JP4484789B2 - Spherical fluorescent glass dose measuring element integrated absorbed dose measuring method, spherical fluorescent glass dose measuring element, and integrated absorbed dose measuring apparatus - Google Patents

Spherical fluorescent glass dose measuring element integrated absorbed dose measuring method, spherical fluorescent glass dose measuring element, and integrated absorbed dose measuring apparatus Download PDF

Info

Publication number
JP4484789B2
JP4484789B2 JP2005239423A JP2005239423A JP4484789B2 JP 4484789 B2 JP4484789 B2 JP 4484789B2 JP 2005239423 A JP2005239423 A JP 2005239423A JP 2005239423 A JP2005239423 A JP 2005239423A JP 4484789 B2 JP4484789 B2 JP 4484789B2
Authority
JP
Japan
Prior art keywords
fluorescent glass
spherical fluorescent
flat
spherical
dose measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005239423A
Other languages
Japanese (ja)
Other versions
JP2007057235A (en
Inventor
恵一 中川
正則 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2005239423A priority Critical patent/JP4484789B2/en
Publication of JP2007057235A publication Critical patent/JP2007057235A/en
Application granted granted Critical
Publication of JP4484789B2 publication Critical patent/JP4484789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、球状蛍光ガラス線量測定素子の積算吸収線量測定方法、球状蛍光ガラス線量測定素子、及び積算吸収線量測定用装置に関する。本発明によれば、生体内部に線量測定素子を配置した状態で生体外から放射線を照射することができるので、生体内の標的ガン組織に実際に照射された積算吸収線量を測定することが可能になる。   The present invention relates to a method for measuring an accumulated absorbed dose of a spherical fluorescent glass dose measuring element, a spherical fluorescent glass dose measuring element, and an apparatus for measuring an accumulated absorbed dose. According to the present invention, radiation can be irradiated from outside the living body with the dosimetry element disposed inside the living body, so that it is possible to measure the accumulated absorbed dose actually irradiated to the target cancer tissue in the living body. become.

放射線によるガン治療は、外科手術や抗ガン剤投与と共に、ガン療法の中で重要な役割を果たしている。放射線療法は、外科療法と同様に、ガン組織とその周辺のみを治療する局所治療である点で有利なだけでなく、外科療法のような臓器摘出が不要であり、臓器を温存することができる点で優れている。しかしながら、放射線治療においては、X線検査において画像を得るために照射する量とは比較にならないほどの大量の放射線を病巣に照射する必要があるので、副作用を軽減ないし防止するために、ガン組織に対して最適な放射線量を照射してダメージを与え、一方では周囲の正常組織に対しては照射する放射線量をできる限り少なくして損傷を抑えることが求められる。   Radiation cancer treatment plays an important role in cancer therapy along with surgery and administration of anticancer drugs. Radiation therapy is not only advantageous in that it is a local treatment that treats only the cancer tissue and its surroundings, as is the case with surgical treatment, but it also eliminates the need for organ removal like surgery and preserves the organ. Excellent in terms. However, in radiotherapy, it is necessary to irradiate the lesion with a large amount of radiation that is incomparable with the amount irradiated to obtain an image in an X-ray examination. Therefore, in order to reduce or prevent side effects, cancer tissue However, it is required to suppress the damage by irradiating an optimal dose of radiation to the surrounding normal tissue while reducing the dose of radiation to the surrounding normal tissue as much as possible.

例えば、放射線療法の1つである強度変調療法(Intensity Modulated Radio Therapy:IMRT)では、治療対象となっている患者のガン組織の位置や形状に適合させて、放射線の照射野の形状や放射線の入射方向を調整して患者のガン組織に放射線を照射し、これらの放射線照射による積算吸収線量を最適化している。従って、放射線を患部に正確に集中させて、有効に放射線治療を実施することができる。このようなIMRTを実施する際には、まず治療計画を作成し、患部に対して所定の吸収線量分布の放射線照射を正確に行うことができる照射条件を設定する必要があり、更に、このような治療計画の妥当性を、実験的に検証する必要がある。
この場合、人体内部に線量計を挿入して試験的な線量測定を行うことは、従来は事実上不可能であったので、人体等価物質から構成される人体模型、すなわち、ファントム(phantom)〔例えば、特許文献1及び2〕内に線量計を挿入して、試験的な線量測定を実施していた。
For example, Intensity Modulated Radio Therapy (IMRT), which is one of the radiation therapies, is adapted to the position and shape of the cancer tissue of the patient being treated, and the shape of the radiation field and the radiation The incident direction is adjusted to irradiate the patient's cancer tissue with radiation, and the accumulated absorbed dose due to the radiation irradiation is optimized. Therefore, radiation treatment can be effectively performed by accurately concentrating the radiation on the affected area. When performing such IMRT, it is necessary to create a treatment plan first and set irradiation conditions that can accurately perform radiation irradiation with a predetermined absorbed dose distribution on the affected part. It is necessary to experimentally verify the validity of a proper treatment plan.
In this case, since it has been practically impossible to insert a dosimeter into the human body and perform experimental dosimetry in the past, a human body model composed of human body equivalent materials, that is, a phantom [ For example, a dosimeter was inserted into Patent Documents 1 and 2] to conduct experimental dosimetry.

しかしながら、ファントムを人体と完全に同一条件で作成することは不可能であり、更に、個々の特定患者に固有のファントムを作成することも不可能であった。従って、ファントムを利用して得られる測定値は、そもそも推定値でしかなく、しかも個々の特定患者に固有の積算吸収線量を測定ないし推定することもできない。
また、治療計画に沿って放射線療法を実施した場合でも、生体内の標的ガン組織や周辺組織に実際に照射された放射線の積算吸収線量が、治療計画のとおりの積算吸収線量となっていたか否かを確認する手段は、従来は全く存在しなかった。従って、例えば、人為的ミスによる過照射事故が発生していたとしても、そのことを確定的に確認することは極めて困難な場合が多かった。
However, it is impossible to create a phantom under the same conditions as the human body, and it is also impossible to create a phantom unique to each specific patient. Therefore, the measurement value obtained by using the phantom is only an estimation value in the first place, and the integrated absorbed dose specific to each specific patient cannot be measured or estimated.
In addition, even when radiation therapy was performed according to the treatment plan, whether the cumulative absorbed dose of radiation actually irradiated to the target cancer tissue and surrounding tissues in the living body was the cumulative absorbed dose according to the treatment plan. Conventionally, there has been no means for confirming this. Therefore, for example, even if an over-irradiation accident due to human error has occurred, it has often been extremely difficult to confirm it definitely.

