JP4487120B2 - Insulating material and manufacturing method thereof - Google Patents

Insulating material and manufacturing method thereof Download PDF

Info

Publication number
JP4487120B2
JP4487120B2 JP2004146935A JP2004146935A JP4487120B2 JP 4487120 B2 JP4487120 B2 JP 4487120B2 JP 2004146935 A JP2004146935 A JP 2004146935A JP 2004146935 A JP2004146935 A JP 2004146935A JP 4487120 B2 JP4487120 B2 JP 4487120B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
water
isocyanate
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004146935A
Other languages
Japanese (ja)
Other versions
JP2005325313A (en
Inventor
公彦 阿部
英郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2004146935A priority Critical patent/JP4487120B2/en
Publication of JP2005325313A publication Critical patent/JP2005325313A/en
Application granted granted Critical
Publication of JP4487120B2 publication Critical patent/JP4487120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

この発明は、ポリウレタンフォームからなる断熱材に関し、更に詳細には、発泡剤としての水を過剰に加えて低密度かつセル数の多いポリウレタンフォームを製造し、これを圧縮することで骨熱伝熱および対流伝熱が大きく抑制されて断熱性能が高く、かつ軽量な断熱材およびその製造方法に関するものである。   The present invention relates to a heat insulating material comprising a polyurethane foam, and more specifically, a polyurethane foam having a low density and a large number of cells is produced by adding water as a foaming agent excessively, and then compressing the polyurethane foam heat transfer heat. Further, the present invention relates to a heat insulating material that is highly suppressed in convection heat transfer and has high heat insulating performance and is lightweight, and a method for manufacturing the same.

例えば自動車等の車両に用いられる内装材として、フェルト等の繊維体や、ポリウレタンフォーム等のフォーム体から構成され、高い断熱性能を有する部材が採用されている。これは自動車自体のエネルギー効率を高め、その結果として省エネルギーおよび低公害を達成するための手法の一つであり、最近の地球環境対策の一環として注目を集めている、内燃機関とバッテリとを併有した、所謂ハイブリットシステムを備えることでエネルギー効率を高めた自動車等においても重要な課題の一つである。   For example, as an interior material used for a vehicle such as an automobile, a member having a high heat insulating performance, which is composed of a fiber body such as felt or a foam body such as polyurethane foam, is employed. This is one of the methods for improving the energy efficiency of the automobile itself, and as a result, achieving energy saving and low pollution, and is combining the internal combustion engine and the battery, which are attracting attention as part of recent global environmental measures. It is one of the important issues in automobiles and the like that have a so-called hybrid system and have improved energy efficiency.

一般に同一の断熱性能を備える断熱材においては、その使用量(厚み)を増加させることでより高い断熱性能を達成できる。しかしこの場合、断熱材の厚みは断熱性能に比例して大きくなるため、高い断熱性能を達成するためには、例えば該断熱材が配設される自動車の内部空間を犠牲にする、該自動車の外寸法を大きくするといった別問題が生じる。   In general, in a heat insulating material having the same heat insulating performance, higher heat insulating performance can be achieved by increasing the amount of use (thickness). However, in this case, since the thickness of the heat insulating material increases in proportion to the heat insulating performance, in order to achieve high heat insulating performance, for example, the interior space of the vehicle in which the heat insulating material is disposed is sacrificed. Another problem arises, such as increasing the outer dimensions.

このような問題を回避するため、内装材となる(1)繊維体または(2)フォーム体を圧縮し、これにより一定の断熱性能と省スペース性とを両立させる方法がある。しかし、圧縮により断熱材を製造する場合、(1)素材的に密度の高いフェルト等の繊維体においては、高圧縮によって断熱性能と省スペース性とが両立されても総重量が高くなる問題が生じ、(2)ポリウレタンフォーム等のフォーム体においては、素材的な密度が25〜35kg/m程度と小さいため総重量は大きな問題とはならない一方で、圧縮によって反発率が高くなり、所謂スプリングパック(跳ね返り)現象が発生するため、内装材として使用した際の寸法精度が悪化したり、その厚みが少ない箇所への取付が困難となる問題が生ずる。この他、圧縮することで断熱材に係る骨熱伝熱に係る熱伝導率が高くなり、その結果、断熱性が悪化する問題も指摘される。 In order to avoid such a problem, there is a method in which (1) a fiber body or (2) a foam body as an interior material is compressed, thereby achieving both a constant heat insulation performance and a space saving property. However, in the case of manufacturing a heat insulating material by compression, (1) In a fibrous material such as felt having a high density as a material, there is a problem that the total weight is increased even if both heat insulating performance and space saving performance are achieved by high compression. (2) In a foam body such as polyurethane foam, the material density is as small as about 25 to 35 kg / m 3 , so the total weight is not a big problem, but the rebound rate is increased by compression, so-called springs Since a pack (bounce back) phenomenon occurs, there arises a problem that the dimensional accuracy when used as an interior material is deteriorated, or that it is difficult to attach to a portion where the thickness is small. In addition, the heat conductivity which concerns on the bone heat transfer which concerns on a heat insulating material by compressing becomes high, As a result, the problem that heat insulation property deteriorates is also pointed out.

