent that an ohmic contact can be formed by the bonded alloying layer 21 (for example, equal to or higher than the p-type cladding layer 6 and 2 × 10 18 / cm 3 or less). The transparent thick film semiconductor layer 90 is formed in a thick film of, for example, 10 μm or more and 200 μm or less (preferably 40 μm or more and 200 μm or less), thereby increasing the extracted light flux from the side surface of the layer and increasing the brightness of the entire light emitting element (integrated sphere brightness). ) Will also play a role. In addition, absorption of the emitted light beam is also suppressed by using a III-V group compound semiconductor having a band gap energy larger than the photon energy corresponding to the peak wavelength of the emitted light beam from the light emitting layer portion 24.

透明厚膜半導体層90の第一主表面側は、金属ステージ52上にAgペースト等からなる金属ペースト層17を介して接着され、該金属ペースト層17が反射部を形成している。また、透明厚膜半導体層90の第一主表面には、光取出側電極9側と同様に接合合金化層21が分散形成され、該接合合金化層21が金属ペースト層17より覆われている。これにより、発光層部24は、金属ペースト層17を介して金属ステージ52に電気的に接続される。一方、光取出側電極9は、導体金具51にAuワイヤ等で構成された通電用ワイヤ9wを介して電気的に接続される。発光層部24には、金属ステージ52及び導体金具51に一体化された図示しない駆動端子部を介して発光駆動電圧が印加される。   The first main surface side of the transparent thick film semiconductor layer 90 is bonded to the metal stage 52 via the metal paste layer 17 made of Ag paste or the like, and the metal paste layer 17 forms a reflection portion. In addition, the bonding alloyed layer 21 is dispersedly formed on the first main surface of the transparent thick film semiconductor layer 90 in the same manner as the light extraction side electrode 9 side, and the bonding alloyed layer 21 is covered with the metal paste layer 17. Yes. Thereby, the light emitting layer part 24 is electrically connected to the metal stage 52 through the metal paste layer 17. On the other hand, the light extraction side electrode 9 is electrically connected to the conductor metal fitting 51 via a current-carrying wire 9w made of Au wire or the like. A light emission driving voltage is applied to the light emitting layer portion 24 via a drive terminal portion (not shown) integrated with the metal stage 52 and the conductor metal fitting 51.

本実施形態において接合合金化層21は、p型層とのコンタクトを取るためにAuBe合金を用いて形成されている。接合合金化層21は反射率が比較的低いため、該領域での反射光束を増加させる効果と、接合合金化層21との接触抵抗を低減する効果とのバランスを考慮し、透明厚膜半導体層90第一主表面の全面積に対する接合合金化層21の形成面積の比率を1%以上25%以下に調整することが望ましい。なお、接合合金化層21をAu層、Ag層あるいはAl層などの高反射率の金属反射層32で覆い、該金属反射層32を、金属ペースト層17を介して金属ステージ52に接着してもよい。   In this embodiment, the bonding alloyed layer 21 is formed using an AuBe alloy in order to make contact with the p-type layer. Since the bonding alloyed layer 21 has a relatively low reflectance, a transparent thick film semiconductor is considered in consideration of the balance between the effect of increasing the reflected light flux in the region and the effect of reducing the contact resistance with the bonding alloyed layer 21. It is desirable to adjust the ratio of the formation area of the bonding alloying layer 21 to the total area of the first main surface of the layer 90 to 1% or more and 25% or less. The bonded alloying layer 21 is covered with a highly reflective metal reflective layer 32 such as an Au layer, an Ag layer, or an Al layer, and the metal reflective layer 32 is adhered to the metal stage 52 via the metal paste layer 17. Also good.

なお、透明厚膜半導体層90の側で発光素子を、金属ペースト層17を介して金属ステージ52に接着する場合、図1に一部拡大して示すように、その接着時に金属ペースト層17がつぶれて変形して主化合物半導体層40の周側面側に這い上がることがある。しかし、本実施形態では、この接着側に設ける透明厚膜半導体層90の厚さを40μm以上200μm以下と厚くしてあり、仮に金属ペーストが這い上がっても発光層部(p−n接合部)24にまで達する確率は小さくなり、p−n接合の短絡等を効果的に防止できる。   When the light emitting element is bonded to the metal stage 52 via the metal paste layer 17 on the transparent thick film semiconductor layer 90 side, the metal paste layer 17 is bonded at the time of bonding as shown in FIG. The material may be crushed and deformed and crawl up to the peripheral side surface of the main compound semiconductor layer 40. However, in the present embodiment, the thickness of the transparent thick film semiconductor layer 90 provided on the bonding side is increased to 40 μm or more and 200 μm or less, and even if the metal paste crawls up, the light emitting layer (pn junction) The probability of reaching 24 is reduced, and a pn junction short circuit or the like can be effectively prevented.

また、残留基板部1と発光層部24との間には、AlGaInP、AlGaAs、AlInP、GaInP等の化合物半導体よりなる補助電流拡散層91が形成されている。補助電流拡散層91の厚さは例えば0.5μm以上30μm以下(望ましくは1μm以上15μm以下)であり、発光層部24の、これに近い側のクラッド層(本実施形態ではn型クラッド層4)よりも有効キャリア濃度(従って、n型ドーパント濃度)が高くされ、面内の電流拡散効果が高められている。なお、n型クラッド層4(第一導電型クラッド層)の厚さをp型クラッド層6(第二導電型クラッド層)よりも厚くし、該n型クラッド層4の第二主表面側の表層部に補助電流拡散層としての機能を担わせることも可能である。   Further, an auxiliary current diffusion layer 91 made of a compound semiconductor such as AlGaInP, AlGaAs, AlInP, and GaInP is formed between the residual substrate portion 1 and the light emitting layer portion 24. The thickness of the auxiliary current diffusion layer 91 is, for example, not less than 0.5 μm and not more than 30 μm (preferably not less than 1 μm and not more than 15 μm), and the cladding layer closer to the light emitting layer portion 24 (in this embodiment, the n-type cladding layer 4). ), The effective carrier concentration (and hence the n-type dopant concentration) is increased, and the in-plane current diffusion effect is enhanced. The n-type cladding layer 4 (first conductivity type cladding layer) is made thicker than the p-type cladding layer 6 (second conductivity type cladding layer), and the n-type cladding layer 4 has a second main surface side. It is possible to make the surface layer function as an auxiliary current diffusion layer.

上記の構成によると、光吸収部として作用する成長用のGaAs基板10(図2)の一部が主化合物半導体層40の第二主表面上への残留基板部1となるように、その一部のみが切り欠かれている。これにより、形成される切欠き部1jの底面を主光取出面EAとして利用することができ、該部分へ向かう発光光束を外部へ直接取り出すことが可能となるので、光取出し効率を大幅に高めることができる。他方、残留基板部1の第二主表面は光取出側電極9の形成領域として活用され、光取出側電極9による光遮断作用により、残留基板部1による光吸収作用が不具合として顕在化しなくなっている。また、バンドギャップエネルギーが小さく耐酸化性にも優れるGaAsからなる残留基板部1の第二主表面に光取出側電極9用の接合合金化層9aを形成することで、より良好なオーミックコンタクトが実現し、素子の順方向電圧低減に寄与している。   According to the above configuration, a part of the growth GaAs substrate 10 (FIG. 2) acting as a light absorbing portion becomes the residual substrate portion 1 on the second main surface of the main compound semiconductor layer 40. Only the part is cut out. As a result, the bottom surface of the formed notch portion 1j can be used as the main light extraction surface EA, and the emitted light beam directed toward the portion can be directly extracted to the outside, thus greatly improving the light extraction efficiency. be able to. On the other hand, the second main surface of the residual substrate portion 1 is used as a formation region of the light extraction side electrode 9, and the light absorption action by the light extraction side electrode 9 does not reveal the light absorption effect by the residual substrate portion 1 as a defect. Yes. Further, by forming the bonding alloyed layer 9a for the light extraction side electrode 9 on the second main surface of the residual substrate portion 1 made of GaAs having small band gap energy and excellent oxidation resistance, a better ohmic contact can be obtained. Realized and contributes to reduction of the forward voltage of the element.

以下、図1の発光素子100の製造方法について説明する。
まず、図2の工程1に示すように、n型GaAs単結晶からなる成長用基板10を用意する。そして、工程2に示すように、その成長用基板10の第一主表面上にGaAsバッファ層2を成長し、さらに、補助電流拡散層91を成長する。続いて、発光層部24として、n型AlGaInPクラッド層4、AlGaInP活性層(ノンドープ)5、及びp型AlGaInPクラッド層6を、この順序にて周知のMOVPE(Metal-Organic Vapor Phase Epitaxy)法によりエピタキシャル成長させる。次に工程3に進み、透明厚膜半導体層90(厚さ:40μm以上200μm以下(例えば100μm))を、例えばハイドライド気相成長法(Hydride Vapor Phase Epitaxial Growth Method:HVPE)あるいはMOVPE法を用いてエピタキシャル成長する。特に、GaP、GaAsPあるいはAlGaAsからなる透明厚膜半導体層90は、HVPE法により良質のものを高速成長しやすく、水素や炭素の残留も少ない利点がある。なお、透明厚膜半導体層90は、GaP、GaAsPあるいはAlGaAsからなる基板を発光層部24に貼り合わせることにより形成してもよい。この場合は、発光層部24に続く形でAlInP、GaInPまたはAlGaAsからなる結合層7を形成しておき、この結合層7にGaP、GaAsPあるいはAlGaAsからなる基板を貼り合わせるようにすれば、該貼り合わせをより確実に行なうことができる。HVPE法を用いる場合は、結合層7は特に不要である。
Hereinafter, a method for manufacturing the light emitting device 100 of FIG. 1 will be described.
First, as shown in step 1 of FIG. 2, a growth substrate 10 made of an n-type GaAs single crystal is prepared. Then, as shown in step 2, the GaAs buffer layer 2 is grown on the first main surface of the growth substrate 10, and the auxiliary current diffusion layer 91 is further grown. Subsequently, an n-type AlGaInP clad layer 4, an AlGaInP active layer (non-doped) 5, and a p-type AlGaInP clad layer 6 are formed as a light emitting layer portion 24 in this order by a well-known MOVPE (Metal-Organic Vapor Phase Epitaxy) method. Epitaxially grow. Next, the process proceeds to Step 3, and the transparent thick film semiconductor layer 90 (thickness: 40 μm or more and 200 μm or less (for example, 100 μm)) is formed using, for example, hydride vapor phase epitaxy (HVPE) or MOVPE. Epitaxial growth. In particular, the transparent thick film semiconductor layer 90 made of GaP, GaAsP, or AlGaAs is advantageous in that a high-quality layer can be easily grown at a high speed by the HVPE method, and there is an advantage that hydrogen and carbon remain little. The transparent thick film semiconductor layer 90 may be formed by bonding a substrate made of GaP, GaAsP or AlGaAs to the light emitting layer portion 24. In this case, if the coupling layer 7 made of AlInP, GaInP or AlGaAs is formed following the light emitting layer portion 24, and a substrate made of GaP, GaAsP or AlGaAs is bonded to the coupling layer 7, the Bonding can be performed more reliably. When the HVPE method is used, the bonding layer 7 is not particularly necessary.

そして、工程4に進み、成長用基板10の厚さを減ずる処理を行なう。本実施形態では該処理を、成長用基板10の第二主表面側部分1”を研削により除去し、残った基板部分を基板本体部1’としている。   Then, the process proceeds to step 4 where a process of reducing the thickness of the growth substrate 10 is performed. In the present embodiment, the second main surface side portion 1 ″ of the growth substrate 10 is removed by grinding, and the remaining substrate portion is used as the substrate body portion 1 ′.

次に、工程5に進み、基板本体部1’の残留基板部1として予定された領域以外の周縁部分をGaAsバッファ層2とともに、周知のフォトリソグラフィー技術を用いてエッチングにより除去し、切欠き部1jを形成する。そして、工程6(工程5までと上下を反転して描いている)に示すように、該残留基板部1の第二主表面に、接合合金化層を形成するための金属材料層を蒸着等により形成し、350℃以上500℃以下の温度域で合金化熱処理を行なうことにより、接合合金化層9aとする。また、透明厚膜半導体層90の第一主表面に接合合金化層21を同様に分散形成する(接合合金化層9aと合金化熱処理を兼用することができる)。接合合金化層9aは図1に示すごとく、Au等を蒸着することにより光取出側電極9にて覆う。なお、基板本体部1’の第二主表面の、残留基板部1として予定された領域に接合合金化層9a(あるいは接合合金化層9a及び光取出側電極9)を先に形成し、これを切欠き部1jを形成するためのエッチングマスクに兼用することもできる。   Next, the process proceeds to step 5, and the peripheral portion other than the region planned as the remaining substrate portion 1 of the substrate main body portion 1 ′ is removed together with the GaAs buffer layer 2 by etching using a well-known photolithography technique. 1j is formed. Then, as shown in Step 6 (drawn upside down with respect to Step 5), a metal material layer for forming a bonding alloyed layer is deposited on the second main surface of the residual substrate portion 1 or the like. And the alloying heat treatment is performed in a temperature range of 350 ° C. or higher and 500 ° C. or lower to obtain the bonded alloyed layer 9a. Further, the bonding alloyed layer 21 is similarly dispersedly formed on the first main surface of the transparent thick film semiconductor layer 90 (the bonding alloying layer 9a can also be used as an alloying heat treatment). As shown in FIG. 1, the bonding alloyed layer 9a is covered with the light extraction side electrode 9 by vapor deposition of Au or the like. In addition, the bonding alloying layer 9a (or the bonding alloying layer 9a and the light extraction side electrode 9) is first formed on the region of the second main surface of the substrate main body 1 ′, which is planned as the residual substrate portion 1, Can also be used as an etching mask for forming the notch 1j.

図3に示すように、成長用基板10上には、発光素子チップ30cが複数個マトリックス状に配列した形で一括形成される。このとき、上記切欠き部1jは隣接した発光素子チップ30c同士のものが一体化されているので、その幅方向中央位置に設定された切断線CLに沿って切断することにより、個々の発光素子チップ30cに分離される。図1に示すごとく、分離後の発光素子チップ30cの透明厚膜半導体層90の第一主表面(接合合金化層21が形成されている)を金属ペースト層17により金属ステージ52に接着し、さらに光取出側電極9と導体金具51とを通電用ワイヤ9wにより接続すれば発光素子100が完成する。なお、光取出側電極9に通電用ワイヤ9wをサーモソニックボンディング等により接合する際に、残留基板1は、その接合による損傷が発光層部や補助電流拡散層91に及ぶことを抑制する働きをなす。   As shown in FIG. 3, a plurality of light emitting element chips 30c are collectively formed on the growth substrate 10 in a matrix arrangement. At this time, since the notched portion 1j is formed by integrating adjacent light emitting element chips 30c, each light emitting element is cut by cutting along the cutting line CL set at the center position in the width direction. Separated into chips 30c. As shown in FIG. 1, the first main surface of the transparent thick film semiconductor layer 90 of the light emitting element chip 30c after separation (bonded alloying layer 21 is formed) is adhered to the metal stage 52 by the metal paste layer 17, Further, the light emitting element 100 is completed by connecting the light extraction side electrode 9 and the conductor fitting 51 by the energizing wire 9w. When the energization wire 9w is bonded to the light extraction side electrode 9 by thermosonic bonding or the like, the residual substrate 1 has a function of suppressing damage due to the bonding to the light emitting layer portion and the auxiliary current diffusion layer 91. Eggplant.

上記発光素子100の成長用基板10は、光吸収性化合物半導体であるGaAsにて要部が構成されるが、これを発光層部24の成長後に全て除去するのではなく、厚さを減じて基板本体部1’とした後に、その一部切り欠く形で、主光取出面EAとして機能する切欠き部1jを形成する。そして、切欠き部1j形成に関与しない基板部分は残留基板部1となり、ウェーハの剛性向上機能も果たしうる。   The growth substrate 10 of the light-emitting element 100 is composed mainly of GaAs, which is a light-absorbing compound semiconductor, but is not completely removed after the light-emitting layer portion 24 is grown, but is reduced in thickness. After the substrate main body portion 1 ′ is formed, a cutout portion 1j that functions as the main light extraction surface EA is formed in a partially cutout shape. The substrate portion that is not involved in the formation of the notch portion 1j becomes the remaining substrate portion 1 and can also fulfill the function of improving the rigidity of the wafer.

以下、本発明の発光素子の種々の変形例について説明する。なお、図1の発光素子100との共通部分も多いので、以下、その相違点につき説明する。従って、以下に説明する相違点以外の部分は、図1の発光素子100と同一の構成を有しているので、ここでは詳細な説明を繰り返さない。また、共通の構成要素には共通の符号を付与する。   Hereinafter, various modifications of the light emitting device of the present invention will be described. In addition, since there are many common parts with the light emitting element 100 of FIG. 1, the difference will be described below. Therefore, since parts other than the differences described below have the same configuration as that of the light emitting element 100 of FIG. 1, detailed description thereof will not be repeated here. Also, common reference numerals are assigned to common components.

図4の発光素子300は、発光層部24と残留基板部1との間に、屈折率の相違する半導体膜を複数積層することにより、ブラッグ反射を利用して光を反射させるDBR層30が設けられている。DBR層30は残留基板部1上にエピタキシャル成長可能である。DBR層30は、光吸収性の残留基板部1の直下に位置する領域であっても、発光光束EBを下向きに反射することができるので、発光光束EBが残留基板部1に吸収されて損失する不具合を解消することができる。反射された発光光束EBは残留基板部等に吸収されない限り、直接あるいは素子の別部分(例えば金属ペースト層17あるいは金属反射層32)での反射を利用して素子外へ取り出すことが可能になる。   The light emitting element 300 of FIG. 4 includes a DBR layer 30 that reflects light using Bragg reflection by stacking a plurality of semiconductor films having different refractive indexes between the light emitting layer portion 24 and the residual substrate portion 1. Is provided. The DBR layer 30 can be epitaxially grown on the residual substrate portion 1. Since the DBR layer 30 can reflect the emitted light beam EB downward even in a region located directly below the light-absorbing residual substrate portion 1, the emitted light beam EB is absorbed by the residual substrate portion 1 and lost. Can be solved. As long as the reflected luminous flux EB is not absorbed by the residual substrate portion or the like, it can be taken out of the element directly or by utilizing reflection at another part of the element (for example, the metal paste layer 17 or the metal reflection layer 32). .

図5の発光素子400では、補助電流拡散層91の第二主表面(すなわち、切欠き部1jの底面)にて、残留基板部1の周囲に接合合金化層9aを形成し、これを残留基板部1とともに光取出側電極9により一括して覆う構成とすることもできる。この場合、光取出側電極9は、残留基板部1の第二主表面及び周側面とを覆う主電極9mと、切欠き部1jの底面のうち残留基板部1の周側面に連なる一部領域を覆う副電極9bとを有したものとして形成される。接触抵抗低減用の接合合金化層9aは、主電極9mと接する残留基板部1には形成されず、副電極9bと接する切欠き部1jの底面領域には形成されることとなる。従って、発光駆動電流は残留基板部1を迂回して主光取出面側に優先的に流れ、光取出し効率が向上する。   In the light emitting device 400 of FIG. 5, the bonding alloyed layer 9a is formed around the residual substrate portion 1 on the second main surface of the auxiliary current diffusion layer 91 (that is, the bottom surface of the notch portion 1j), and this remains. A configuration in which the substrate portion 1 and the light extraction side electrode 9 are collectively covered may be employed. In this case, the light extraction side electrode 9 includes a main electrode 9m that covers the second main surface and the peripheral side surface of the residual substrate portion 1, and a partial region that continues to the peripheral side surface of the residual substrate portion 1 among the bottom surfaces of the notch portion 1j. And the auxiliary electrode 9b covering the substrate. The bonding alloying layer 9a for reducing contact resistance is not formed on the remaining substrate portion 1 in contact with the main electrode 9m, but is formed in the bottom surface region of the notch portion 1j in contact with the sub electrode 9b. Therefore, the light emission drive current bypasses the residual substrate portion 1 and flows preferentially to the main light extraction surface side, and the light extraction efficiency is improved.

なお、透明厚膜半導体層90あるいは副電極9bにより十分な電流拡散効果が得られる場合は、補助電流拡散層91を省略することも可能である。この場合、切欠き部1jの底面は発光層部24の第二主表面が形成する。また、副電極9bを設ける場合は、接合合金化層9aとともに発光層部24上に形成することとなる。   Note that the auxiliary current diffusion layer 91 can be omitted when a sufficient current diffusion effect is obtained by the transparent thick film semiconductor layer 90 or the sub-electrode 9b. In this case, the second main surface of the light emitting layer portion 24 is formed on the bottom surface of the notch portion 1j. Moreover, when providing the subelectrode 9b, it will form on the light emitting layer part 24 with the joining alloying layer 9a.

また、残留基板部1の第二主表面の面積が第一主表面の面積よりも小となるように、該残留基板部1の周側面1sが傾斜面として形成されている。光取出側電極9をなす主電極9m(すなわち、残留基板部1の第二主表面及び周側面1sとを覆う部分)と副電極9b(切欠き部1jの底面を覆う部分)とは、一体の金属膜として形成される。蒸着やスパッタ等の指向性の強い成膜法により金属膜を形成する場合、残留基板部1の周側面1sを上記のような傾斜面としておくことで、該周側面1sにも金属膜を十分な厚さにて形成することができ、ひいては、主電極9mと副電極9bとの電気的接続を確実に行なうことができる。なお、残留基板部1を覆う主電極は面積も大きく、通電用ワイヤ9wの接続も容易である。   Further, the peripheral side surface 1s of the residual substrate portion 1 is formed as an inclined surface so that the area of the second main surface of the residual substrate portion 1 is smaller than the area of the first main surface. The main electrode 9m forming the light extraction side electrode 9 (that is, the portion covering the second main surface and the peripheral side surface 1s of the residual substrate portion 1) and the sub electrode 9b (the portion covering the bottom surface of the notch portion 1j) are integrated. It is formed as a metal film. When a metal film is formed by a highly directional film forming method such as vapor deposition or sputtering, the peripheral side surface 1s of the residual substrate portion 1 is inclined as described above, so that a sufficient metal film is formed on the peripheral side surface 1s. Therefore, electrical connection between the main electrode 9m and the sub electrode 9b can be reliably performed. The main electrode covering the residual substrate portion 1 has a large area, and the connection of the energization wire 9w is easy.

周側面1sが傾斜面となった残留基板部1は、図2の工程5のエッチングを、次のように実施することで得られる。まず、図6の工程1に示すように、GaAsからなる基板本体部1’と発光層部24との間には、AlInPよりなるエッチストップ層1pを形成しておく。次に、工程2に示すように、基板本体部1’の第二主表面(面方位を<100>とする)のうち、残留基板部1として残す領域をエッチングレジストMSKにより覆い、残余の部分を、アンモニア−過酸化水素水溶液をエッチング液としてメサエッチングする。残留基板部1の周側面は、上記エッチング液の異方性エッチング効果により傾斜面となる。そして、工程3に示すように、塩酸をエッチング液としてエッチストップ層1pを除去し、さらにエッチングレジストMSKを除去すればよい。   The remaining substrate portion 1 having the peripheral side surface 1s as an inclined surface can be obtained by performing the etching in step 5 of FIG. 2 as follows. First, as shown in Step 1 of FIG. 6, an etch stop layer 1 p made of AlInP is formed between the substrate body 1 ′ made of GaAs and the light emitting layer 24. Next, as shown in step 2, the region to be left as the remaining substrate portion 1 is covered with the etching resist MSK on the second main surface (the surface orientation is <100>) of the substrate body portion 1 ′, and the remaining portion Is mesa-etched using an ammonia-hydrogen peroxide aqueous solution as an etchant. The peripheral side surface of the residual substrate portion 1 becomes an inclined surface due to the anisotropic etching effect of the etching solution. Then, as shown in step 3, the etch stop layer 1p is removed using hydrochloric acid as an etchant, and the etching resist MSK is further removed.

図7の発光素子500においては、図5の発光素子400の残留基板部1を、発光層部24にてp−n接合を形成するp型層部とn型層部とのうち、該残留基板部1に近い側のもの(すなわち、n型クラッド層4)と逆の導電型(つまり、p型)を有する反転層部1rとして構成している。この場合、光吸収性化合物半導体基板としてp型のGaAs基板を用いればよい。また、図8の発光素子600においては、図5の発光素子400と同様に残留基板部1を、発光層部24にてp−n接合を形成するp型層部とn型層部とのうち、該残留基板部に近い側のもの(すなわち、n型クラッド層4)、と同一の導電型(つまりn型)を有するものとしている。そして、発光層部24と残留基板部1との間には、残留基板部1を選択被覆する形で、該残留基板部1と逆の導電型(つまりp型)を有する化合物半導体からなる反転層部93を介挿している。いずれも、発光駆動時に逆バイアスとなる反転p−n接合部が、残留基板部1と発光層部24との間に形成され、残留基板部1による電流遮断層としての機能を一層高めることができる。   In the light emitting device 500 of FIG. 7, the residual substrate portion 1 of the light emitting device 400 of FIG. 5 is selected from the p-type layer portion and the n-type layer portion that form a pn junction in the light emitting layer portion 24. This is configured as an inversion layer portion 1r having a conductivity type (that is, p-type) opposite to that on the side closer to the substrate portion 1 (that is, the n-type cladding layer 4). In this case, a p-type GaAs substrate may be used as the light absorbing compound semiconductor substrate. Further, in the light emitting device 600 of FIG. 8, the residual substrate portion 1 is formed of a p-type layer portion and an n-type layer portion that form a pn junction in the light emitting layer portion 24 as in the light emitting device 400 of FIG. Among them, the one close to the residual substrate portion (that is, the n-type cladding layer 4) has the same conductivity type (that is, n-type). An inversion made of a compound semiconductor having a conductivity type opposite to that of the residual substrate portion 1 (that is, p-type) is provided between the light emitting layer portion 24 and the residual substrate portion 1 so as to selectively cover the residual substrate portion 1. The layer part 93 is inserted. In either case, an inversion pn junction that is reverse biased during light emission driving is formed between the residual substrate portion 1 and the light emitting layer portion 24, and the function of the residual substrate portion 1 as a current blocking layer is further enhanced. it can.

図7及び図8の構成においては、図5と同様に、接合合金化層9aを、副電極9bと接する切欠き部1jの底面領域にのみ形成してもよいが、接合合金化層9aが残留基板部1をも覆う構成になっていても、反転p−n接合部の介在により電流遮断効果は問題なく達成できる。そこで、これを利用すれば、接合合金化層9aは、副電極9b及び主電極9mを有した光取出側電極9と形状一致させた形で、副電極9bと接する切欠き部1jの底面領域とともに残留基板部1も一括して覆うものとして形成することが可能となる(図では、残留基板部1を覆う部分を符号9kにより表している)。このように同一形状で重なり合う接合合金化層9a(9k)と光取出側電極9とは、形状のパターンニングを1回のフォトリソグラフィーにて行なうことができ、工程の簡略化に寄与する。   7 and 8, the bonding alloyed layer 9a may be formed only in the bottom region of the notch 1j in contact with the sub electrode 9b, as in FIG. Even if it is the structure which covers the residual substrate part 1, the electric current interruption effect can be achieved without a problem by interposition of the inversion pn junction part. Therefore, if this is used, the bonding alloying layer 9a is formed in the shape of the light extraction side electrode 9 having the sub electrode 9b and the main electrode 9m, and the bottom region of the notch 1j in contact with the sub electrode 9b. At the same time, it is possible to form the remaining substrate portion 1 so as to cover it in a lump (in the figure, the portion covering the remaining substrate portion 1 is represented by reference numeral 9k). Thus, the joining alloying layer 9a (9k) and the light extraction side electrode 9 overlapping in the same shape can be patterned in one photolithography, which contributes to simplification of the process.

図9の発光素子700では光取出側電極9を、残留基板部1の第二主表面及び周側面を覆う主電極9mと、切欠き部1jの底面をなす補助電流拡散層91の第二主表面の一部領域を覆うとともに、主電極9mの外周縁から延出する線状の副電極9bとを有するものとして構成している。ここでは、線状の副電極9bが、主電極9mを中心として主光取出面上に放射状に形成されている。副電極9bを上記のように形成することで、駆動電圧を印加した際に、主光取出面内の電界分布の偏りを軽減することができ、主光取出面EA全体に、より一様に電圧印加することができ、ひいては電流拡散効果を高めることがでできる。   In the light emitting device 700 of FIG. 9, the light extraction side electrode 9 includes the main electrode 9m that covers the second main surface and the peripheral side surface of the residual substrate portion 1, and the second main portion of the auxiliary current diffusion layer 91 that forms the bottom surface of the notch portion 1j. A part of the surface is covered and a linear sub-electrode 9b extending from the outer peripheral edge of the main electrode 9m is provided. Here, the linear sub-electrode 9b is formed radially on the main light extraction surface with the main electrode 9m as the center. By forming the sub-electrode 9b as described above, the bias of the electric field distribution in the main light extraction surface can be reduced when the drive voltage is applied, and the entire main light extraction surface EA is more uniformly distributed. A voltage can be applied, and the current spreading effect can be enhanced.

本実施形態では接合合金化層9aも副電極9bと重なる線状に形成しており、主電極9mの直下に位置する残留基板部1には接合合金化層を形成していない。従って、残留基板部1はここでも電流阻止層として機能し(図7あるいは図8の構成を採用してもよい)、主電極9mの直下に向かう電流を遮断できる。その結果、主光取出面EAをなす主電極9mの背景領域(つまり、切欠き部1j)への電流分配量を増加でき、光取出し効率を高めることができる。なお、残留基板部1の第二主表面の面積が第一主表面の面積よりも小となるように、該残留基板部1の周側面が傾斜面1sとして形成され、光取出側電極9をなす主電極9mと副電極9bとが一体の金属膜として形成されている。   In the present embodiment, the bonded alloyed layer 9a is also formed in a linear shape overlapping the sub electrode 9b, and no bonded alloyed layer is formed on the remaining substrate portion 1 located immediately below the main electrode 9m. Therefore, the residual substrate portion 1 also functions as a current blocking layer (the configuration shown in FIG. 7 or FIG. 8 may be adopted) and can block the current directed directly below the main electrode 9m. As a result, the amount of current distribution to the background region (that is, the notch 1j) of the main electrode 9m that forms the main light extraction surface EA can be increased, and the light extraction efficiency can be increased. In addition, the peripheral side surface of the residual substrate portion 1 is formed as an inclined surface 1s so that the area of the second main surface of the residual substrate portion 1 is smaller than the area of the first main surface. The main electrode 9m and the sub electrode 9b are formed as an integral metal film.

なお、上記の実施形態においては、光取出側電極9とは異極性となる側の電極部(接合合金化層21あるいは金属反射膜)を、いずれも透明厚膜半導体層90の第一主表面側に形成していたが、主化合物半導体層40の第二主表面側から少なくとも活性層5の第一主表面までの区間を、前記第二主表面の一部領域において切り欠くことにより電極用切欠き部を形成し、その電極用切欠き部の底面に上記異極性となる側の電極を配置した、前述の同面側電極取出構造としてもよい。以下、その具体例について説明する。   In the above embodiment, the first main surface of the transparent thick film semiconductor layer 90 is used as the electrode portion (bonding alloyed layer 21 or metal reflective film) on the side having a different polarity from the light extraction side electrode 9. However, a section from the second main surface side of the main compound semiconductor layer 40 to at least the first main surface of the active layer 5 is notched in a partial region of the second main surface. The same-surface-side electrode extraction structure described above, in which a notch portion is formed and the electrode having the opposite polarity on the bottom surface of the electrode notch portion, may be provided. Specific examples thereof will be described below.

図10の発光素子800は、図1の発光素子100を同面側電極取出構造とした例である(発光素子100と同一の符号を有していて特に説明のない要素は、発光素子100と同一の構成であり、発光素子100の詳細説明にて代用する)。主化合物半導体層40の補助電流拡散層91から発光層部24(及び結合層7)までが、第二主表面側で一部領域にて周知のフォトリソグラフィー工程により切り欠かれ、電極用切欠き部JKが形成されている。そして、該電極用切欠き部JKの底面をなす透明厚膜半導体層90の第二主表面領域に、接合合金化層21及び異極性電極332が形成されている。なお、透明厚膜半導体層90の第二主表面を含む表層部が、電流拡散効果を高めるために、残余の領域よりも有効キャリア濃度が高められた高濃度ドーピング層90hとされている。また、光取出側電極9及び異極性電極332には、通電用ワイヤ9w及び32wがぞれぞれ接合されている。なお、切欠き部JKの底面は、クラッド層6により形成してもよい。   A light-emitting element 800 in FIG. 10 is an example in which the light-emitting element 100 in FIG. 1 has a same-side electrode extraction structure (elements having the same reference numerals as the light-emitting element 100 and not particularly described are the light-emitting element 100 and the light-emitting element 100). The same configuration is used in the detailed description of the light emitting element 100). The auxiliary current diffusion layer 91 to the light emitting layer portion 24 (and the coupling layer 7) of the main compound semiconductor layer 40 are cut out in a partial region on the second main surface side by a well-known photolithography process, and are cut out for electrodes. Part JK is formed. The bonding alloyed layer 21 and the heteropolar electrode 332 are formed in the second main surface region of the transparent thick film semiconductor layer 90 that forms the bottom surface of the electrode notch JK. The surface layer portion including the second main surface of the transparent thick film semiconductor layer 90 is a high-concentration doping layer 90h having an effective carrier concentration higher than that of the remaining region in order to enhance the current diffusion effect. In addition, current-carrying wires 9w and 32w are joined to the light extraction side electrode 9 and the different polarity electrode 332, respectively. Note that the bottom surface of the notch JK may be formed by the cladding layer 6.

図11の発光素子900は、図4の発光素子300を同様に同面側電極取出構造とした例である。さらに、図12の発光素子1000は、図11の発光素子900から補助電流拡散層91を省略した構成に相当する。   A light emitting element 900 in FIG. 11 is an example in which the light emitting element 300 in FIG. Further, the light emitting element 1000 in FIG. 12 corresponds to a configuration in which the auxiliary current diffusion layer 91 is omitted from the light emitting element 900 in FIG.

図13は、赤色(R)発光素子チップ163、緑色(G)発光素子チップ161及び青色(B)発光素子チップ162を全て同面側電極取出構造とし、これらを組み合わせて構成したRGBフルカラー発光素子モジュール150の一例を示すものである。各発光素子チップ161〜163の光取出側電極9はカソード側(接地側:負極性の電源が使える場合は、アノード側を接地側としてもよい)であり、電極電位は全て等しくなるため、これら電極9をワイヤ9wにより順次連結し、その末端に位置する電極のみ、素子チップを接着するステージ153側のカソード端子(光取出側電極9がアノードである場合はアノード端子)152に接続している。端子162にはワイヤを1本接続すればよいだけなので、面積が比較的小さくて済む(ただし、本発明は、各光取出側電極9から個別にワイヤ9wを端子152に接続する態様を排除するものではない)。他方、異極性電極332は全てアノード(光取出側電極9がアノードである場合はカソード)となり、発光光束の混合比調整のため、印加電圧(ないしデューティ比)が個別に調整される。従って、ワイヤ332wにより個別のアノード端子(異極性電極332がカソードである場合はカソード端子)151に接続されている。   FIG. 13 shows an RGB full-color light emitting device in which a red (R) light emitting device chip 163, a green (G) light emitting device chip 161, and a blue (B) light emitting device chip 162 all have the same-surface electrode extraction structure and are combined. An example of the module 150 is shown. The light extraction side electrodes 9 of the respective light emitting element chips 161 to 163 are the cathode side (ground side: the anode side may be the ground side when a negative power source can be used), and the electrode potentials are all equal. The electrodes 9 are sequentially connected by the wire 9w, and only the electrode located at the end is connected to the cathode terminal 152 on the stage 153 side to which the element chip is bonded (the anode terminal when the light extraction side electrode 9 is an anode) 152 . Since only one wire needs to be connected to the terminal 162, the area can be relatively small (however, the present invention eliminates a mode in which the wire 9w is individually connected to the terminal 152 from each light extraction side electrode 9). Not a thing). On the other hand, the different polarity electrodes 332 are all anodes (or cathodes when the light extraction side electrode 9 is an anode), and the applied voltage (or duty ratio) is individually adjusted for adjusting the mixing ratio of the luminous flux. Therefore, it is connected to an individual anode terminal 151 (a cathode terminal when the different polarity electrode 332 is a cathode) 151 by the wire 332w.

発光素子チップ161〜163のうち、赤色(R)発光素子チップ163と緑色(G)発光素子チップ161とはAlGaInPを用いた本発明の構成(例えば、図10の発光素子800、図11の発光素子900及び図12の発光素子1000のいずれかである)を採用している。両素子チップの活性層5は、発光波長に応じて異なるAlGaInP組成を有する。他方、青色(B)発光素子チップ162は、InAlGaNなどのIII族窒化物系の青色発光素子として構成されている。該素子チップ162には、III族窒化物によるダブルへテロ構造の発光層部224(及び電極取出層225)をエピタキシャル成長するための絶縁性のサファイア基板190が残され、該サファイア基板190を介してステージ153上に金属ペースト等により接着されている。異極性電極332は、電極取出層225の表面に形成されている。他方、本発明に係る発光素子チップ161,163は、導電性の透明厚膜半導体層90を介してステージ153上に金属ペースト等により接着されている。これにより、透明厚膜半導体層90が静電気の放電路として機能し、発光層部24の帯電が軽減される。   Among the light emitting element chips 161 to 163, the red (R) light emitting element chip 163 and the green (G) light emitting element chip 161 are configured according to the present invention using AlGaInP (for example, the light emitting element 800 in FIG. 10 and the light emitting element in FIG. 11). One of the element 900 and the light-emitting element 1000 in FIG. 12 is employed. The active layers 5 of both element chips have different AlGaInP compositions depending on the emission wavelength. On the other hand, the blue (B) light emitting element chip 162 is configured as a group III nitride blue light emitting element such as InAlGaN. The element chip 162 is left with an insulating sapphire substrate 190 for epitaxial growth of the light emitting layer portion 224 (and the electrode extraction layer 225) having a double hetero structure made of group III nitride. The stage 153 is bonded with a metal paste or the like. The different polarity electrode 332 is formed on the surface of the electrode extraction layer 225. On the other hand, the light emitting element chips 161 and 163 according to the present invention are bonded to the stage 153 with a metal paste or the like through the conductive transparent thick film semiconductor layer 90. Thereby, the transparent thick film semiconductor layer 90 functions as a static electricity discharge path, and charging of the light emitting layer portion 24 is reduced.

図10の発光素子800、図11の発光素子900及び図12の発光素子1000は、それぞれ素子の上下を反転し、透明厚膜半導体層90の第一主表面側に電極を形成せず、該第一主表面を主光取出面とすることで、それぞれ図14の発光素子1100、図15の発光素子1200及び図16の発光素子1300とすることができる。これら発光素子1100〜1300はいずれも、本発明の発光素子の第二の構成の実施形態を構成する。各発光素子1100〜1300において図10〜図12の発光素子800〜1000と同一の符号を有していて特に説明のない要素は、同一の構成要素であり、詳細な説明は省略する)。ただし、いずれの図においても、光取出側電極は第一電極(第一電極部)9、異極性電極332は第二電極(第二電極部)332と読み替える。なお、Au電極等で構成された第一電極9及び異極性電極332は省略することもでき、この場合は接合合金化層9a及び21が、それぞれ第一電極部及び第二電極部を構成する。   The light emitting element 800 in FIG. 10, the light emitting element 900 in FIG. 11, and the light emitting element 1000 in FIG. 12 are each turned upside down, and no electrode is formed on the first main surface side of the transparent thick film semiconductor layer 90. By using the first main surface as the main light extraction surface, the light emitting element 1100 in FIG. 14, the light emitting element 1200 in FIG. 15, and the light emitting element 1300 in FIG. 16 can be obtained, respectively. All of these light emitting elements 1100 to 1300 constitute an embodiment of the second configuration of the light emitting element of the present invention. In each of the light emitting elements 1100 to 1300, elements having the same reference numerals as those of the light emitting elements 800 to 1000 in FIGS. 10 to 12 and not particularly described are the same constituent elements, and detailed description thereof is omitted). However, in any figure, the light extraction side electrode is read as the first electrode (first electrode portion) 9, and the different polarity electrode 332 is read as the second electrode (second electrode portion) 332. In addition, the 1st electrode 9 comprised by Au electrode etc. and the different polarity electrode 332 can also be abbreviate | omitted, and in this case, the joining alloying layers 9a and 21 comprise a 1st electrode part and a 2nd electrode part, respectively. .

各構成においてGaAsからなる残留基板部1の採用により、接合合金化層9aとの接触抵抗をより低減することができる。また、透明厚膜半導体層90の、電極形成されない第一主表面を主光取出面とすることで、光取出効率がより向上する。さらに、主化合物半導体層40の第二主表面側に全ての電極9,32が形成されるので、例えば素子チップを基板上に面実装する構成が容易となり、素子チップのアセンブリ工程の簡略化にも寄与する。   By adopting the residual substrate portion 1 made of GaAs in each configuration, the contact resistance with the bonding alloyed layer 9a can be further reduced. Moreover, the light extraction efficiency is further improved by using the first main surface of the transparent thick film semiconductor layer 90 where no electrode is formed as the main light extraction surface. Furthermore, since all the electrodes 9 and 32 are formed on the second main surface side of the main compound semiconductor layer 40, for example, the configuration in which the element chip is surface-mounted on the substrate is facilitated, and the assembly process of the element chip is simplified. Also contribute.

本発明の発光素子の、第一の構成の一例を示す断面模式図。The cross-sectional schematic diagram which shows an example of the 1st structure of the light emitting element of this invention. 図1の発光素子の製造方法の一例を示す工程説明図。Process explanatory drawing which shows an example of the manufacturing method of the light emitting element of FIG. 発光素子チップの切断線の設定例を示す模式図。The schematic diagram which shows the example of a setting of the cutting line of a light emitting element chip | tip. 図1の発光素子の第一変形例を示す断面模式図。The cross-sectional schematic diagram which shows the 1st modification of the light emitting element of FIG. 図1の発光素子の第二変形例を示す断面模式図。The cross-sectional schematic diagram which shows the 2nd modification of the light emitting element of FIG. 周側面が傾斜面となった残留基板部の形成方法を示す工程説明図。Process explanatory drawing which shows the formation method of the residual board | substrate part by which the surrounding side surface became the inclined surface. 図1の発光素子の第三変形例を示す断面模式図。FIG. 7 is a schematic cross-sectional view illustrating a third modification of the light-emitting element in FIG. 1. 図1の発光素子の第四変形例を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing a fourth modification of the light emitting device in FIG. 1. 図1の発光素子の第五変形例の要部を示す断面模式図及び平面図。The cross-sectional schematic diagram and top view which show the principal part of the 5th modification of the light emitting element of FIG. 図1の発光素子の第六変形例を示す断面模式図。FIG. 10 is a schematic cross-sectional view illustrating a sixth modification of the light-emitting element in FIG. 1. 図1の発光素子の第七変形例を示す断面模式図。FIG. 10 is a schematic cross-sectional view illustrating a seventh modification of the light-emitting element in FIG. 1. 図1の発光素子の第八変形例を示す断面模式図。FIG. 10 is a schematic cross-sectional view illustrating an eighth modification of the light-emitting element in FIG. 1. 図10〜図12の発光素子の応用例を示す断面模式図。FIG. 13 is a schematic cross-sectional view illustrating an application example of the light-emitting element of FIGS. 本発明の発光素子に関連する発光素子の構成を示す第一例を示す断面模式図。The cross-sectional schematic diagram which shows the 1st example which shows the structure of the light emitting element relevant to the light emitting element of this invention. 本発明の発光素子に関連する発光素子の構成を示す第二例を示す断面模式図。The cross-sectional schematic diagram which shows the 2nd example which shows the structure of the light emitting element relevant to the light emitting element of this invention. 本発明の発光素子に関連する発光素子の構成を示す第三例を示す断面模式図。The cross-sectional schematic diagram which shows the 3rd example which shows the structure of the light emitting element relevant to the light emitting element of this invention.

符号の説明Explanation of symbols

100,300,400,500,600,700,800,900,1000,1100,1200,1300 発光素子
1,1r 残留基板部
1j 切欠き部
1s 周側面
4 n型クラッド層(n型層部)
5 活性層
6 p型クラッド層(p型層部)
9 光取出側電極
9a 接合合金化層
9m 主電極
9b 副電極
93 反転層部
17 金属ペースト層
21 接合合金化層
24 発光層部
30 DBR層
32 金属反射膜
40 主化合物半導体層
52 金属ステージ
90 透明厚膜半導体層
91 補助電流拡散層
JK 電極用切欠き部
332 異極性電極
100, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300 Light-emitting element 1, 1r Residual substrate part 1j Notch part 1s Peripheral side surface 4 n-type cladding layer (n-type layer part)
5 active layer 6 p-type cladding layer (p-type layer part)
DESCRIPTION OF SYMBOLS 9 Light extraction side electrode 9a Joining alloying layer 9m Main electrode 9b Subelectrode 93 Inversion layer part 17 Metal paste layer 21 Joining alloying layer 24 Light emitting layer part 30 DBR layer 32 Metal reflecting film 40 Main compound semiconductor layer 52 Metal stage 90 Transparent Thick film semiconductor layer 91 Auxiliary current diffusion layer JK Notch for electrode 332 Different polarity electrode

Claims (13)

GaAs基板の第一主表面上にAlGaInPからなる発光層部を有した主化合物半導体層をエピタキシャル成長によって形成し、
前記GaAs基板の一部が前記主化合物半導体層上の残留基板部となり、前記主化合物半導体層の前記GaAs基板側の一部の面が露出するように、前記GaAs基板の一部を切り欠いて切欠き部を形成し、
前記GaAs基板の一部を切り欠いた結果として形成される前記残留基板部の表面であって、前記GaAs基板の前記第一主表面の反対側に位置する第二主表面に、前記発光層部へ発光駆動電圧を印加するための光取出側電極を形成
前記主化合物半導体層の一部の面が露出する前記切欠き部の底面を、前記発光層部を有した前記主化合物半導体層からの主光取出面として利用することを特徴とする発光素子の製造方法
Forming a main compound semiconductor layer having a light emitting layer portion made of AlGaInP on the first main surface of the GaAs substrate by epitaxial growth;
A part of the GaAs substrate is notched so that a part of the GaAs substrate becomes a residual substrate part on the main compound semiconductor layer and a part of the main compound semiconductor layer on the GaAs substrate side is exposed. Forming a notch,
Wherein a surface of the residual substrate portion formed as a result of cutting out a portion of the GaAs substrate, the second main surface located opposite the first main surface of the GaAs substrate, the light-emitting layer light extraction side electrode for applying emission drive voltage to the part formed,
A bottom surface of the notch part at which a part of the surface of the main compound semiconductor layer is exposed is used as a main light extraction surface from the main compound semiconductor layer having the light emitting layer part . Manufacturing method .
前記光取出側電極に通電用ワイヤが接合されてなることを特徴とする請求項1記載の発光素子の製造方法The method of manufacturing a light emitting element according to claim 1, wherein a current-carrying wire is joined to the light extraction side electrode. 前記主化合物半導体層は、前記残留基板部と前記発光層部との間に補助電流拡散層を有することを特徴とする請求項1又は請求項2に記載の発光素子の製造方法 The said main compound semiconductor layer, the manufacturing method of a light emitting device according to claim 1 or claim 2 characterized by having a auxiliary current spreading layer between the residual substrate portion the light emitting layer portion. 前記発光層部が、前記残留基板部に近い側から第一導電型クラッド層、活性層及び第二導電型クラッド層がこの順序で積層されたダブルへテロ構造を有してなり、かつ、前記第一導電型クラッド層が前記第二導電型クラッド層よりも厚く形成されてなることを特徴とする請求項1又は請求項2に記載の発光素子の製造方法The light emitting layer portion has a double heterostructure in which a first conductivity type cladding layer, an active layer and a second conductivity type cladding layer are laminated in this order from the side close to the residual substrate portion, and The method for manufacturing a light emitting device according to claim 1, wherein the first conductivity type cladding layer is formed thicker than the second conductivity type cladding layer. 前記光取出側電極は、前記残留基板部を覆う主電極と、該主電極に導通するとともに前記切欠き部の底面のうち前記残留基板部の周囲に位置する一部領域を覆う副電極とを有し、接触抵抗低減用の接合合金化層が前記副電極と接する前記切欠き部の底面領域に形成され、前記残留基板部が、前記発光層部にてp−n接合を形成するp型層部とn型層部とのうち、該残留基板部に近い側のものと逆の導電型を有することを特徴とする請求項1ないし請求項4のいずれか1項に記載の発光素子の製造方法The light extraction side electrode includes a main electrode that covers the residual substrate portion, and a sub-electrode that is connected to the main electrode and covers a partial region of the bottom surface of the notch portion that is located around the residual substrate portion. A junction alloying layer for reducing contact resistance is formed in a bottom region of the cutout portion in contact with the sub-electrode, and the residual substrate portion forms a p-n junction in the light emitting layer portion 5. The light emitting device according to claim 1, wherein the light emitting element has a conductivity type opposite to that of the layer portion and the n-type layer portion closer to the residual substrate portion . Manufacturing method . 前記光取出側電極は、前記残留基板部を覆う主電極と、該主電極に導通するとともに前記切欠き部の底面のうち前記残留基板部の周囲に位置する一部領域を覆う副電極とを有し、接触抵抗低減用の接合合金化層が前記副電極と接する前記切欠き部の底面領域に形成され、前記残留基板部が、前記発光層部にてp−n接合を形成するp型層部とn型層部とのうち、該残留基板部に近い側のものと同一の導電型を有し、かつ、前記発光層部と前記残留基板部との間には、前記残留基板部を被覆する形で、該残留基板部と逆の導電型を有する化合物半導体からなる反転層部が介挿されてなることを特徴とする請求項1ないし請求項4のいずれか1項に記載の発光素子の製造方法The light extraction side electrode includes a main electrode that covers the residual substrate portion, and a sub-electrode that is connected to the main electrode and covers a partial region of the bottom surface of the notch portion that is located around the residual substrate portion. A junction alloying layer for reducing contact resistance is formed in a bottom region of the cutout portion in contact with the sub-electrode, and the residual substrate portion forms a p-n junction in the light emitting layer portion Of the layer portion and the n-type layer portion, the same conductivity type as that on the side close to the residual substrate portion is provided, and the residual substrate portion is disposed between the light emitting layer portion and the residual substrate portion. 5. The inversion layer portion made of a compound semiconductor having a conductivity type opposite to that of the residual substrate portion is interposed so as to cover the substrate. 5. Manufacturing method of light emitting element. 前記光取出側電極は、前記残留基板部を覆う主電極と、該主電極に導通するとともに前記切欠き部の底面のうち前記残留基板部の周囲に位置する一部領域を覆う副電極とを有し、接触抵抗低減用の接合合金化層が、前記主電極と接する前記残留基板部には形成されず、前記副電極と接する前記切欠き部の底面領域には形成されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の発光素子の製造方法The light extraction side electrode includes a main electrode that covers the residual substrate portion, and a sub-electrode that is connected to the main electrode and covers a partial region of the bottom surface of the notch portion that is located around the residual substrate portion. And a bonding alloying layer for reducing contact resistance is not formed on the residual substrate portion in contact with the main electrode, but is formed in a bottom surface region of the notch portion in contact with the sub electrode. The manufacturing method of the light emitting element of any one of Claim 1 thru | or 4. 前記残留基板部の第二主表面に、前記光取出側電極との接触抵抗を減ずるための接合合金化層が形成されてなることを特徴とする請求項1ないし請求項6のいずれか1項に記載の発光素子の製造方法The bonded main alloy layer for reducing contact resistance with the said light extraction side electrode is formed in the 2nd main surface of the said residual substrate part, The any one of Claim 1 thru | or 6 characterized by the above-mentioned. The manufacturing method of the light emitting element as described in a term. 前記光取出側電極は、前記残留基板部の第二主表面及び周側面とを覆う主電極と、前記切欠き部の底面のうち前記残留基板部の周側面に連なる一部領域を覆う副電極とを有し、前記残留基板部の第二主表面の面積が第一主表面の面積よりも小となるように、該残留基板部の周側面が傾斜面として形成され、前記光取出側電極をなす前記主電極と前記副電極とが一体の金属膜として形成されてなることを特徴とする請求項1ないし請求項8のいずれか1項に記載の発光素子の製造方法The light extraction side electrode includes a main electrode that covers the second main surface and the peripheral side surface of the residual substrate portion, and a sub-electrode that covers a partial region of the bottom surface of the notch portion that is continuous with the peripheral side surface of the residual substrate portion. has the door, such that the area of the second major surface of the residual substrate portion is smaller than the area of the first main surface, the peripheral side surface of the residual substrate portion is formed as an inclined surface, the light extraction side The method for manufacturing a light-emitting element according to claim 1, wherein the main electrode and the sub-electrode that form electrodes are formed as an integral metal film. 前記主化合物半導体層の第一主表面側には、前記光取出側電極とは異極性となる側の電極部を形成したことを特徴とする請求項1ないし請求項9のいずれか1項に記載の発光素子の製造方法 10. The electrode portion according to claim 1 , wherein an electrode portion having a polarity different from that of the light extraction side electrode is formed on the first main surface side of the main compound semiconductor layer. 11. The manufacturing method of the light emitting element of description. 前記発光層部が、前記残留基板部に近い側から第一導電型クラッド層、活性層及び第二導電型クラッド層がこの順序で積層されたダブルへテロ構造を有してなり、前記主化合物半導体層の第二主表面側から少なくとも前記活性層の第一主表面までの区間を、前記第二主表面の一部領域において切り欠くことにより電極用切欠き部を形成し、その電極用切欠き部の底面に前記光取出側電極とは異極性となる側の電極を配置したことを特徴とする請求項1ないし請求項9のいずれか1項に記載の発光素子の製造方法The light emitting layer portion has a double heterostructure in which a first conductivity type cladding layer, an active layer, and a second conductivity type cladding layer are laminated in this order from the side close to the residual substrate portion, and the main compound An electrode notch is formed by notching a section from the second main surface side of the semiconductor layer to at least the first main surface of the active layer in a partial region of the second main surface. 10. The method of manufacturing a light emitting element according to claim 1, wherein an electrode having a polarity different from that of the light extraction side electrode is disposed on a bottom surface of the notch portion. 11. 前記発光層部の第一主表面側に形成され、前記発光層部からの発光光束のピーク波長に相当する光量子エネルギーよりも大きなバンドギャップエルギーを有するIII−V族化合物半導体からなる厚さ10μm以上の透明厚膜半導体層を有することを特徴とする請求項1ないし請求項11のいずれか1項に記載の発光素子の製造方法10 μm or more in thickness formed of a III-V group compound semiconductor formed on the first main surface side of the light emitting layer portion and having a band gap energy larger than the photon energy corresponding to the peak wavelength of the luminous flux from the light emitting layer portion The method for manufacturing a light-emitting element according to claim 1, further comprising: a transparent thick film semiconductor layer. 前記発光層部と前記残留基板部との間に、屈折率の相違する半導体膜を複数積層することにより、ブラッグ反射を利用して光を反射させるDBR層を有することを特徴とする請求項1ないし請求項12のいずれか1項に記載の発光素子の製造方法2. A DBR layer that reflects light using Bragg reflection by stacking a plurality of semiconductor films having different refractive indexes between the light emitting layer portion and the residual substrate portion. The manufacturing method of the light emitting element of any one of thru | or 12.
JP2003389922A 2003-10-16 2003-11-19 Method for manufacturing light emitting device Expired - Fee Related JP4487303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389922A JP4487303B2 (en) 2003-10-16 2003-11-19 Method for manufacturing light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003357063 2003-10-16
JP2003389922A JP4487303B2 (en) 2003-10-16 2003-11-19 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2005142515A JP2005142515A (en) 2005-06-02
JP4487303B2 true JP4487303B2 (en) 2010-06-23

Family

ID=34702931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389922A Expired - Fee Related JP4487303B2 (en) 2003-10-16 2003-11-19 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP4487303B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894411B2 (en) * 2006-08-23 2012-03-14 日立電線株式会社 Semiconductor light emitting device
JP5110897B2 (en) * 2007-02-07 2012-12-26 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2005142515A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4985260B2 (en) Light emitting device
US8461617B2 (en) Semiconductor light emitting element and semiconductor light emitting device
US8822976B2 (en) Nitride semiconductor ultraviolet light-emitting element
US7972892B2 (en) Light emitting device and method of fabricating the same
US20070166861A1 (en) Gallium nitride based light emitting diode and method of manufacturing the same
US10756960B2 (en) Light-emitting device
US10756134B2 (en) Light-emitting device
US20140197374A1 (en) Method for manufacturing a nitride semiconductor light emitting device and nitride semiconductor light emitting device manufactured thereby
JP5608589B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2007081010A (en) Light-emitting device
JP4569859B2 (en) Method for manufacturing light emitting device
JP3767863B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4569858B2 (en) Method for manufacturing light emitting device
KR101032987B1 (en) Semiconductor light emitting device
US11784210B2 (en) Light-emitting device and manufacturing method thereof
KR101411256B1 (en) Semiconductor light emitting device and manufacturing method thereof
JP4487303B2 (en) Method for manufacturing light emitting device
JP3934730B2 (en) Semiconductor light emitting device
JP2005277218A (en) Light-emitting element and its manufacturing method
JP2004235505A (en) Ohmic electrode structure for light emitting element and semiconductor element
KR100631970B1 (en) Nitride semiconductor light emitting device for flip chip
JP2005123409A (en) Light emitting element
JP2005276900A (en) Light-emitting element
JP2005150646A (en) Light-emitting element and its manufacturing method
WO2002099900A1 (en) Light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees