JPS63210751A - Glow discharge emission spectral analyzer - Google Patents

Glow discharge emission spectral analyzer

Info

Publication number
JPS63210751A
JPS63210751A JP4418587A JP4418587A JPS63210751A JP S63210751 A JPS63210751 A JP S63210751A JP 4418587 A JP4418587 A JP 4418587A JP 4418587 A JP4418587 A JP 4418587A JP S63210751 A JPS63210751 A JP S63210751A
Authority
JP
Japan
Prior art keywords
glow discharge
discharge tube
internal resistance
tube
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4418587A
Other languages
Japanese (ja)
Inventor
Isao Fukui
福井 勲
Takao Miyama
隆男 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4418587A priority Critical patent/JPS63210751A/en
Publication of JPS63210751A publication Critical patent/JPS63210751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To stabilize an analysis by providing a feedback system which detects the internal resistance of a glow discharge tube using a sample as a cathode and maintains the internal resistance of the glow discharge tube at approximately a constant level and maintaining a sputtering rate automatically at a constant value. CONSTITUTION:Gaseous argon is admitted through an inflow port 5 into the glow discharge tube G and is discharged from outflow ports 6 and 7. A flow rate control valve V is otherwise inserted into, for example, a gaseous argon supply pipe and the voltage drop generated across a resistor (r) connected in series to the discharge tube G is detected by a current detector D to control a valve driving device P via a comparator C, thereby opening and closing the valve V. The internal resistance of the discharge tube G increases and the tube current increases when the sputtering rate of the sample is low. The valve V is then opened to increase the gaseous argon pressure, by which the internal resistance is decreased and the sputtering rate is maintained constant. The stable analysis is thereby executed.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明はグロー放電発光分析とか質量分析計の定レート
スパッター光源に用いられるグロー放電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a glow discharge device used in glow discharge emission spectroscopy or as a constant rate sputtering light source in a mass spectrometer.

口、従来の技術 発光分析に用いるグロー放電管は第4図に示すような構
造になっている。この図で1が筒状の陽極、2が試料で
、陽極の左端開口は石英の窓3で塞がれて光が取出せる
ようになっている。陽極の右端は絶縁体4を介して試料
2で塞がれ、陽極内にはガス流入口5からアルゴンガス
が導入され、流出口6から排気ポンプにより吸引排出さ
れている。陽極は右方の管状に延出した部分1aの端面
が試料2の表面に近接して試料との間に0.2mm程度
の狭い隙間gが形成されており、管状部1aの外側部分
に第2のガス流出ロアが真空ポンプに接続されている。
Conventional technology A glow discharge tube used in luminescence analysis has a structure as shown in FIG. In this figure, 1 is a cylindrical anode, 2 is a sample, and the left end opening of the anode is closed with a quartz window 3 so that light can be extracted. The right end of the anode is covered with a sample 2 via an insulator 4, and argon gas is introduced into the anode through a gas inlet 5 and sucked and discharged through an outlet 6 by an exhaust pump. In the anode, the end face of the right tubular part 1a is close to the surface of the sample 2, and a narrow gap g of about 0.2 mm is formed between it and the sample. The second gas outflow lower is connected to a vacuum pump.

この構造によって筒状の陽極内のアルゴンのガス圧は1
0〜10  Torr程度に保たれ隙間gにおいて大き
な圧力勾配が形成されて、管状部1aの外側は高真空状
態になっている。この状態で隙間gは狭いので、この部
分で荷電粒子が他のガス分子と衝突する機会は殆んどな
く、従って気中放電は行われず、管状部1aの内側空間
にグロー放電領域が形成される。試料2の表面はグロー
放電によるアルゴンイオンの衝撃を受け、構成原子が打
出される(陰極スパッタリング)。そしてこの打出され
た原子がプラズマ内で励起されて発光する。この光を窓
3を通して取出し分光することにより元素の定性、定量
分析を行うのである。
With this structure, the argon gas pressure inside the cylindrical anode is 1
The pressure is maintained at about 0 to 10 Torr, and a large pressure gradient is formed in the gap g, so that the outside of the tubular portion 1a is in a high vacuum state. Since the gap g is narrow in this state, there is almost no chance for the charged particles to collide with other gas molecules in this part, and therefore no air discharge occurs, and a glow discharge region is formed in the inner space of the tubular part 1a. Ru. The surface of sample 2 is bombarded with argon ions due to glow discharge, and constituent atoms are ejected (cathode sputtering). The ejected atoms are excited within the plasma and emit light. Qualitative and quantitative analysis of the elements is performed by extracting this light through the window 3 and performing spectroscopy.

ハ9発明が解決しようとする問題点 上述したグロー放電管を用いた発光分光分析では測定し
ようとする元素のスパッタリングレート(揮散速度)が
試料を構成しているマトリクス元素の種類によって異る
と云う問題がある。スパッタリングレートが異ると、目
的元素の試料中での濃度が同じaもグロー放電領域内に
おける目的元素の蒸気濃度が異なり、その元素の発光強
度が異ることになる。つまり試料中の目的元素の濃度が
同じであっても、マトリックス元素が異れば、発光強度
が異るので、各種の試料について単一の検量線を使って
定量を行うことができない。均質試料の場合には、目的
元素の濃度の異る同種試料を用いて検量線を作成するこ
とも可能であるが、メッキ層とか表面含滲層のように厚
さ方向に元素分布の異る試料を表面をエツチングしなが
ら深さ方向に分析して行くような場合、共存元素の種類
とか濃度も深さ方向に変化しているので、どの試料にも
共通に使える検量線が得られないグロー放電発光分析法
では定量分析はほとんど不可能である。グロー放電発光
分析では陰極スパッタリングの作用で試料表面を削除し
ながら表面から深さ方向に分析を進めて行(ことができ
ると云う特徴を有しているので、表面層の分析で定量分
析が困難と云うのは重要な欠点である。
C.9 Problems to be Solved by the Invention In the above-mentioned emission spectroscopic analysis using a glow discharge tube, the sputtering rate (volatilization rate) of the element to be measured differs depending on the type of matrix element constituting the sample. There's a problem. When the sputtering rate is different, even if the concentration of the target element in the sample is the same a, the vapor concentration of the target element in the glow discharge region will be different, and the emission intensity of that element will be different. In other words, even if the concentration of the target element in the sample is the same, if the matrix element is different, the luminescence intensity will be different, so it is not possible to perform quantitative determination using a single calibration curve for various samples. In the case of homogeneous samples, it is possible to create a calibration curve using samples of the same type with different concentrations of the target element, but it is also possible to create a calibration curve using samples of the same type with different concentrations of the target element. When analyzing a sample in the depth direction while etching the surface, the types and concentrations of coexisting elements change in the depth direction, making it impossible to obtain a calibration curve that can be used commonly for all samples. Quantitative analysis is almost impossible with discharge emission spectrometry. Glow discharge emission spectroscopy is characterized by the ability to proceed in the depth direction from the surface while removing the surface of the sample through the action of cathode sputtering, making quantitative analysis difficult when analyzing the surface layer. This is an important drawback.

本発明はグロー放電発光分析法で、目的元素のスパッタ
リングレートが共存元素によって変化すると云う問題を
解決しようとするものである。
The present invention uses glow discharge optical emission spectrometry to solve the problem that the sputtering rate of a target element changes depending on the coexisting elements.

二1問題点解決のための手段 試料を陰極とするグロー放電管の内部抵抗を検出し、放
電管に注入する電力を一定に保つように制御する手段を
設けた。放電管に注入する電力を一定にするにはグロー
放電管内のガス圧の調節、グロー放電管と直列に可変イ
ンピーダンス回路を接続する、或は放電管電流を断続し
、その断続比率を変える等積々な手段を用い得る。
21 Means for Solving Problems A means was provided to detect the internal resistance of a glow discharge tube whose cathode is a sample and to control the electric power injected into the discharge tube to keep it constant. To keep the power injected into the discharge tube constant, it is necessary to adjust the gas pressure inside the glow discharge tube, connect a variable impedance circuit in series with the glow discharge tube, or intermittent the discharge tube current and change its intermittent ratio. Various means can be used.

ホ1作用 グロー放電管の管電流はアルゴンイオンによるものと試
料からスパッターした試料元素のイオンによるものとの
和であり、アルゴンイオンによる分は一定と考えられる
から、試料のスパッタリングレートが異ると試料元素に
よる電流分が変化する。この変化はグロー放電管の内部
抵抗の変化として観測される。他方試料のスパッタリン
グを3進するには、試料面の時間当りのイオン衝撃回数
を増す、即ち管電流を増すか、衝撃イオンのエネルギー
を増して試料原子を打出す確率を上げる、即ち管電圧を
上げると云うことが基本操作であり、放電管に供給する
電圧電流の積を大にすることによってスパッタリングレ
ートを上げることができる。他方スパッタリングレート
の低い試料ではグロー放電管の内部抵抗が増して定電圧
電源の許では電流が減少して放電管の吸収エネルギーが
減るので、結局放電管の吸収エネルギーを一定に保つよ
うなフィードバック系を構成することによって、試料に
よらずスパッタリングレートを一定に保つことができる
ことになる。そしてスパッタリングレートを上げるよう
にすると内部抵抗は下がるので、内部抵抗が一定になる
ようなフィードバック系を構成すればよいのである。
The tube current of a glow discharge tube is the sum of the argon ions and the sample element ions sputtered from the sample, and since the argon ions are considered to be constant, if the sputtering rate of the sample differs, The amount of current changes depending on the sample element. This change is observed as a change in the internal resistance of the glow discharge tube. On the other hand, to perform ternary sputtering of a sample, either increase the number of ion bombardments per hour on the sample surface, that is, increase the tube current, or increase the energy of the bombarded ions to increase the probability of ejecting sample atoms, that is, increase the tube voltage. The basic operation is to increase the sputtering rate, and the sputtering rate can be increased by increasing the product of voltage and current supplied to the discharge tube. On the other hand, for samples with a low sputtering rate, the internal resistance of the glow discharge tube increases, and under a constant voltage power supply, the current decreases and the absorbed energy of the discharge tube decreases, so a feedback system is required to keep the absorbed energy of the discharge tube constant. By configuring this, the sputtering rate can be kept constant regardless of the sample. Since the internal resistance decreases when the sputtering rate is increased, it is sufficient to configure a feedback system that keeps the internal resistance constant.

へ、実施例 第1図は本発明の第1の実施例を示す。Gはグロー放電
管、UはグローランプGを点灯する定電圧電源、Mは分
光器である。グロー放電管Gの構造は第4図に示したも
のと同じで1は筒状の陽極で左端の窓3から光が取出さ
れて分光器Mに入射せしめられる。陽極の右端は絶縁体
4を介して試料2によって塞がれている。アルゴンガス
は流入口5から供給され、流出口6からポンプによって
吸引排出されると共に、陽極の管状部1aの外側におい
て流出ロアからもポンプによって吸引排出されている。
Embodiment FIG. 1 shows a first embodiment of the present invention. G is a glow discharge tube, U is a constant voltage power source for lighting the glow lamp G, and M is a spectrometer. The structure of the glow discharge tube G is the same as the one shown in FIG. The right end of the anode is covered by the sample 2 with an insulator 4 in between. Argon gas is supplied from the inlet 5 and suctioned and discharged from the outlet 6 by a pump, and is also suctioned and discharged from the outflow lower outside the anode tubular portion 1a by a pump.

この実施例の特徴はアルゴンガス供給管に流量調節弁V
が挿入してあり、これが管電流検出器りによって制御さ
れている所にある。rはグロー放電管Gと直列に接続さ
れている電流検出用の抵抗で、この抵抗rの両端に生じ
る管電流に比例した電圧降下が電圧計である管電流検出
器りによって検出される。検出器りの出力はコンノくレ
ータCで基準値と比較されコンパレータCの出力によっ
て弁駆動装置Pが制御される。試料のスパッタリングレ
ートが低い場合、グロー放電管の内部抵抗が増加し、こ
の実施例では定電圧電源で点灯しているので管電流が減
少する。そうすると弁Vが開いてグロー放電管G内のア
ルゴンのガス圧が高められ、内部抵抗の低下が計られる
。このため管電流は元のレベルを維持し、グロー放電管
の吸収電力も元のレベルに保たれる。
The feature of this embodiment is that there is a flow control valve V in the argon gas supply pipe.
is inserted, and this is controlled by a tube current detector. r is a current detection resistor connected in series with the glow discharge tube G, and a voltage drop proportional to the tube current occurring across this resistor r is detected by a tube current detector, which is a voltmeter. The output of the detector is compared with a reference value by a comparator C, and the valve driving device P is controlled by the output of the comparator C. If the sputtering rate of the sample is low, the internal resistance of the glow discharge tube will increase, and in this example, since it is lit with a constant voltage power supply, the tube current will decrease. Then, the valve V opens and the argon gas pressure inside the glow discharge tube G is increased, thereby reducing the internal resistance. Therefore, the tube current is maintained at its original level, and the power absorbed by the glow discharge tube is also maintained at its original level.

第2図は本発明の第2の実施例を示す。第1図の例と対
応する部分には同じ符号が付けて−々の説明は省略する
。第1図の実施例と異っている点について説明する。点
灯電源Uは定電圧電源である。この実施例ではグロー放
電管Gの管内のガス圧は一定に保たれている。放電管G
と直列に可変抵抗Rが接続してあり、管電流が電流検出
器りによって検出され、その検出信号がコンパレータC
で基準レベルと比較され、Cの出力によって可変抵抗R
が操作されて管電流が一定に保たれる。この場合、試料
によって管電流が基準より少なくなると可変抵抗Rの抵
抗値が減少せししめられるので、Rにおける電圧降下の
減少分だけ管電圧が高(なり、管電流が一定に保たれる
ので、管に供給される電力は増加することになるが、管
電圧が上がるとスパッタリングレートが増し、管の内部
抵抗が低下するので、実際の動的平衡状態では管への供
給電力は略基準値に保たれることになる。つまり試料を
変えたとき、管の内部抵抗が標準よりΔR大であった場
合、可変抵抗RをΔRだけ減らすのではなく、それより
小さな値Δrだけ減らすと、管内のスパッタリングレー
トの増加によって管の内部抵抗がΔρだけ減少し、平行
状態でΔr=ΔR−Δρとなる。
FIG. 2 shows a second embodiment of the invention. Components corresponding to those in the example of FIG. 1 are given the same reference numerals, and their explanation will be omitted. Points that are different from the embodiment shown in FIG. 1 will be explained. The lighting power supply U is a constant voltage power supply. In this embodiment, the gas pressure inside the glow discharge tube G is kept constant. discharge tube G
A variable resistor R is connected in series with the tube current, and the tube current is detected by the current detector, and the detection signal is sent to the comparator C.
is compared with the reference level at C, and the variable resistor R is
is operated to keep the tube current constant. In this case, when the tube current becomes lower than the standard depending on the sample, the resistance value of the variable resistor R is decreased, so the tube voltage becomes high by the decrease in voltage drop in R, and the tube current is kept constant. , the power supplied to the tube will increase, but as the tube voltage increases, the sputtering rate will increase and the internal resistance of the tube will decrease, so in the actual dynamic equilibrium state, the power supplied to the tube will be approximately at the reference value. In other words, when changing the sample, if the internal resistance of the tube is ΔR larger than the standard, then instead of reducing the variable resistance R by ΔR, if you reduce it by a smaller value Δr, the internal resistance of the tube will be kept at ΔR. By increasing the sputtering rate of , the internal resistance of the tube decreases by Δρ, and in the parallel state, Δr=ΔR−Δρ.

第3図は本発明の第3の実施例である。この実施例では
グローランプGの点灯電源Qは定電力パルス発生器で、
グローランプの点灯電流検出器りの出力によって単位時
間当たりパルス数制御回路Nを制御し、管電流が減少し
たら供給パルス数を増加するようにしたものである。
FIG. 3 shows a third embodiment of the invention. In this embodiment, the lighting power supply Q for the glow lamp G is a constant power pulse generator,
A pulse number control circuit N per unit time is controlled by the output of a glow lamp lighting current detector, and the number of supplied pulses is increased when the tube current decreases.

ト、効果 グロー放電を光源とした発光分析では試料のマトリック
ス元素によって試料のスパッタリングレートが異るが本
発明によればスパッタリングレートが自動的に一定に保
たれるので、一本の検量線でマトリックス元素の如何に
かかわりなく元素定量が可能となり、スパッタリングレ
ートが一定に保たれているので、分光器および測光系の
変動のみチェックすればよいから、装置較正は分光器お
よび測光系について一定光源を用いて行っておけばよ(
、安定した分析が可能となる。また試料面の深さ方向の
分析では試料の主体元素が深さ方向に変化していてもス
パッタリングレートが常に一定に保たれているので、分
析記録の時間軸が試料面からの深さに対応することにな
り、分析記録の吟味が大へんやり易(なる。
In emission analysis using a glow discharge as a light source, the sputtering rate of the sample differs depending on the matrix element of the sample, but according to the present invention, the sputtering rate is automatically kept constant, so a single calibration curve Element quantification is now possible regardless of the element, and since the sputtering rate is kept constant, only the fluctuations in the spectrometer and photometry system need to be checked, so equipment calibration can be performed using a constant light source for the spectrometer and photometry system. I should go (
, stable analysis becomes possible. In addition, when analyzing the sample surface in the depth direction, the sputtering rate is always kept constant even if the main elements of the sample change in the depth direction, so the time axis of the analysis record corresponds to the depth from the sample surface. This makes it much easier to examine the analysis records.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のブロック図、第2図は
第2の実施例のブロック図、第3図は第3の実施例のブ
ロック図、第4図は発光分析用グロー放電管の縦断側面
図である。 G・・・グロー放電管、U・・・定電圧電源、D・・・
電流検出器、■・・・流量調節弁、P・・・弁駆動装置
、C・・・コンパレータ、M・・・分光器。
Fig. 1 is a block diagram of the first embodiment of the present invention, Fig. 2 is a block diagram of the second embodiment, Fig. 3 is a block diagram of the third embodiment, and Fig. 4 is a glow analyzer for luminescence analysis. FIG. 3 is a longitudinal side view of the discharge tube. G... Glow discharge tube, U... Constant voltage power supply, D...
Current detector, ■...Flow control valve, P...Valve drive device, C...Comparator, M...Spectrometer.

Claims (6)

【特許請求の範囲】[Claims] (1)試料を陰極とするグロー放電管の内部抵抗を検出
し、グロー放電管の内部抵抗を略一定に保つようなフィ
ードバック系を設けたことを特徴とするグロー放電発光
分析装置。
(1) A glow discharge optical emission spectrometer characterized by being provided with a feedback system that detects the internal resistance of a glow discharge tube whose cathode is a sample and keeps the internal resistance of the glow discharge tube substantially constant.
(2)グロー放電管の内部抵抗検出手段が同管の管電流
を検出する手段である特許請求の範囲第1項記載のグロ
ー放電管発光分析装置。
(2) The glow discharge tube emission spectrometer according to claim 1, wherein the internal resistance detection means of the glow discharge tube is means for detecting the tube current of the tube.
(3)グロー放電管の内部抵抗検出手段が同管の管電圧
検出手段である特許請求の範囲第1項記載のグロー放電
発光分析装置。
(3) The glow discharge optical emission spectrometer according to claim 1, wherein the internal resistance detection means of the glow discharge tube is a tube voltage detection means of the tube.
(4)グロー放電管の内部抵抗を略一定に保つフィード
バック系の制御対象が同放電管内のガス圧調節手段であ
る特許請求の範囲第1項記載のグロー放電発光分析装置
(4) The glow discharge optical emission spectrometer according to claim 1, wherein the control object of the feedback system that keeps the internal resistance of the glow discharge tube substantially constant is gas pressure regulating means within the discharge tube.
(5)グロー放電管の内部抵抗を略一定に保つフィード
バック系の制御対象がグロー放電管と直列の可変抵抗で
ある特許請求の範囲第1項記載のグロー放電発光分析装
置。
(5) The glow discharge optical emission spectrometer according to claim 1, wherein the controlled object of the feedback system that keeps the internal resistance of the glow discharge tube substantially constant is a variable resistor connected in series with the glow discharge tube.
(6)グロー放電管の内部抵抗を略一定に保つフィード
バック系の制御対象がグロー放電管の電源の出力電力調
節手段である特許請求の範囲第1項記載のグロー放電発
光分析装置。
(6) The glow discharge optical emission spectrometer according to claim 1, wherein the control object of the feedback system that keeps the internal resistance of the glow discharge tube substantially constant is an output power adjustment means of a power source of the glow discharge tube.
JP4418587A 1987-02-27 1987-02-27 Glow discharge emission spectral analyzer Pending JPS63210751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4418587A JPS63210751A (en) 1987-02-27 1987-02-27 Glow discharge emission spectral analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4418587A JPS63210751A (en) 1987-02-27 1987-02-27 Glow discharge emission spectral analyzer

Publications (1)

Publication Number Publication Date
JPS63210751A true JPS63210751A (en) 1988-09-01

Family

ID=12684513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4418587A Pending JPS63210751A (en) 1987-02-27 1987-02-27 Glow discharge emission spectral analyzer

Country Status (1)

Country Link
JP (1) JPS63210751A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172183A (en) * 1990-03-19 1992-12-15 Kawasaki Steel Corporation Glow discharge atomic emission spectroscopy and apparatus thereof
JP2006145500A (en) * 2004-11-24 2006-06-08 Horiba Ltd Glow discharge emission analysis method, glow discharge emission analytical equipment, and power generator
JP2006300731A (en) * 2005-04-20 2006-11-02 Horiba Ltd Glow discharge emission spectrophotometer and glow discharge emission spectrochemical analytical method
JP2008191166A (en) * 2008-04-02 2008-08-21 Keio Gijuku Glow discharge drilling device and glow discharge drilling method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172183A (en) * 1990-03-19 1992-12-15 Kawasaki Steel Corporation Glow discharge atomic emission spectroscopy and apparatus thereof
JP2006145500A (en) * 2004-11-24 2006-06-08 Horiba Ltd Glow discharge emission analysis method, glow discharge emission analytical equipment, and power generator
JP4484674B2 (en) * 2004-11-24 2010-06-16 株式会社堀場製作所 Glow discharge emission analyzer
JP2006300731A (en) * 2005-04-20 2006-11-02 Horiba Ltd Glow discharge emission spectrophotometer and glow discharge emission spectrochemical analytical method
JP2008191166A (en) * 2008-04-02 2008-08-21 Keio Gijuku Glow discharge drilling device and glow discharge drilling method

Similar Documents

Publication Publication Date Title
US7893408B2 (en) Methods and apparatus for ionization and desorption using a glow discharge
US6333632B1 (en) Alternating current discharge ionization detector
US5394092A (en) System for identifying and quantifying selected constituents of gas samples using selective photoionization
CN111239062B (en) Gas quantitative detection equipment and method
Hodoroaba et al. Emission spectra of copper and argon in an argon glow discharge containing small quantities of hydrogen
JP2013037815A (en) Mass spectroscope
Goode et al. Influence of pressure on the properties of a microwave-induced plasma
JPH04110653A (en) Method for analyzing gas sample using plasma
Jackson et al. Mass spectrometric investigation of active nitrogen
JPS63210751A (en) Glow discharge emission spectral analyzer
Guzowski Jr et al. Characterization of switched direct current gas sampling glow discharge ionization source for the time-of-flight mass spectrometer
US5172183A (en) Glow discharge atomic emission spectroscopy and apparatus thereof
JPH02307043A (en) Analysis sensor for gas within vacuum chamber
RU2145082C1 (en) Method determining elements in solutions and device for its realization
JPH07325020A (en) Sample introducing apparatus for ion analytical instrument
Parker et al. Role of Discharge Parameters and Limiting Orifice Diameter in Radio-Frequency Glow Discharge-Atomic Absorption Spectrophotometry (rf-GD-AAS)
Dinin et al. Demountable hot hollow cathode lamp as excitation source in atomic fluorescence flame spectrometry
Winefordner et al. Status of and perspectives on microwave and glow discharges for spectrochemical analysis. Plenary lecture
Broekaert et al. Investigations of a jet-assisted glow discharge lamp for optical emission spectrometry
Valledor et al. Spatial characterization of pressure-based plasma regimes in a radiofrequency glow discharge by using optical emission spectroscopy
Davis et al. A miniature glow discharge for laser excited atomic fluorescence detection of lead
JPH08210979A (en) Glow discharge emission spectral analyzing method and device used therefor
JP2570546B2 (en) Atomic absorption spectrophotometer
JP3569716B2 (en) High frequency glow discharge emission spectroscopy method and apparatus
JPH05332935A (en) Emission and spectral analyzer