前記課題を克服し、所期の目的を達成するため、本発明に係る断熱材は、
リオールおよびイソシアネートに対して、触媒、整泡剤および水を含む副原料を混合して得たポリウレタンフォームからなる断熱材において、
前記ポリオールに対してイソシアネートインデックスが30〜80の範囲となるようイソシアネートを混合すると共に、前記ポリオール100質量部に対して前記水を5〜50質量部の範囲で混合して、前記ポリオールの全てが前記イソシアネートと反応すると仮定した場合に算出される該イソシアネートに対する化学量論的な水の反応量と、前記ポリオールに対して混合される水の配合量から前記反応量を差し引いた水の過剰量との比を、0.20〜6.50の範囲に設定し、密度が4〜30kg/m の範囲にあるフォーム体からなり、
前記フォーム体を加熱圧縮することで、その密度が10〜50kg/mで、圧縮方向のセル径1000μm以下とし、熱伝導率を0.031W/mK未満としたことを特徴する。
In order to overcome the above problems and achieve the intended purpose, the heat insulating material according to the present invention is:
Against Po polyol and isocyanate, a catalyst, in a heat insulating material made of polyurethane foam obtained by mixing a secondary raw material including a foam stabilizer and water,
The isocyanate is mixed with the polyol so that the isocyanate index is in the range of 30 to 80, and the water is mixed in the range of 5 to 50 parts by mass with respect to 100 parts by mass of the polyol. The reaction amount of stoichiometric water with respect to the isocyanate calculated on the assumption that it reacts with the isocyanate, and the excess amount of water obtained by subtracting the reaction amount from the amount of water mixed with the polyol The ratio is set to a range of 0.20 to 6.50, and the density is in the range of 4 to 30 kg / m 3 ,
By heating and compressing the foam body, the density is 10 to 50 kg / m 3 , the cell diameter in the compression direction is 1000 μm or less, and the thermal conductivity is less than 0.031 W / mK .

前記課題を克服し、所期の目的を達成するため、本願の別の発明に係る断熱材の製造方法は、
リオールおよびイソシアネートに対して、触媒、整泡剤および水を含む副原料を混合して得られるポリウレタンフォームからなる断熱材の製造方法において、
前記ポリオールに対してイソシアネートインデックスが30〜80の範囲となるようイソシアネートを混合すると共に、
前記ポリオール100質量部に対して前記水を5〜50質量部の範囲で混合して、前記ポリオールの全てが前記イソシアネートと反応すると仮定した場合に算出される該イソシアネートに対する化学量論的な水の反応量と、前記ポリオールに対して混合される水の配合量から前記反応量を差し引いた水の過剰量との比を、0.20〜6.50の範囲に設定し、密度を4〜30kg/m の範囲に設定したフォーム体を製造し、
前記フォーム体を加熱圧縮することで、その密度を10〜50kg/mの範囲にすると共に、圧縮方向のセル径が1000μm以下とし、熱伝導率を0.031W/mK未満とした断熱材を製造するようにしたことを特徴とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, a method of manufacturing a heat insulating material according to another invention of the present application is
Against Po polyol and isocyanate, a catalyst, in the method for manufacturing the heat insulating material made of a polyurethane foam obtained by mixing a secondary raw material including a foam stabilizer and water,
While mixing the isocyanate so that the isocyanate index is in the range of 30 to 80 with respect to the polyol,
The water is mixed in the range of 5 to 50 parts by mass with respect to 100 parts by mass of the polyol, and the stoichiometric water with respect to the isocyanate calculated when it is assumed that all of the polyol reacts with the isocyanate. The ratio of the reaction amount and the excess amount of water obtained by subtracting the reaction amount from the amount of water mixed with the polyol is set in the range of 0.20 to 6.50, and the density is 4 to 30 kg. A foam body set in the range of / m 3 ,
A heat insulating material having a density of 10 to 50 kg / m 3 by heating and compressing the foam body, a cell diameter in the compression direction of 1000 μm or less, and a thermal conductivity of less than 0.031 W / mK. It is characterized by being manufactured.

本発明に係る断熱材およびその製造方法によれば、発泡剤としての水を過剰に加えて製造される低密度かつセル径の小さなポリウレタンフォームを圧縮することで、骨熱伝熱および対流伝熱が大きく抑制されて、断熱性能が高くかつ重量の嵩張らない断熱材が得られる。またその小さい密度故に、狭い隙間に対して容易に配置可能であり、所謂干渉設計に好適に使用し得る効果を奏する。   According to the heat insulating material and the method for producing the same according to the present invention, the bone foam heat transfer and the convection heat transfer are performed by compressing the low density and small cell diameter polyurethane foam produced by adding excessive water as a foaming agent. Is greatly suppressed, and a heat insulating material having high heat insulating performance and not bulky can be obtained. Further, because of its small density, it can be easily arranged in a narrow gap, and there is an effect that can be suitably used for so-called interference design.

次に本発明に係る断熱材およびその製造方法につき、好適な実施例を挙げて、製造方法と共に添付図面を参照しながら以下説明する。本願の発明者は、ポリオールに対して水を過剰に配合等して製造される低密度かつセル数が多いポリウレタンフォームを圧縮することで、圧縮前の低密度を生かし、嵩張らず重量を抑え、かつ該フォームを構成する細い骨格に由来する低い骨熱伝熱と、細かいセル径に由来する低い対流伝熱とによる低い熱伝導率を達成し得る断熱材が得られることを知見した。   Next, the heat insulating material and the manufacturing method thereof according to the present invention will be described below with reference to the accompanying drawings together with the manufacturing method by giving preferred examples. The inventor of the present application compresses a polyurethane foam having a low density and a large number of cells, which is produced by excessively mixing water with a polyol, etc., taking advantage of the low density before compression, suppressing the weight without being bulky, And it discovered that the heat insulating material which can achieve the low heat conductivity by the low bone heat transfer derived from the thin frame | skeleton which comprises this foam, and the low convective heat transfer derived from a fine cell diameter is obtained.

実施例に係る断熱材は、原料の一つである発泡剤としての水を過剰に使用することで、4〜30kg/m、好適には4〜20kg/mとなる低密度、すなわち細い骨格からなる多孔体構造を備えたフォーム体12(後述[0016])を形成し、更にこれを例えば加熱下に圧縮して成形することで骨格によって画成される多数のセルを潰し、セルの空間容積を減少させてセル径を1000μm以下に縮小させた構造となっている。そしてこの断熱材の製造方法は、図1に示す如く、この断熱材の基となるフォーム体12を製造する原料調整・混合工程S1および発泡工程S2と、フォーム体12を圧縮する圧縮工程S3とから構成される。そして原料調整・混合工程S1および発泡工程S2は、基本的に本願と同一の出願人が案出した特開2003−335834号公報(発明「軟質ポリウレタンフォーム及びその製造方法」)と略同等であるので、その詳細は省略する。 The heat insulating material according to the example has a low density of 4 to 30 kg / m 3 , preferably 4 to 20 kg / m 3 , that is, is thin by using excessively water as a foaming agent that is one of the raw materials. A foam body 12 (to be described later [0016]) having a porous structure composed of a skeleton is formed, and further, for example, this is compressed and molded under heating to crush a large number of cells defined by the skeleton. The cell volume is reduced to 1000 μm or less by reducing the space volume. And the manufacturing method of this heat insulating material is, as shown in FIG. 1, a raw material adjusting / mixing step S1 and a foaming step S2 for manufacturing the foam body 12 as a base of the heat insulating material, and a compression step S3 for compressing the foam body 12. Consists of The raw material adjustment / mixing step S1 and the foaming step S2 are basically substantially the same as Japanese Patent Application Laid-Open No. 2003-335834 (invention “soft polyurethane foam and manufacturing method thereof”) devised by the same applicant as the present application. Therefore, the details are omitted.

主原料の一つであるポリオールとしては、公知の開始剤にアルキレンオキサイドを付加して得られるポリエーテルポリオールが用いられる。また、このポリエーテルポリオールにエチレン性不飽和モノマーを反応させて得られる変性体を用いてもよい。アルキレンオキサイドとしては、エチレンオキサイド(EO)、プロピレンオキサイド(PO)またはブチレンオキサイド(BO)等が単独または複数以上を混合して用いられる。そしてその数平均分子量は、フォーム体12を形成できる限り、特に限定されないが1200〜8000であることが好ましい。   As the polyol which is one of the main raw materials, polyether polyol obtained by adding alkylene oxide to a known initiator is used. Moreover, you may use the modified body obtained by making an ethylenically unsaturated monomer react with this polyether polyol. As the alkylene oxide, ethylene oxide (EO), propylene oxide (PO), butylene oxide (BO), or the like is used alone or in combination. The number average molecular weight is not particularly limited as long as the foam body 12 can be formed, but is preferably 1200 to 8000.

またイソシアネートとしては、公知の芳香族系、脂肪族系または脂環族系等の各種ポリイソシアネートを用いることができる。特に製造されるフォーム体12および断熱材により小さなセル径、すなわち多くのセル数を確保するため、ポリオールとの相溶性が高いリレンジイソシアネート(TDI)が好適に使用される。このイソシアネートの配合量については、イソシアネートインデックスが30〜80の範囲、好ましくは30〜75の範囲になるように設定される。この値が30未満の場合、発泡が正常に行われず、割れが生じたり、泡体の崩落が発生することがある。一方80を越える場合、発泡時の発熱温度が高くなり、自然発火する可能性が高まる。   As the isocyanate, various known polyisocyanates such as aromatic, aliphatic or alicyclic can be used. In particular, in order to secure a small cell diameter, that is, a large number of cells, by the foam body 12 and the heat insulating material to be manufactured, rylene diisocyanate (TDI) having high compatibility with a polyol is preferably used. The blending amount of this isocyanate is set so that the isocyanate index is in the range of 30 to 80, preferably in the range of 30 to 75. When this value is less than 30, foaming may not be performed normally, cracking may occur, or foam collapse may occur. On the other hand, when it exceeds 80, the exothermic temperature at the time of foaming becomes high, and the possibility of spontaneous ignition increases.

副原料のうち、発泡倍率を決定して低密度を達成するための発泡剤としての水としては、例えばイオン交換水、水道水または蒸留水等の通常の水が用いられる。水の配合量は、ポリオールを100質量部に対して、5〜50質量部に設定され、好ましくは7〜50質量部の範囲に設定される。この水の過剰な配合は、水を発泡剤として使用する一方で、発泡に際する発熱を水の気化によって効率的に除熱する冷却剤としての役割を持たせるためであり、その配合量が5質量部未満の場合、発泡時の発熱の抑制や、密度の低下を充分に達成できなくなってしまう。一方50質量部を超える場合、水とイソシアネートとの反応によって発生する発泡ガスとしての二酸化炭素の発生量が多くなり、所定のフォームを形成できなくなる。   Among the auxiliary materials, as water as a foaming agent for determining a foaming ratio and achieving a low density, for example, normal water such as ion exchange water, tap water or distilled water is used. The compounding quantity of water is set to 5-50 mass parts with respect to 100 mass parts of polyol, Preferably it is set to the range of 7-50 mass parts. This excessive blending of water is to use water as a foaming agent, while having a role as a coolant that efficiently removes heat generated by foaming by vaporization of water. When the amount is less than 5 parts by mass, it becomes impossible to sufficiently suppress the heat generation during foaming and to reduce the density. On the other hand, when the amount exceeds 50 parts by mass, the amount of carbon dioxide generated as a foaming gas generated by the reaction between water and isocyanate increases, and a predetermined foam cannot be formed.

またポリオールの全てがイソシアネートと反応すると仮定した場合に算出される、ポリイソシアネートとの化学量論的な水の反応量と、実際の水の配合量から反応量を差し引いた水の過剰量との比(過剰量/反応量)が0.10〜7.00に設定され、好ましくは0.20〜6.50に設定される。この値が0.10未満の場合、冷却に関与する水の割合が少なくなり、発泡時の発熱を抑制することができない場合がある。一方、この値が7.00を超える場合、水とイソシアネートとの反応による二酸化炭素の発生量が多くなり過ぎ、所定のフォームを形成できなくなる。   Also, the amount of reaction of stoichiometric water with polyisocyanate calculated when all polyols react with isocyanate, and the excess amount of water obtained by subtracting the amount of reaction from the actual water content. The ratio (excess / reaction) is set between 0.10 and 7.00, preferably between 0.20 and 6.50. If this value is less than 0.10, the proportion of water involved in cooling decreases, and heat generation during foaming may not be suppressed. On the other hand, when this value exceeds 7.00, the amount of carbon dioxide generated by the reaction between water and isocyanate becomes too large, and a predetermined foam cannot be formed.

この他の副原料として、触媒、シリコーン系物質等の整泡剤、発泡助剤、難燃剤、酸化防止剤、紫外線吸収剤、着色剤または各種希釈剤が必要に応じて添加されるが、特に整泡剤については、過剰な水の存在により通常により激しい泡化反応によって発生するセルの好適な保持を目的として、ポリオール100重量部に対して、0.5〜2.0重量部程度使用することが望まれる。この量が0.5重量部未満であると、発泡時における原料の整泡能力が低いためにセルの基となる気泡が充分に保持されず正常な発泡体が得られなくなる。一方2.0重量部を越えると、原料の整泡能力が強過ぎて気泡内部から発泡ガスが殆ど排出されることがなくなるため、発泡反応完了後にフォームが収縮してしまう不具合が発生する。   As other auxiliary materials, catalysts, foam stabilizers such as silicone substances, foaming aids, flame retardants, antioxidants, ultraviolet absorbers, colorants or various diluents are added as necessary, The foam stabilizer is used in an amount of about 0.5 to 2.0 parts by weight with respect to 100 parts by weight of the polyol for the purpose of suitably holding the cells that are usually generated by a more severe foaming reaction due to the presence of excess water. It is desirable. If this amount is less than 0.5 parts by weight, the foam-forming ability of the raw material at the time of foaming is low, so that the cells serving as the cell base are not sufficiently retained, and a normal foam cannot be obtained. On the other hand, if the amount exceeds 2.0 parts by weight, the foam regulating ability of the raw material is too strong and the foaming gas is hardly discharged from the inside of the bubbles, so that the foam shrinks after completion of the foaming reaction.

製造されるフォーム体12および断熱材により小さなセル径、すなわち多くのセル数の確保は、前述([0011])した如く、ポリオールとイソシアネートとの相溶性を高めることでなされ、この相溶性の向上はポリオールとイソシアネートとを乳化させることによって達成される。そしてこの乳化については、整泡剤としてEO(エチレンオキサイド)含有率の高い物質を使用することで促進させることができる。   A small cell diameter, that is, a large number of cells is ensured by the foam body 12 and the heat insulating material to be manufactured, as described above ([0011]), by improving the compatibility between the polyol and the isocyanate, and this compatibility is improved. Is achieved by emulsifying a polyol and an isocyanate. This emulsification can be promoted by using a substance having a high EO (ethylene oxide) content as a foam stabilizer.

そして前述した各原料を所定量混合・添加することで、その密度が4〜30kg/m、好適には4〜20kg/mの範囲となる極めて軽量で、かつそのセル径が3000μm以下となっているフォーム体12が製造される。なお、このフォーム体12の製造に当たっては、過剰な水の存在により、激しい泡化反応に伴う発熱温度を160℃以下とし得るため、スコーチ等の発生抑制や、火災の危険性を低減し得る。 Then, by mixing and adding the above-mentioned raw materials in predetermined amounts, the density is 4 to 30 kg / m 3 , preferably 4 to 20 kg / m 3 , and the cell diameter is 3000 μm or less. The foam body 12 is manufactured. In the production of the foam body 12, since the exothermic temperature associated with the violent foaming reaction can be set to 160 ° C. or less due to the presence of excess water, the occurrence of scorch and the like and the risk of fire can be reduced.

次に実施される圧縮工程S3は、図2に示す如く、前述した原料調整・混合工程S1および発泡工程S2を経て製造されたフォーム体12(図2(a)参照)に対して、公知の熱プレス装置等の圧縮装置を使用して加熱下に圧縮を加え(図2(b)および図2(c)参照)、断熱材10(図2(d)参照)を得る工程である。本圧縮工程S3の実施により、フォーム体12は最大で1/10程度に圧縮、すなわち圧縮の倍率は10倍以下に設定される。この倍率が10倍を超えると、骨熱伝導(後述[0019])が大きくなり、断熱性が低下してしまう。なお本発明に係る断熱材10は、自動車等の車両用内装材として使用されるため、背景技術で述べたようにその密度は好適には25〜35kg/m程度([0004]参照)される。なお本発明においては、図2(c)および図2(d)に矢印で示すフォーム体12を圧縮する方向を圧縮方向と云う。 Next, as shown in FIG. 2, the compression step S3 to be performed is a well-known method for the foam body 12 (see FIG. 2 (a)) manufactured through the raw material adjustment / mixing step S1 and the foaming step S2. This is a step of obtaining a heat insulating material 10 (see FIG. 2D) by applying compression under heating using a compression device such as a hot press device (see FIGS. 2B and 2C). By performing this compression step S3, the foam body 12 is compressed to about 1/10 at the maximum, that is, the compression ratio is set to 10 times or less. When this magnification exceeds 10 times, bone heat conduction (described later [0019]) becomes large, and the heat insulating property is lowered. Since the heat insulating material 10 according to the present invention is used as an interior material for a vehicle such as an automobile, the density thereof is preferably about 25 to 35 kg / m 3 as described in the background art (see [0004]). The In the present invention, a direction in which the foam body 12 indicated by an arrow in FIGS. 2C and 2D is compressed is referred to as a compression direction.

またこの圧縮は、温度を80〜220℃の範囲、時間を30〜250秒の範囲として実施される。何れも最低温度や最低時間に満たなければ、圧縮後の断熱材10がその圧縮状態を維持できなくなり、一方最高温度や最高時間を越えれば、断熱材10をなすポリウレタンフォームにスコーチ等の発生したり、フォーム体12が溶融する等の不具合や、場合によっては火災の発生が危惧される。なおこの圧縮は、上下方向の対向する一対の方向において実施される。   This compression is carried out at a temperature in the range of 80 to 220 ° C. and a time in the range of 30 to 250 seconds. If neither of them reaches the minimum temperature or the minimum time, the compressed heat insulating material 10 cannot maintain its compressed state. On the other hand, if the maximum temperature or the maximum time is exceeded, scorch or the like occurs in the polyurethane foam forming the heat insulating material 10. Or the foam body 12 may be melted or a fire may be caused in some cases. This compression is performed in a pair of opposite directions in the vertical direction.

ここで物体内における熱の伝わり方、すなわち伝熱形態を考えてみると、(1)伝導、(2)対流が挙げられる。そして(1)伝導は、断熱材10を構成するポリウレタンフォームの骨格を伝わる、所謂骨熱伝熱に相当し、(2)対流は、セル16内の空気の対流による対流伝熱に相当する。そして(1)骨熱伝熱は、その物質における伝熱度が同一である場合には、伝熱する方向の直交する面積、すなわちポリウレタンフォームを形成する骨格の太さに大きく依存している。また(2)対流伝熱は、対流する対象が(例えば空気)が同一であれば、その対流方向における空間の長さ、すなわちセルにおいて断熱をなすべき(断熱材10によって区切られる空間の外側と内側との間の最短距離を示す線分に沿った)方向(以下、断熱方向と云う)における空間の長さ、すなわちセル径に大きく依存している。なお一般に断熱性能等を示す指標については、熱伝導率が使用されるため、本発明においてもこの指標を使用する。そして熱伝導率は、(1)骨熱伝熱および(2)対流伝熱の双方によって決定されている。   Considering how heat is transferred in the body, that is, the heat transfer mode, (1) conduction and (2) convection can be mentioned. Then, (1) conduction corresponds to so-called bone heat transfer that travels through the skeleton of the polyurethane foam constituting the heat insulating material 10, and (2) convection corresponds to convection heat transfer due to air convection in the cell 16. And (1) When the heat transfer degree in the substance is the same, the bone heat transfer greatly depends on the area perpendicular to the heat transfer direction, that is, the thickness of the skeleton forming the polyurethane foam. Also, (2) convection heat transfer is the length of the space in the convection direction, that is, if the object to be convected is the same (for example, air), that is, heat insulation in the cell This greatly depends on the length of the space in the direction (hereinafter referred to as the heat insulation direction) along the line segment indicating the shortest distance from the inside, that is, the cell diameter. In general, since the thermal conductivity is used for an index indicating the heat insulation performance, this index is also used in the present invention. The thermal conductivity is determined by both (1) bone heat transfer and (2) convective heat transfer.

すなわち断熱性を高めるためには、断熱材10をなすポリウレタンフォームの骨格を細くして、かつ断熱方向に沿ったセル径(空間の長さ)を小さくすればよい。そして本発明に係る断熱材10は、前述([0012])の如く、水を過剰として製造されるため泡化反応が大きく優勢であるため、ポリウレタンフォームを形成する骨格は通常のポリウレタンフォームに比較して細いものとなる。また所要のシリコーン系物質を整泡剤に用いることで、フォーム体12のセル数を多く、すなわちセル径を通常のポリウレタンフォームよりも小さいものとし、更に圧縮を施すことでセルを圧縮して圧縮方向のセル径を小さくする、すなわち圧縮方向におけるセル径(空間の長さ)をより小さいものとしている。そして圧縮方向におけるセル径(空間の長さ)が小さくなれば、その内部で熱を伝導すべく対流する気体の存在量も減少し、また対流自体が良好に行なわれなくなるため、(2)対流伝熱を小さなものとし得る。   In other words, in order to improve the heat insulation, it is only necessary to make the skeleton of the polyurethane foam constituting the heat insulating material 10 thin and to reduce the cell diameter (space length) along the heat insulation direction. Since the heat insulating material 10 according to the present invention is produced with excess water as described above ([0012]), the foaming reaction is greatly prevalent, and the skeleton forming the polyurethane foam is compared with the ordinary polyurethane foam. And become thin. Also, by using the required silicone-based material for the foam stabilizer, the number of cells of the foam body 12 is increased, that is, the cell diameter is smaller than that of ordinary polyurethane foam, and the cells are compressed by further compression. The cell diameter in the direction is made smaller, that is, the cell diameter (space length) in the compression direction is made smaller. If the cell diameter (space length) in the compression direction is reduced, the amount of convection gas in order to conduct heat in the inside will also decrease, and convection itself will not be performed well. (2) Convection Heat transfer can be small.

従って、フォーム体12の圧縮方向と、断熱方向を一致させれば、前述の(1)骨熱伝熱および(2)対流伝熱の双方を大きく低減できる。図3に示す如く、基本的に(1)骨熱伝熱を低くするべく骨格を細くすると(図3(a)→図3(b))、骨格構造が同じであれば圧縮方向におけるセル径(空間の長さ)は大きくなるため、これに伴って(2)対流伝熱は高くなってしまう。このように、(1)および(2)の2つが相殺し合うため、全体的な熱伝導率は余り変わらない。しかし本発明に係る断熱材10の場合、(1)骨熱伝熱および(2)対流伝熱の双方の低減を達成するため、高い断熱性能を確保し得る。そして本発明のように、フォーム体12を圧縮してセル径(空間の長さ)を小さくする場合には、圧縮の前後で骨格太さは変わらないため、(1)骨熱伝熱を変化させずに(2)対流伝熱を小さく、すなわち熱伝導率を小さくできる。   Therefore, if the compression direction of the foam body 12 is matched with the heat insulation direction, both (1) bone heat transfer and (2) convective heat transfer described above can be greatly reduced. As shown in FIG. 3, basically (1) When the skeleton is made thin to reduce bone heat transfer (FIG. 3 (a) → FIG. 3 (b)), the cell diameter in the compression direction is the same if the skeleton structure is the same. Since (the length of the space) becomes large, (2) convective heat transfer becomes high accordingly. In this way, since the two (1) and (2) cancel each other, the overall thermal conductivity does not change much. However, in the case of the heat insulating material 10 according to the present invention, a reduction in both (1) bone heat transfer and (2) convective heat transfer can be achieved, so that high heat insulating performance can be ensured. And, as in the present invention, when compressing the foam body 12 to reduce the cell diameter (space length), the skeletal thickness does not change before and after compression, so (1) change the bone heat transfer Without (2) convective heat transfer, that is, thermal conductivity can be reduced.

ところで(1)骨熱伝熱および(2)対流伝熱については、図4に示す如く、30kg/m程度の密度を境界として、より低密度領域においては(2)対流伝熱が、より高密度領域においては(1)骨熱伝熱が夫々より大きな影響を与えることが経験的に知られている。このため自動車等の車両用内装材を考えた場合には、その密度を圧縮後において35kg/m程度以下、好適には30kg/m程度以下とする必要がある。すなわちこの密度領域においては、(2)対流伝熱がより全体の熱伝導率に大きな影響を与えるため、フォーム体12の圧縮による断熱方向のセル径(空間の長さ)の縮小は大きな効果が期待できる。 By the way, (1) bone heat transfer and (2) convection heat transfer, as shown in FIG. 4, with a density of about 30 kg / m 3 as a boundary, (2) It is empirically known that (1) bone heat transfer has a greater influence in the high density region. For this reason, when considering interior materials for vehicles such as automobiles, the density after compression needs to be about 35 kg / m 3 or less, preferably about 30 kg / m 3 or less. In other words, in this density region, (2) convective heat transfer has a greater effect on the overall thermal conductivity, and therefore the reduction of the cell diameter (space length) in the heat insulation direction by compression of the foam body 12 has a great effect. I can expect.

前述したように断熱材10は、フォーム体12を圧縮したものであるため、断熱材10の圧縮方向のセル径は、基本的に圧縮前のフォーム体12のセル径/圧縮倍率で算出される。本発明に係る断熱材10を使用する場合、圧縮される基であるフォーム体12の密度は前述の如く4〜20kg/mの範囲であり、また通常の製造方法で製造されるポリウレタンフォームの一般的な下限密度である25〜30kg/m以下であるため、断熱材10の密度を従来のポリウレタンフォームからなる断熱材と同程度に設定する場合、その圧縮倍率は最大で7.5倍程度となる。すなわち本発明に係る断熱材10を使用した場合、その密度を従来のポリウレタンフォームからなる断熱材と同等に設定する場合、圧縮方向のセル径は最小で3000μm/7.5倍=400μm以下とすることが可能である。一般的にはその製造容易性から10kg/m程度のフォーム体12を製造してこれを圧縮するため、その圧縮倍率は2.5〜3倍程度が適当であるため、セル数は3000μm/2.5〜3倍=1000〜1200μm程度以下に設定されることになる。 Since the heat insulating material 10 is obtained by compressing the foam body 12 as described above, the cell diameter in the compression direction of the heat insulating material 10 is basically calculated by the cell diameter / compression ratio of the foam body 12 before compression. . When the heat insulating material 10 according to the present invention is used, the density of the foam body 12 that is a group to be compressed is in the range of 4 to 20 kg / m 3 as described above, and the polyurethane foam manufactured by a normal manufacturing method is used. Since it is 25-30 kg / m 3 or less which is a general lower limit density, when the density of the heat insulating material 10 is set to the same level as the heat insulating material made of a conventional polyurethane foam, the compression ratio is 7.5 times at the maximum. It will be about. That is, when the heat insulating material 10 according to the present invention is used, when the density is set to be equal to that of a conventional heat insulating material made of polyurethane foam, the cell diameter in the compression direction is at least 3000 μm / 7.5 times = 400 μm or less. It is possible. In general, the foam body 12 of about 10 kg / m 3 is manufactured and compressed because of its ease of manufacture, and the compression ratio is suitably about 2.5 to 3 times, so the number of cells is 3000 μm / 2.5 to 3 times = 1000 to 1200 μm or less.

そして本発明に係る断熱材10は、前述の如く、その密度が小さく、すなわち容易に圧縮可能であるため、例えば自動車内装における成形天井裏の表皮と芯材との間の僅かな隙間や、空調ダクト周りに対して、煩雑な手間を掛けることなく配置することが可能となっている。すなわち干渉設計が必要な部分に対して、容易に貼り合わせる等して配置し得る。また断熱材10は、その圧縮倍率が高い程、断熱効果が高まるため、このような干渉下での使用においては、より高い断熱性を提供し得る。   As described above, the heat insulating material 10 according to the present invention has a small density, that is, can be easily compressed. For example, a slight gap between the skin and the core material of the molded ceiling in an automobile interior, air conditioning, etc. It is possible to arrange the duct around the duct without troublesome work. That is, it can be easily attached to a portion requiring interference design. Moreover, since the heat insulation effect becomes high, so that the heat insulating material 10 is high in the compression magnification, in use under such interference, higher heat insulation can be provided.

(実験例)
以下に、本発明に係るポリウレタンフォームを使用した断熱材と、通常のポリウレタンフォームを使用した断熱材とについて、その圧縮前後の密度および熱伝導率等を比較した実験例を示す。
(Experimental example)
Below, the experiment example which compared the density, thermal conductivity, etc. before and after the compression about the heat insulating material using the polyurethane foam which concerns on this invention, and the heat insulating material using a normal polyurethane foam is shown.

下記する各原料を以下に記載する表1に従って使用し、A〜Eに係る5種類のポリウレタンフォーム(フォーム体12)を夫々作製する。具体的な製造方法は、以下の通りである。すなわち先ずイソシアネート以外の全原料を所定の量比でハンドミキサーを用いて攪拌した後、表1に記載されたイソシアネートインデックスに従ってイソシアネートを混合し、この混合物540gを発泡箱(縦300mm×横400mm×高さ400mm)に投入して発泡、硬化させてポリウレタンフォームとする。そして得られたポリウレタンフォームを表2に記載する厚さ(mm)に切断し、更に表2(実施例)および表2(比較例)に記載する厚さ(mm)に圧縮して実施例1〜5並びに比較例1および2に係る断熱材を製造した。そして圧縮前後における熱伝導率(W/mK)を測定した。また圧縮前後における密度(kg/m)およびセル径(μm(圧縮後は圧縮方向におけるセル径))と、空孔率(%)と、更には圧縮の際の加熱温度および加熱時間についても測定した。なお参考として、一般的な不織布からなる断熱材(商品名 シンサレート;住友スリーエム製)についても同様の測定を実施し、表2(実施例)および表3(比較例)に併記した。 The following raw materials are used according to Table 1 described below, and five types of polyurethane foams (foam bodies 12) according to A to E are respectively produced. A specific manufacturing method is as follows. That is, first, all raw materials other than isocyanate were stirred at a predetermined quantitative ratio using a hand mixer, and then the isocyanate was mixed according to the isocyanate index described in Table 1, and 540 g of this mixture was added to a foaming box (length 300 mm × width 400 mm × height). And foamed and cured to form a polyurethane foam. The obtained polyurethane foam was cut into the thickness (mm) described in Table 2, and further compressed to the thickness (mm) described in Table 2 (Example) and Table 2 (Comparative Example). To 5 and Comparative Examples 1 and 2 were produced. The thermal conductivity (W / mK) before and after compression was measured. Also, density (kg / m 3 ) and cell diameter before and after compression (μm (cell diameter in the compression direction after compression)), porosity (%), and heating temperature and heating time during compression It was measured. For reference, the same measurement was performed for a heat insulating material made of a general nonwoven fabric (trade name: Synthalate; manufactured by Sumitomo 3M), and the results are shown in Table 2 (Example) and Table 3 (Comparative Example).

(使用原料)
・ポリオール:商品名 GP3000(数平均分子量3000、当量重量1000);三洋化成工業製
・イソシアネート:商品名 T−80(TDI);日本ポリウレタン製
・発泡剤:水(イオン交換水)
・触媒A:商品名 33LV;三共エアプロダクツ製
・触媒B:商品名 MRH110;城北化学製
・整泡剤A:商品名 L−5420;日本ユニカー製
・整泡剤B:商品名 B8110;ゴールドシュミット製

Figure 0004487120
Figure 0004487120
Figure 0004487120
(Raw material)
・ Polyol: Trade name GP3000 (number average molecular weight 3000, equivalent weight 1000); manufactured by Sanyo Chemical Industries ・ Isocyanate: trade name T-80 (TDI); manufactured by Nippon Polyurethane ・ Foaming agent: water (ion-exchanged water)
・ Catalyst A: Trade name 33LV; Sankyo Air Products ・ Catalyst B: Trade name MRH110; Johoku Chemical ・ Foam stabilizer A: Trade name L-5420; Nihon Unicar ・ Foam stabilizer B: Trade name B8110; Gold Schmidt Made
Figure 0004487120
Figure 0004487120
Figure 0004487120

(実験の結果)
実験から得られる結果を上記の表2および表3に併記する。この表2および表3に記載の結果から、ポリオール100質量部に対して、発泡剤(水)を5〜50質量部と過剰に混合することで製造される骨格が極めて細いフォーム体を圧縮して、そのセル径を小さくした断熱材は、熱伝導率を決定する(1)骨熱伝熱および(2)対流伝熱の双方を小さなものとして、0.031W/mK以下の高い断熱性と、35kg/m以下となる密度とを併せて達成することが確認された。また圧縮倍率を高めることで、0.03W/mK以下の非常に高い断熱性を確保し得ることも確認された。
(results of the experiment)
The results obtained from the experiments are shown in Tables 2 and 3 above. From the results shown in Table 2 and Table 3, a foam body having an extremely thin skeleton produced by excessively mixing 5 to 50 parts by mass of a blowing agent (water) with respect to 100 parts by mass of a polyol is compressed. Thus, the heat insulating material having a small cell diameter determines (1) bone heat transfer and (2) convective heat transfer, which determine the thermal conductivity, and has a high heat insulating property of 0.031 W / mK or less. It was confirmed that the density of 35 kg / m 3 or less was achieved together. It was also confirmed that a very high heat insulating property of 0.03 W / mK or less can be secured by increasing the compression ratio.

本発明の好適な実施例に係る断熱材の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the heat insulating material which concerns on the suitable Example of this invention. 実施例に係る断熱材の圧縮工程を示す状態図である。It is a state figure which shows the compression process of the heat insulating material which concerns on an Example. 同様の骨格構造を備える構造体におけるセル径と骨格の太さとの関係を示す概略図である。It is the schematic which shows the relationship between the cell diameter in the structure provided with the same frame | skeleton structure, and the thickness of frame | skeleton. 伝熱の種類における影響と、密度との関係を概略的に示すグラフ図である。It is a graph which shows roughly the relationship in the influence in the kind of heat transfer, and a density.

符号の説明Explanation of symbols

10 断熱材
12 フォーム体
10 Thermal insulation material 12 Foam body

Claims (6)

リオールおよびイソシアネートに対して、触媒、整泡剤および水を含む副原料を混合して得たポリウレタンフォームからなる断熱材において、
前記ポリオールに対してイソシアネートインデックスが30〜80の範囲となるようイソシアネートを混合すると共に、前記ポリオール100質量部に対して前記水を5〜50質量部の範囲で混合して、前記ポリオールの全てが前記イソシアネートと反応すると仮定した場合に算出される該イソシアネートに対する化学量論的な水の反応量と、前記ポリオールに対して混合される水の配合量から前記反応量を差し引いた水の過剰量との比を、0.20〜6.50の範囲に設定し、密度が4〜30kg/m の範囲にあるフォーム体(12)からなり、
前記フォーム体(12)を加熱圧縮することで、その密度が10〜50kg/mで、圧縮方向のセル径1000μm以下とし、熱伝導率を0.031W/mK未満とした
ことを特徴する断熱材。
Against Po polyol and isocyanate, a catalyst, in a heat insulating material made of polyurethane foam obtained by mixing a secondary raw material including a foam stabilizer and water,
The isocyanate is mixed with the polyol so that the isocyanate index is in the range of 30 to 80, and the water is mixed in the range of 5 to 50 parts by mass with respect to 100 parts by mass of the polyol. The reaction amount of stoichiometric water with respect to the isocyanate calculated on the assumption that it reacts with the isocyanate, and the excess amount of water obtained by subtracting the reaction amount from the amount of water mixed with the polyol A ratio of 0.20 to 6.50, and a foam body (12) having a density in the range of 4 to 30 kg / m 3 ,
By heating and compressing the foam body (12), the density was 10 to 50 kg / m 3 , the cell diameter in the compression direction was 1000 μm or less, and the thermal conductivity was less than 0.031 W / mK. > Insulation characterized by that.
前記圧縮後の密度は35kg/m以下とされ、かつ圧縮方向のセル径は800μm以下にされている請求項1記載の断熱材。 The heat insulating material according to claim 1, wherein the density after compression is 35 kg / m 3 or less and the cell diameter in the compression direction is 800 μm or less. リオールおよびイソシアネートに対して、触媒、整泡剤および水を含む副原料を混合して得られるポリウレタンフォームからなる断熱材の製造方法において、
前記ポリオールに対してイソシアネートインデックスが30〜80の範囲となるようイソシアネートを混合すると共に、
前記ポリオール100質量部に対して前記水を5〜50質量部の範囲で混合して、前記ポリオールの全てが前記イソシアネートと反応すると仮定した場合に算出される該イソシアネートに対する化学量論的な水の反応量と、前記ポリオールに対して混合される水の配合量から前記反応量を差し引いた水の過剰量との比を、0.20〜6.50の範囲に設定し、密度を4〜30kg/m の範囲に設定したフォーム体(12)を製造し、
前記フォーム体(12)を加熱圧縮することで、その密度を10〜50kg/mの範囲にすると共に、圧縮方向のセル径が1000μm以下とし、熱伝導率を0.031W/mK未満とした断熱材(10)を製造するようにした
ことを特徴とする断熱材の製造方法。
Against Po polyol and isocyanate, a catalyst, in the method for manufacturing the heat insulating material made of a polyurethane foam obtained by mixing a secondary raw material including a foam stabilizer and water,
While mixing the isocyanate so that the isocyanate index is in the range of 30 to 80 with respect to the polyol,
The water is mixed in the range of 5 to 50 parts by mass with respect to 100 parts by mass of the polyol, and the stoichiometric water with respect to the isocyanate calculated when it is assumed that all of the polyol reacts with the isocyanate. The ratio of the reaction amount and the excess amount of water obtained by subtracting the reaction amount from the amount of water mixed with the polyol is set in the range of 0.20 to 6.50, and the density is 4 to 30 kg. A foam body (12) set in a range of / m 3 is manufactured,
By heating and compressing the foam body (12), the density is in the range of 10 to 50 kg / m 3 , the cell diameter in the compression direction is 1000 μm or less, and the thermal conductivity is less than 0.031 W / mK. A method for manufacturing a heat insulating material, characterized in that the heat insulating material (10) is manufactured.
前記フォーム体(12)の密度は、4〜20kg/mの範囲に設定される請求項記載の断熱材の製造方法。 The density of the said foam body (12) is a manufacturing method of the heat insulating material of Claim 3 set to the range of 4-20 kg / m < 3 >. 前記圧縮は、圧縮方向のセル数をセル径が800μm以下にするように実施される請求項3または4記載の断熱材の製造方法。   The said compression is a manufacturing method of the heat insulating material of Claim 3 or 4 implemented so that a cell diameter may make the cell diameter 800 micrometers or less in the compression direction. 前記圧縮の倍率は、10倍以下に設定される請求項の何れか一項に記載の断熱材の製造方法。 The method for manufacturing a heat insulating material according to any one of claims 3 to 5 , wherein the compression ratio is set to 10 times or less.
JP2004146935A 2004-05-17 2004-05-17 Insulating material and manufacturing method thereof Expired - Lifetime JP4487120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146935A JP4487120B2 (en) 2004-05-17 2004-05-17 Insulating material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146935A JP4487120B2 (en) 2004-05-17 2004-05-17 Insulating material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005325313A JP2005325313A (en) 2005-11-24
JP4487120B2 true JP4487120B2 (en) 2010-06-23

Family

ID=35471903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146935A Expired - Lifetime JP4487120B2 (en) 2004-05-17 2004-05-17 Insulating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4487120B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238253B2 (en) * 2006-04-12 2009-03-18 ニッシンボウ・エンジニアリング株式会社 A method for producing a urethane foam specimen, and a container for producing a urethane foam specimen.

Also Published As

Publication number Publication date
JP2005325313A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP5101092B2 (en) Polyurethane foam for vehicles
JP7274302B2 (en) Airgel composite material and its manufacturing method
JP2014520920A (en) Improvement of sound absorption in foamed insulation
KR102140941B1 (en) Method for forming polyurethane absorptive material of vehicle and the polyurethane absorptive material thereof
JP2007169556A (en) Polyurethane foam
JP4487120B2 (en) Insulating material and manufacturing method thereof
KR20130085305A (en) Hvac duct using phenolic foam and method for fabricating the same
JP3880699B2 (en) Method for producing flexible polyurethane foam
JP5546785B2 (en) Rigid polyurethane foam composition
JP5981116B2 (en) Chloroprene rubber open cell body and method for producing the same
JP2019014288A (en) Vehicle interior material
JP4745671B2 (en) Method for producing polyurethane foam having open cell structure
WO2016017329A1 (en) Polyurethane foam and seat pad
JP2013047338A (en) Sound absorption shock absorbing material, and method of manufacturing the same
JP4079254B2 (en) Method for producing open cell rigid polyurethane foam
JP5082829B2 (en) Polyurethane foam molding and method for producing the same
JP2005316353A (en) Sound absorbing structure
JP2005213420A (en) Flexible polyurethane foam and laminated body
JP2001220421A (en) Rigid polyurethane foam and method for producing the same
JP3539610B2 (en) Rigid polyurethane foam
JP2007211119A (en) Flame-retardant epdm foamed body and method for producing the same
JP7417252B2 (en) Rigid polyurethane foam and its manufacturing method
JP2007100031A (en) Seat cushion and its production method
KR20220082193A (en) Porous polyurethane foam having excellent flame retardancy and manufacturing method of the same
JP2008138052A (en) Method for producing flexible polyurethane foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4487120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250