特開平11−64530号公報JP-A-11-64530 特開2003−47666号公報JP 2003-47666 A

従って、本発明の課題は、生体内の組織(例えば、標的ガン組織や周辺組織)に実際に照射された放射線の積算吸収線量を測定することのできる手段を提供することにある。   Accordingly, an object of the present invention is to provide a means capable of measuring the cumulative absorbed dose of radiation actually irradiated to a tissue in a living body (for example, a target cancer tissue or a surrounding tissue).

前記の課題は、本発明により、
(1)球状蛍光ガラス線量測定素子に放射線を照射し(以下、放射線照射工程と称することがある)、
(2)前記球状蛍光ガラス線量測定素子の半球部分の形状に相当する半球状窪みを一方の表面に有し、もう一方の表面が平坦表面である平板状支持盤の前記半球状窪みに、放射線照射後の前記球状蛍光ガラス線量測定素子を載置し(以下、載置工程と称することがある)、
(3)前記球状蛍光ガラス線量測定素子の半球部分の形状に相当する半球状窪みを一方の表面に有し、もう一方の表面が平坦表面である平板状カバーを、放射線照射後の前記球状蛍光ガラス線量測定素子を載置して担持する前記支持盤の上から重ねて、前記球状蛍光ガラス線量測定素子を前記平板状支持盤の半球状窪みと前記平板状カバーの半球状窪みとで挟むことにより、積層セットを形成し(以下、積層工程と称することがある)、
(4)前記積層セットに励起光を照射し、発光する蛍光を測定する(以下、蛍光測定工程と称することがある)
ことを特徴とする、前記球状蛍光ガラス線量測定素子の積算吸収線量を測定する方法によって解決することができる。
The above problems are solved by the present invention.
(1) irradiating the spherical fluorescent glass dosimetry element with radiation (hereinafter sometimes referred to as a radiation irradiation step);
(2) The hemispherical depression corresponding to the shape of the hemispherical portion of the spherical fluorescent glass dosimetry element is provided on one surface and the other surface is a flat surface. Place the spherical fluorescent glass dosimetry element after irradiation (hereinafter sometimes referred to as a placing step),
(3) A plate-like cover having a hemispherical depression corresponding to the shape of the hemispherical portion of the spherical fluorescent glass dosimetry element on one surface and the other surface being a flat surface, and the spherical fluorescence after irradiation. The spherical fluorescent glass dosimetry element is sandwiched between the hemispherical depression of the flat plate-like support board and the hemispherical depression of the flat plate-like cover, stacked on the support board on which the glass dosimetry element is placed and supported. To form a stacked set (hereinafter, sometimes referred to as a stacking step),
(4) Irradiating excitation light to the stacked set and measuring emitted fluorescence (hereinafter sometimes referred to as fluorescence measurement step)
This can be solved by a method for measuring the accumulated absorbed dose of the spherical fluorescent glass dosimetry element.

本発明方法の好ましい態様においては、前記放射線照射工程を、生体内に配置した球状蛍光ガラス線量測定素子に放射線を照射することによって実施する。
また、本発明方法の別の好ましい態様においては、平板状支持盤及び平板状カバーが、それぞれガラス製である。
In a preferred embodiment of the method of the present invention, the radiation irradiating step is performed by irradiating a spherical fluorescent glass dosimetry element disposed in a living body.
In another preferred embodiment of the method of the present invention, the flat platen and the flat plate cover are each made of glass.

また、本発明は、球状の蛍光ガラス線量測定素子にも関し、本発明の好ましい球状蛍光ガラス線量測定素子は、前記積算吸収線量の測定方法に使用する。   The present invention also relates to a spherical fluorescent glass dose measuring element, and the preferable spherical fluorescent glass dose measuring element of the present invention is used in the method for measuring the accumulated absorbed dose.

更に、本発明は、
(1)球状蛍光ガラス線量測定素子と、
(2)前記球状蛍光ガラス線量測定素子の半球部分の形状に相当する半球状窪みを一方の表面に有し、もう一方の表面が平坦表面である平板状支持盤と、
(3)前記球状蛍光ガラス線量測定素子の半球部分の形状に相当する半球状窪みを一方の表面に有し、もう一方の表面が平坦表面である平板状カバーと
を含む、前記球状蛍光ガラス線量測定素子の積算吸収線量測定用装置にも関する。
本発明による積算吸収線量測定用装置の好ましい態様においては、平板状支持盤と平板状カバーとが、相互に同一の形状である。
Furthermore, the present invention provides
(1) a spherical fluorescent glass dosimetry element;
(2) a plate-like support plate having a hemispherical depression corresponding to the shape of the hemispherical part of the spherical fluorescent glass dosimetry element on one surface, and the other surface being a flat surface;
(3) The spherical fluorescent glass dose comprising a flat cover having a hemispherical depression corresponding to the shape of the hemispherical portion of the spherical fluorescent glass dosimetry element on one surface and the other surface being a flat surface. It also relates to a device for measuring the accumulated absorbed dose of the measuring element.
In a preferred aspect of the apparatus for measuring accumulated absorbed dose according to the present invention, the flat support plate and the flat cover have the same shape.

従来の蛍光ガラス線量測定素子は、ガラス製で棒状体であるため、破損させずに生体内に装入することが極めて困難であり、しかも、生体内で破損すると生体組織を損傷させる危険性があるので、実際上、生体内に装入することは不可能であった。これに対して、本発明による球状蛍光ガラス線量測定素子は、ガラス製であっても球状であるので、例えば、カテーテルによって生体内に簡単に装入することができ、しかもその際に破損する危険性は殆ど皆無である。従って、本発明による球状蛍光ガラス線量測定素子を生体内の照射対象標的組織やその周辺組織に付着させ、配置した状態で、生体外から放射線を照射して治療を実施し、照射対象標的組織やその周辺組織に実際に照射された積算吸収線量を直接的に測定することができる。   Since conventional fluorescent glass dosimetry elements are made of glass and are rod-shaped, it is extremely difficult to insert them into a living body without breaking them, and there is a risk of damaging living tissue when broken in vivo. Therefore, it was practically impossible to insert it into the living body. On the other hand, since the spherical fluorescent glass dosimetry element according to the present invention is spherical even if it is made of glass, for example, it can be easily inserted into a living body with a catheter, and there is a risk of breakage at that time. There is almost no sex. Accordingly, the spherical fluorescent glass dosimetry element according to the present invention is attached to the target tissue in the living body and its surrounding tissue, and in a state where it is placed, treatment is performed by irradiating radiation from outside the living body. The accumulated absorbed dose actually irradiated to the surrounding tissue can be directly measured.

こうして生体内で積算吸収線量を直接的に記録した蛍光ガラス線量測定素子を、添付図面に沿って後述するとおり、平板状支持盤と平板状カバーとによって挟むと、全体的に平板状の積層セットが形成されるので、この平板状積層セットに対して従来の蛍光測定装置を利用して簡単に蛍光を測定することができる。   When the fluorescent glass dosimetry element that directly records the accumulated absorbed dose in the living body in this way is sandwiched between the flat support plate and the flat cover as will be described later with reference to the accompanying drawings, an overall flat laminated set Therefore, the fluorescence can be easily measured using the conventional fluorescence measuring apparatus for this flat laminated set.

また、本発明による球状蛍光ガラス線量測定素子は球状であるので、放射線減衰などに関する方向依存性がない。従って、放射線照射対象の標的組織やその周辺組織に付着させる場合に、放射線照射方向に対する注意が不要である。更に、本発明による球状蛍光ガラス線量測定素子は、従来法で使用されていたX線銀塩フィルムとは異なり、加熱滅菌が極めて容易であり、この点でも生体内への装入・配置に適している。   Further, since the spherical fluorescent glass dosimetry element according to the present invention is spherical, there is no direction dependency regarding radiation attenuation and the like. Therefore, it is not necessary to pay attention to the radiation irradiation direction when attaching to the target tissue to be irradiated and its surrounding tissues. Furthermore, unlike the X-ray silver salt film used in the conventional method, the spherical fluorescent glass dosimetry element according to the present invention is extremely easy to sterilize by heating, and in this respect, it is also suitable for insertion and placement in a living body. ing.

本発明の測定方法は、前記のとおり
(1)放射線照射工程、
(2)載置工程、
(3)積層工程、及び
(4)蛍光測定工程
を含む。前記放射線照射工程(1)では球状蛍光ガラス線量測定素子を使用し、前記載置工程(2)では平板状支持盤を使用し、そして前記積層工程(3)では平板状カバーを使用するので、最初に、前記球状蛍光ガラス線量測定素子、前記平板状支持盤、及び前記平板状カバーの構造及びそれらの使用方法を、図1〜図4に示す特定の実施態様に沿って説明する。
As described above, the measurement method of the present invention comprises (1) a radiation irradiation step,
(2) Placement process,
(3) includes a lamination step, and (4) a fluorescence measurement step. In the radiation irradiation step (1), a spherical fluorescent glass dosimetry element is used, in the previous step (2), a flat plate support plate is used, and in the lamination step (3), a flat plate cover is used. First, the structure of the spherical fluorescent glass dosimetry device, the flat plate support plate, and the flat plate cover and the method of using them will be described with reference to specific embodiments shown in FIGS.

図1は、平板状支持盤1の模式的斜視図であり、図2は、平板状カバー2の模式的斜視図であり、図3は、球状蛍光ガラス線量測定素子3を平板状支持盤1に載置し、その上から平板状カバー2を重ねる工程を模式的に説明する断面図であり、図4は、図3の工程によって得られる積層セット4の模式的断面図である。   FIG. 1 is a schematic perspective view of the flat plate support board 1, FIG. 2 is a schematic perspective view of the flat cover 2, and FIG. 3 shows the spherical fluorescent glass dose measuring element 3 in the flat plate support board 1. FIG. 4 is a schematic cross-sectional view of the stacked set 4 obtained by the process of FIG. 3.

平板状支持盤1は、図1に示すとおり、一方の載置用表面11には平坦部12と半球状窪み13とを有し、図3に示すとおり、前記載置用表面11とは反対側に、平坦表面14を有している。また、平板状カバー2も、図2に示すとおり、一方のカバー用表面21に平坦部22と半球状窪み23を有し、図3に示すとおり、前記カバー用表面21とは反対側に、平坦表面24を有している。   As shown in FIG. 1, the flat support plate 1 has a flat portion 12 and a hemispherical depression 13 on one mounting surface 11, and is opposite to the mounting surface 11 as shown in FIG. 3. On the side, it has a flat surface 14. Further, as shown in FIG. 2, the flat cover 2 also has a flat portion 22 and a hemispherical depression 23 on one cover surface 21, and as shown in FIG. 3, on the opposite side to the cover surface 21, It has a flat surface 24.

前記放射線照射工程(1)で放射線を照射された球状蛍光ガラス線量測定素子3は、次の前記載置工程(2)で、図3の矢印Aに示すとおり、平板状支持盤1の載置用表面11における半球状窪み13に装入される。この状態では、球状蛍光ガラス線量測定素子3の下方側半球部が半球状窪み13の内部に格納され、上方側半球部は載置用表面11の平坦部12から突出して露出している。   The spherical fluorescent glass dose measuring element 3 irradiated with radiation in the radiation irradiation step (1) is placed on the flat support plate 1 as shown by an arrow A in FIG. The hemispherical depression 13 in the working surface 11 is charged. In this state, the lower hemispherical portion of the spherical fluorescent glass dose measuring element 3 is stored in the hemispherical recess 13, and the upper hemispherical portion protrudes from the flat portion 12 of the mounting surface 11 and is exposed.

続いて、前記積層工程(3)では、前記球状蛍光ガラス線量測定素子3を載置して担持している平板状支持盤1の載置用表面11の上に、図3の矢印Bに示すとおり、平板状カバー2をかぶせる。この際、前記球状蛍光ガラス線量測定素子3の上方側半球部が、平板状カバー2のカバー用表面21の半球状窪み23によって覆われ、しかも平板状カバー2のカバー用表面21の平坦部22と、平板状支持盤1の載置用表面11の平坦部12とが接触するように重ねる。こうして、図4に示すように、平板状支持盤1と平板状カバー2とが両者の平坦部12,22で完全に面接触状態で重なり合い、しかも球状蛍光ガラス線量測定素子3が両者の半球状窪み13,23によって完全に包まれた状態の積層セット4を形成することができる。   Subsequently, in the laminating step (3), the spherical fluorescent glass dose measuring element 3 is placed on the mounting surface 11 of the plate-like support plate 1 on which the spherical fluorescent glass dose measuring element 3 is mounted and is shown by an arrow B in FIG. As shown in FIG. At this time, the upper hemispherical portion of the spherical fluorescent glass dose measuring element 3 is covered by the hemispherical depression 23 of the cover surface 21 of the flat cover 2 and the flat portion 22 of the cover surface 21 of the flat cover 2. And the flat portion 12 of the mounting surface 11 of the flat support plate 1 are overlapped with each other. In this way, as shown in FIG. 4, the flat support plate 1 and the flat cover 2 are completely overlapped with each other at the flat portions 12 and 22, and the spherical fluorescent glass dosimeter 3 is a hemispherical shape of both. It is possible to form the stacked set 4 in a state completely wrapped by the depressions 13 and 23.

なお、本明細書において、平板状支持盤や平板状カバーなどに関連する上下の位置関係(例えば、「上方」又は「下方」)は、本発明の測定方法における前記載置工程(2)及び前記積層工程(3)などを実施している際の上下関係(重力方向)のみを示しており、それ以外の状態〔例えば、前記載置工程(2)前の状態や蛍光測定工程(4)での状態〕での位置関係を限定するものではない。   In the present specification, the vertical positional relationship (for example, “upward” or “downward”) related to the flat support plate, the flat cover, and the like is the placement step (2) in the measurement method of the present invention and Only the vertical relationship (the direction of gravity) when performing the lamination step (3) is shown, and other states [for example, the state before the placement step (2) or the fluorescence measurement step (4) It is not intended to limit the positional relationship in the state.

前記積層工程(3)で形成される積層セット4は、両側表面に平坦表面14,24を有する平板となるので、従来公知の励起光照射装置によって励起光を照射し、その励起光照射によって発光する蛍光を測定することができる。前記積層セット4は、必要により、平板状支持盤1及び平板状カバー2に設けた固定用貫通口15,25と適当な固定手段(図示せず)、例えば、ボルト及びナットを利用して固定することができる。固定用貫通口を設けず、適当なバインダによって固定することもできる。   Since the laminated set 4 formed in the laminating step (3) is a flat plate having flat surfaces 14 and 24 on both side surfaces, it is irradiated with excitation light by a conventionally known excitation light irradiation device, and emitted by the excitation light irradiation. Fluorescence can be measured. If necessary, the laminated set 4 is fixed using fixing through holes 15 and 25 provided in the flat support plate 1 and the flat cover 2 and appropriate fixing means (not shown), for example, bolts and nuts. can do. It is also possible to fix with an appropriate binder without providing a fixing through-hole.

平板状支持盤1と平板状カバー2は、それぞれ一方の表面12,22上に同一形状の半球状窪み13,23の同数個をそれぞれ同じ位置に有し、全体的な形状も一致していることが好ましい。この場合、最初に、前記球状蛍光ガラス線量測定素子を載置して担持する際に用いる部材が平板状支持盤であり、続いて、その上からかぶせるために用いる部材が平板状カバーであり、異なる部材を用いるわけではない。   The plate-like support plate 1 and the plate-like cover 2 have the same number of hemispherical depressions 13 and 23 having the same shape on the one surface 12 and 22 respectively, and the overall shape also coincides. It is preferable. In this case, first, the member used when placing and carrying the spherical fluorescent glass dosimetry element is a flat plate support plate, and subsequently, the member used for covering from above is a flat plate cover, Different members are not used.

前記平板状支持盤や前記平板状カバーは、相互に別の材料からなることもできるが、同じ材料(例えば、プラスチック材料又はガラス、好ましくはガラス)からなることが好ましい。更に、球状蛍光ガラス線量測定素子と同じ材料(例えば、銀活性リン酸塩ガラス)からなることもできる。   The flat support plate and the flat cover can be made of different materials, but are preferably made of the same material (for example, plastic material or glass, preferably glass). Furthermore, it can also consist of the same material (for example, silver activated phosphate glass) as a spherical fluorescent glass dosimeter.

前記平板状支持盤や前記平板状カバーに設ける半球状窪みの数は、図1及び図2に示すように2つに限定されず、1つでも、3つ以上でもよい。また、前記平板状支持盤の載置用表面や前記平板状カバーのカバー用表面の形状も、図1及び図2に示すように正方形型に限定されず、例えば、長方形型、多角形型、又は円形型であることができる。更に、半球状窪みを2つ以上有する場合には、それらの寸法が相互に同一である必要はなく、複数種の異なる粒径を有する球状蛍光ガラス線量測定素子を同時に挟んで担持することもできる。   The number of hemispherical depressions provided on the flat support plate or the flat cover is not limited to two as shown in FIGS. 1 and 2, and may be one or three or more. Further, the shape of the mounting surface of the flat plate support plate and the cover surface of the flat plate cover is not limited to a square shape as shown in FIGS. 1 and 2, for example, a rectangular shape, a polygonal shape, Or it can be circular. Further, when two or more hemispherical depressions are provided, the dimensions thereof do not have to be the same, and a spherical fluorescent glass dosimetry element having a plurality of different particle sizes can be sandwiched and supported at the same time. .

本発明の測定方法において、線量計として使用する球状蛍光ガラス線量測定素子は、例えば、銀活性リン酸塩ガラスからなる。銀活性リン酸塩ガラスは、従来から棒状の形態でガラス線量計として広く用いられているが、球状の形態での利用方法は従来全く知られていない。また、蛍光ガラス線量測定素子を棒状の形態で生体内に挿入することは、極めて危険性が高いので、従来は全く行われておらず、球状の形態に代えて生体内に挿入して配置し、その状態で生体外から放射線を照射する方法も従来は全く行われていない。   In the measurement method of the present invention, the spherical fluorescent glass dosimetry element used as a dosimeter is made of, for example, silver activated phosphate glass. Silver activated phosphate glass has been widely used as a glass dosimeter in the form of a rod in the past, but the method of using it in a spherical form has not been known at all. In addition, it is extremely dangerous to insert the fluorescent glass dosimetry element into the living body in the form of a rod, so it has not been performed at all in the past, and it is inserted into the living body instead of the spherical form. Conventionally, no method of irradiating radiation from outside the living body in that state has been used.

本発明者は、例えば、前記の図1〜4に示す通り、
(1)球状蛍光ガラス線量測定素子3と、
(2)前記球状蛍光ガラス線量測定素子3の半球部分の形状に相当する半球状窪み13を一方の表面11に有し、もう一方の表面14が平坦表面である平板状支持盤1と、
(3)前記球状蛍光ガラス線量測定素子3の半球部分の形状に相当する半球状窪み23を一方の表面21に有し、もう一方の表面24が平坦表面である平板状カバー2と
を含む、前記球状蛍光ガラス線量測定素子の積算吸収線量測定用装置を開発することによって、球状形態の蛍光ガラス線量測定素子の実際的な利用を可能にした。すなわち、球状蛍光ガラス線量測定素子と平板状支持盤と平板状カバーとから積層セットを簡単に形成させることができ、しかもこの積層セットによって従来公知の励起光照射装置、及び蛍光測定装置の利用が容易になる。
The present inventor, for example, as shown in FIGS.
(1) a spherical fluorescent glass dose measuring element 3;
(2) the flat support plate 1 having a hemispherical depression 13 corresponding to the shape of the hemispherical portion of the spherical fluorescent glass dose measuring element 3 on one surface 11 and the other surface 14 being a flat surface;
(3) including a flat cover 2 having a hemispherical depression 23 corresponding to the shape of the hemispherical portion of the spherical fluorescent glass dose measuring element 3 on one surface 21 and the other surface 24 being a flat surface. By developing a device for measuring the accumulated absorbed dose of the spherical fluorescent glass dosimetry element, it has become possible to practically use the spherical form of the fluorescent glass dosimetry element. That is, a laminated set can be easily formed from a spherical fluorescent glass dose measuring element, a flat support plate, and a flat cover, and the use of a conventionally known excitation light irradiation device and fluorescence measuring device can be achieved by this laminated set. It becomes easy.

なお、銀活性リン酸塩ガラスを利用する積算吸収線量測定方法は、以下の原理によるものである。すなわち、銀活性リン酸塩ガラスを放射線で照射すると自由電子と正孔とが生じ、これらが銀原子に捕獲されて蛍光中心が生成される。こうして生成された蛍光中心に励起光を照射すると発光する。この現象をラジオフォトルミネッセンス(RPL)と称している。こうして発光する蛍光強度が、被爆放射線量(すなわち、積算吸収線量)に比例するので、蛍光強度を測定することによって積算吸収線量を正確に定量することができ、例えば、従来から放射線療法の治療計画に用いられてきた。励起光としては、波長300〜400nmの紫外線を用いることができる。例えば、約320nmの紫外線で励起するとオレンジ色の蛍光を放出する。   In addition, the integrated absorbed dose measuring method using silver activated phosphate glass is based on the following principle. That is, when a silver activated phosphate glass is irradiated with radiation, free electrons and holes are generated, and these are captured by silver atoms to generate fluorescent centers. When the fluorescence center thus generated is irradiated with excitation light, light is emitted. This phenomenon is called radio photoluminescence (RPL). Since the fluorescence intensity emitted in this way is proportional to the radiation dose (ie, the accumulated absorbed dose), the accumulated absorbed dose can be accurately quantified by measuring the fluorescence intensity. Has been used. As the excitation light, ultraviolet rays having a wavelength of 300 to 400 nm can be used. For example, when excited with about 320 nm ultraviolet light, orange fluorescence is emitted.

励起光を照射することによって発光する蛍光から、任意の測定手段によって蛍光強度を測定することができる。測定手段としては、例えば、CCDカメラ、又はフォトマルチプライヤーを用いることができる。高感度CCDカメラを用いると、蛍光強度を電気信号に変えることができ、その電気信号をコンピュータで処理することができる。前記のRPL中心は、そのまま放置しても極めて安定に長期間保存され、励起光を照射して蛍光を発光させても、その処理によって消滅することがない。更に、蓄積線量も定量的に測定することができ、エネルギー依存性がない(すなわち、X線銀塩写真フィルムのように、照射放射線のエネルギーによって感度が変化することがない)ので、測定精度の点でも優れている。また、高温(例えば、約400℃以上)での3時間程度の加熱(アニーリング)によって、蛍光中心が消滅し、新たに最初から放射線量の集積を行うことができる。   The fluorescence intensity can be measured by any measuring means from the fluorescence emitted by irradiating the excitation light. As the measuring means, for example, a CCD camera or a photomultiplier can be used. When a high-sensitivity CCD camera is used, the fluorescence intensity can be changed into an electric signal, and the electric signal can be processed by a computer. The RPL center is stored very stably for a long time even if it is left as it is, and even if it emits fluorescence by irradiating excitation light, it does not disappear by the treatment. Furthermore, the accumulated dose can also be measured quantitatively and has no energy dependency (that is, the sensitivity does not change depending on the energy of irradiation radiation as in the case of X-ray silver salt photographic film). Also excellent in terms. In addition, by heating (annealing) at a high temperature (for example, about 400 ° C. or more) for about 3 hours, the fluorescence center disappears, and radiation dose can be newly accumulated from the beginning.

本発明の測定方法で用いる球状蛍光ガラス線量測定素子は、前記のとおり、高温(例えば、約400℃)で加熱(アニーリング)することによって蛍光中心を消滅させ、新たに最初から放射線量の集積を行う。すなわち、前記球状蛍光ガラス線量測定素子は、例えば、400℃程度に加熱することができるので、それ自体を極めて容易に滅菌処理することができる。この点でも、生体内放射線照射に適している。   As described above, the spherical fluorescent glass dosimetry element used in the measurement method of the present invention extinguishes the fluorescence center by heating (annealing) at a high temperature (for example, about 400 ° C.), and newly accumulates the radiation dose from the beginning. Do. That is, since the spherical fluorescent glass dosimetry element can be heated to, for example, about 400 ° C., itself can be sterilized very easily. This point is also suitable for in vivo irradiation.

本発明の測定方法の前記放射線照射工程(1)においては、前記球状蛍光ガラス線量測定素子を生体内に配置して、放射線を照射することができる。生体内に装入して配置する場合には、例えば、カテーテルの先端に前記球状蛍光ガラス線量測定素子を入れた状態で生体内の標的器官に導き、カテーテルから前記球状蛍光ガラス線量測定素子を放出させてその標的器官の表面又は内部に貼り付け、カテーテルを抜き出してから放射線照射を実施して、放射線照射の完了後に、再度、カテーテルを利用して前記球状蛍光ガラス線量測定素子を回収することができる。また、カテーテルの先端に前記球状蛍光ガラス線量測定素子を入れた状態で放射線照射を実施し、放射線照射の完了後に、カテーテルを抜き出し、放射線照射の終了後の前記球状蛍光ガラス線量測定素子を回収することもできる。カテーテルの先端に複数個の前記球状蛍光ガラス線量測定素子を入れる場合には、個々の線量測定素子間に、適当なスペーサー(例えば、アクリル樹脂製スペーサー等)を介在させるのが好ましい。   In the said radiation irradiation process (1) of the measuring method of this invention, the said spherical fluorescent glass dosimetry element can be arrange | positioned in a biological body, and a radiation can be irradiated. When placed and placed in a living body, for example, the spherical fluorescent glass dosimetry element is inserted into the tip of the catheter, guided to the target organ in the living body, and the spherical fluorescent glass dosimetry element is released from the catheter. Then, it is affixed to the surface or inside of the target organ, the catheter is extracted, and then irradiation is performed. After the irradiation is completed, the spherical fluorescent glass dosimetry element can be collected again using the catheter. it can. In addition, irradiation is performed with the spherical fluorescent glass dosimetry element placed at the tip of the catheter, and after completion of radiation irradiation, the catheter is extracted, and the spherical fluorescent glass dosimetry element after completion of radiation irradiation is collected. You can also. When a plurality of the spherical fluorescent glass dosimetry elements are inserted at the distal end of the catheter, it is preferable to interpose an appropriate spacer (for example, an acrylic resin spacer) between the individual dosimetry elements.

本発明の測定方法においては、前記銀活性リン酸塩ガラスを、任意の粒径を有する球状体に成形して用いる。球状蛍光ガラス線量測定素子は、完全な真球体(任意の断面が真円の球体)である必要はなく、生体内への挿入・配置の際に損傷しにくい楕球体であることもできるが、照射方向に関する依存性がなくなるので、完全な真球体とすることが好ましい。球状蛍光ガラス線量測定素子の粒径は、挿入・配置すべき生体内の部位に応じて、適宜決定することができる。特には、カテーテルを利用して生体内の標的器官の表面又は内部に貼り付け、再度、カテーテルを利用して前記球状蛍光ガラス線量測定素子を回収することができる寸法であることが好ましい。   In the measuring method of the present invention, the silver activated phosphate glass is formed into a spherical body having an arbitrary particle size. The spherical fluorescent glass dosimetry element does not have to be a perfect sphere (a sphere having an arbitrary cross section of a perfect circle), and can be an ellipsoid that is not easily damaged during insertion and placement in a living body. Since there is no dependency on the irradiation direction, it is preferable to use a perfect sphere. The particle diameter of the spherical fluorescent glass dosimetry element can be appropriately determined according to the part in the living body to be inserted and arranged. In particular, it is preferable that the dimensions be such that the spherical fluorescent glass dosimetry element can be recovered by using a catheter and then affixing to the surface or inside of the target organ in the living body and using the catheter again.

例えば、胃ガン患者の胃内ガン病巣にカテーテルによって前記球状蛍光ガラス線量測定素子を挿入・配置する場合には、線量測定素子の粒径を約1mm〜3mmにすることが好ましく、同様に大腸ガン患者の場合には、粒径を約1mm〜3mmにすることが好ましい。   For example, when the spherical fluorescent glass dosimetry element is inserted and arranged by a catheter into a stomach cancer lesion of a stomach cancer patient, the particle diameter of the dosimetry element is preferably about 1 mm to 3 mm. In the case of a patient, the particle size is preferably about 1 mm to 3 mm.

また、舌ガン患者や膵臓ガン患者に対する放射線照射においては、カテーテルを用いないで、前記球状蛍光ガラス線量測定素子を利用することもできる。例えば、舌ガン患者の場合には、比較的大型の粒径(例えば、約2mm〜4mm)の球状蛍光ガラス線量測定素子を用意し、これをピンセットなどで舌ガン病巣表面に載置し、患者に口腔内に含ませて固定した状態で放射線照射を実施することもできる。更に、膵臓ガンの術中照射においても、比較的大型の粒径(例えば、約2mm〜4mm)の球状蛍光ガラス線量測定素子を用意して、開腹手術中の膵臓病巣部又はその近傍に配置して放射線照射を実施することができる。従来の膵臓ガンの術中照射においてもX線銀塩フィルムが使用されていたが、X線銀塩フィルムそれ自体を滅菌処理することができないため、滅菌したプラスチック製カバーに包んで使用する必要があった。これに対して、本発明の測定方法では、球状蛍光ガラス線量測定素子を加熱滅菌処理することができるため、この点でも便利である。   In addition, the spherical fluorescent glass dosimetry element can be used without using a catheter for irradiation of a tongue cancer patient or pancreatic cancer patient. For example, in the case of a tongue cancer patient, a spherical fluorescent glass dosimetry element having a relatively large particle size (for example, about 2 mm to 4 mm) is prepared and placed on the surface of the tongue cancer lesion using tweezers. Irradiation can also be carried out in a state of being fixed in the mouth. Furthermore, for intraoperative irradiation of pancreatic cancer, a spherical fluorescent glass dosimetry element having a relatively large particle size (for example, about 2 mm to 4 mm) is prepared and placed at or near the pancreatic lesion during laparotomy. Irradiation can be performed. X-ray silver salt film has been used for conventional intraoperative irradiation of pancreatic cancer. However, since the X-ray silver salt film itself cannot be sterilized, it must be wrapped in a sterilized plastic cover. It was. On the other hand, in the measuring method of the present invention, the spherical fluorescent glass dose measuring element can be heat sterilized, which is also convenient in this respect.

本発明の積算吸収線量測定方法は、生体内部に球状蛍光ガラス線量測定素子を配置した状態で生体外から放射線を照射することができるので、生体内の標的ガン組織に実際に照射された積算吸収線量を直接的に測定することが可能になり、正確な積算吸収線量を得ることができる。   The integrated absorbed dose measurement method of the present invention can irradiate radiation from outside the living body with the spherical fluorescent glass dosimetry element disposed inside the living body, and thus the integrated absorption actually irradiated to the target cancer tissue in the living body. The dose can be directly measured, and an accurate integrated absorbed dose can be obtained.

平板状支持盤の模式的斜視図である。It is a typical perspective view of a flat support board. 平板状カバーの模式的斜視図である。It is a typical perspective view of a flat cover. 球状蛍光ガラス線量測定素子を平板状支持盤に載置し、その上から平板状カバーを重ねる工程を模式的に説明する断面図である。It is sectional drawing which illustrates typically the process of mounting a spherical fluorescent glass dosimeter on a flat support board, and overlapping a flat cover from it. 図3の工程によって得られる積層セットの模式的断面図である。It is typical sectional drawing of the lamination | stacking set obtained by the process of FIG.

符号の説明Explanation of symbols

1・・・平板状支持盤;
2・・・平板状カバー;
3・・・球状蛍光ガラス線量測定素子;
4・・・積層セット;
11・・・載置用表面;
12,22・・・平坦部;
13,23・・・半球状窪み;
14,24・・・平坦表面;
15,25・・・固定用貫通口;
21・・・カバー用表面。
1 ... Flat plate support board;
2 ... Flat cover;
3 ... Spherical fluorescent glass dosimetry element;
4 ... Laminated set;
11 ... mounting surface;
12, 22 ... flat part;
13, 23 ... hemispherical depression;
14, 24 ... flat surface;
15, 25 ... fixing through hole;
21 ... Cover surface.

Claims (6)

(1)球状蛍光ガラス線量測定素子に放射線を照射する放射線照射工程
(2)前記球状蛍光ガラス線量測定素子の半球部分の形状に相当する半球状窪みを一方の表面に有し、もう一方の表面が平坦表面である平板状支持盤の前記半球状窪みに、放射線照射後の前記球状蛍光ガラス線量測定素子を載置する載置工程
(3)前記球状蛍光ガラス線量測定素子の半球部分の形状に相当する半球状窪みを一方の表面に有し、もう一方の表面が平坦表面である平板状カバーを、放射線照射後の前記球状蛍光ガラス線量測定素子を載置して担持する前記支持盤の上から重ねて、前記球状蛍光ガラス線量測定素子を前記平板状支持盤の半球状窪みと前記平板状カバーの半球状窪みとで挟むことにより、積層セットを形成する積層工程及び
(4)前記積層セットに励起光を照射し、発光する蛍光を測定する蛍光測定工程
を含むことを特徴とする、前記球状蛍光ガラス線量測定素子の積算吸収線量を測定する方法。
(1) A radiation irradiation step of irradiating the spherical fluorescent glass dosimetry element with radiation,
(2) The hemispherical depression corresponding to the shape of the hemispherical portion of the spherical fluorescent glass dosimetry element is provided on one surface and the other surface is a flat surface. A placing step of placing the spherical fluorescent glass dose measuring element after irradiation;
(3) A plate-like cover having a hemispherical depression corresponding to the shape of the hemispherical portion of the spherical fluorescent glass dosimetry element on one surface and the other surface being a flat surface, and the spherical fluorescence after irradiation. The spherical fluorescent glass dosimetry element is sandwiched between the hemispherical depression of the flat plate support board and the hemispherical depression of the flat cover so as to be stacked from above the support board on which the glass dosimetry element is placed and supported. Accordingly, the lamination process to form a laminated set, and (4) the irradiation with excitation light in the lamination set, the fluorescence measurement step of measuring the fluorescence emitted
Characterized in that it comprises a method of measuring the cumulative absorbed dose of the spherical fluorescent glass dosimetry device.
前記放射線照射工程を、生体内に配置した球状蛍光ガラス線量測定素子に放射線を照射することによって実施する、請求項1に記載の測定方法。   The measurement method according to claim 1, wherein the radiation irradiation step is performed by irradiating a spherical fluorescent glass dosimetry element disposed in a living body with radiation. 平板状支持盤及び平板状カバーが、それぞれガラス製である、請求項1又は2に記載の測定方法。   The measuring method according to claim 1 or 2, wherein the flat support plate and the flat cover are each made of glass. 請求項1〜3のいずれか一項に記載の測定方法に用いる球状蛍光ガラス線量測定素子。  The spherical fluorescent glass dosimetry element used for the measuring method as described in any one of Claims 1-3. (1)球状蛍光ガラス線量測定素子と、(1) a spherical fluorescent glass dosimetry element;
(2)前記球状蛍光ガラス線量測定素子の半球部分の形状に相当する半球状窪みを一方の表面に有し、もう一方の表面が平坦表面である平板状支持盤と、(2) a plate-like support plate having a hemispherical depression corresponding to the shape of the hemispherical part of the spherical fluorescent glass dosimetry element on one surface, and the other surface being a flat surface;
(3)前記球状蛍光ガラス線量測定素子の半球部分の形状に相当する半球状窪みを一方の表面に有し、もう一方の表面が平坦表面である平板状カバーと(3) a flat cover having a hemispherical depression corresponding to the shape of the hemispherical portion of the spherical fluorescent glass dosimetry element on one surface and the other surface being a flat surface;
を含む、前記球状蛍光ガラス線量測定素子の積算吸収線量測定用装置。A device for measuring an accumulated absorbed dose of the spherical fluorescent glass dose measuring element.
平板状支持盤と平板状カバーとが、相互に同一の形状である、請求項5に記載の積算吸収線量測定用装置。  6. The integrated absorbed dose measurement apparatus according to claim 5, wherein the flat support plate and the flat cover have the same shape.
JP2005239423A 2005-08-22 2005-08-22 Spherical fluorescent glass dose measuring element integrated absorbed dose measuring method, spherical fluorescent glass dose measuring element, and integrated absorbed dose measuring apparatus Expired - Fee Related JP4484789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239423A JP4484789B2 (en) 2005-08-22 2005-08-22 Spherical fluorescent glass dose measuring element integrated absorbed dose measuring method, spherical fluorescent glass dose measuring element, and integrated absorbed dose measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239423A JP4484789B2 (en) 2005-08-22 2005-08-22 Spherical fluorescent glass dose measuring element integrated absorbed dose measuring method, spherical fluorescent glass dose measuring element, and integrated absorbed dose measuring apparatus

Publications (2)

Publication Number Publication Date
JP2007057235A JP2007057235A (en) 2007-03-08
JP4484789B2 true JP4484789B2 (en) 2010-06-16

Family

ID=37920872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239423A Expired - Fee Related JP4484789B2 (en) 2005-08-22 2005-08-22 Spherical fluorescent glass dose measuring element integrated absorbed dose measuring method, spherical fluorescent glass dose measuring element, and integrated absorbed dose measuring apparatus

Country Status (1)

Country Link
JP (1) JP4484789B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103889506B (en) * 2011-08-16 2016-10-05 皇家飞利浦有限公司 One treats planning system and treatment system
JP6153103B2 (en) * 2012-12-28 2017-06-28 国立大学法人大阪大学 Method and apparatus for visualizing radiation absorbed dose using bead type fluorescent glass dosimeter element, manufacturing method and apparatus for bead type fluorescent glass dosimeter element therefor
KR101916390B1 (en) * 2017-07-11 2019-01-30 연세대학교 산학협력단 Stent holding apparatus for measuring dose perturbation caused from stent during x-ray and particle radiation therapies

Also Published As

Publication number Publication date
JP2007057235A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP3203211B2 (en) Water phantom type dose distribution measuring device and radiotherapy device
US6048359A (en) Spatial orientation and light sources and method of using same for medical diagnosis and photodynamic therapy
ES2349232T3 (en) SYSTEM AND METHOD FOR LOADING AND SELECTIVELY SEALING A PLURALITY OF IMPLANTABLE BIORRESORBABLE TUBES FOR RADIOISOTOPE SEEDS.
US5547454A (en) Ion-induced nuclear radiotherapy
JP2007510508A (en) Device and method for detecting implantable radiation therapy / brachytherapy radiation
WO2001051124A2 (en) Linac neutron therapy and imaging
JP2007535334A (en) Seed and spacer placement for brachytherapy
US20200376297A1 (en) Apparatus for Combined Localization and Dosimetry in Image Guided Radiation Therapy of the Head and Neck
JP4484789B2 (en) Spherical fluorescent glass dose measuring element integrated absorbed dose measuring method, spherical fluorescent glass dose measuring element, and integrated absorbed dose measuring apparatus
FR2946243A1 (en) Patient positioning method for radiation therapy system, involves associating markers constituted by base to patient, where sphere is adapted to be fixed on base in concentric manner with radio-opaque element
Rifkin et al. An athymic rat model of cutaneous radiation injury designed to study human tissue-based wound therapy
RU2288755C1 (en) Device for radionuclide surgery
TW201919732A (en) Surgically positioned neutron flux activated high energy therapeutic charged particle generation system
EP3325096B1 (en) System for delivering dosed light to tissue
Price et al. In vivo dosimetry with optically stimulated dosimeters and RTQA2 radiochromic film for intraoperative radiotherapy of the breast
CN115737183B (en) Construction equipment of carotid artery stenosis mouse model after radiotherapy
Ptaszkiewicz et al. Dose perturbation behind tantalum clips in ocular proton therapy
KR20240018645A (en) Activity levels for diffuse alpha-emitting radiotherapy
JP6484091B2 (en) Inspection method and inspection tool for stop position in applicator of guide wire tip
JP2022177102A (en) Minimally invasive neutron beam generating device
US7151252B2 (en) Radiation phantom with humanoid shape and adjustable thickness
KR101459510B1 (en) The apparatus evaluating performance of Gamma Knife
Gutman et al. X-ray scalpel—a new device for targeted x-ray brachytherapy and stereotactic radiosurgery
EP1529553B1 (en) Test device for testing positioning of a radioactive radiation source and method using the same
Colombo et al. Employ of a new device for intra-operative radiotherapy of intracranial tumours

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Ref document number: 4484789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees