JP4485564B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4485564B2
JP4485564B2 JP2007289927A JP2007289927A JP4485564B2 JP 4485564 B2 JP4485564 B2 JP 4485564B2 JP 2007289927 A JP2007289927 A JP 2007289927A JP 2007289927 A JP2007289927 A JP 2007289927A JP 4485564 B2 JP4485564 B2 JP 4485564B2
Authority
JP
Japan
Prior art keywords
catalyst
nox
exhaust gas
fuel ratio
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007289927A
Other languages
Japanese (ja)
Other versions
JP2009114994A (en
Inventor
健治 櫻井
茂樹 宮下
健治 加藤
直人 三好
啓人 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to JP2007289927A priority Critical patent/JP4485564B2/en
Priority to US12/741,841 priority patent/US20110079001A1/en
Priority to PCT/IB2008/002964 priority patent/WO2009060290A2/en
Priority to DE112008004280.2T priority patent/DE112008004280A5/en
Priority to DE112008002983.0T priority patent/DE112008002983B4/en
Publication of JP2009114994A publication Critical patent/JP2009114994A/en
Application granted granted Critical
Publication of JP4485564B2 publication Critical patent/JP4485564B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/26Multi-layered walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

リーン空燃比のもとで燃焼が行われる内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOxを吸蔵し流入する排気ガスの空燃比がリッチになると吸蔵しているNOxを放出して還元するNOx吸蔵還元触媒を配置し、NOx吸蔵還元触媒内に吸蔵されたNOxが放出し還元すべきときにはNOx吸蔵還元触媒への流入排気ガスの空燃比を一時的にリッチに切り換えるようにした内燃機関が公知である(特許文献1参照)。この内燃機関では、排気ガス中のNOxはNOx吸蔵還元触媒に吸蔵される。NOx吸蔵還元触媒に吸蔵されているNOx量は時間の経過と共に次第に増加する。そこで、NOx吸蔵還元触媒が飽和する前に一時的にNOx吸蔵還元触媒への流入排気ガスの空燃比を一時的にリッチに切り換え、それによってNOx吸蔵還元触媒内に吸蔵されたNOxを放出し還元するようにしている。この場合、NOx吸蔵還元触媒への流入排気ガスの空燃比をリッチに切り換えるために例えば内燃機関における空燃比がリッチに切り換えられる。   In the exhaust passage of an internal combustion engine where combustion is performed under a lean air-fuel ratio, NOx in the exhaust gas flowing in when the air-fuel ratio of the flowing exhaust gas is lean is occluded and the air-fuel ratio of the exhaust gas flowing in is rich. A NOx storage reduction catalyst that releases and reduces the stored NOx, and when the NOx stored in the NOx storage reduction catalyst should be released and reduced, the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst An internal combustion engine in which the engine is temporarily switched to rich is known (see Patent Document 1). In this internal combustion engine, NOx in the exhaust gas is stored in the NOx storage reduction catalyst. The amount of NOx occluded in the NOx occlusion reduction catalyst gradually increases with time. Therefore, before the NOx storage reduction catalyst is saturated, the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst is temporarily switched to rich so that the NOx stored in the NOx storage reduction catalyst is released and reduced. Like to do. In this case, in order to switch the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst to rich, for example, the air-fuel ratio in the internal combustion engine is switched to rich.

一方、機関排気通路内に配置された共通のケーシング内に前段触媒及び後段触媒を互いに直列配置して収容し、前段触媒及び後段触媒をそれぞれ単層構造又は多層構造から構成した内燃機関が公知である(特許文献2参照)。   On the other hand, there is known an internal combustion engine in which a front catalyst and a rear catalyst are accommodated in series in a common casing disposed in an engine exhaust passage, and the front catalyst and the rear catalyst are each constituted by a single layer structure or a multilayer structure. Yes (see Patent Document 2).

特開平11−44234号公報JP 11-44234 A 特開2006−291812号公報JP 2006-291812 A

NOx吸蔵還元触媒への流入排気ガスの空燃比が頻繁にリッチに切り換えられると燃料消費量が増大するので、NOx吸蔵還元触媒のNOx吸蔵能力はできるだけ大きいのが好ましい。しかしながら、NOx吸蔵還元触媒を配置するための空間は限られているので、NOx吸蔵還元触媒の寸法ないし容量をできるだけ小さく維持しつつNOx吸蔵還元触媒のNOx吸蔵能力を高めることが必要である。   Since the fuel consumption increases when the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst is frequently switched to rich, it is preferable that the NOx storage capacity of the NOx storage reduction catalyst is as large as possible. However, since the space for arranging the NOx storage reduction catalyst is limited, it is necessary to increase the NOx storage capacity of the NOx storage reduction catalyst while keeping the size or capacity of the NOx storage reduction catalyst as small as possible.

また、NOx吸蔵還元触媒への流入排気ガスの空燃比がリッチに切り換えられた直後に、多量のNOxが還元されることなくNOx吸蔵還元触媒から排出される場合があり、このようなNOxの排出を抑制することも必要である。   Further, immediately after the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst is switched to rich, a large amount of NOx may be exhausted from the NOx storage reduction catalyst without being reduced. It is also necessary to suppress this.

これらの問題点を解決するために、特許文献2に記載されたようにNOx吸蔵還元触媒の上流又は下流に追加の触媒を配置し又はNOx吸蔵還元触媒を多層構造から構成することも考えられるが、満足のいく解決策となっていないのが現状である。   In order to solve these problems, it is conceivable to arrange an additional catalyst upstream or downstream of the NOx storage reduction catalyst as described in Patent Document 2 or to configure the NOx storage reduction catalyst from a multilayer structure. The current situation is not a satisfactory solution.

本発明によれば、機関排気通路内に配置された共通のケーシング内に前段触媒及び後段触媒を互いに直列配置して収容した内燃機関の排気浄化装置において、前段触媒を、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOxを吸蔵し流入する排気ガスの空燃比がリッチになると吸蔵しているNOxを放出して還元するNOx吸蔵還元触媒から構成すると共に、後段触媒を三元触媒又はNOx吸蔵還元触媒から構成し、前段触媒の酸化性を後段触媒の酸化性よりも高くなるように調製すると共に後段触媒の還元性を前段触媒の還元性よりも高くなるように調製し、前段触媒を上層及び下層を具備した多層構造から構成し、前段触媒において上層の酸化性を下層の酸化性よりも高くなるように調製すると共に下層の還元性を上層の還元性よりも高くなるように調製している。   According to the present invention, in an exhaust gas purification apparatus for an internal combustion engine in which a front-stage catalyst and a rear-stage catalyst are housed in series in a common casing arranged in an engine exhaust passage, the front-stage catalyst is emptied of the exhaust gas flowing into it. The NOx occlusion reduction catalyst which stores NOx in exhaust gas flowing in when the fuel ratio is lean and releases the exhausted NOx when the air-fuel ratio of the inflowing exhaust gas becomes rich is reduced. Constructed from a three-way catalyst or NOx occlusion reduction catalyst, and prepared so that the oxidizability of the front-stage catalyst is higher than the oxidizability of the rear-stage catalyst and the reductivity of the rear-stage catalyst is higher than the reducibility of the front-stage catalyst The former catalyst is composed of a multilayer structure having an upper layer and a lower layer, and the upper catalyst in the former catalyst is prepared so that the upper layer is more oxidizing than the lower layer, and the lower layer is reduced. It is prepared so as to be higher than the reduction of the layer.

NOx吸蔵還元触媒のNOx吸蔵能力及びNOx浄化率を高めることができる。   The NOx storage capacity and the NOx purification rate of the NOx storage reduction catalyst can be increased.

図1は本発明を火花点火式内燃機関に適用した場合を示している。本発明を圧縮着火式内燃機関に適用することもできる。   FIG. 1 shows a case where the present invention is applied to a spark ignition type internal combustion engine. The present invention can also be applied to a compression ignition type internal combustion engine.

図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポート、10は点火栓をそれぞれ示す。各気筒の吸気ポート7は対応する吸気枝管11を介してサージタンク12に連結される。サージタンク12は吸気ダクト13を介してエアクリーナ14に連結される。吸気ダクト13内にはエアフロメータ15と、ステップモータ16によって駆動されるスロットル弁17とが配置される。また、各吸気ポート7には燃料噴射弁18が取り付けられる。各燃料噴射弁18はコモンレール19に連結され、コモンレール19は吐出量を制御可能な燃料ポンプ20を介して燃料タンク21に連結される。コモンレール19には燃料圧センサ22が取り付けられており、コモンレール19内の燃料圧が目標圧に一致するように燃料ポンプ20の吐出量が制御される。   Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is an intake valve, 7 is an intake port, 8 is an exhaust valve, 9 is an exhaust port, Reference numeral 10 denotes a spark plug. The intake port 7 of each cylinder is connected to a surge tank 12 via a corresponding intake branch pipe 11. The surge tank 12 is connected to an air cleaner 14 via an intake duct 13. An air flow meter 15 and a throttle valve 17 driven by a step motor 16 are disposed in the intake duct 13. A fuel injection valve 18 is attached to each intake port 7. Each fuel injection valve 18 is connected to a common rail 19, and the common rail 19 is connected to a fuel tank 21 via a fuel pump 20 capable of controlling the discharge amount. A fuel pressure sensor 22 is attached to the common rail 19, and the discharge amount of the fuel pump 20 is controlled so that the fuel pressure in the common rail 19 matches the target pressure.

一方、各気筒の排気ポート9は対応する排気マニホルド23及び排気管24を介してケーシング25に連結され、ケーシング25は排気管26に連結される。排気管24内には空燃比センサ27が取り付けられており、ケーシング25内には触媒28が収容されている。   On the other hand, the exhaust port 9 of each cylinder is connected to the casing 25 via the corresponding exhaust manifold 23 and the exhaust pipe 24, and the casing 25 is connected to the exhaust pipe 26. An air-fuel ratio sensor 27 is attached in the exhaust pipe 24, and a catalyst 28 is accommodated in the casing 25.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31を介して相互に接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35及び出力ポート36を具備する。アクセルペダル39にはアクセルペダル39の踏込量に比例した出力電圧を発生する負荷センサ40が接続される。エアフロメータ15、燃料圧センサ22、空燃比センサ27、及び負荷センサ40の出力電圧は対応するAD変換器38を介して入力ポート36にそれぞれ入力される。さらに、クランク角センサ41はクランクシャフトが例えば30°回転する毎に出力パルスを発生し、この出力パルスは入力ポート36に入力される。CPU34ではこの出力パルスに基づいて機関回転数Neが算出される。一方、出力ポート36は対応する駆動回路38を介して点火栓10、ステップモータ16、燃料噴射弁18、及び燃料ポンプ20に接続される。   The electronic control unit 30 is composed of a digital computer, and includes a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35, and a mutual connection via a bidirectional bus 31. An output port 36 is provided. A load sensor 40 that generates an output voltage proportional to the amount of depression of the accelerator pedal 39 is connected to the accelerator pedal 39. Output voltages of the air flow meter 15, the fuel pressure sensor 22, the air-fuel ratio sensor 27, and the load sensor 40 are respectively input to the input ports 36 via corresponding AD converters 38. Further, the crank angle sensor 41 generates an output pulse every time the crankshaft rotates, for example, 30 °, and this output pulse is input to the input port 36. The CPU 34 calculates the engine speed Ne based on this output pulse. On the other hand, the output port 36 is connected to the spark plug 10, the step motor 16, the fuel injection valve 18, and the fuel pump 20 via a corresponding drive circuit 38.

さて、触媒28はケーシング25内において互いに直列に配置された前段触媒28U及び後段触媒28Dを具備する。本発明による実施例では、前段触媒28UはNOx吸蔵還元触媒から構成され、後段触媒28Dは三元触媒から構成される。なお、後段触媒28DをNOx吸蔵還元触媒から構成することもできる。また、本発明による実施例では、前段触媒28Uの容量は後段触媒28Dの容量と同じかそれよりも大きくされる。しかしながら、前段触媒28Uの容量を後段触媒28Dの容量よりも小さくすることもできる。   The catalyst 28 includes a front catalyst 28U and a rear catalyst 28D that are arranged in series in the casing 25. In the embodiment according to the present invention, the front catalyst 28U is composed of a NOx storage reduction catalyst, and the rear catalyst 28D is composed of a three-way catalyst. Note that the rear-stage catalyst 28D can also be composed of a NOx storage reduction catalyst. In the embodiment according to the present invention, the capacity of the front catalyst 28U is made equal to or larger than the capacity of the rear catalyst 28D. However, the capacity of the front catalyst 28U can be made smaller than the capacity of the rear catalyst 28D.

図2は前段触媒すなわちNOx吸蔵還元触媒28Uの構造を示している。図2に示される実施例ではNOx吸蔵還元触媒28Uはハニカム構造をなしており、薄肉の隔壁50により互いに分離された複数個の排気ガス流通路51を具備する。各隔壁ないし基材50の両側表面上には例えばアルミナからなる触媒担体が担持されており、図3(A)及び(B)はこの触媒担体55の表面部分の断面を図解的に示している。図3(A)及び(B)に示されるように触媒担体55の表面上には貴金属触媒56が分散して担持されており、更に触媒担体55の表面上にはNOx吸収剤57の層が形成されている。   FIG. 2 shows the structure of the front stage catalyst, that is, the NOx storage reduction catalyst 28U. In the embodiment shown in FIG. 2, the NOx storage reduction catalyst 28 </ b> U has a honeycomb structure and includes a plurality of exhaust gas flow passages 51 separated from each other by thin partition walls 50. A catalyst carrier made of alumina, for example, is supported on both side surfaces of each partition wall or base material 50. FIGS. 3A and 3B schematically show a cross section of the surface portion of the catalyst carrier 55. . As shown in FIGS. 3A and 3B, a noble metal catalyst 56 is dispersed and supported on the surface of the catalyst carrier 55, and a layer of NOx absorbent 57 is further provided on the surface of the catalyst carrier 55. Is formed.

貴金属触媒56として白金Pt、パラジウムPd、オスミウムOs、金Au、ロジウムRh、イリジウムIr、ルテニウムRuから選ばれた少なくとも一つが用いられ、NOx吸収剤57を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられる。   As the noble metal catalyst 56, at least one selected from platinum Pt, palladium Pd, osmium Os, gold Au, rhodium Rh, iridium Ir, and ruthenium Ru is used, and the components constituting the NOx absorbent 57 are, for example, potassium K, sodium Na At least one selected from alkali metals such as cesium Cs, alkaline earth such as barium Ba and calcium Ca, and rare earths such as lanthanum La and yttrium Y is used.

機関吸気通路、燃焼室5及びNOx吸蔵還元触媒28U上流の排気通路内に供給された空気及び燃料(炭化水素)の比を排気ガスの空燃比と称すると、NOx吸収剤57は排気ガスの空燃比がリーンのときにはNOxを吸収し、排気ガス中の酸素濃度が低下すると吸収したNOxを放出するNOxの吸放出作用を行う。   If the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 5 and the exhaust passage upstream of the NOx storage reduction catalyst 28U is referred to as the air-fuel ratio of the exhaust gas, the NOx absorbent 57 When the fuel ratio is lean, NOx is absorbed, and when the oxygen concentration in the exhaust gas decreases, the NOx is absorbed and released to release the absorbed NOx.

すなわち、貴金属触媒56として白金Ptを用いNOx吸収剤57を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンのとき、すなわち排気ガス中の酸素濃度が高いときには排気ガス中に含まれるNOは図3(A)に示されるように白金Pt56上において酸化されてNOとなり、次いでNOx吸収剤57内に吸収されて炭酸バリウムBaCOと結合しながら硝酸イオンNO の形でNOx吸収剤57内に拡散する。このようにしてNOxがNOx吸収剤57内に吸収される。排気ガス中の酸素濃度が高い限り白金Pt56の表面でNOが生成され、NOx吸収剤57のNOx吸収能力が飽和しない限りNOがNOx吸収剤57内に吸収されて硝酸イオンNO が生成される。 That is, the case where platinum Pt is used as the noble metal catalyst 56 and barium Ba is used as a component constituting the NOx absorbent 57 will be described as an example. When the air-fuel ratio of the exhaust gas is lean, that is, the oxygen concentration in the exhaust gas is high. Sometimes the NO contained in the exhaust gas is oxidized on the platinum Pt 56 to become NO 2 as shown in FIG. 3A, and then absorbed into the NOx absorbent 57 and combined with the barium carbonate BaCO 3 and nitrate ions. It diffuses into the NOx absorbent 57 in the form of NO 3 . In this way, NOx is absorbed in the NOx absorbent 57. Exhaust oxygen concentration in the gas at the surface as far as the platinum Pt56 high, NO 2 is generated, as long as NO 2 to NOx absorbing capability of the NOx absorbent 57 is not saturated is absorbed in the NOx absorbent 57 nitrate ions NO 3 - is Generated.

これに対し、排気ガスの空燃比がリッチにされると排気ガス中の酸化濃度が低下するために反応が逆方向(NO →NO)に進み、斯くして図3(B)に示されるようにNOx吸収剤57内の硝酸イオンNO がNOの形でNOx吸収剤57から放出される。次いで放出されたNOxは排気ガス中に含まれる未燃HC,COによって還元される。 On the other hand, when the air-fuel ratio of the exhaust gas is made rich, the oxidation concentration in the exhaust gas decreases, so that the reaction proceeds in the reverse direction (NO 3 → NO 2 ), and therefore, FIG. 3 (B) As shown, nitrate ions NO 3 in the NOx absorbent 57 are released from the NOx absorbent 57 in the form of NO 2 . Next, the released NOx is reduced by unburned HC and CO contained in the exhaust gas.

また、本発明による実施例では、図4に示されるようにNOx吸蔵還元触媒28Uが上層28UU及び下層28ULを備えた多層構造から構成される。すなわち、基材50の上に下層28UL及び上層28UUが順次積層される。この場合、上層28UU及び下層28ULはそれぞれNOx吸蔵還元触媒を構成しており、すなわち上述した貴金属触媒56及びNOx吸収剤57を備えている。なお、上層28UUと下層28ULとの間又は下層28ULと触媒担体55との間に追加の層を設けることもできる。   Further, in the embodiment according to the present invention, as shown in FIG. 4, the NOx storage reduction catalyst 28 </ b> U has a multilayer structure including an upper layer 28 </ b> UU and a lower layer 28 </ b> UL. That is, the lower layer 28UL and the upper layer 28UU are sequentially stacked on the substrate 50. In this case, each of the upper layer 28UU and the lower layer 28UL constitutes a NOx storage reduction catalyst, that is, includes the above-described noble metal catalyst 56 and NOx absorbent 57. An additional layer may be provided between the upper layer 28UU and the lower layer 28UL, or between the lower layer 28UL and the catalyst carrier 55.

上層28UUの貴金属触媒56として、酸化性の高い貴金属、すなわち白金Pt、パラジウムPd、オスミウムOs、金Auから選ばれた少なくとも一つが用いられる。一方、下層28ULの貴金属触媒56として、還元性の高い貴金属、すなわちロジウムRh、イリジウムIr、ルテニウムRuから選ばれた少なくとも一つが用いられる。この場合、上層28UUには還元性の高い貴金属が含まれていない。   As the noble metal catalyst 56 of the upper layer 28UU, at least one selected from highly oxidizing noble metals, that is, platinum Pt, palladium Pd, osmium Os, and gold Au is used. On the other hand, as the noble metal catalyst 56 of the lower layer 28UL, at least one selected from highly reducible noble metals, that is, rhodium Rh, iridium Ir, and ruthenium Ru is used. In this case, the upper layer 28UU does not contain a highly reducing noble metal.

図5には上層28UU及び下層28ULの貴金属触媒56の種々の例が示される。すなわち、上層28UUの貴金属触媒56として、図5(A)の例では白金Ptが用いられており、図5(B)の例ではパラジウムPdが用いられており、図5(C)の例では白金Pt及びパラジウムPdが用いられている。これに対し、下層28ULの貴金属触媒56としては、いずれの例でもロジウムRhが用いられている。   FIG. 5 shows various examples of the noble metal catalyst 56 of the upper layer 28UU and the lower layer 28UL. That is, as the noble metal catalyst 56 of the upper layer 28UU, platinum Pt is used in the example of FIG. 5 (A), palladium Pd is used in the example of FIG. 5 (B), and in the example of FIG. 5 (C). Platinum Pt and palladium Pd are used. On the other hand, rhodium Rh is used as the noble metal catalyst 56 of the lower layer 28UL in any example.

このように上層28UU及び下層28ULの貴金属触媒56を選択すると、上層28UUの酸化性が下層28ULの酸化性よりも高くなり、下層28ULの還元性が上層28UUの還元性よりも高くなる。   When the noble metal catalyst 56 of the upper layer 28UU and the lower layer 28UL is selected in this way, the oxidizability of the upper layer 28UU is higher than the oxidizability of the lower layer 28UL, and the reducibility of the lower layer 28UL is higher than the reducibility of the upper layer 28UU.

一方、後段触媒すなわち三元触媒28Dも、NOx吸蔵還元触媒28Uと同様にハニカム構造をなしており、薄肉の隔壁により互いに分離された複数個の排気ガス流通路を具備する。各隔壁の両側表面上には例えばアルミナからなる触媒担体が担持されており、触媒担体の表面上には貴金属成分を含む触媒成分が担持されている。   On the other hand, the latter-stage catalyst, that is, the three-way catalyst 28D, also has a honeycomb structure like the NOx storage reduction catalyst 28U, and includes a plurality of exhaust gas flow passages separated from each other by thin partition walls. A catalyst carrier made of alumina, for example, is supported on both side surfaces of each partition wall, and a catalyst component containing a noble metal component is supported on the surface of the catalyst carrier.

また、本発明による実施例では、三元触媒28Dも上層28DU及び下層28DLを備えた多層構造から構成される。この場合、上層28DU及び下層28DLはそれぞれ三元触媒を構成している。   In the embodiment according to the present invention, the three-way catalyst 28D also has a multilayer structure including an upper layer 28DU and a lower layer 28DL. In this case, each of the upper layer 28DU and the lower layer 28DL constitutes a three-way catalyst.

三元触媒28Dでは、上層28DUの貴金属成分として還元性の高い貴金属から選ばれた少なくとも一つが用いられ、下層28DLの貴金属成分として酸化性の高い貴金属から選ばれた少なくとも一つが用いられる。図6(A)に示される例では、上層28DUの貴金属成分としてロジウムRhが用いられており、下層28DLの貴金属成分として白金Ptが用いられている。   In the three-way catalyst 28D, at least one selected from noble metals with high reducibility is used as the noble metal component of the upper layer 28DU, and at least one selected from noble metals with high oxidizability is used as the noble metal component of the lower layer 28DL. In the example shown in FIG. 6A, rhodium Rh is used as the noble metal component of the upper layer 28DU, and platinum Pt is used as the noble metal component of the lower layer 28DL.

このように上層28DU及び下層28DLの貴金属成分を選択すると、上層28DUの還元性が下層28DLの還元性よりも高くなり、下層28DLの酸化性が上層28DUの酸化性よりも高くなる。   When the noble metal components of the upper layer 28DU and the lower layer 28DL are selected in this way, the reducing property of the upper layer 28DU becomes higher than that of the lower layer 28DL, and the oxidizing property of the lower layer 28DL becomes higher than the oxidizing property of the upper layer 28DU.

あるいは、三元触媒28Dを単層構造から構成することもできる。この場合、貴金属成分として少なくとも還元性の高い貴金属が用いられる。酸化性の高い金属は用いてもよいし用いなくてもよい。図6(B)に示される例では、貴金属成分としてロジウムRh及び白金Ptが用いられている。   Alternatively, the three-way catalyst 28D can be configured from a single layer structure. In this case, a noble metal having at least high reducibility is used as the noble metal component. A highly oxidizable metal may or may not be used. In the example shown in FIG. 6B, rhodium Rh and platinum Pt are used as noble metal components.

このように前段触媒すなわちNOx吸蔵還元触媒28Uの貴金属触媒56及び後段触媒すなわち三元触媒28Dの貴金属成分を選択すると、NOx吸蔵還元触媒28の酸化性が三元触媒28Dの酸化性よりも高くなり、三元触媒28Dの還元性がNOx吸蔵還元触媒28Uの還元性よりも高くなる。   When the noble metal catalyst 56 of the front stage catalyst, that is, the NOx storage reduction catalyst 28U and the noble metal component of the rear stage catalyst, that is, the three-way catalyst 28D are selected in this way, the oxidation property of the NOx storage reduction catalyst 28 becomes higher than the oxidation property of the three-way catalyst 28D. Further, the reducibility of the three-way catalyst 28D becomes higher than the reducibility of the NOx storage reduction catalyst 28U.

本発明による実施例では、前段触媒すなわちNOx吸蔵還元触媒28U及び後段触媒すなわち三元触媒28Dを別個の基材にそれぞれ担持し、これら基材を互いに直列に結合することによって触媒28が形成される。なお、共通の基材の上流側にNOx吸蔵還元触媒28Uを担持し、下流側に三元触媒28Dを担持するようにしてもよい。   In the embodiment according to the present invention, the catalyst 28 is formed by supporting the upstream catalyst, that is, the NOx occlusion reduction catalyst 28U and the downstream catalyst, that is, the three-way catalyst 28D, on separate substrates and connecting these substrates in series with each other. . Note that the NOx storage reduction catalyst 28U may be carried on the upstream side of the common base material, and the three-way catalyst 28D may be carried on the downstream side.

一方、多層構造のNOx吸蔵還元触媒28Uは例えば次のようにして製造される。下層28ULの貴金属触媒56としてロジウムRhを用い上層28UUの貴金属触媒56として白金Ptを用いた場合を例にとって説明すると、まず、下層28ULの触媒担体を形成する担体粉末及びロジウム粉末を分散させたスラリーが調製され、このスラリーが基材上に適用される。この場合、下層28ULの触媒担体として、例えばジルコニウムZr、アルミナAl、セリアCeO、ZrO−Al、ZrO−Al−TiOを用いることができる。また、ロジウム粉末はPM粉末から形成され、硝酸塩又は酢酸塩の形でスラリー中に分散される。このスラリーの粘度は例えば30%前後が好ましく、コート量は50g/Lから200g/Lが好ましい。次いで、乾燥(200℃、2時間)及び焼成(400℃、4時間)が行われ、斯くして下層28ULが形成される。 On the other hand, the NOx occlusion reduction catalyst 28U having a multilayer structure is manufactured, for example, as follows. The case where rhodium Rh is used as the noble metal catalyst 56 of the lower layer 28UL and platinum Pt is used as the noble metal catalyst 56 of the upper layer 28UU will be described as an example. First, a slurry in which the carrier powder forming the catalyst carrier of the lower layer 28UL and the rhodium powder are dispersed Is prepared and this slurry is applied onto the substrate. In this case, for example, zirconium Zr, alumina Al 2 O 3 , ceria CeO 2 , ZrO 2 —Al 2 O 3 , ZrO 2 —Al 2 O 3 —TiO 2 can be used as the catalyst support of the lower layer 28UL. The rhodium powder is formed from PM powder and dispersed in the slurry in the form of nitrate or acetate. The viscosity of the slurry is preferably about 30%, for example, and the coating amount is preferably 50 g / L to 200 g / L. Next, drying (200 ° C., 2 hours) and baking (400 ° C., 4 hours) are performed, and thus the lower layer 28UL is formed.

次いで、上層28UUの触媒担体を形成する担体粉末及び白金粉末を分散させたスラリーが調製され、このスラリーが下層28UL上に適用される。この場合、上層28UUの触媒担体として、例えばジルコニウムZr、アルミナAl、セリアCeO、Al−CeO、ZrO−Al、ZrO−Al−TiOを用いることができる。また、白金粉末はテトラクロロ白金塩やジニトロ白金塩といった硝酸塩又は酢酸塩の形でスラリー中に分散される。このスラリーの粘度は例えば30%前後が好ましく、コート量は50g/Lから200g/Lが好ましい。次いで、乾燥(200℃、2時間)及び焼成(400℃、4時間)が行われ、斯くして上層28UUが形成される。あるいは、下層28UL上に触媒担体をまず形成し、次いでテトラクロロ白金塩又はジニトロ白金塩の水溶液をこの触媒担体に含浸させるようにしてもよい。 Next, a slurry is prepared in which a carrier powder that forms the catalyst carrier of the upper layer 28UU and a platinum powder are dispersed, and this slurry is applied onto the lower layer 28UL. In this case, as the catalyst support of the upper layer 28UU, for example, zirconium Zr, alumina Al 2 O 3 , ceria CeO 2 , Al 2 O 3 —CeO 2 , ZrO 2 —Al 2 O 3 , ZrO 2 —Al 2 O 3 —TiO 2 Can be used. The platinum powder is dispersed in the slurry in the form of nitrate or acetate such as tetrachloroplatinum salt or dinitroplatinum salt. The viscosity of the slurry is preferably about 30%, for example, and the coating amount is preferably 50 g / L to 200 g / L. Next, drying (200 ° C., 2 hours) and baking (400 ° C., 4 hours) are performed, and thus the upper layer 28UU is formed. Alternatively, the catalyst support may be first formed on the lower layer 28UL, and then the catalyst support may be impregnated with an aqueous solution of tetrachloroplatinum salt or dinitroplatinum salt.

なお、多層構造の三元触媒28Dも、NOx吸蔵還元触媒28Uと同様に製造することができる。   The three-way catalyst 28D having a multilayer structure can also be manufactured in the same manner as the NOx storage reduction catalyst 28U.

ところで、本発明による実施例では、図7に示されるように機関負荷率KLがあらかじめ定められた設定負荷率KLXよりも小さい低負荷運転時には、リーン空燃比のもとで燃焼を行うリーン運転が行われ、機関負荷率KLが設定負荷率KLXよりも大きい高負荷運転時には、理論空燃比のもとで燃焼を行う理論空燃比運転が行われる。ここで、機関負荷率KLは全負荷に対する機関負荷の割合をいう。なお、この場合、リーン運転が行われる内燃機関において、機関運転状態に応じ理論空燃比運転に一時的に切り換えられるという見方もできる。   By the way, in the embodiment according to the present invention, as shown in FIG. 7, when the engine load factor KL is lower than the predetermined set load factor KLX, the lean operation for performing combustion under the lean air-fuel ratio is performed. During high load operation where the engine load factor KL is greater than the set load factor KLX, the stoichiometric air-fuel ratio operation is performed in which combustion is performed under the stoichiometric air-fuel ratio. Here, the engine load factor KL is the ratio of the engine load to the total load. In this case, an internal combustion engine that performs lean operation may be temporarily switched to theoretical air-fuel ratio operation according to the engine operating state.

したがって、リーン運転が行われているときにはNOx吸蔵還元触媒28U内に流入する排気ガスの空燃比はリーンとなり、このとき排気ガス中のNOxがNOx吸蔵還元触媒28U内に吸蔵される。しかしながらリーン運転が継続して行われるとその間にNOx吸蔵還元触媒28UのNOx吸蔵能力が飽和してしまい、斯くしてNOx吸蔵還元触媒28UによりNOxを吸蔵できなくなってしまう。そこで本発明による実施例ではNOx吸蔵還元触媒28Uの吸蔵能力が飽和する前に排気ガスの空燃比を一時的にリッチし、それによってNOx吸蔵還元触媒28UからNOxを放出させ、排気中のHC,COによりN等に還元するようにしている。 Therefore, when the lean operation is performed, the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst 28U becomes lean, and at this time, NOx in the exhaust gas is stored in the NOx storage reduction catalyst 28U. However, if the lean operation is continued, the NOx occlusion capacity of the NOx occlusion reduction catalyst 28U is saturated during that time, and therefore NOx cannot be occluded by the NOx occlusion reduction catalyst 28U. Therefore, in the embodiment according to the present invention, the air-fuel ratio of the exhaust gas is temporarily enriched before the storage capacity of the NOx storage reduction catalyst 28U is saturated, thereby releasing NOx from the NOx storage reduction catalyst 28U, and the HC, Reduction to N 2 or the like by CO is performed.

すなわち、本発明による実施例ではNOx吸蔵還元触媒28Uに単位時間当り吸蔵されるNOx量が例えば機関負荷率L及び機関回転数Neといった機関運転状態の関数としてマップの形で予めROM32内に記憶されており、このNOx量を積算することによってNOx吸蔵還元触媒28Uに吸蔵されているNOx量の積算値SNが算出される。その上で、この吸蔵NOx量積算値SNが上限値MAXを越えるごとに、リッチ空燃比のもとで燃焼を行うリッチ運転が一時的に行われる。その結果、NOx吸蔵還元触媒28UからNOxが放出され還元される。   That is, in the embodiment according to the present invention, the amount of NOx stored per unit time in the NOx storage reduction catalyst 28U is stored in advance in the ROM 32 in the form of a map as a function of the engine operating state such as the engine load factor L and the engine speed Ne. The integrated value SN of the NOx amount stored in the NOx storage reduction catalyst 28U is calculated by integrating the NOx amount. In addition, every time the stored NOx amount integrated value SN exceeds the upper limit value MAX, a rich operation in which combustion is performed under a rich air-fuel ratio is temporarily performed. As a result, NOx is released from the NOx occlusion reduction catalyst 28U and reduced.

図8は本発明による実施例の機関運転制御を実行するためのルーチンを示している。このルーチンはあらかじめ定められた設定時間ごとの割り込みによって実行される。   FIG. 8 shows a routine for executing the engine operation control of the embodiment according to the present invention. This routine is executed by interruption every predetermined time.

図8を参照すると、まずステップ100では機関負荷率KLが設定負荷率KLX(図7)よりも大きいか否かが判別される。KL≦KLXのときには次いでステップ101に進み、リーン運転が行われる。続くステップ102では吸蔵NOx量積算値SNが算出される。続くステップ103では吸蔵NOx量積算値SNが上限値MAXよりも大きいか否かが判別される。SN≦MAXのときには処理サイクルを終了し、したがってリーン運転が継続される。これに対し、SN>MAXのときには次いでステップ104に進み、リッチ運転が例えば一定時間だけ行われる。続くステップ105では吸蔵NOx量積算値SNがクリアされる。一方、機関負荷率KLが設定負荷率KLXよりも大きいときにはステップ100からステップ106に進み、理論空燃比運転が行われる。   Referring to FIG. 8, first, at step 100, it is judged if the engine load factor KL is larger than the set load factor KLX (FIG. 7). When KL ≦ KLX, the routine proceeds to step 101 where a lean operation is performed. In the following step 102, the stored NOx amount integrated value SN is calculated. In the following step 103, it is determined whether or not the stored NOx amount integrated value SN is larger than the upper limit value MAX. When SN ≦ MAX, the processing cycle is ended, and therefore the lean operation is continued. On the other hand, when SN> MAX, the routine proceeds to step 104 where the rich operation is performed for a certain time, for example. In the subsequent step 105, the stored NOx amount integrated value SN is cleared. On the other hand, when the engine load factor KL is larger than the set load factor KLX, the routine proceeds from step 100 to step 106, where the theoretical air-fuel ratio operation is performed.

さて、本発明による実施例では、触媒28ないしNOx吸蔵還元触媒28UのNOx吸蔵能力を大きくすることができる。   In the embodiment according to the present invention, the NOx storage capacity of the catalyst 28 or the NOx storage reduction catalyst 28U can be increased.

図9(A)は触媒28のNOx吸蔵容量STの実験結果を示している。図9(A)において、比較例Caでは、触媒28は単層構造のNOx吸蔵還元触媒のみから構成され、貴金属触媒として白金Pt及びロジウムRhが用いられている。実施例Ea1では、触媒28は二層構造のNOx吸蔵還元触媒のみから構成され、上層の貴金属触媒として白金Ptが用いられ、下層の貴金属触媒としてロジウムRhが用いられている。実施例Ea2では、触媒28は二層構造のNOx吸蔵還元触媒のみから構成され、上層の貴金属触媒として白金Pt及びパラジウムPdが用いられ、下層の貴金属触媒としてロジウムRhが用いられている。   FIG. 9A shows the experimental result of the NOx storage capacity ST of the catalyst 28. In FIG. 9A, in Comparative Example Ca, the catalyst 28 is composed of only a single-layer NOx storage reduction catalyst, and platinum Pt and rhodium Rh are used as noble metal catalysts. In Example Ea1, the catalyst 28 is composed of only a two-layer NOx storage reduction catalyst, platinum Pt is used as the upper layer noble metal catalyst, and rhodium Rh is used as the lower layer noble metal catalyst. In Example Ea2, the catalyst 28 is composed of only a two-layer NOx storage reduction catalyst, platinum Pt and palladium Pd are used as the upper layer noble metal catalyst, and rhodium Rh is used as the lower layer noble metal catalyst.

図9(A)からわかるように、実施例Ea1,Ea2では触媒28のNOx吸蔵容量STが大きくなり、実施例Ea2ではさらに大きくなる。これは、NOx吸蔵還元触媒を多層構造から構成したことによるものと考えられる。したがって、触媒28への流入排気ガスの空燃比をリッチに切り換える切り換え作用の頻度を低減することができ、燃料消費量を低減することができる。   As can be seen from FIG. 9A, the NOx storage capacity ST of the catalyst 28 increases in the examples Ea1 and Ea2, and further increases in the example Ea2. This is considered to be due to the NOx occlusion reduction catalyst having a multilayer structure. Therefore, it is possible to reduce the frequency of the switching operation for switching the air-fuel ratio of the exhaust gas flowing into the catalyst 28 to rich, and to reduce the fuel consumption.

一方、図10に示されるように触媒28への流入排気ガスの空燃比A/Fがリッチに切り換えられると、単位時間当たりに触媒28から排出されるNOx量EXNが急激に増大してピーク値PKNに達し、その後減少する。本発明による実施例では、この排出NOx量ピーク値PKNを低減することができる。   On the other hand, as shown in FIG. 10, when the air-fuel ratio A / F of the exhaust gas flowing into the catalyst 28 is switched to rich, the NOx amount EXN exhausted from the catalyst 28 per unit time increases rapidly and reaches a peak value. PKN is reached and then decreases. In the embodiment according to the present invention, this exhaust NOx amount peak value PKN can be reduced.

図9(B)は触媒28の排出NOx量ピーク値PKNの実験結果を示している。図9(B)において、比較例Cb1では、触媒28は単層構造のNOx吸蔵還元触媒のみから構成され、貴金属触媒として白金Pt及びロジウムRhが用いられている。比較例Cb2では、触媒28は二層構造のNOx吸蔵還元触媒のみから構成され、上層の貴金属成分として白金Ptが用いられており、下層の貴金属成分としてロジウムRhが用いられている。実施例Ebでは、触媒28は前段触媒及び後段触媒から構成される。前段触媒は二層構造のNOx吸蔵還元触媒から構成され、上層の貴金属触媒として白金Ptが用いられ、下層の貴金属触媒としてロジウムRhが用いられている。後段触媒は単層構造の三元触媒から構成され、貴金属成分として白金Pt及びロジウムRhが用いられている。   FIG. 9B shows an experimental result of the exhaust NOx amount peak value PKN of the catalyst 28. In FIG. 9B, in Comparative Example Cb1, the catalyst 28 is composed of only a single-layer NOx storage reduction catalyst, and platinum Pt and rhodium Rh are used as noble metal catalysts. In Comparative Example Cb2, the catalyst 28 is composed of only a two-layer NOx storage reduction catalyst, platinum Pt is used as the upper layer noble metal component, and rhodium Rh is used as the lower layer noble metal component. In Example Eb, the catalyst 28 is composed of a front stage catalyst and a rear stage catalyst. The pre-stage catalyst is composed of a two-layer NOx occlusion reduction catalyst, platinum Pt is used as an upper layer noble metal catalyst, and rhodium Rh is used as a lower layer noble metal catalyst. The latter catalyst is composed of a three-way catalyst having a single layer structure, and platinum Pt and rhodium Rh are used as noble metal components.

図9(B)からわかるように、比較例Cb2では比較例Cb1よりも排出NOx量ピーク値PKNが増大する。しかしながら、実施例Ebでは排出NOx量ピーク値PKNを大幅に低減することができる。これは、前段触媒すなわちNOx吸蔵還元触媒から放出されたNOxが後段触媒で還元されることによるものと考えられる。したがって、NOx吸蔵容量を大きくしつつリーン運転時におけるNOx浄化率を高く維持できるということになる。   As can be seen from FIG. 9B, the exhausted NOx amount peak value PKN increases in Comparative Example Cb2 than in Comparative Example Cb1. However, in Example Eb, the exhaust NOx amount peak value PKN can be significantly reduced. This is considered to be due to NOx released from the front-stage catalyst, that is, the NOx storage reduction catalyst, being reduced by the rear-stage catalyst. Therefore, the NOx purification rate during lean operation can be maintained high while increasing the NOx storage capacity.

さらに、本発明による実施例では、高負荷運転時のように流入排気ガスの空燃比が理論空燃比の場合の触媒28のNOx浄化率EFFSを高く維持することができる。   Further, in the embodiment according to the present invention, the NOx purification rate EFFS of the catalyst 28 can be maintained high when the air-fuel ratio of the inflowing exhaust gas is the stoichiometric air-fuel ratio as in the high load operation.

図9(C)は流入排気ガスの空燃比が理論空燃比の場合の触媒28のNOx浄化率EFFSの実験結果を示している。図9(C)において、比較例Cc1では、触媒28は単層構造のNOx吸蔵還元触媒のみから構成され、貴金属触媒として白金Pt及びロジウムRhが用いられている。比較例Cc2では、触媒28は二層構造の三元触媒のみから構成され、上層の貴金属触媒としてロジウムRhが用いられており、下層の貴金属触媒として白金Ptが用いられている。実施例Ecでは、触媒28は前段触媒及び後段触媒から構成される。前段触媒は二層構造のNOx吸蔵還元触媒から構成され、上層の貴金属触媒として白金Ptが用いられ、下層の貴金属触媒としてロジウムRhが用いられている。後段触媒は単層構造の三元触媒から構成され、貴金属成分として白金Pt及びロジウムRhが用いられている。なお、単位時間当たりの触媒28内への流入NOx量及び触媒28からの流出NOx量をそれぞれINN,EXNとすると、触媒28のNOx浄化率EFFは次式によって表すことができる。   FIG. 9C shows an experimental result of the NOx purification rate EFFS of the catalyst 28 when the air-fuel ratio of the inflowing exhaust gas is the stoichiometric air-fuel ratio. In FIG. 9C, in Comparative Example Cc1, the catalyst 28 is composed only of a single-layer NOx storage reduction catalyst, and platinum Pt and rhodium Rh are used as noble metal catalysts. In Comparative Example Cc2, the catalyst 28 is composed of only a three-way catalyst having a two-layer structure, rhodium Rh is used as an upper layer noble metal catalyst, and platinum Pt is used as a lower layer noble metal catalyst. In Example Ec, the catalyst 28 is composed of a front stage catalyst and a rear stage catalyst. The pre-stage catalyst is composed of a two-layer NOx occlusion reduction catalyst, platinum Pt is used as an upper layer noble metal catalyst, and rhodium Rh is used as a lower layer noble metal catalyst. The latter catalyst is composed of a three-way catalyst having a single layer structure, and platinum Pt and rhodium Rh are used as noble metal components. If the inflow NOx amount into the catalyst 28 per unit time and the outflow NOx amount from the catalyst 28 are INN and EXN, respectively, the NOx purification rate EFF of the catalyst 28 can be expressed by the following equation.

EFF=(INN−EXN)/INN
図9(C)からわかるように、実施例Ecでは比較例Cc1よりもNOx浄化率EFFSが高められ、比較例Cc2と同等のNOx浄化率EFFSを得ることができる。
EFF = (INN−EXN) / INN
As can be seen from FIG. 9C, in Example Ec, the NOx purification rate EFFS is higher than in Comparative Example Cc1, and a NOx purification rate EFFS equivalent to that in Comparative Example Cc2 can be obtained.

上述の本発明による実施例では、NOx吸蔵還元触媒28Uへの流入排気ガスの空燃比をリッチにするためにリッチ運転を行うようにしている。しかしながら、燃焼室内に燃料を直接噴射する燃料噴射弁を備えた内燃機関では膨張行程又は排気行程に燃料噴射を行うことにより流入排気ガスの空燃比をリッチにするようにしてもよい。あるいは、NOx吸蔵還元触媒28U上流の排気通路内に還元剤ないし燃料を二次的に供給することにより流入排気ガスの空燃比をリッチにするようにすることもできる。   In the above-described embodiment according to the present invention, the rich operation is performed in order to make the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst 28U rich. However, in an internal combustion engine equipped with a fuel injection valve that directly injects fuel into the combustion chamber, the air-fuel ratio of the inflowing exhaust gas may be made rich by performing fuel injection in the expansion stroke or exhaust stroke. Alternatively, the air-fuel ratio of the inflowing exhaust gas can be made rich by secondarily supplying a reducing agent or fuel into the exhaust passage upstream of the NOx storage reduction catalyst 28U.

また、上述の本発明による実施例では、低負荷運転時にリーン運転を行い、高負荷運転時に理論空燃比運転を行うようにしている。しかしながら、加速運転時にも理論空燃比運転を行うようにしてもよい。   In the above-described embodiment according to the present invention, the lean operation is performed during the low load operation, and the stoichiometric air-fuel ratio operation is performed during the high load operation. However, the stoichiometric air-fuel ratio operation may be performed even during the acceleration operation.

内燃機関の全体図である。1 is an overall view of an internal combustion engine. NOx吸蔵還元触媒の断面図である。It is sectional drawing of a NOx storage reduction catalyst. 触媒担体の表面部分の断面図である。It is sectional drawing of the surface part of a catalyst support | carrier. NOx吸蔵還元触媒の拡大断面図である。It is an expanded sectional view of a NOx storage reduction catalyst. NOx吸蔵還元触媒の種々の例を示す図である。It is a figure which shows the various examples of a NOx storage reduction catalyst. 三元触媒の種々の例を示す図である。It is a figure which shows the various examples of a three-way catalyst. 設定負荷率KLXを説明する図である。It is a figure explaining the setting load factor KLX. 機関運転制御ルーチンを実行するためのフローチャートである。It is a flowchart for performing an engine operation control routine. 種々の実験結果を示す図である。It is a figure which shows various experimental results. 排出NOx量ピーク値を説明するための図である。It is a figure for demonstrating discharge | emission NOx amount peak value.

符号の説明Explanation of symbols

1 機関本体
24,26 排気管
25 ケーシング
28 触媒
28U 前段触媒(NOx吸蔵還元触媒)
28D 後段触媒(三元触媒)
1 Engine body 24, 26 Exhaust pipe 25 Casing 28 Catalyst 28U Pre-stage catalyst (NOx storage reduction catalyst)
28D latter stage catalyst (three way catalyst)

Claims (5)

機関排気通路内に配置された共通のケーシング内に前段触媒及び後段触媒を互いに直列配置して収容した内燃機関の排気浄化装置において、前段触媒を、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOxを吸蔵し流入する排気ガスの空燃比がリッチになると吸蔵しているNOxを放出して還元するNOx吸蔵還元触媒から構成すると共に、後段触媒を三元触媒又はNOx吸蔵還元触媒から構成し、前段触媒の酸化性を後段触媒の酸化性よりも高くなるように調製すると共に後段触媒の還元性を前段触媒の還元性よりも高くなるように調製し、前段触媒を上層及び下層を具備した多層構造から構成し、前段触媒において上層の酸化性を下層の酸化性よりも高くなるように調製すると共に下層の還元性を上層の還元性よりも高くなるように調製した内燃機関の排気浄化装置。   In an exhaust gas purification apparatus for an internal combustion engine in which a front-stage catalyst and a rear-stage catalyst are accommodated in series in a common casing disposed in an engine exhaust passage, the front-stage catalyst is disposed when the air-fuel ratio of the inflowing exhaust gas is lean. It is composed of a NOx occlusion reduction catalyst that occludes NOx in the inflowing exhaust gas and releases and reduces the NOx occluded when the air-fuel ratio of the inflowing exhaust gas becomes rich, and the latter catalyst is a three-way catalyst or NOx occlusion It is composed of a reduction catalyst, and is prepared so that the oxidation performance of the front-stage catalyst is higher than that of the rear-stage catalyst and the reduction performance of the rear-stage catalyst is higher than that of the front-stage catalyst. And a multilayer structure having a lower layer, and prepared so that the upper layer oxidizability is higher than the lower layer oxidizability in the pre-stage catalyst, and the lower layer reducibility is higher than the upper layer reducibility. Exhaust purification apparatus becomes higher thus prepared engine. 前記後段触媒を上層及び下層を具備した多層構造から構成し、後段触媒において上層の還元性を下層の還元性よりも高くなるように調製すると共に下層の酸化性を上層の酸化性よりも高くなるように調製した請求項1に記載の内燃機関の排気浄化装置。   The latter catalyst is composed of a multilayer structure including an upper layer and a lower layer, and the lower layer is prepared such that the upper layer has a higher reducibility than the lower layer, and the lower layer has a higher oxidizing property than the upper layer. The exhaust emission control device for an internal combustion engine according to claim 1, prepared as described above. 前記後段触媒を単層構造から構成した請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the rear catalyst has a single layer structure. 内燃機関における空燃比がリーンに設定されており、前記NOx吸蔵還元触媒内に吸蔵されたNOxを放出し還元すべきときにはNOx吸蔵還元触媒に流入する排気ガスの空燃比が一時的にリッチに切り換えられる請求項1から3までのいずれか一項に記載の内燃機関の排気浄化装置。   When the air-fuel ratio in the internal combustion engine is set to lean and the NOx stored in the NOx storage reduction catalyst is to be released and reduced, the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst is temporarily switched to rich. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 3. 内燃機関における空燃比が機関運転状態に応じて一時的に理論空燃比に切り換えられる請求項4に記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to claim 4, wherein the air-fuel ratio in the internal combustion engine is temporarily switched to the stoichiometric air-fuel ratio in accordance with the engine operating state.
JP2007289927A 2007-11-07 2007-11-07 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4485564B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007289927A JP4485564B2 (en) 2007-11-07 2007-11-07 Exhaust gas purification device for internal combustion engine
US12/741,841 US20110079001A1 (en) 2007-11-07 2008-11-06 Exhaust purifying device of internal combustion engine
PCT/IB2008/002964 WO2009060290A2 (en) 2007-11-07 2008-11-06 Exhaust purifying device of internal combustion engine
DE112008004280.2T DE112008004280A5 (en) 2007-11-07 2008-11-06 Exhaust gas purification device for an internal combustion engine
DE112008002983.0T DE112008002983B4 (en) 2007-11-07 2008-11-06 Exhaust gas purification device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289927A JP4485564B2 (en) 2007-11-07 2007-11-07 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009114994A JP2009114994A (en) 2009-05-28
JP4485564B2 true JP4485564B2 (en) 2010-06-23

Family

ID=40521713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289927A Expired - Fee Related JP4485564B2 (en) 2007-11-07 2007-11-07 Exhaust gas purification device for internal combustion engine

Country Status (4)

Country Link
US (1) US20110079001A1 (en)
JP (1) JP4485564B2 (en)
DE (2) DE112008004280A5 (en)
WO (1) WO2009060290A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360361B1 (en) * 2008-11-26 2016-11-30 Honda Motor Co., Ltd. Exhaust purification apparatus for internal combustion engine
JP5163808B2 (en) * 2009-03-19 2013-03-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US8822887B2 (en) 2010-10-27 2014-09-02 Shaw Arrow Development, LLC Multi-mode heater for a diesel emission fluid tank
US9038369B2 (en) * 2013-02-13 2015-05-26 Cummins Inc. Systems and methods for aftertreatment system diagnostics
FR3011877B1 (en) * 2013-10-11 2017-05-05 Peugeot Citroen Automobiles Sa EXHAUST GAS TREATMENT DEVICE FOR A DIESEL VEHICLE EXHAUST LINE COMPRISING A DEPOLLUTION CONVERSION ELEMENT
USD729141S1 (en) 2014-05-28 2015-05-12 Shaw Development LLC Diesel emissions fluid tank
USD729722S1 (en) 2014-05-28 2015-05-19 Shaw Development LLC Diesel emissions fluid tank floor
JP6369421B2 (en) * 2015-08-21 2018-08-08 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US11081658B2 (en) 2016-10-03 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
CN111770794B (en) * 2018-03-30 2021-08-13 三井金属矿业株式会社 Exhaust gas purifying catalyst
US20220105494A1 (en) * 2019-01-22 2022-04-07 Mitsui Mining & Smelting Co., Ltd. Catalyst for purifying exhaust gas
CN110201707A (en) * 2019-05-17 2019-09-06 昆明贵研催化剂有限责任公司 For the NO under equivalent combustion interval hyperoxia operating conditionxThree-effect catalyst for purifying and preparation method thereof
CN114728236B (en) * 2019-11-21 2024-02-20 康明斯公司 System and method for operating a passive NOx adsorber in an exhaust aftertreatment system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2257949C (en) * 1996-06-10 2003-02-11 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
JP3123474B2 (en) 1997-07-28 2001-01-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US6497848B1 (en) * 1999-04-02 2002-12-24 Engelhard Corporation Catalytic trap with potassium component and method of using the same
US6375910B1 (en) * 1999-04-02 2002-04-23 Engelhard Corporation Multi-zoned catalytic trap and methods of making and using the same
JP3795871B2 (en) * 2003-03-20 2006-07-12 株式会社キャタラー Exhaust gas purification catalyst system
DE102004036478B4 (en) * 2003-07-30 2007-07-19 Mitsubishi Jidosha Kogyo K.K. Exhaust emission removing catalyst device
JP4639919B2 (en) * 2005-04-08 2011-02-23 三菱自動車工業株式会社 Exhaust gas purification device
JP2007231918A (en) * 2006-03-03 2007-09-13 Toyota Motor Corp Exhaust emission control device for compression ignition type internal combustion engine
JP4760625B2 (en) * 2006-09-06 2011-08-31 マツダ株式会社 Exhaust gas purification catalyst device
JP4197029B2 (en) * 2006-11-02 2008-12-17 いすゞ自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification system, and exhaust gas purification method

Also Published As

Publication number Publication date
US20110079001A1 (en) 2011-04-07
DE112008004280A5 (en) 2015-03-19
WO2009060290A3 (en) 2009-06-25
DE112008002983T5 (en) 2010-10-14
DE112008002983B4 (en) 2016-12-22
WO2009060290A2 (en) 2009-05-14
JP2009114994A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP4485564B2 (en) Exhaust gas purification device for internal combustion engine
JP4420048B2 (en) Exhaust gas purification device for internal combustion engine
EP2418363A1 (en) Control device for internal combustion engine
JP4062231B2 (en) Exhaust gas purification device for internal combustion engine
EP2113645B1 (en) Exhaust emission purifying device for internal combustion engine
JP5748005B2 (en) Exhaust gas purification device for internal combustion engine
JP4935928B2 (en) Exhaust gas purification device for internal combustion engine
JP2010048134A (en) Exhaust emission control device for internal combustion engine
JP4120563B2 (en) Exhaust gas purification device for internal combustion engine
JP4946658B2 (en) Exhaust gas purification catalyst device
EP2282024B1 (en) Exhaust purifying device for internal combustion engine
WO2002002916A1 (en) Catalyst device for clarification of exhaust gas
JP2009041441A (en) Exhaust emission control device of internal combustion engine
JP2000145433A (en) Exhaust gas purifier for internal combustion engines
JP2010031730A (en) Exhaust emission control device for internal combustion engine
EP2071147B1 (en) Internal combustion engine and exhaust gas purification apparatus
JP2009007946A (en) Exhaust emission control catalyst device
JP2008303791A (en) Exhaust emission control device of internal combustion engine
JP2009024521A (en) Exhaust emission control device of internal combustion engine
JP6997838B1 (en) Exhaust gas purification catalyst
JP4506545B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4306566B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP2007136380A (en) Apparatus for cleaning exhaust gas from internal-combustion engine and method for manufacturing exhaust gas cleaning catalyst
JP2007046493A (en) Exhaust emission control device of internal combustion engine
JP2009007947A (en) Exhaust emission control catalyst device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees