JP4485013B2 - Plate type heat pipe and manufacturing method thereof - Google Patents

Plate type heat pipe and manufacturing method thereof Download PDF

Info

Publication number
JP4485013B2
JP4485013B2 JP2000142792A JP2000142792A JP4485013B2 JP 4485013 B2 JP4485013 B2 JP 4485013B2 JP 2000142792 A JP2000142792 A JP 2000142792A JP 2000142792 A JP2000142792 A JP 2000142792A JP 4485013 B2 JP4485013 B2 JP 4485013B2
Authority
JP
Japan
Prior art keywords
plate
pores
intermediate plate
notch
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000142792A
Other languages
Japanese (ja)
Other versions
JP2001324286A (en
Inventor
大輔 佐藤
Original Assignee
ティーエス ヒートロニクス 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエス ヒートロニクス 株式会社 filed Critical ティーエス ヒートロニクス 株式会社
Priority to JP2000142792A priority Critical patent/JP4485013B2/en
Publication of JP2001324286A publication Critical patent/JP2001324286A/en
Application granted granted Critical
Publication of JP4485013B2 publication Critical patent/JP4485013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、半導体素子等の発熱体から生じる熱を放熱するヒートパイプ及びその製造方法に関する。
【0002】
【従来の技術】
電子機器に搭載される半導体素子等の発熱体の冷却には、従来よりヒートシンクが使用されている。このヒートシンクの一種にヒートパイプを用いるものがある。ヒートパイプとは、内部の密閉空間を真空に引いた後に、水やブタン、アルコール等の熱媒体を封入したものである。ヒートパイプの発熱体が取り付けられた部分は受熱部となり、発熱体から熱が伝えられる。受熱部に伝えられた熱は、受熱部のヒートパイプ内の熱媒体を蒸発させる。蒸気はヒートパイプの放熱部に移動して放熱し、蒸気は液体に戻る。この密閉空間内の熱媒体の相の変化や移動により、発熱体の熱が拡散する。このヒートパイプによって、発熱体から伝えられた熱は、同ヒートパイプの全面に広げられて放熱する。
【0003】
このようなヒートパイプの一種として蛇行細孔ヒートパイプがある。この蛇行細孔ヒートパイプは以下の特性を有する(特開平4−190090号参照)。
(1)細孔(熱媒体通路)の両端末が相互に流通自在に連結されて密閉されている。
(2)細孔のある部分は受熱部、他のある部分は放熱部となっている。
(3)受熱部と放熱部が交互に配設されており、両部の間を細孔が蛇行している。
(4)細孔内には2相凝縮性熱媒体が封入されている。
(5)細孔の内壁は、上記熱媒体が常に孔内を閉塞した状態のままで循環又は移動することが出来る最大直径以下の直径である。
【0004】
プレート型の蛇行細孔ヒートパイプの代表的製造方法には、従来以下の2つが知られている。
(1)特開平7−63487号に開示された溝加工平板を用いる方法:
図6は、特開平7−63487号に開示されているヒートパイプの製造方法を示す図であり、図6(A)は断面図、図6(B)は内部構造を示す一部破断平面図である。
この方法では、最初に、熱伝導性の良好な金属製薄板53の表面に、一連の蛇行細溝54を、切削や放電加工により形成する。次に、この薄板53の表面に平薄板55を重ね、ろう付けにより両板53、55を積層化する。薄板53に形成された細溝54は、積層化により密閉蛇行細孔(熱媒体通路)56となる。このトンネル56内に熱媒体が封入される。
【0005】
(2)特開平9−49692号に開示された押し出し材の多孔扁平管を用いる方法:
図7は、特開平9−49692号に開示されているヒートパイプの製造方法を示す図であり、図7(A)は第一工程を説明するための平面断面図、図7(B)は第二工程を説明するための平面断面図である。
第一工程においては、原材料としてアルミニウムやマグネシウム等の軽金属の多孔扁平管63を用いる。この多孔扁平管63は、全体として平板状の外形を有し、内部に平行に配置された多数の貫通細孔64が押し出し成形により形成されている。その後、細孔64の端面の隔壁66を一条おきに所定の深さの切除部66aだけ切除し、反対側の端面では一条ずつずらせて切除部66bを切除する。第二工程において、切除部66a、66bの最深部から所定の長さを残して、両端面に端縁部68a、68bを溶接する。各細孔64は端部で連通して一連の蛇行細孔(熱媒体通路)となり、ここに熱媒体が封入される。
【0006】
【発明が解決しようとする課題】
しかしながら、上記製造方法には次の不十分な点がある。
上記(2)の方法では、押し出し成形を用いるため、その溝数やピッチ、隔壁の肉厚あるいは材質等は自由に選択することができず、種類の限られた市販品から選択しなければならない。さらに、両端の切除には放電加工が必要で、特殊なノウハウや設備が必要である。
一方、上記(1)の平板に溝を切削加工する方法では、溝の長さや数等に応じて加工費が増大し、安価な量産品の工程には向かない。
【0007】
本発明はこのような問題点に鑑みてなされたもので、安価に大量に生産することができるプレート型ヒートパイプ及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、本発明のベースとなるプレート型ヒートパイプは、 熱媒体が封入される蛇行細孔の側壁を構成する波形曲げ加工された中板と、 該中板の表裏面に該中板を覆うように接合された表板と、を具備することを特徴とする。
平板をプレス曲げ加工することにより細孔の側壁を形成するため、切削加工に比べて製造コストが安い。また、プレス曲げ加工時のプレス型の高さや幅、形状を変えることにより、任意の大きさ及び形状の細孔を形成することができる。
【0009】
本発明においては、上記中板の端部において、プレス抜き加工により上記蛇行細孔の連通路を形成することができる。中板にプレス加工で連通路を形成すれば、放電加工などを用いるのと比べて蛇行細孔のターン部を容易に構成することができる。
【0010】
本発明のベースとなるプレート型ヒートパイプ製造方法は、 熱媒体が封入される蛇行細孔を有するプレート型ヒートパイプの製造方法であって、 中板の両端にプレス抜き加工により連通路を形成し、 該中板を波状に曲げ、 該中板の表裏面に該中板を覆うように表板を接合し、 接合した上記中板と上記表板の積層体の端部を、片方の端部の上記表板と上記中板によって形成された細孔の一つの口を残して潰して封止し、 該残された細孔の口から熱媒体を封入して密閉することを特徴とする。
プレート型の蛇行細径ヒートパイプを簡単な方法で作製することができ、大量生産が可能になる。
【0011】
【発明の実施の形態】
以下、図面を参照しつつ説明する。
図1は、本発明の実施例に係るプレート型ヒートパイプの構造を示す分解図である。文中の上下左右は図の上下左右方向を示す。
プレート型ヒートパイプ1は、中板3と、この中板3を挟む二枚の表板5、7からなる積層構造を有する。中板3及び表板5、7は熱伝導性の高いアルミニウム等の材料から作製される。この例では、中板3及び表板5、7の厚さは0.3mmである。なお、図1において、中板3の端部の細い形状は図示省略してある。
【0012】
中板3は、矩形波状に連続して折り曲げられている。そして、中板3の側面は、コの字が交互に逆に並んだ形状となっている。コの字の両側辺がプレート型ヒートパイプ1の細孔の側壁となり、中辺が細孔の上壁又は下壁となる。
【0013】
中板3の端部の形状と折り曲げ方法について詳細に説明する。
図2は、本発明のプレート型ヒートパイプの一例に係る中板の端部を拡大して示す斜視図である。
中板3は、前述のように矩形波状に折り曲げられている。中板3は、上下面3a、3a'、長い切り欠き15bが形成された側面3b、短い切り欠き15cが形成された側面3cから構成されている。両切り欠きは、両端プレス時の逃げの役割を果たす。長い切り欠き15bは熱媒体の連通路となる(詳細後述)。
【0014】
図3(A)は、図2の中板を折り曲げる前の平板状の状態を示す平面図であり、図3(B)は折り曲げられた中板の側面図である。
この中板3は、図3(A)に示す平板9から作製される。この平板9には、長さ方向に平行な複数の折り曲げ線(二点鎖線)11が記されている。この二つの折り曲げ線11の間の平板の部分が、細孔の側壁及び上下壁を形成する部分となる。各列の両端には、短い切り欠き15cと、長い切り欠き15bとが、切り欠きが形成されていない列13を挟んで、交互にプレス抜き加工により形成されている。さらに、切り欠きが形成された列は、列の両端に、短い切り欠き15dと長い切り欠き15cが対に形成されている。つまり、一端に長い切り欠き15cが形成された列は、他端では短い切り欠き15dが形成されている。切り欠きが形成されていない列13は両端ともストレートである。
【0015】
平板9を折り曲げる際は、折り曲げ線11に沿って、切り欠きが形成されていない列13が矩形の上下辺、切り欠きが形成された列が矩形の側辺となるように、矩形波状にプレス曲げ加工によって折り曲げる。すなわち、切り欠きが形成されていない列13の両側の折り曲げ線を図の手前方向から見て山に折り、次の切り欠きが形成されていない列13の両側を谷に折る。これを繰り返すことにより、平板9は、切り欠きが形成されていない列13が上下辺、切り欠きが形成された列が側辺となる側面断面が矩形波状に折り曲げられる。
【0016】
図3(B)は折り曲げられた平板9の側面を示している。図中の黒く塗られた片側の側辺は、長い切り欠き15bが形成された側辺である。上述のように、矩形部の上下辺は切り欠きが形成されていない列13であり、黒い側辺は長い切り欠き15bが形成された列であり、他の側辺は短い切り欠き15cが形成された列である。長い切り欠き15bが形成された辺と短い切り欠き15cが形成された辺は、切り欠きが形成されていない辺を挟んで交互に配置されることとなる。なお、図3(B)において、切り欠きが形成されていない列13は、図2において上下面3a、3a'に相当し、長い切り欠き15bが形成された列は側面3bに相当し、短い切り欠き15cが形成された列は側面3cに相当する。
【0017】
上述のように作製された中板3には、上下から表板5、7がろう付けにより接合されて、積層体が形成される。
図4は、積層体を模式的に示す図であり、(A)は平面断面図、(B)は正面図、(C)は側面断面図である。
図4(C)に示すように、折り曲げられた中板3の上下面3a、3a'は表板5、7に接触している。この接合により、二枚の表板5、7間に、中板3の側面3b、3cで隔された複数の平行な細孔17が形成される。図4(A)に示すように、細孔17の側壁は、長い切り欠き15bが形成されて短くなっている部分と、短い切り欠き15bが形成されて長くなっている部分がある。各切り欠きは積層体の一端で交互に位置している。また、各切り欠きは、同積層体の両端においては、長い側壁と短い側壁が一つずつずれて位置している。
【0018】
積層体は両端から所定の長さのプレス面19(図4(A)、(B)参照)分だけプレスされる。プレス長さは、端部から、短い切り欠き15cの長さにほぼ等しく、長い切り欠き15bの長さよりは短い。両端部の側壁には長短の切り欠きが形成されているため、上下壁を支える側壁が端部からある長さ分(短い切り欠きの長さ)だけ存在しないこととなり(図2参照)、上下からプレスされる際に比較的簡単につぶすことができる。プレス面19がプレスされた後、プレス面19の端部はレーザ溶接により接合される。
【0019】
この状態において、図4(A)に示すように、長い切り欠きが形成された面3bのなす側壁の端部と、プレス面19間には空間21が形成される。この空間21は積層体の両端で一列ずれて位置しており、細孔の一つの列から次の列への連通路となる。このように形成された細孔から形成される熱媒体の管路は、積層体の長さ方向に延びて、同積層体の両端部で交互にターンして蛇行する一連の蛇行細孔となる。
【0020】
なお、プレス時に、形成された細孔の一つはプレスされずに残される。この残された細孔の開口部から水やブタン等の熱媒体が注入される。熱媒体が注入された後、この細孔はレーザ溶接等により密閉され、プレート型の蛇行細孔ヒートパイプが作製される。
【0021】
上述の方法により形成されたプレート型蛇行細孔ヒートパイプは、長さが200mm、幅が60mm、厚さが2mm(中板及び表板の厚さ0.3mmを含む)であり、一つの細孔の開口部の大きさは高さ1.1mm、幅が1.1mmである。
なお、細孔の開口部の大きさは、平板をプレス加工により折り曲げる際のプレス型の高さや幅を変えることにより変更できる。
【0022】
図5(A)、(B)は、本発明の他の実施例に係る中板の折り曲げ形状を示す側面図である。
中板は、図5(A)に示すような三角波状や、図5(B)に示すような蛇行状に折り曲げられてもよい。このような場合も、折り曲げ部の頂部がロウ付け等によって表板3、5に接合されて、プレート型ヒートパイプの積層体が作製される。
【0023】
【発明の効果】
以上の説明から明らかなように、本発明のヒートパイプでは、押し出し成形や切削加工ではなく、平板をプレス曲げ加工することにより細孔の側壁を形成するので、ヒートパイプを安価に量産できる。さらに、中板の端部にプレス抜き加工により連通路を形成することにより、蛇行細孔のターン部を能率よく形成できる。
【図面の簡単な説明】
【図1】本発明の実施例に係るプレート型ヒートパイプの構造を示す分解図である。
【図2】本発明のプレート型ヒートパイプの一例に係る中板の端部を拡大して示す斜視図である。
【図3】図3(A)は、図2の中板を折り曲げる前の平板状の状態を示す平面図であり、図3(B)は折り曲げられた中板の側面図である。
【図4】積層体を模式的に示す図であり、(A)は平面断面図、(B)は正面図、(C)は側面断面図である。
【図5】図5(A)、(B)は、本発明の他の実施例に係る中板の折り曲げ形状を示す側面図である。
【図6】特開平7−63487号に開示されているヒートパイプの製造方法を示す図であり、図6(A)は断面図、図6(B)は内部構造を示す一部破断平面図である。
【図7】特開平9−49692号に開示されているヒートパイプの製造方法を示す図であり、図7(A)は第一工程を説明するための平面断面図、図7(B)は第二工程を説明するための平面断面図である。
【符号の説明】
1 プレート型ヒートパイプ 3 中板
5、7 表板 9 平板
11 折り曲げ線 13 列
15 切り欠き 17 細孔
19 プレス面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pipe that radiates heat generated from a heating element such as a semiconductor element and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, a heat sink is used for cooling a heating element such as a semiconductor element mounted on an electronic device. One type of heat sink uses a heat pipe. The heat pipe is one in which a sealed medium inside is evacuated and then a heat medium such as water, butane, or alcohol is enclosed therein. The part of the heat pipe to which the heating element is attached becomes a heat receiving part, and heat is transmitted from the heating element. The heat transferred to the heat receiving unit evaporates the heat medium in the heat pipe of the heat receiving unit. The steam moves to the heat radiating part of the heat pipe and dissipates heat, and the steam returns to the liquid. The heat of the heating element diffuses due to the change or movement of the phase of the heat medium in the sealed space. With this heat pipe, the heat transmitted from the heating element is spread over the entire surface of the heat pipe and dissipated.
[0003]
One type of such heat pipe is a meandering pore heat pipe. This meandering pore heat pipe has the following characteristics (see Japanese Patent Laid-Open No. 4-190090).
(1) Both ends of the pores (heat medium passage) are connected to each other so as to be freely flowable and sealed.
(2) The part with the pore is the heat receiving part, and the other part is the heat radiating part.
(3) The heat receiving portions and the heat radiating portions are alternately arranged, and the pores meander between the two portions.
(4) A two-phase condensable heat medium is enclosed in the pores.
(5) The inner wall of the pore has a diameter that is equal to or less than the maximum diameter that allows the heat medium to circulate or move while the inside of the pore is always closed.
[0004]
Conventionally, the following two methods are known as typical manufacturing methods for plate-type meandering pore heat pipes.
(1) Method using a grooved flat plate disclosed in JP-A-7-63487:
6A and 6B are diagrams showing a method of manufacturing a heat pipe disclosed in Japanese Patent Application Laid-Open No. 7-63487. FIG. 6A is a sectional view, and FIG. 6B is a partially broken plan view showing an internal structure. It is.
In this method, first, a series of meandering narrow grooves 54 are formed on the surface of a thin metal plate 53 with good thermal conductivity by cutting or electric discharge machining. Next, a flat thin plate 55 is stacked on the surface of the thin plate 53, and both the plates 53 and 55 are laminated by brazing. The narrow grooves 54 formed in the thin plate 53 become sealed meandering pores (heat medium passages) 56 by stacking. A heat medium is sealed in the tunnel 56.
[0005]
(2) A method using a porous flat tube of extruded material disclosed in JP-A-9-49692:
FIG. 7 is a view showing a method of manufacturing a heat pipe disclosed in Japanese Patent Laid-Open No. 9-49692. FIG. 7 (A) is a plan sectional view for explaining the first step, and FIG. It is a plane sectional view for explaining the 2nd process.
In the first step, a porous flat tube 63 of light metal such as aluminum or magnesium is used as a raw material. The porous flat tube 63 has a flat plate-like outer shape as a whole, and a large number of through-holes 64 arranged in parallel inside are formed by extrusion molding. Thereafter, the partition wall 66 on the end face of the pore 64 is cut every other line by the cut part 66a having a predetermined depth, and the cut part 66b is cut by shifting one line at the opposite end face. In the second step, the edge portions 68a and 68b are welded to both end surfaces, leaving a predetermined length from the deepest portion of the cut portions 66a and 66b. The pores 64 communicate with each other at the end portion to form a series of meandering pores (heat medium passages), in which the heat medium is enclosed.
[0006]
[Problems to be solved by the invention]
However, the above manufacturing method has the following insufficient points.
In the method (2), since extrusion molding is used, the number of grooves, pitch, wall thickness or material of the partition cannot be freely selected, and must be selected from commercially available products with limited types. . Furthermore, electrical discharge machining is required for excision at both ends, and special know-how and equipment are required.
On the other hand, in the method of cutting a groove in the flat plate of (1) above, the processing cost increases according to the length and number of grooves, and is not suitable for an inexpensive mass production process.
[0007]
The present invention has been made in view of such problems, and an object of the present invention is to provide a plate-type heat pipe that can be mass-produced at low cost and a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, a plate-type heat pipe serving as a base of the present invention includes a corrugated bent middle plate that forms a side wall of a meandering pore in which a heat medium is enclosed, and front and rear surfaces of the middle plate. And a front plate joined so as to cover the intermediate plate.
Since the side walls of the pores are formed by press-bending a flat plate, the manufacturing cost is lower than that of cutting. In addition, by changing the height, width, and shape of the press die during the press bending process, pores having an arbitrary size and shape can be formed.
[0009]
In the present invention, the communication path of the meandering pores can be formed at the end portion of the intermediate plate by press punching. If the communication path is formed in the intermediate plate by press working, the turn portion of the meandering pore can be easily configured as compared with the case where electric discharge machining or the like is used.
[0010]
A plate-type heat pipe manufacturing method as a base of the present invention is a method for manufacturing a plate-type heat pipe having meandering pores in which a heat medium is enclosed, wherein communication paths are formed by press punching at both ends of an intermediate plate. The intermediate plate is bent into a wave shape, the front plate is bonded to the front and back surfaces of the intermediate plate so as to cover the intermediate plate, and the end of the laminated body of the intermediate plate and the front plate is connected to one end One of the pores formed by the front plate and the middle plate is crushed and sealed, and a heat medium is sealed from the remaining pores and sealed.
A plate-type meandering small-diameter heat pipe can be produced by a simple method, and mass production becomes possible.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, it demonstrates, referring drawings.
FIG. 1 is an exploded view showing the structure of a plate heat pipe according to an embodiment of the present invention. The top, bottom, left, and right in the text indicate the top, bottom, left, and right directions in the figure.
The plate heat pipe 1 has a laminated structure including an intermediate plate 3 and two front plates 5 and 7 sandwiching the intermediate plate 3. The middle plate 3 and the front plates 5 and 7 are made of a material such as aluminum having high thermal conductivity. In this example, the thickness of the middle plate 3 and the front plates 5 and 7 is 0.3 mm. In FIG. 1, the thin shape of the end portion of the intermediate plate 3 is not shown.
[0012]
The middle plate 3 is continuously bent in a rectangular wave shape. The side surface of the intermediate plate 3 has a shape in which U-shapes are alternately arranged in reverse. Both sides of the U-shape are the side walls of the pores of the plate heat pipe 1, and the middle side is the upper or lower wall of the pores.
[0013]
The shape of the end portion of the intermediate plate 3 and the bending method will be described in detail.
FIG. 2 is an enlarged perspective view showing an end portion of an intermediate plate according to an example of the plate heat pipe of the present invention.
The middle plate 3 is bent into a rectangular wave shape as described above. The middle plate 3 includes upper and lower surfaces 3a and 3a ′, a side surface 3b formed with a long cutout 15b, and a side surface 3c formed with a short cutout 15c. Both notches play a role of escape when both ends are pressed. The long notch 15b serves as a communication path for the heat medium (details will be described later).
[0014]
3A is a plan view showing a flat plate-like state before the middle plate of FIG. 2 is folded, and FIG. 3B is a side view of the folded middle plate.
The intermediate plate 3 is made from a flat plate 9 shown in FIG. The flat plate 9 has a plurality of fold lines (two-dot chain lines) 11 parallel to the length direction. The portion of the flat plate between the two fold lines 11 is the portion that forms the side walls and the upper and lower walls of the pores. At both ends of each row, short notches 15c and long notches 15b are alternately formed by punching with the row 13 having no notches interposed therebetween. Furthermore, the row | line | column in which the notch was formed has the short notch 15d and the long notch 15c formed in a pair at the both ends of a row | line | column. That is, in the row in which the long notch 15c is formed at one end, the short notch 15d is formed at the other end. The row 13 in which notches are not formed is straight at both ends.
[0015]
When the flat plate 9 is bent, it is pressed in a rectangular wave shape along the fold line 11 so that the rows 13 without notches are the upper and lower sides of the rectangle and the rows with the notches are the sides of the rectangle. Bend by bending. That is, the folding lines on both sides of the row 13 where no notch is formed are folded in a mountain when viewed from the front of the figure, and both sides of the row 13 where the next notch is not formed are folded in a valley. By repeating this, the flat plate 9 is bent into a rectangular wave shape with a side cross section in which the row 13 in which notches are formed is the upper and lower sides and the row in which the notches are formed is the side.
[0016]
FIG. 3B shows the side surface of the bent flat plate 9. The side on one side painted black in the figure is the side on which the long notch 15b is formed. As described above, the upper and lower sides of the rectangular portion are rows 13 in which notches are not formed, the black side is a row in which long notches 15b are formed, and the other sides are formed with short notches 15c. Column. The side where the long notch 15b is formed and the side where the short notch 15c is formed are alternately arranged across the side where the notch is not formed. In FIG. 3B, the row 13 in which notches are not formed corresponds to the upper and lower surfaces 3a and 3a ′ in FIG. 2, and the row in which long notches 15b are formed corresponds to the side surface 3b and is short. The row in which the notches 15c are formed corresponds to the side surface 3c.
[0017]
On the intermediate plate 3 manufactured as described above, the front plates 5 and 7 are joined from above and below by brazing to form a laminate.
4A and 4B are diagrams schematically showing the laminate, in which FIG. 4A is a plan sectional view, FIG. 4B is a front view, and FIG. 4C is a side sectional view.
As shown in FIG. 4C, the upper and lower surfaces 3 a and 3 a ′ of the bent middle plate 3 are in contact with the front plates 5 and 7. By this joining, a plurality of parallel pores 17 separated by the side surfaces 3 b and 3 c of the intermediate plate 3 are formed between the two front plates 5 and 7. As shown in FIG. 4 (A), the side wall of the pore 17 has a portion that is shortened by the formation of the long notch 15b and a portion that is elongated by the formation of the short notch 15b. Each notch is located alternately at one end of the laminate. In addition, each notch is positioned so that the long side wall and the short side wall are shifted one by one at both ends of the laminate.
[0018]
The laminate is pressed from both ends by a predetermined length of the pressing surface 19 (see FIGS. 4A and 4B). The press length is almost equal to the length of the short notch 15c from the end, and is shorter than the length of the long notch 15b. Since the long and short cutouts are formed on the side walls at both ends, the side walls that support the upper and lower walls do not exist for a certain length (short cutout length) from the end (see FIG. 2). It can be crushed relatively easily when it is pressed. After the press surface 19 is pressed, the ends of the press surface 19 are joined by laser welding.
[0019]
In this state, as shown in FIG. 4A, a space 21 is formed between the end of the side wall formed by the surface 3 b where the long notch is formed and the press surface 19. This space 21 is shifted by one row at both ends of the laminate, and serves as a communication path from one row of pores to the next row. The conduit of the heat medium formed from the pores formed in this way extends in the length direction of the laminate, and becomes a series of meandering pores that meander by alternately turning at both ends of the laminate. .
[0020]
At the time of pressing, one of the formed pores remains without being pressed. A heat medium such as water or butane is injected from the opening of the remaining pores. After the heat medium is injected, the pores are sealed by laser welding or the like, and a plate-type meandering pore heat pipe is produced.
[0021]
The plate-type meandering pore heat pipe formed by the above-mentioned method has a length of 200 mm, a width of 60 mm, and a thickness of 2 mm (including the thickness of the middle plate and the front plate of 0.3 mm). The size of the opening of the hole is 1.1 mm in height and 1.1 mm in width.
Note that the size of the opening of the pore can be changed by changing the height and width of the press die when the flat plate is bent by press working.
[0022]
FIGS. 5A and 5B are side views showing the bent shape of the intermediate plate according to another embodiment of the present invention.
The intermediate plate may be bent into a triangular wave shape as shown in FIG. 5A or a meandering shape as shown in FIG. Even in such a case, the top of the bent portion is joined to the front plates 3 and 5 by brazing or the like, and a laminated body of plate-type heat pipes is produced.
[0023]
【The invention's effect】
As is clear from the above description, in the heat pipe of the present invention, the side walls of the pores are formed by press bending a flat plate rather than extrusion molding or cutting, so that the heat pipe can be mass-produced at low cost. Furthermore, the turn part of the meandering pores can be efficiently formed by forming the communication path at the end of the intermediate plate by press punching.
[Brief description of the drawings]
FIG. 1 is an exploded view showing a structure of a plate heat pipe according to an embodiment of the present invention.
FIG. 2 is an enlarged perspective view showing an end portion of an intermediate plate according to an example of a plate heat pipe of the present invention.
3A is a plan view showing a flat plate-like state before the middle plate of FIG. 2 is bent, and FIG. 3B is a side view of the folded middle plate.
4A and 4B are diagrams schematically showing a laminate, in which FIG. 4A is a plan sectional view, FIG. 4B is a front view, and FIG. 4C is a side sectional view.
FIGS. 5A and 5B are side views showing a bent shape of an intermediate plate according to another embodiment of the present invention.
6A and 6B are diagrams showing a heat pipe manufacturing method disclosed in JP-A-7-63487, in which FIG. 6A is a sectional view and FIG. 6B is a partially broken plan view showing an internal structure. It is.
7A and 7B are diagrams showing a heat pipe manufacturing method disclosed in Japanese Patent Laid-Open No. 9-49692. FIG. 7A is a cross-sectional plan view for explaining the first step, and FIG. It is a plane sectional view for explaining the 2nd process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plate type heat pipe 3 Middle plate 5, 7 Surface plate 9 Flat plate 11 Bending line 13 Row 15 Notch 17 Pore 19 Press surface

Claims (2)

熱媒体が封入される蛇行細孔の側壁を構成する波形曲げ加工された中板と、
該中板の表裏面に該中板を覆うように接合された表板と、
を具備し、
上記中板は折り曲げられて複数の平行な細孔が形成されており、
上記中板の端部には切り欠きが形成されていて、該切り欠きは、熱媒体の連通路となって蛇行細孔のターン部を構成し、
このように形成された細孔から形成される熱媒体の管路が、上記両端部で交互にターンして蛇行する一連の蛇行細孔となるプレート型ヒートパイプであって、
上記中板の両端部には、短い切り欠きと、長い切り欠きとが、切り欠きが形成されていない列を挟んで交互に形成されており、
切り欠きが形成された列は、列の両端に、前記短い切り欠きと前記長い切り欠きが対に形成されており、
前記中板と前記表板との積層体の両端部から、前記短い切り欠きの長さにほぼ等しい部分がプレスされていて、プレスされた面の端部は接合されており、
前記短い切り欠きと前記長い切り欠きは、両端プレス時の逃げの役割を果たし、
前記長い切り欠きは熱媒体の連通路となることを特徴とするプレート型ヒートパイプ。
A corrugated intermediate plate that forms the side wall of the meandering pores in which the heat medium is enclosed;
A front plate joined to cover the middle plate on the front and back surfaces of the middle plate;
Comprising
The intermediate plate is bent to form a plurality of parallel pores,
A cutout is formed at the end of the intermediate plate, and the cutout serves as a communication path for the heat medium and constitutes a turn portion of the meandering pore.
The heat medium pipe formed from the pores formed in this way is a plate-type heat pipe that becomes a series of meandering pores that meander and turn alternately at both ends,
At both ends of the intermediate plate, short notches and long notches are alternately formed across rows in which notches are not formed,
The row in which the notches are formed has a pair of the short notch and the long notch formed at both ends of the row,
From both ends of the laminate of the intermediate plate and the front plate, a portion substantially equal to the length of the short notch is pressed, and the end of the pressed surface is joined,
The short notch and the long notch play a role of escape when pressing at both ends,
The plate-type heat pipe, wherein the long notch serves as a communication path for a heat medium .
熱媒体が封入される蛇行細孔を有する請求項1記載のプレート型ヒートパイプの製造方法であって、
中板の端部に、プレス抜き加工により前記短い切り欠きと前記長い切り欠きを形成し、
長い切り欠きが隣り合う細孔の連通路となるように、該中板を波状に曲げて複数の平行な細孔の壁を形成し、
該中板の表裏面に該中板を覆うように表板を接合することにより複数の平行な細孔を形成し、
前記中板と前記表板との積層体の両端部から、前記短い切り欠きの長さにほぼ等しい部分をプレスするとともに、プレスされた面の端部を接合し、
接合した上記中板と上記表板の両端部を、上記表板と上記中板によって形成された細孔の一つの口を残して潰して封止して、上記両端部で交互にターンして蛇行する一連の蛇行細孔となし、
該残された細孔の口から熱媒体を封入して密閉することを特徴とするプレート型ヒートパイプの製造方法。
The plate-type heat pipe manufacturing method according to claim 1, which has meandering pores in which a heat medium is enclosed,
Form the short notch and the long notch at the end of the intermediate plate by press punching,
The long notches are formed so that the communication passage adjacent pores, by bending the intermediate plate in a wave shape to form a wall of a plurality of parallel pores,
A plurality of parallel pores are formed by joining the front plate so as to cover the middle plate on the front and back surfaces of the middle plate,
From both ends of the laminate of the intermediate plate and the front plate, pressing a portion substantially equal to the length of the short notch, and joining the end of the pressed surface,
Seal both ends of the joined intermediate plate and the front plate by crushing them, leaving one mouth of the pores formed by the front plate and the intermediate plate, and alternately turning at both ends. Without a series of meandering pores to meander,
A plate-type heat pipe manufacturing method, wherein a heat medium is sealed and sealed from the remaining pore opening.
JP2000142792A 2000-05-16 2000-05-16 Plate type heat pipe and manufacturing method thereof Expired - Fee Related JP4485013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142792A JP4485013B2 (en) 2000-05-16 2000-05-16 Plate type heat pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142792A JP4485013B2 (en) 2000-05-16 2000-05-16 Plate type heat pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001324286A JP2001324286A (en) 2001-11-22
JP4485013B2 true JP4485013B2 (en) 2010-06-16

Family

ID=18649697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142792A Expired - Fee Related JP4485013B2 (en) 2000-05-16 2000-05-16 Plate type heat pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4485013B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3954891B2 (en) * 2002-04-22 2007-08-08 株式会社デンソー Heat exchanger
JP2003343992A (en) * 2002-05-24 2003-12-03 Noritz Corp Laminated type heat exchanger
JP3906814B2 (en) * 2003-02-20 2007-04-18 株式会社デンソー tube
JP4753131B2 (en) * 2004-09-08 2011-08-24 ティーエス ヒートロニクス 株式会社 Element heatsink
DE102007060523A1 (en) * 2007-12-13 2009-06-18 Behr Gmbh & Co. Kg Exhaust system with an exhaust gas evaporator, method for operating an internal combustion engine of a motor vehicle
JP5259327B2 (en) * 2008-10-02 2013-08-07 株式会社長府製作所 Fuel cell reformer and baffle plate manufacturing method used therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031094A (en) * 1989-04-19 1991-01-07 John F Urch Heat exchanger
JPH0949692A (en) * 1995-08-09 1997-02-18 Akutoronikusu Kk Manufacture of thin tunnel plate heat pipe
JPH1038484A (en) * 1995-12-21 1998-02-13 Furukawa Electric Co Ltd:The Flat type heat pipe
JP2001237357A (en) * 2000-02-24 2001-08-31 Sts Kk Heat transfer device with meandering path

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031094A (en) * 1989-04-19 1991-01-07 John F Urch Heat exchanger
JPH0949692A (en) * 1995-08-09 1997-02-18 Akutoronikusu Kk Manufacture of thin tunnel plate heat pipe
JPH1038484A (en) * 1995-12-21 1998-02-13 Furukawa Electric Co Ltd:The Flat type heat pipe
JP2001237357A (en) * 2000-02-24 2001-08-31 Sts Kk Heat transfer device with meandering path

Also Published As

Publication number Publication date
JP2001324286A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP2002039693A (en) Flat type heat pipe
US6729389B2 (en) Heat transfer apparatus with zigzag passage
US8375584B2 (en) Method for manufacturing large-area heat sink having heat-dissipating fins
JP6509680B2 (en) Sheet-like heat pipe
US6009937A (en) Cooling device for electrical or electronic components having a base plate and cooling elements and method for manufacturing the same
JP4485013B2 (en) Plate type heat pipe and manufacturing method thereof
US20050145379A1 (en) Flat tube cold plate assembly
JP7315121B1 (en) Vapor chamber, electronics and method of making vapor chamber
JP2004309002A (en) Plate type heat pipe and its manufacturing method
TWI575215B (en) Radiator and its manufacturing method
JP4584413B2 (en) Plate type heat pipe and manufacturing method thereof
JP2006313038A (en) Manufacturing method of heat pipe circuit board and heat pipe circuit board
JP2001221582A (en) Plate-fin heat exchanger
JP2000130972A (en) Plate-type heat pipe and its manufacture
EP3352367B1 (en) Thermoelectric power generation device
CN114390869A (en) One-way heat transfer heat pipe with Y-shaped diversion table liquid absorption core and processing method thereof
JP7210379B2 (en) loop heat pipe
JPH08250878A (en) Heat sink
JPH08250879A (en) Heat sink
JP2000356480A (en) Plate type heat pipe and manufacture thereof
JPH10185466A (en) Heat pipe type heat sink
JP2004226032A (en) Plate type heat pipe and manufacturing method thereof
JPH0936284A (en) Heat sink and heat exchanger
JP2002324884A (en) Cooling plate and its manufacturing method
KR100736810B1 (en) Manufacturing method of heat sink with thermal siphon function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160402

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees