JP4484674B2 - Glow discharge emission analyzer - Google Patents

Glow discharge emission analyzer Download PDF

Info

Publication number
JP4484674B2
JP4484674B2 JP2004339575A JP2004339575A JP4484674B2 JP 4484674 B2 JP4484674 B2 JP 4484674B2 JP 2004339575 A JP2004339575 A JP 2004339575A JP 2004339575 A JP2004339575 A JP 2004339575A JP 4484674 B2 JP4484674 B2 JP 4484674B2
Authority
JP
Japan
Prior art keywords
value
glow discharge
sample
voltage value
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004339575A
Other languages
Japanese (ja)
Other versions
JP2006145500A (en
Inventor
彰弘 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2004339575A priority Critical patent/JP4484674B2/en
Publication of JP2006145500A publication Critical patent/JP2006145500A/en
Application granted granted Critical
Publication of JP4484674B2 publication Critical patent/JP4484674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は試料へ印加する高周波電圧の平均電圧が一定となるよう高周波電力を生成することで、試料分析を安定して高精度で行えるようにしたグロー放電発光分析装置に関する。 The present invention is to produce a high-frequency power so that the average voltage of the RF voltage applied to the sample is constant, about glow discharge emission spectroscopy 析装 location you allow at stable and high-accuracy sample analysis.

従来、高周波電圧を試料に印加することでグロー放電による発光を生じさせ、この発光を分光器で波長毎に分光して強度を測定し、測定した値をコンピュータのような分析機器に取り込んで試料成分(試料に含まれる元素)の分析を行うグロー放電発光分析装置が存在する。   Conventionally, light emission is caused by glow discharge by applying a high-frequency voltage to a sample, the intensity is measured by spectroscopically analyzing the emitted light for each wavelength, and the measured value is taken into an analytical instrument such as a computer. There is a glow discharge emission spectrometer that analyzes components (elements contained in a sample).

従来のグロー放電発光分析装置は、分析対象の試料をグロー放電管の電極に対向配置し、試料表面に不活性ガス(例えば、アルゴンガス)を供給し、この状態でグロー放電発光分析装置に含まれるジェネレータが13MHz程度の高周波電圧(交流電圧)を試料へ印加してグロー放電を発生させる。グロー放電の発生により不活性ガスのイオン(例えばアルゴンイオン)が生成され、生成されたイオンが高電界で加速して試料表面に衝突することで試料に含まれる物質(元素)が表出する(スパッタリングと称される)。スパッタリングにより表出した元素は固有の波長で発光し、発光した強度を分光器で測定することで試料に含まれる元素の分析を行う。(特許文献1参照)。   In a conventional glow discharge emission spectrometer, a sample to be analyzed is placed opposite to an electrode of a glow discharge tube, and an inert gas (for example, argon gas) is supplied to the sample surface. Generator generates a glow discharge by applying a high frequency voltage (alternating voltage) of about 13 MHz to the sample. By the generation of glow discharge, ions of inert gas (for example, argon ions) are generated, and the generated ions are accelerated by a high electric field and collide with the sample surface, so that substances (elements) contained in the sample are exposed ( Called Sputtering). The element expressed by sputtering emits light at a specific wavelength, and the element contained in the sample is analyzed by measuring the emitted intensity with a spectroscope. (See Patent Document 1).

なお、グロー放電の発生中は、スパッタリングに伴い試料自身のインピーダンス値が変化する。試料のインピーダンス値が変化すると、試料への安定給電が阻害されるため、グロー放電発光分析装置の電源部は、ジェネレータに加えて、試料のインピーダンス値の変化に対応して給電調整を行うマッチングボックスと云う機器を具備する。なお、電源部(ジェネレータ)は試料分析中、一定値の高周波電力を試料へ給電する。
特開2001−4548号公報
During glow discharge, the impedance value of the sample itself changes with sputtering. When the impedance value of the sample changes, stable power supply to the sample is hindered, so the power supply unit of the glow discharge emission spectrometer is a matching box that adjusts the power supply in response to changes in the impedance value of the sample in addition to the generator Equipment. Note that the power supply unit (generator) supplies a constant value of high-frequency power to the sample during sample analysis.
JP 2001-4548 A

従来のグロー放電発光分析装置では、試料への給電中にグロー放電管の電極と試料との間で生じるスパッタリングが不安定になると云う状態があった。即ち、スパッタリングによる負荷を受けて試料表面が損耗し、電極と試料表面間の距離が変化する現象が生じること等により試料への良好な給電が阻害される場合がある。このような場合ではグロー放電発光分析装置の電源部から試料へ流れる電流の進行が妨げられ、この状態に誘起して電源部の出力電圧が高くなると云う状況が発生する。   In the conventional glow discharge emission spectrometer, there is a state in which sputtering generated between the electrode of the glow discharge tube and the sample becomes unstable during power feeding to the sample. That is, there is a case where good power supply to the sample is hindered due to a phenomenon that the surface of the sample is worn by receiving a load due to sputtering and the distance between the electrode and the sample surface changes. In such a case, the progress of the current flowing from the power supply unit of the glow discharge emission spectrometer to the sample is hindered, and a situation occurs in which the output voltage of the power supply unit increases due to this state.

その結果、図15に示すようにグロー放電管の電極と試料との間の電位差(V1≠V2≠V3:平均電位差)が給電中の時間帯により変位する。電位差が変位するとスパッタリングが不安定になり、それに伴い発光強度も変化するため、発光強度の測定を安定して高精度で行えないと云う問題が起きる。   As a result, as shown in FIG. 15, the potential difference (V1 ≠ V2 ≠ V3: average potential difference) between the electrode of the glow discharge tube and the sample is displaced according to the time zone during power feeding. When the potential difference is displaced, sputtering becomes unstable, and the emission intensity changes accordingly. Therefore, there arises a problem that the emission intensity cannot be measured stably and with high accuracy.

本発明は、斯かる問題に鑑みてなされたものであり、スパッタリングを安定させるために試料へ印加する交流電圧の平均電圧値が一定となるように高周波電力値を変化させる制御を行うようにしたグロー放電発光分析装置を提供することを目的とする。
また、本発明はスパッタリングによる試料の損耗の影響を低減して高精度の測定結果を安定して得られるようにしたグロー放電発光分析装置を提供することを目的とする。
The present invention has been made in view of such a problem, and performs control to change the high-frequency power value so that the average voltage value of the AC voltage applied to the sample is constant in order to stabilize the sputtering. and to provide a glow discharge optical emission spectrometer.
It is another object of the present invention to provide a glow discharge optical emission analyzer capable of stably obtaining highly accurate measurement results by reducing the influence of sample wear due to sputtering.

上記課題を解決するために、発明に係るグロー放電発光分析装置は、電源部が生成した交流電力の交流電圧を被分析材へ印加して生じさせたグロー放電に伴う発光の強度を分光器で測定するグロー放電発光分析装置において、基準電圧値を記憶する手段と、被分析材への交流電圧の印加を予め定められた間隔で断続的に行う断続印加手段と、被分析材へ印加する交流電圧に係る平均電圧値を検出する検出手段と、該検出手段が検出した平均電圧値及び基準電圧値の比較を行う比較手段と、該比較手段の比較結果を判断する判断手段と、被分析材へ印加する交流電圧に係る平均電圧値が一定となるように前記電源部が生成する交流電力の電力値を前記判断手段の判断結果に応じて変化させる制御を行う電力制御手段とを備えることを特徴とする。 In order to solve the above problems, a glow discharge optical emission spectrometer according to the present invention, the spectrometer the intensity of light emission with an AC voltage of the AC power supply unit is generated glow discharge was generated by applying to the analyte material In the glow discharge optical emission analyzer for measuring in step (1), means for storing a reference voltage value, intermittent application means for intermittently applying an AC voltage to the material to be analyzed at predetermined intervals, and applying to the material to be analyzed A detecting means for detecting an average voltage value related to the AC voltage; a comparing means for comparing the average voltage value detected by the detecting means and a reference voltage value; a judging means for judging a comparison result of the comparing means; Power control means for performing control to change the power value of the AC power generated by the power supply unit according to the determination result of the determination means so that the average voltage value related to the AC voltage applied to the material is constant. With features That.

発明に係るグロー放電発光分析装置は、前記断続印加手段が行う断続印加に同期させて前記分光器が測定した値を取得する測定値取得手段を備えることを特徴とする。 The glow discharge emission spectrometer according to the present invention is characterized by comprising measurement value acquisition means for acquiring values measured by the spectrometer in synchronization with intermittent application performed by the intermittent application means.

発明にあっては、従来のように給電する電力値を一定にするのではなく、測定中に電力値を変化させて平均電圧値を一定にするので、スパッタリングを生じさせる被分析材(試料)と電極との間の電位差が一定となり、スパッタリングの発生状況が一様に安定する。その結果、スパッタリングに伴う発光の強度の変化も抑制されて安定した測定結果を得られる。 In the present invention, since the power value to be fed is not constant as in the prior art, the power value is changed during the measurement to keep the average voltage value constant. ) And the electrode are constant, and the occurrence of sputtering is uniformly stabilized. As a result, a change in the intensity of light emission accompanying sputtering is suppressed, and a stable measurement result can be obtained.

発明にあっては、実際に被分析材へ印加する交流電圧に係る平均電圧値と基準電圧値とを比較した判断結果に応じて電力値を変化させるので、実際の測定状況に合致したレベルで電圧値が一定となり、適切なグロー放電の発生条件を確保して安定したスパッタリングを発生させて高精度な測定を実現できるようになる。なお、基準電圧値は、被分析材の特性、測定環境、及び過去の経験などを考慮して特定した値を適宜用いることになる。 In the present invention, the power value is changed according to the determination result of comparing the average voltage value related to the AC voltage actually applied to the analyte and the reference voltage value, so that the level matches the actual measurement situation. As a result, the voltage value becomes constant, and an appropriate glow discharge generation condition is ensured to generate stable sputtering, thereby realizing high-accuracy measurement. As the reference voltage value, a value specified in consideration of characteristics of the material to be analyzed, measurement environment, past experience, and the like is appropriately used.

発明にあっては、断続印加手段により被分析材への交流電圧の印加を断続的に行うので、スパッタリングも断続して発生するようになり、連続して交流電圧を印可する場合に比べて被分析材を損耗させる程度を低減できる。そのため、測定に対し従来に比べて高い電圧値を印加しても被分析材の損耗の影響を抑えられるため、高い電圧値の印加により発光強度が上昇し、測定精度の向上を図れる。 In the present invention, since the AC voltage is intermittently applied to the material to be analyzed by the intermittent application means, sputtering also occurs intermittently, compared to the case where the AC voltage is continuously applied. The degree to which the analyte is worn can be reduced. Therefore, even if a higher voltage value is applied to the measurement than in the past, the influence of the wear of the analyte can be suppressed, so that the emission intensity is increased by the application of the higher voltage value, and the measurement accuracy can be improved.

発明にあっては、交流電圧の断続印加を行う場合に、断続印加に同期させて分光器から測定値を取得するので、非印加時に生じる様々なノイズ成分を含む測定値を取得しなくなり、分析対象となる測定値からノイズ成分を排除して一段と高精度な分析を行える。 In the present invention, when performing intermittent application of AC voltage, because the measurement value is acquired from the spectrometer in synchronization with the intermittent application, it is not possible to acquire measurement values including various noise components that occur during non-application, The noise component can be eliminated from the measurement value to be analyzed, and analysis with higher accuracy can be performed.

発明にあっては、測定中に電力値を変化させて平均電圧値を一定にするので、試料と電極との間の電位差を一定値にでき、スパッタリングの変動を抑制して安定した測定結果を得ることができる。
発明にあっては、試料へ印加する交流電圧に係る平均電圧値及び基準電圧値の比較に基づき電力値を変化させるので、実際の測定に合致した条件の値で試料と電極との間の電位差を一定にでき、スパッタリングを安定させて高精度な測定を実現できる。
In the present invention, the average voltage value is made constant by changing the power value during the measurement, so that the potential difference between the sample and the electrode can be made constant, and the stable measurement result by suppressing the fluctuation of sputtering. Can be obtained.
In the present invention, since the power value is changed based on the comparison of the average voltage value and the reference voltage value related to the AC voltage applied to the sample, the value between the sample and the electrode is set to a value that matches the actual measurement. The potential difference can be made constant, sputtering can be stabilized, and highly accurate measurement can be realized.

発明にあっては、被分析材への交流電圧の印加を断続的に行うので、試料の損耗程度を低減させて高電圧値を印加した測定を可能にし、より測定精度の向上を図れる。
発明にあっては、断続印加に同期させて分光器から測定値を取得するので、非印加時に生じる様々なノイズ成分を排除して高精度な分析を行える。
In the present invention, since the AC voltage is intermittently applied to the material to be analyzed, the degree of wear of the sample can be reduced to enable measurement with a high voltage value applied, and the measurement accuracy can be further improved.
In the present invention, since the measurement value is acquired from the spectrometer in synchronization with intermittent application, various noise components generated during non-application can be eliminated and highly accurate analysis can be performed.

図1は本発明の実施形態に係るグロー放電発光分析装置1の全体構成を示している。グロー放電発光分析装置1は、試料S(被分析材)をセットしてグロー放電を発生させるグロー放電管2、グロー放電管2にセットされた試料Sに高周波電圧を印加する電源部3、測定に必要なガスをグロー放電管2に供給するガス供給部6、グロー放電管2から生じる光Lを分光して各光の強度を測定する分光器7、及び測定値を取得して試料成分の分析等を行う分析制御部8を備える。なお、電源部3は、交流電源AC(本実施形態では220V)に接続されて高周波電力を生成するジェネレータ(電力生成装置)4及びマッチングボックス5を有する。   FIG. 1 shows the overall configuration of a glow discharge emission spectrometer 1 according to an embodiment of the present invention. The glow discharge emission analysis apparatus 1 includes a glow discharge tube 2 that sets a sample S (analyte) and generates glow discharge, a power supply unit 3 that applies a high-frequency voltage to the sample S set in the glow discharge tube 2, and measurement. A gas supply unit 6 for supplying the gas necessary for the glow discharge tube 2, a spectrometer 7 for measuring the light L generated from the glow discharge tube 2 and measuring the intensity of each light, and obtaining measurement values for the sample components An analysis control unit 8 that performs analysis and the like is provided. The power supply unit 3 includes a generator (power generation device) 4 and a matching box 5 that are connected to an AC power supply AC (220 V in this embodiment) and generate high-frequency power.

グロー放電管2は、図2に示すように内部に貫通孔10aを形成したランプボディ10に、絶縁材11を介在させた電極12及びセラミックス13を押圧ブロック14により取り付けた構成にしており、ガス供給部6からの不活性ガスが導かれる貫通孔10aの分光器7側には集光レンズ15を配置している。またセラミックス13には試料Sが試料押圧部材9により押圧された状態で取り付けられる。試料押圧部材9は電圧印加電極も兼ねており、電源部3と電源線Dにより接続されて高周波電圧を試料Sに印加する。   As shown in FIG. 2, the glow discharge tube 2 has a structure in which an electrode 12 and a ceramic 13 with an insulating material 11 interposed are attached to a lamp body 10 having a through hole 10a therein by a pressing block 14. A condenser lens 15 is arranged on the side of the spectroscope 7 of the through hole 10a through which the inert gas from the supply unit 6 is guided. The sample 13 is attached to the ceramic 13 in a state where the sample S is pressed by the sample pressing member 9. The sample pressing member 9 also serves as a voltage application electrode, and is connected to the power supply unit 3 by the power supply line D to apply a high frequency voltage to the sample S.

図3は電源部3を構成するジェネレータ4の内部構成を示している。本実施形態のジェネレータ4は高周波電力生成部4a、制御部4b、及び検出部4cを有する。高周波電力生成部4aは交流電源ACと接続されて高周波電力(本実施形態では13.56MHz)を生成する。また、高周波電力生成部4aは第1内部接続線4dにより制御部4bと接続されており、制御部4bの制御に基づき高周波電力の生成開始及び終了を行うと共に生成する高周波電力の値を変化する。   FIG. 3 shows the internal configuration of the generator 4 constituting the power supply unit 3. The generator 4 of this embodiment includes a high frequency power generation unit 4a, a control unit 4b, and a detection unit 4c. The high frequency power generation unit 4a is connected to the AC power supply AC to generate high frequency power (13.56 MHz in the present embodiment). The high frequency power generation unit 4a is connected to the control unit 4b by the first internal connection line 4d, and starts and ends the generation of the high frequency power and changes the value of the generated high frequency power based on the control of the control unit 4b. .

ジェネレータ4の検出部4cは、第2内部接続線4eで制御部4bと接続されると共に第3内部接続線4fで高周波電力生成部4aと接続されており、高周波電力生成部4aで生成された高周波電力に応じてジェネレータ4から試料Sへ向けて出力される高周波電圧(交流電圧)に係る平均電圧値及び電流値を検出している。検出部4が検出する電圧値を平均電圧値にしているのは、高周波(交流)は正負が交互に入れ替わるためであり、本実施形態では振幅中心の値と0Vとの差を平均電圧値としている。なお、正弦波交流の平均電圧値は「波高値×(2/π)」で求められる。また、検出部4cは試料Sから反射して戻ってくる反射波の反射電圧値も検出しており、検出した平均電圧値及び反射電圧値を制御部4bへ伝送している。   The detection unit 4c of the generator 4 is connected to the control unit 4b through the second internal connection line 4e and is connected to the high frequency power generation unit 4a through the third internal connection line 4f, and is generated by the high frequency power generation unit 4a. An average voltage value and a current value relating to a high-frequency voltage (AC voltage) output from the generator 4 toward the sample S according to the high-frequency power are detected. The reason why the voltage value detected by the detection unit 4 is the average voltage value is that the high frequency (alternating current) is alternately switched between positive and negative. In this embodiment, the difference between the amplitude center value and 0 V is used as the average voltage value. Yes. The average voltage value of the sinusoidal alternating current is obtained by “crest value × (2 / π)”. The detection unit 4c also detects the reflected voltage value of the reflected wave reflected from the sample S and transmits the detected average voltage value and reflected voltage value to the control unit 4b.

ジェネレータ4の制御部4bはIC(集積回路)で構成されており、ジェネレータ4での高周波電力生成に係る制御処理を行っている。制御部4bには、第1接続コードW1を通じて分析制御部8から基準電圧値が測定前に伝送されており、また、第2内部接続線4eを通じて検出部4cから平均電圧値が随時伝送されており、制御部4bは伝送された平均電圧値を記憶して随時伝送されてくる基準電圧値と比較し、比較結果に応じて電力値を変化させるような制御指示を高周波電力生成部4aへ出力している。このような制御部4bの制御に基づき、ジェネレータ4から出力される交流電圧に係る平均電圧値は一定にされる。   The control unit 4 b of the generator 4 is configured by an IC (integrated circuit), and performs control processing related to high-frequency power generation in the generator 4. The reference voltage value is transmitted from the analysis control unit 8 through the first connection cord W1 to the control unit 4b before measurement, and the average voltage value is transmitted from the detection unit 4c through the second internal connection line 4e as needed. The control unit 4b stores the transmitted average voltage value, compares it with the reference voltage value transmitted as needed, and outputs a control instruction to change the power value according to the comparison result to the high frequency power generation unit 4a. is doing. Based on such control of the control unit 4b, the average voltage value related to the AC voltage output from the generator 4 is made constant.

さらに、制御部4bは、比較した結果で平均電圧値が基準電圧値より高いと判断した場合、生成する電力値を現在の値より低下するように高周波電力生成部4aを制御する。また、平均電圧値が基準電圧値より低いと判断した場合、制御部4bは現在の電力値より上昇するように高周波電力生成部4aを制御し、さらに平均電圧値が基準電圧値と同等と判断した場合、現在の電力値を維持するように高周波電力生成部4aを制御する。   Further, when the control unit 4b determines that the average voltage value is higher than the reference voltage value as a result of the comparison, the control unit 4b controls the high-frequency power generation unit 4a so that the generated power value is lower than the current value. Further, when it is determined that the average voltage value is lower than the reference voltage value, the control unit 4b controls the high frequency power generation unit 4a so as to increase from the current power value, and further determines that the average voltage value is equal to the reference voltage value. When it does, the high frequency electric power generation part 4a is controlled so that the present electric power value may be maintained.

このような制御部4bの高周波電力生成部4aに対する制御は、試料Sへの給電中、継続して行われるため、測定中の状況によって試料Sへの給電が妨げられるような状態になっても、図5に示すように試料Sとグロー放電管2の電極との電位差Vdcは給電開始直後を除いて一定に維持され、スパッタリングの発生も一様になる。   Such control of the high-frequency power generation unit 4a by the control unit 4b is continuously performed during power supply to the sample S. Therefore, even when the power supply to the sample S is hindered by the situation during measurement. As shown in FIG. 5, the potential difference Vdc between the sample S and the electrode of the glow discharge tube 2 is kept constant except immediately after the start of power feeding, and the occurrence of sputtering becomes uniform.

なお、制御部4bにより高周波電力生成部4aが生成する電力値を変化させる割合は、予め初期値が設定されているが、ユーザの操作により変化させる割合(0.01%〜30%)又は変化させる数値を設定できるようになっている。このようにユーザが変化に係る割合数値を設定した場合、分析制御部8から第1接続コードW1を通じて設定された内容が制御部4bへ伝送される。また、制御部4bへ分析制御部8から伝送される内容には、印加開始信号及び印加停止信号があり、制御部4bは印加開始信号を受けると高周波電力生成部4aで高周波電力の生成を開始させると共に、印加停止信号を受けると高周波電力生成部4aで高周波電力の生成を停止させる制御を行う。   In addition, although the initial value is set in advance for the rate of changing the power value generated by the high-frequency power generation unit 4a by the control unit 4b, the rate of change (0.01% to 30%) or change by the user's operation The numerical value to be set can be set. As described above, when the user sets the ratio numerical value related to the change, the content set through the first connection code W1 is transmitted from the analysis control unit 8 to the control unit 4b. The contents transmitted from the analysis control unit 8 to the control unit 4b include an application start signal and an application stop signal. When the control unit 4b receives the application start signal, the high frequency power generation unit 4a starts generating high frequency power. When the application stop signal is received, the high frequency power generation unit 4a performs control to stop the generation of high frequency power.

図5は、電源部3を構成するマッチングボックス5の内部構成を示している。マッチングボックス5は、可変コンデンサ5a、モータ5b、及びコンデンサ制御部5cを備え、モータ5bは可変コンデンサ5aの電気容量を変更する。   FIG. 5 shows an internal configuration of the matching box 5 constituting the power supply unit 3. The matching box 5 includes a variable capacitor 5a, a motor 5b, and a capacitor control unit 5c. The motor 5b changes the electric capacity of the variable capacitor 5a.

可変コンデンサ5aはモータ5bの駆動に応じて自身の電気容量を変化してジェネレータ4から出力される高周波電圧のモジュール及びフェーズを調節する。コンデンサ制御部5cは第2接続コードW2により分析制御部8と接続されており、分析制御部8からマッチングボックス5へ伝送される制御信号に基づきモータ5bの駆動を制御しており、具体的には、試料Sからの反射電圧値が最小となるようにモータ5bの駆動を制御して可変コンデンサ5aの電気容量を変更している。   The variable capacitor 5a adjusts the module and phase of the high-frequency voltage output from the generator 4 by changing its own capacitance according to the driving of the motor 5b. The capacitor control unit 5c is connected to the analysis control unit 8 through the second connection cord W2, and controls the driving of the motor 5b based on a control signal transmitted from the analysis control unit 8 to the matching box 5. Specifically, Controls the drive of the motor 5b so that the reflected voltage value from the sample S is minimized to change the electric capacity of the variable capacitor 5a.

また、図1に示すガス供給部6は、アルゴンガスのような不活性ガス又は不活性ガスの混合ガス等を充填したボンベ(図示せず)、及び第3接続線W3と接続されて分析制御部8の第2基板17の制御により開閉されてボンベから不活性ガスの供給を行う電磁弁(図示せず)を備えている。なお、グロー放電発光分析装置1は図1で示していないが、ガス供給部6からのガス供給前に、グロー放電管2の内部の空気を吸引して真空にする真空引き装置も備えている。   Further, the gas supply unit 6 shown in FIG. 1 is connected to a cylinder (not shown) filled with an inert gas such as argon gas or a mixed gas of inert gas, etc., and the third connection line W3, and analysis control is performed. An electromagnetic valve (not shown) that opens and closes under the control of the second substrate 17 of the unit 8 and supplies an inert gas from the cylinder is provided. Although not shown in FIG. 1, the glow discharge emission analyzer 1 is also provided with a vacuuming device that sucks the air inside the glow discharge tube 2 and evacuates it before supplying gas from the gas supply unit 6. .

グロー放電管2から放出されるスパッタリングに伴う光Lを測定する分光器7は、図1に示すように光Lを透過させる第1スリット7a、第1スリット7aを透過した光Lを分光する回折格子7b、測定対象成分に相当する波長に分光された光を透過させる第2スリット7c、及び第2スリット7cを透過した光の強度を連続して測定する複数の光電子増倍管(フォトマルチプレクサ)7dを備えている。なお、各光電子増倍管7dは、複数のコードを束ねた接続線束W4により分析制御部8に接続されており、本発明では分析制御部8が光の強度の測定値を接続線束W4を通じて所要のタイミングで取得している。   The spectroscope 7 that measures the light L accompanying sputtering emitted from the glow discharge tube 2 has a first slit 7a that transmits the light L and a diffraction that splits the light L that has passed through the first slit 7a as shown in FIG. A grating 7b, a second slit 7c that transmits light split to a wavelength corresponding to the component to be measured, and a plurality of photomultiplier tubes (photomultiplexers) that continuously measure the intensity of light transmitted through the second slit 7c. 7d. Each photomultiplier tube 7d is connected to the analysis control unit 8 by a connection wire bundle W4 in which a plurality of cords are bundled. In the present invention, the analysis control unit 8 requires a measured value of light intensity through the connection wire bundle W4. It is acquired at the timing.

一方、図1に示す分析制御部8にはコンピュータを適用している。分析制御部8は、光電子増倍管7dから延在する接続線束W4と接続されて分光器7での測定値を取得する第1基板16を装着すると共に、ジェネレータ4から延在する第1接続コードW1、マッチングボックス5から延在する第2接続コードW2及びガス供給部6から延在する第3接続コードW3との接続用に第2基板17を装着している。各基板16、17は内部バス8aを介してCPU8b、ハードディスク装置8c、並びに処理に伴うファイル及びデータ等を一次的に記憶するメモリ8dと接続されている。なお、内部バス8aは外部接続線W5を介してモニタ装置8eを接続し、また、第2基板17には図示していない真空引き装置が接続されている。   On the other hand, a computer is applied to the analysis control unit 8 shown in FIG. The analysis control unit 8 is connected to a connection wire bundle W4 extending from the photomultiplier tube 7d and is attached with a first substrate 16 for obtaining a measurement value in the spectroscope 7, and a first connection extending from the generator 4. The second substrate 17 is mounted for connection with the cord W1, the second connection cord W2 extending from the matching box 5, and the third connection cord W3 extending from the gas supply unit 6. Each of the boards 16 and 17 is connected via an internal bus 8a to a CPU 8b, a hard disk device 8c, and a memory 8d for temporarily storing files and data associated with the processing. The internal bus 8a is connected to the monitor device 8e via the external connection line W5, and a vacuuming device (not shown) is connected to the second substrate 17.

第2基板17は処理回路部を有しており、分析制御部8でユーザにより設定された内容の中から、電力生成に関連する内容をジェネレータ4へ伝送する処理を行うと共に、ジェネレータ4の検出部4cで検出された反射電圧値を受け付けて反射電圧値を通知する信号を生成してマッチングボックス5へ伝送する処理を行う。なお、第2基板17はガス供給部6及び真空引き装置に対する制御に係る指示を出力する処理等も行う。また、第1基板16は測定値取得手段に相当し、測定処理回路部を有して所定の時間間隔で分析器7から測定値を取得する処理を行う。   The second substrate 17 has a processing circuit unit, and performs processing for transmitting content related to power generation to the generator 4 from the content set by the user in the analysis control unit 8, and detects the generator 4. A process of receiving the reflected voltage value detected by the unit 4c, generating a signal notifying the reflected voltage value, and transmitting the signal to the matching box 5 is performed. Note that the second substrate 17 also performs processing for outputting an instruction related to control of the gas supply unit 6 and the vacuuming device. The first substrate 16 corresponds to a measurement value acquisition unit, and has a measurement processing circuit unit, and performs a process of acquiring measurement values from the analyzer 7 at predetermined time intervals.

分析制御部8のCPU8bは、ハードディスク装置8cに記憶されたプログラムに基づいて各種処理を行い、例えば、測定に係る設定項目の受付処理、第1基板16及び第2基板17の各回路部の作動制御、並びに第1基板16で取得した測定値に基づいた試料Sに含まれる元素成分の濃度等に対する分析処理を行う。なお、測定に係る設定項目内容(パラメータ)は、分析制御部8に接続された図示しない入力操作部(マウス、キーボード等)によりユーザから入力されており、CPU8bの制御に基づきモニタ装置8eに設定項目入力用のメニューを表示してユーザが入力できるようにしている。   The CPU 8b of the analysis control unit 8 performs various processes based on a program stored in the hard disk device 8c. For example, the setting item receiving process for measurement and the operation of each circuit unit of the first substrate 16 and the second substrate 17 are performed. Control and analysis processing for the concentration of elemental components contained in the sample S based on the measurement values acquired by the first substrate 16 are performed. The setting item contents (parameters) related to the measurement are input from the user by an input operation unit (mouse, keyboard, etc.) (not shown) connected to the analysis control unit 8, and set in the monitor device 8e based on the control of the CPU 8b. An item input menu is displayed so that the user can input.

また、設定項目としては高周波電圧のピーク値、基準電圧値(通常、数百ボルトを設定)、電力値の変化に係る割合(又は数値)、ガス供給部6のガス供給圧、測定時間等がある。CPU8bは上述した項目が入力されると、その内容を設定すると共に設定項目に応じた制御を行う。また、ユーザからの測定の開始指示を受け付けると、真空引き、ガス供給の順序で制御を行うと共に、ガス供給が完了すると印加開始信号を第2基板17からジェネレータ4へ送ると共に、測定時間に応じて印加停止信号をジェネレータ4へ送る制御等を行う。   The setting items include the peak value of the high-frequency voltage, the reference voltage value (usually set to several hundred volts), the ratio (or numerical value) related to the change in the power value, the gas supply pressure of the gas supply unit 6, the measurement time, etc. is there. When the above items are input, the CPU 8b sets the contents and performs control according to the set items. When a measurement start instruction is received from the user, control is performed in the order of evacuation and gas supply. When the gas supply is completed, an application start signal is sent from the second substrate 17 to the generator 4 and the measurement time is determined. Then, control for sending an application stop signal to the generator 4 is performed.

次に上述した構成のグロー放電発光分析装置1による分析に対する全体的な処理の流れを図6の第1フローチャートに基づいて説明する。
先ず、準備段階においてグロー放電発光分析装置1には、ユーザの入力に基づき各種パラメータが設定され(S1)、試料Sが図1、2に示すようにグロー放電発光分析装置1のグロー放電管2にセットされる(S2)。
Next, the overall processing flow for the analysis by the glow discharge emission spectrometer 1 having the above-described configuration will be described based on the first flowchart of FIG.
First, in the preparation stage, various parameters are set in the glow discharge emission spectrometer 1 based on user input (S1), and the sample S is a glow discharge tube 2 of the glow discharge emission analyzer 1 as shown in FIGS. (S2).

その後、グロー放電管2の内部の真空引きを真空引き装置で行ってから、ガス供給部6より測定に必要な不活性ガス(アルゴンガス)を供給する(S3)。不活性ガスの供給が完了すると分析制御部8からジェネレータ4へ印加開始信号が送られて試料Sへ高周波電圧が印加され、発光強度の測定に基づき試料Sに対する分析が行われる(S4)。   Thereafter, the inside of the glow discharge tube 2 is evacuated by a evacuation device, and then an inert gas (argon gas) necessary for measurement is supplied from the gas supply unit 6 (S3). When the supply of the inert gas is completed, an application start signal is sent from the analysis control unit 8 to the generator 4, a high frequency voltage is applied to the sample S, and the sample S is analyzed based on the measurement of the emission intensity (S4).

分析段階(S4)では、グロー放電管2に供給したアルゴンガスから生じたアルゴンイオンが試料Sの表面に衝突することでスパッタリングが起こり、試料Sの表面からイオンを含む粒子が飛び出し、この粒子がプラズマ中で励起されて基底状態に戻る際に元素固有の光Lを発する。この光Lを分光器7で分光し、各光の強度を測定してから分析制御部8が測定値を分光器7より取得し、取得した測定値に基づき試料Sに含まれる元素等を分析する。その後、分析制御部8は分析結果をモニタ装置8e等に出力する(S5)。   In the analysis step (S4), sputtering occurs when argon ions generated from the argon gas supplied to the glow discharge tube 2 collide with the surface of the sample S, and particles containing ions are ejected from the surface of the sample S. When excited in plasma and returned to the ground state, light L specific to the element is emitted. After analyzing the light L with the spectroscope 7 and measuring the intensity of each light, the analysis control unit 8 acquires the measurement value from the spectroscope 7 and analyzes the elements contained in the sample S based on the acquired measurement value. To do. Thereafter, the analysis control unit 8 outputs the analysis result to the monitor device 8e or the like (S5).

図7の第2フローチャートは、分析段階(S4)における本発明の電力値制御に係るグロー放電発光分析方法の処理手順を示したものであり、具体的には、試料Sの分析中(測定中)、試料Sへ印加する高周波電圧に係る平均電圧値が一定となるように電力値の変化を制御する一連の内容を示し、以下、この第2フローチャートに沿って説明を行う。
先ず、ジェネレータ4(図3参照)の検出部4cは、高周波電力生成部4aが生成した高周波電力の高周波電圧に係る平均電圧値を検出し(S10)、次に、制御部4bが検出された平均電圧値とユーザにより設定された基準電圧値とを比較する(S11)。
The second flowchart of FIG. 7 shows the processing procedure of the glow discharge emission analysis method according to the power value control of the present invention in the analysis stage (S4). Specifically, the sample S is being analyzed (under measurement). ), A series of contents for controlling the change of the power value so that the average voltage value related to the high frequency voltage applied to the sample S is constant, and will be described below along the second flowchart.
First, the detection unit 4c of the generator 4 (see FIG. 3) detects an average voltage value related to the high-frequency voltage of the high-frequency power generated by the high-frequency power generation unit 4a (S10), and then the control unit 4b is detected. The average voltage value is compared with the reference voltage value set by the user (S11).

比較により平均電圧値が基準電圧値に比べて低いと制御部4bが判断した場合(S11:低い)、平均電圧値が基準電圧値と同等となるように、初期値又はユーザにより設定された所定の割合(又は所定の数値分)で電力値を上昇させる制御指示を高周波電力生成部4aに行う(S12)。また、比較により平均電圧値が基準電圧値に比べて高いと制御部4bが判断した場合(S11:高い)、平均電圧値が基準電圧値と同等となるように、初期値又はユーザにより設定された所定の割合(又は所定の数値分)で電力値を低下させる制御指示を高周波電力生成部4aに行う(S13)。さらに、比較により平均電圧値が基準電圧値と同等と制御部4bが判断した場合(S11:同等)、特に高周波電力生成部4aに対して制御指示を行わない。   When the control unit 4b determines that the average voltage value is lower than the reference voltage value by comparison (S11: low), the initial value or a predetermined value set by the user so that the average voltage value is equal to the reference voltage value. Is given to the high-frequency power generation unit 4a (S12). Further, when the control unit 4b determines that the average voltage value is higher than the reference voltage value by comparison (S11: high), the initial value or the user sets the average voltage value to be equal to the reference voltage value. A control instruction to decrease the power value at a predetermined rate (or a predetermined numerical value) is given to the high-frequency power generation unit 4a (S13). Furthermore, when the control unit 4b determines that the average voltage value is equal to the reference voltage value by comparison (S11: equivalent), no control instruction is given to the high-frequency power generation unit 4a.

続いて、高周波電力生成部4aは、制御指示を受けた場合、制御指示に従って電力値を変化させて高周波電力を生成し、制御指示を受けない場合は、現在の電力値で高周波電力を生成する(S14)。最後に制御部4bは分析制御部8からの印加停止信号を受け付けたか否かを判断し(S15)、印加停止信号を受け付けていない場合(S15:NO)、最初の平均電圧値を検出の段階(S10)へ戻り、印加停止信号を受け付けた場合(S15:YES)、高周波電圧印加の処理を終了する。   Subsequently, when receiving the control instruction, the high-frequency power generation unit 4a generates the high-frequency power by changing the power value according to the control instruction, and generates the high-frequency power with the current power value when the control instruction is not received. (S14). Finally, the control unit 4b determines whether or not the application stop signal from the analysis control unit 8 has been received (S15). If the application stop signal has not been received (S15: NO), the first average voltage value is detected. Returning to (S10), if an application stop signal is received (S15: YES), the high frequency voltage application process is terminated.

このように本実施形態のグロー放電発光分析装置1は、平均電圧値が一定となるように高周波電力を生成して試料Sへ電圧印加を行うので、図2に示す試料Sと電極12との間の電位差Vdcは一定となり(図4参照)、試料表面に係る負荷を一様にしてスパッタリングの発生を安定化する。また、安定したスパッタリングにより発光強度の振れも抑制され、それに伴い、グロー放電発光分析装置1は従来に比べて高精度な測定分析を実現している。   As described above, the glow discharge emission spectrometer 1 of the present embodiment generates high-frequency power and applies a voltage to the sample S so that the average voltage value is constant, so that the sample S and the electrode 12 shown in FIG. The potential difference Vdc is constant (see FIG. 4), and the load on the sample surface is made uniform to stabilize the generation of sputtering. In addition, the fluctuation of emission intensity is suppressed by stable sputtering, and accordingly, the glow discharge emission analyzer 1 realizes measurement analysis with higher accuracy than the conventional one.

次に、本発明のグロー放電発光分析装置1の分析結果を従来の装置(電力値一定)と比較するために、本発明に係る装置及び従来の装置に対して同一の試験片を用いてそれぞれ分析を行った。分析に用いた1番目の試料(試料1)は炭素(Carbon:C)を0.337%含むものであり、2番目の試料(試料2)は炭素(Carbon:C)を0.203%含んでおり、グロー放電発光分析装置1及び従来のグロー放電発光分析装置で各試料毎にそれぞれ5回分析を行った。   Next, in order to compare the analysis result of the glow discharge emission spectrometer 1 of the present invention with the conventional apparatus (constant power value), the same test piece is used for the apparatus according to the present invention and the conventional apparatus, respectively. Analysis was carried out. The first sample (sample 1) used for analysis contains 0.337% carbon (Carbon: C), and the second sample (sample 2) contains 0.203% carbon (Carbon: C). Thus, each sample was analyzed five times with the glow discharge emission analyzer 1 and the conventional glow discharge emission analyzer.

図8(a)の図表は、電力値を変化させる本発明のグロー放電発光分析装置1の分析結果を示しており、試料1を5回分析し、分析結果に対する平均値は「0.3400(%)」、標準偏差は「0.0003」、変動係数(標準偏差/平均値)は「0.09」となり、また、試料2を5回分析した結果に対する平均値は「0.2043(%)」、標準偏差は「0.0005」、変動係数は「0.26」となった。なお、各数値は適宜四捨五入した値である(以下、同様)。   The chart of FIG. 8A shows the analysis result of the glow discharge emission spectrometer 1 of the present invention that changes the power value. The sample 1 is analyzed five times, and the average value for the analysis result is “0.3400 ( %) ”, The standard deviation is“ 0.0003 ”, the coefficient of variation (standard deviation / average value) is“ 0.09 ”, and the average value for the result of analyzing Sample 2 five times is“ 0.2043 (% ) ”, The standard deviation was“ 0.0005 ”, and the coefficient of variation was“ 0.26 ”. Each numerical value is rounded off as appropriate (the same applies hereinafter).

一方、図8(b)の図表は、一定値の高周波電力を試料へ給電する従来のグロー放電発光分析装置の分析結果を示し、試料1を5回分析した結果に対する平均値は「0.3415(%)」、標準偏差は「0.0009」、変動係数は「0.27」となり、また、試料2を5回分析した結果に対する平均値は「0.2055(%)」、標準偏差は「0.0017」、変動係数は「0.82」となった。   On the other hand, the chart of FIG. 8B shows the analysis result of the conventional glow discharge emission spectrometer that feeds a constant value of high frequency power to the sample, and the average value for the result of analyzing the sample 1 five times is “0.3415”. (%) ”, The standard deviation is“ 0.0009 ”, the coefficient of variation is“ 0.27 ”, and the average value for the result of analyzing Sample 2 five times is“ 0.2055 (%) ”, and the standard deviation is The coefficient of variation was “0.82”.

試料1において、本発明の装置と従来の装置とを変動係数について比較すると、本発明は「0.09」である一方、従来は「0.27」であるため、本発明の変動係数の数値が従来の「3分の1」になっており、従来に比べて本発明の装置の分析結果は、ばらつきが少なく安定した結果が得られていることが判明した。また、試料2においても、本発明の装置と従来の装置とを変動係数について比較すると、本発明は「0.26」である一方、従来は「0.82」であり、本発明の変動係数の数値は従来の「3分の1」以下になっており、やはり本発明は、従来に比べて分析結果のばらつきが少なく安定した結果が得られた。   In Sample 1, when the coefficient of variation of the apparatus of the present invention is compared with that of the conventional apparatus, the present invention is “0.09” whereas the conventional coefficient is “0.27”. It was found that the analysis result of the apparatus of the present invention was less varied and stable than the conventional one. Also in Sample 2, when the apparatus of the present invention and the conventional apparatus are compared with respect to the coefficient of variation, the present invention is “0.26”, whereas the conventional apparatus is “0.82”. The numerical value of is less than “one third” of the conventional value, and the present invention also has a stable result with less variation in the analysis result than the conventional value.

このように本発明に係るグロー放電発光分析装置1は、給電に係る電力値を一定にするのではなく、試料Sへ印加する高周波電圧の平均電圧値を一定にするように制御するので、試料Sにかかる電位差も一定となり安定した高精度の分析を行える。なお、本発明のグロー放電発光分析装置1は上述した実施形態に限定されるものではなく、種々の変形例の適用が可能である。   As described above, the glow discharge optical emission analyzer 1 according to the present invention controls the average voltage value of the high-frequency voltage applied to the sample S to be constant, instead of making the power value related to power supply constant. The potential difference applied to S is also constant, and stable and highly accurate analysis can be performed. The glow discharge emission analyzer 1 of the present invention is not limited to the above-described embodiment, and various modifications can be applied.

例えば、図9に示すように試料Sへの高周波電圧の印加を断続的に行うようにしてもよい。なお、図9では、時間T1が電圧印加状態(オン)を示し、1サイクルの時間T2から時間T1を引いた時間帯が非印加状態(オフ)を示し、各電圧印可時の平均電圧値を一定にする。このように電圧印加を断続的に行うことで、測定中のスパッタリングによる試料表面の損耗程度を低減できるので、より高電圧を印加できるようになるため(電圧の上昇に伴い発光強度も上昇するため)、一段と高精度な分析を行える。   For example, as shown in FIG. 9, the application of the high frequency voltage to the sample S may be performed intermittently. In FIG. 9, the time T1 indicates the voltage application state (ON), the time zone obtained by subtracting the time T1 from the time T2 of one cycle indicates the non-application state (OFF), and the average voltage value when each voltage is applied is shown. Keep it constant. By intermittently applying the voltage in this manner, the degree of wear on the sample surface due to sputtering during measurement can be reduced, so that a higher voltage can be applied (because the emission intensity increases with increasing voltage). ), More accurate analysis can be performed.

なお、このように断続印加を行うには、図1のグロー放電発光分析装置1に断続印加を行う断続印加モードと、連続的な印加を行う連続印加モードとを分析制御部8でユーザが選択できる構成にする必要がある。また、ユーザにより断続印加モードが選択された場合、オン時の時間T1、1サイクルの時間T2等、単位時間(1秒間)当たりの印加回数(印加周波数)等を分析制御部8で設定できるようにして、断続印加モードの選択通知信号、設定された時間T1、T2、及び印加回数等をジェネレータ4へ送る構成にする。   In order to perform intermittent application in this way, the analysis control unit 8 selects the intermittent application mode for performing intermittent application and the continuous application mode for performing continuous application to the glow discharge emission spectrometer 1 of FIG. It needs to be configured. Further, when the intermittent application mode is selected by the user, the analysis control unit 8 can set the number of times of application (applied frequency) per unit time (one second), such as the time T1 when turned on and the time T2 of one cycle. Thus, the intermittent notification mode selection notification signal, the set times T1 and T2, the number of times of application, and the like are sent to the generator 4.

また、図3に示すジェネレータ4の制御部4bは、断続印加モードの選択通知信号を分析制御部8から受けると、断続印加モードに応じた制御に切り替え、設定された時間T1、T2、及び印加回数等に合わせて高周波電圧の印加を行うように高周波電力生成部4aの電力生成を制御する。さらに、断続印加モードでは、マッチングボックス5のインピーダンス調整処理が機構的に追従できないため、制御部4bがインピーダンス値の変化に対応する調整に係る処理をソフト的に行う。そのため、断続印加モードでは、マッチングボックス5の可変コンデンサ5aは、電気容量を一定値に固定するように分析制御部8及びコンデンサ制御部5cで制御される。   Further, when the control unit 4b of the generator 4 shown in FIG. 3 receives the selection notification signal of the intermittent application mode from the analysis control unit 8, the control unit 4b switches to control according to the intermittent application mode, and sets the time T1, T2, and the application The power generation of the high frequency power generation unit 4a is controlled so that the high frequency voltage is applied according to the number of times. Further, in the intermittent application mode, the impedance adjustment process of the matching box 5 cannot be mechanically followed, so that the control unit 4b performs a process related to the adjustment corresponding to the change in the impedance value in software. Therefore, in the intermittent application mode, the variable capacitor 5a of the matching box 5 is controlled by the analysis control unit 8 and the capacitor control unit 5c so that the electric capacity is fixed to a constant value.

さらに、断続印加モードでは、分析時間中に断続印加間隔を同一にする以外に分析時間中の時間帯に応じてデューティ比(時間T1/時間T2)を可変するような設定及び制御も可能である。例えば、図10(a)に示すように、全分析時間Zを第1分析時間z1と第2分析時間z2とに分けて、第2分析時間z2では第1分析時間z1の時間T1から変更した時間T1′で断続印加を行ってもよく、また、図10(b)に示すように、第2分析時間z2では第1分析時間z1の時間T2から変更した時間T2′で断続印加を行ってもよい。   Further, in the intermittent application mode, in addition to making the intermittent application interval the same during the analysis time, it is possible to set and control the duty ratio (time T1 / time T2) to be variable according to the time zone during the analysis time. . For example, as shown in FIG. 10A, the total analysis time Z is divided into a first analysis time z1 and a second analysis time z2, and the second analysis time z2 is changed from the time T1 of the first analysis time z1. Intermittent application may be performed at time T1 ′, and as shown in FIG. 10B, intermittent application is performed at time T2 ′ changed from time T2 of the first analysis time z1 in the second analysis time z2. Also good.

さらに、また、印加する電圧値を分析時間帯毎に試料Sの状況に応じて変更してもよく、例えば、図11に示すように、第1分析時間z1では一定の平均電圧値D11で印加を行い、第2分析時間z2では一定の平均電圧値D12で行う。なお、このような電圧印加を行うには、平均電圧値D12及び各分析時間z1、z2等を分析制御部8で設定し、設定内容をジェネレータ4へ送り、ジェネレータ4の制御部4bが設定内容に従い高周波電力生成部4aを制御する。また、平均電圧値D12は平均電圧値D11より高く設定すること、又は低く設定することのいずれも可能であり、各電圧値D11、D12の設定は試料Sの材質、分析時間等を考慮して行うことになり、さらに、平均電圧値の時間帯に応じた設定は、断続印加モードと連続印加モードのいずれにも適用可能である。   Furthermore, the voltage value to be applied may be changed according to the state of the sample S for each analysis time zone. For example, as shown in FIG. 11, the voltage is applied at a constant average voltage value D11 during the first analysis time z1. In the second analysis time z2, the measurement is performed at a constant average voltage value D12. In order to apply such a voltage, the average voltage value D12 and each analysis time z1, z2, etc. are set by the analysis control unit 8, the set contents are sent to the generator 4, and the control unit 4b of the generator 4 sets the set contents. The high frequency power generation unit 4a is controlled according to the above. The average voltage value D12 can be set higher or lower than the average voltage value D11. The voltage values D11 and D12 are set in consideration of the material of the sample S, the analysis time, and the like. In addition, the setting according to the time zone of the average voltage value can be applied to both the intermittent application mode and the continuous application mode.

また、断続印加モードでは、第1基板16が分光器7から測定値を取得する時期を図9に示す時間T1にそれぞれ同期させて行ってもよい。このような測定値の取得を行うことで、電圧の非印可時(オフ時)に生じる様々なノイズ成分を含む測定値を第1基板16が取得しないことになり、分析元対象の測定値にノイズ成分が含まれないため分析制御部8は一段と高精度な分析を行える。なお、第1基板16が断続印加に同期して分光器7から測定値を取得するには、分析制御部8の制御に基づき設定された時間T1に合わせて取得を行うか、又は、ジェネレータ4の制御部4bが高周波電力生成部4aに印加を行わせる時期に合わせた印加時期の通知信号を第1基板16へ送るようにして、通知信号を受けるタイミングに合わせて第1基板16が測定値の取得を行うようにする。   In the intermittent application mode, the time when the first substrate 16 acquires the measurement value from the spectrometer 7 may be synchronized with the time T1 shown in FIG. By acquiring such measurement values, the first substrate 16 does not acquire measurement values including various noise components that occur when the voltage is not applied (when the voltage is off). Since the noise component is not included, the analysis control unit 8 can perform analysis with higher accuracy. In order for the first substrate 16 to acquire the measurement value from the spectroscope 7 in synchronization with intermittent application, acquisition is performed in accordance with the time T1 set based on the control of the analysis control unit 8, or the generator 4 The control unit 4b sends a notification signal of the application time in accordance with the time at which the high-frequency power generation unit 4a performs the application to the first substrate 16, and the first substrate 16 measures the measurement value in accordance with the timing of receiving the notification signal. To get.

さらに、第1基板16が断続印加の時期に同期して測定値を取得する場合、図12に示すように時間T1毎に複数回(図ではC1〜C15の15回)、測定値を取得するようにしてもよい。このように複数回の測定値取得を行うと、試料Sがスパッタリングによる損耗する程度が顕著になる前の短時間で測定を完了できる。なお、図13(a)は、給電に係る時間軸tに対して第1基板16で取得した各測定値の測定強度を示すグラフであり、断続印加を行う時間T1に合わせて取得した測定強度が柱状に立設する内容を示している。また、図13(b)は、図13(a)における一つの時間T1に対する部分を拡大したグラフであり、15回の取得時C1〜C15で測定された値を結んだ線分になっている。   Further, when the first substrate 16 acquires the measurement value in synchronization with the intermittent application timing, the measurement value is acquired a plurality of times (15 times C1 to C15 in the figure) every time T1 as shown in FIG. You may do it. When the measurement values are acquired a plurality of times as described above, the measurement can be completed in a short time before the degree of wear of the sample S due to sputtering becomes significant. FIG. 13A is a graph showing the measurement intensity of each measurement value acquired by the first substrate 16 with respect to the time axis t related to power supply, and the measurement intensity acquired in accordance with the time T1 during which intermittent application is performed. Shows the contents of standing in a column. Moreover, FIG.13 (b) is the graph which expanded the part with respect to one time T1 in Fig.13 (a), and is a line segment which connected the value measured by C1-C15 at the time of 15 acquisitions. .

なお、図13(a)のグラフは、測定強度が時間軸tに対して分断されているので、ユーザがグラフ内容を把握しやすくするために、図14のグラフに示すように、時間T1に該当する測定値のみを抽出して繋ぎ合わせることが好適である。このようなグラフの変換処理は分析制御部8のCPU8bは、ハードディスク装置8cに記憶されたプログラムに基づいて行うようにする。   In the graph of FIG. 13A, the measurement intensity is divided with respect to the time axis t. Therefore, in order to make it easier for the user to grasp the contents of the graph, as shown in the graph of FIG. It is preferable to extract and connect only the corresponding measurement values. Such graph conversion processing is performed by the CPU 8b of the analysis control unit 8 based on a program stored in the hard disk device 8c.

図14のグラフにおいて、時間軸tにおける時間T3は、測定を行った各時間T1に印加回数を乗じた時間になっており、各測定値の測定強度を積算して時間T3で除することにより総印加時間に対する平均測定値を算出でき、また、各測定値の測定強度を積算して総測定回数で除することにより総測定回数に対する平均測定値も算出できる。このように各種平均測定値を算出することで、試料Sの分析をより一層容易に行うことができる。   In the graph of FIG. 14, a time T3 on the time axis t is a time obtained by multiplying each time T1 when the measurement is performed by the number of times of application, and by integrating the measured intensity of each measured value and dividing by the time T3. An average measurement value with respect to the total application time can be calculated, and an average measurement value with respect to the total number of measurements can also be calculated by integrating the measurement intensities of the respective measurement values and dividing by the total number of measurements. By calculating various average measured values in this way, the sample S can be analyzed more easily.

本発明の実施形態に係るグロー放電発光分析装置の全体的な概略図である。1 is an overall schematic diagram of a glow discharge emission spectrometer according to an embodiment of the present invention. グロー放電管の概略断面図である。It is a schematic sectional drawing of a glow discharge tube. ジェネレータの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a generator. 試料と電極との間の電位差を示すグラフである。It is a graph which shows the electric potential difference between a sample and an electrode. マッチングボックスの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a matching box. グロー放電発光分析装置の全体的な処理手順を示す第1フローチャートである。It is a 1st flowchart which shows the whole process sequence of a glow discharge optical emission analyzer. 一定の平均電圧値の印加に係るグロー放電発光分析方法に係る第2フローチャートである。It is a 2nd flowchart which concerns on the glow discharge luminescence analysis method which concerns on application of a fixed average voltage value. (a)は実施形態のグロー放電発光分析装置による分析結果を示す図表であり、(b)は従来のグロー放電発光分析装置による分析結果を示す図表である。(A) is a graph which shows the analysis result by the glow discharge emission analyzer of embodiment, (b) is a chart which shows the analysis result by the conventional glow discharge emission analyzer. 断続印加モードにおける電圧印加形態を示すグラフである。It is a graph which shows the voltage application form in intermittent application mode. (a)(b)は断続印加モードの変形例の電圧印加形態を示すグラフである。(A) (b) is a graph which shows the voltage application form of the modification of an intermittent application mode. 印加する電圧値を時間帯に応じて変更する場合の電圧印加形態を示すグラフである。It is a graph which shows the voltage application form in the case of changing the voltage value to apply according to a time slot | zone. 断続印加中における測定値の取得時を示すグラフである。It is a graph which shows the time of acquisition of the measured value during intermittent application. (a)は、断続印加モードにおける測定値の測定強度を示すグラフであり、(b)は(a)の時間T1に対する部分を拡大したグラフである。(A) is a graph which shows the measurement intensity | strength of the measured value in an intermittent application mode, (b) is the graph which expanded the part with respect to time T1 of (a). 各測定値を繋ぎ合わせたグラフである。It is the graph which connected each measured value. 従来のグロー放電発光分析装置における試料と電極との間の電位差を示すグラフである。It is a graph which shows the electric potential difference between the sample and electrode in the conventional glow discharge emission spectrometer.

符号の説明Explanation of symbols

1 グロー放電発光分析装置
2 グロー放電管
3 電源部
4 ジェネレータ
4a 高周波電力生成部
4b 制御部
4c 検出部
5 マッチングボックス
5a 可変コンデンサ
5b モータ
5c コンデンサ制御部
6 ガス供給部
7 分光器
8 分析制御部
8b CPU
S 試料
Vdc 電位差
DESCRIPTION OF SYMBOLS 1 Glow discharge luminescence analyzer 2 Glow discharge tube 3 Power supply part 4 Generator 4a High frequency electric power generation part 4b Control part 4c Detection part 5 Matching box 5a Variable capacitor 5b Motor 5c Capacitor control part 6 Gas supply part 7 Spectrometer 8 Analysis control part 8b CPU
S Sample Vdc Potential difference

Claims (2)

電源部が生成した交流電力の交流電圧を被分析材へ印加して生じさせたグロー放電に伴う発光の強度を分光器で測定するグロー放電発光分析装置において、
基準電圧値を記憶する手段と、
被分析材への交流電圧の印加を予め定められた間隔で断続的に行う断続印加手段と、
被分析材へ印加する交流電圧に係る平均電圧値を検出する検出手段と、
該検出手段が検出した平均電圧値及び基準電圧値の比較を行う比較手段と、
該比較手段の比較結果を判断する判断手段と、
被分析材へ印加する交流電圧に係る平均電圧値が一定となるように前記電源部が生成する交流電力の電力値を前記判断手段の判断結果に応じて変化させる制御を行う電力制御手段と
を備えることを特徴とするグロー放電発光分析装置
In a glow discharge optical emission spectrometer for measuring the intensity of light emission with an AC voltage of the AC power supply unit is generated glow discharge was generated by applying to the analyte material by a spectrometer,
Means for storing a reference voltage value;
Intermittent application means for intermittently applying an alternating voltage to the material to be analyzed at predetermined intervals;
Detecting means for detecting an average voltage value related to an alternating voltage applied to the material to be analyzed;
Comparison means for comparing the average voltage value and the reference voltage value detected by the detection means;
Judgment means for judging the comparison result of the comparison means;
Power control means for performing control to change the power value of the AC power generated by the power supply unit according to the determination result of the determination means so that the average voltage value related to the AC voltage applied to the analyte is constant ;
Glow discharge optical emission spectrometer, characterized in that it comprises a.
前記断続印加手段が行う断続印加に同期させて前記分光器が測定した値を取得する測定値取得手段を備える請求項に記載のグロー放電発光分析装置。 The glow discharge emission spectrometer according to claim 1 , further comprising measurement value acquisition means for acquiring a value measured by the spectrometer in synchronization with intermittent application performed by the intermittent application means.
JP2004339575A 2004-11-24 2004-11-24 Glow discharge emission analyzer Expired - Fee Related JP4484674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339575A JP4484674B2 (en) 2004-11-24 2004-11-24 Glow discharge emission analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339575A JP4484674B2 (en) 2004-11-24 2004-11-24 Glow discharge emission analyzer

Publications (2)

Publication Number Publication Date
JP2006145500A JP2006145500A (en) 2006-06-08
JP4484674B2 true JP4484674B2 (en) 2010-06-16

Family

ID=36625354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339575A Expired - Fee Related JP4484674B2 (en) 2004-11-24 2004-11-24 Glow discharge emission analyzer

Country Status (1)

Country Link
JP (1) JP4484674B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062094B2 (en) * 2008-08-19 2012-10-31 株式会社島津製作所 Luminescence analyzer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122449A (en) * 1982-01-14 1983-07-21 Nippon Steel Corp Luminous device for emission spectrochemical analyzing apparatus
JPS63210751A (en) * 1987-02-27 1988-09-01 Shimadzu Corp Glow discharge emission spectral analyzer
JPH06102180A (en) * 1992-09-21 1994-04-15 Kawasaki Steel Corp Glow discharge spectral analysis device
JPH09170079A (en) * 1995-12-18 1997-06-30 Asahi Glass Co Ltd Sputtering method and device
JPH09329552A (en) * 1996-06-07 1997-12-22 Rigaku Ind Co Glow discharge emission spectral analyzer
JPH11233443A (en) * 1998-02-17 1999-08-27 Canon Inc Forming method of microcrystal silicon film, photovoltaic element and forming equipment of semiconductor film
JPH11326217A (en) * 1998-05-19 1999-11-26 Rigaku Industrial Co Glow discharge emission spectrochemical analysis device
JP2001074660A (en) * 1999-09-02 2001-03-23 Shimadzu Corp Glow discharge emission spectrum analyzer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122449A (en) * 1982-01-14 1983-07-21 Nippon Steel Corp Luminous device for emission spectrochemical analyzing apparatus
JPS63210751A (en) * 1987-02-27 1988-09-01 Shimadzu Corp Glow discharge emission spectral analyzer
JPH06102180A (en) * 1992-09-21 1994-04-15 Kawasaki Steel Corp Glow discharge spectral analysis device
JPH09170079A (en) * 1995-12-18 1997-06-30 Asahi Glass Co Ltd Sputtering method and device
JPH09329552A (en) * 1996-06-07 1997-12-22 Rigaku Ind Co Glow discharge emission spectral analyzer
JPH11233443A (en) * 1998-02-17 1999-08-27 Canon Inc Forming method of microcrystal silicon film, photovoltaic element and forming equipment of semiconductor film
JPH11326217A (en) * 1998-05-19 1999-11-26 Rigaku Industrial Co Glow discharge emission spectrochemical analysis device
JP2001074660A (en) * 1999-09-02 2001-03-23 Shimadzu Corp Glow discharge emission spectrum analyzer

Also Published As

Publication number Publication date
JP2006145500A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US8704161B2 (en) Quadrupole mass spectrometer including voltage variable DC and amplitude variable AC
EP2092306B1 (en) Sample concentration detector with temperature compensation
US8502455B2 (en) Atmospheric inductively coupled plasma generator
US8368010B2 (en) Quadrupole mass spectrometer
KR20120059561A (en) Method and apparatus for the detection of arc events during the plasma processing of a wafer, surface of substrate
CN110246743A (en) The system and method for detection processing point in multi-mode pulse processing
US10510519B2 (en) Plasma processing apparatus and data analysis apparatus
EP1637874B1 (en) Glow discharge optical emission spectrometer
JP4484674B2 (en) Glow discharge emission analyzer
JP7454971B2 (en) Detection method and plasma processing apparatus
JP4079919B2 (en) Glow discharge emission analysis apparatus and glow discharge emission analysis method
WO2009122594A1 (en) Method of detecting fundamental wave beat component, sampling device for measured signal using the same, and waveform observation system
EP2377246A1 (en) Apparatus and methods for optical emission spectroscopy
JP2006300731A (en) Glow discharge emission spectrophotometer and glow discharge emission spectrochemical analytical method
JPH09306894A (en) Optimum emission spectrum automatic detecting system
JP6563306B2 (en) Quadrupole mass spectrometer and mass spectrometry method
JPS5821144A (en) Highly accurate and fully automatic analyzing method for icp
US20240133742A1 (en) Time-Resolved OES Data Collection
JP2007225447A (en) Emission analyzer
JP4086190B2 (en) Emission spectrum causative substance identification support apparatus and support method
JP6973123B2 (en) Analytical control device, analytical device, analytical control method and analytical method
WO2024063876A1 (en) Optical emission spectroscopy for advanced process characterization
WO2024091319A1 (en) Method for oes data collection and endpoint detection
JP2003240717A (en) High-frequency glow discharge emission spectrometric apparatus
WO2024091318A1 (en) Time-resolved oes data collection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Ref document number: 4484674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees