JP4483492B2 - Laser emission spectroscopy - Google Patents

Laser emission spectroscopy Download PDF

Info

Publication number
JP4483492B2
JP4483492B2 JP2004262641A JP2004262641A JP4483492B2 JP 4483492 B2 JP4483492 B2 JP 4483492B2 JP 2004262641 A JP2004262641 A JP 2004262641A JP 2004262641 A JP2004262641 A JP 2004262641A JP 4483492 B2 JP4483492 B2 JP 4483492B2
Authority
JP
Japan
Prior art keywords
emission intensity
sample
data
emission
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004262641A
Other languages
Japanese (ja)
Other versions
JP2006078340A (en
Inventor
淳 千野
幸夫 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004262641A priority Critical patent/JP4483492B2/en
Publication of JP2006078340A publication Critical patent/JP2006078340A/en
Application granted granted Critical
Publication of JP4483492B2 publication Critical patent/JP4483492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、レーザパルス照射により生成するプラズマからの励起発光線の強度から試料の成分分析を行うレーザ発光分光分析法に関し、特に高精度の下での試料中元素の定量を可能ならしめようとするものである。   The present invention relates to a laser emission spectroscopic analysis method for analyzing a component of a sample from the intensity of an excitation emission line from plasma generated by laser pulse irradiation, and particularly to enable determination of elements in a sample with high accuracy. To do.

試料中の成分元素の濃度を定量する分析法としては、固体のままの試料を直接分析するスパーク放電発光分析法、蛍光X線分析法、試料を化学的に溶解し溶液中の元素濃度を定量するICP発光分析法(ICP:Induced Coupled Plazma)などが知られている。   Analytical methods for quantifying the concentration of component elements in a sample include spark discharge optical emission spectrometry that directly analyzes a solid sample, fluorescent X-ray analysis, and chemical dissolution of the sample to determine the concentration of the element in the solution. ICP emission analysis (ICP) is known.

上記した分析法のうち、ICP発光分析法のような化学的分析法は、非常に高い精度で分析が可能な反面、試料の溶液化処理、妨害元素の除去処理などを必要とするため、分析結果を得るまでに数時間を要するという不利がある。   Among the analysis methods described above, chemical analysis methods such as the ICP emission analysis method can be analyzed with very high accuracy, but they require sample solution processing, interference element removal processing, etc. There is a disadvantage that it takes several hours to get the result.

この点、スパーク放電発光分析法や蛍光X線分析法は、ICP発光分析法のような化学的分析法に比べると分析精度は劣るものの、固体試料を直接分析することができるため、5分以内程度の短時間で分析結果を得られるという利点がある。   In this regard, spark discharge emission analysis and fluorescent X-ray analysis are less accurate than chemical analysis methods such as ICP emission analysis, but can analyze solid samples directly within 5 minutes. There is an advantage that an analysis result can be obtained in a short time.

なお、かような成分元素の分析法では、分析精度の向上策についても従来から種々検討が行われている。
例えば、特許文献1では、スパーク放電分析において、各元素の発光強度分布の平均値および標準偏差から発光強度の閾値を定め、その範囲内の発光データを採用することによって、分析精度の向上を図っている。
しかしながら、この方法では、選択蒸発により生じる異常データを排除することはできなかった。
特開平8−145891号公報
In addition, in the analysis method of such a component element, various examinations have conventionally been conducted on measures for improving analysis accuracy.
For example, in Patent Document 1, in spark discharge analysis, the threshold value of emission intensity is determined from the average value and standard deviation of the emission intensity distribution of each element, and the emission data within the range is adopted to improve the analysis accuracy. ing.
However, this method cannot eliminate abnormal data caused by selective evaporation.
Japanese Patent Laid-Open No. 8-1455891

ところで、近年、上記した分析法以外に、レーザ発光分光分析法が注目を浴びている。このレーザ発光分光分析法は、レーザパルスを試料表面に照射し、これにより生成するプラズマからの励起光を分光分析することにより試料中の元素を定量する分析法である。
この方法は、スパーク放電発光分析法や蛍光X線分析法と同様、固体試料を直接分析できる分析法であり、さらに、これらの分析法に比べると分析試料に対する制限が少なく、切断、研磨などの試料調整を簡略化できるという利点がある。
By the way, in recent years, in addition to the analysis methods described above, laser emission spectroscopy has attracted attention. This laser emission spectroscopic analysis method is an analysis method for quantifying elements in a sample by irradiating the surface of the sample with a laser pulse and performing spectroscopic analysis of excitation light from plasma generated thereby.
This method is an analysis method that can directly analyze a solid sample, like the spark discharge emission spectrometry method and the fluorescent X-ray analysis method. Furthermore, compared to these analysis methods, there are fewer restrictions on the analysis sample, such as cutting and polishing. There is an advantage that sample preparation can be simplified.

しかしながら、レーザ発光分光分析法では、試料の励起源であるレーザパルスの制約から、単位時間:1秒当たりに照射できるレーザパルスの回数は100回以下程度と少なく、 1秒間に300〜1000回の放電が可能なスパーク放電分析法や、連続的に広範囲にX線を照射し広範囲からの信号を受信して平均化できる蛍光X線分析法に比べると分析精度がやや劣るという問題があった。   However, in laser emission spectroscopic analysis, the number of laser pulses that can be irradiated per unit time per second is as low as 100 or less due to the limitations of the laser pulse that is the excitation source of the sample, and 300 to 1000 times per second. Compared with a spark discharge analysis method capable of discharging and a fluorescent X-ray analysis method capable of continuously irradiating a wide range of X-rays and receiving signals from a wide range and averaging them, there is a problem that the analysis accuracy is slightly inferior.

本発明は、上記の実状に鑑み開発されたもので、従来よりも分析精度を大幅に向上させたレーザ発光分光分析法を提案することを目的とする。   The present invention has been developed in view of the above circumstances, and an object of the present invention is to propose a laser emission spectroscopic analysis method in which the analysis accuracy is greatly improved as compared with the prior art.

すなわち、本発明の要旨構成は次のとおりである。
)レーザパルス照射により試料上に生成するプラズマからの励起光波長分散させ、この分散された励起光の発光強度を計測することにより、該試料の成分分析を行うに際し、
レーザパルス毎の発光強度を計測し、計測された全発光強度データから選択蒸発の発生が小さい順に一定比率の発光強度データを抽出して、分析対象元素と試料構成主要元素の発光強度比を求め、この発光強度比に基づいて分析対象元素の濃度を定量分析することを特徴とするレーザ発光分光分析法。
(2)前記(1)において、前記試料の成分分析を行うに際し、
レーザパルス毎の分析対象元素と試料構成主要元素の発光強度を計測し、計測された全発光強度データから、該分析対象元素を縦軸、該試料構成主要元素を横軸とする発光強度分布を作成し、作成された発光強度分布から選択蒸発の発生が小さい順に一定比率の発光強度データを抽出し、抽出したデータに対し最小自乗法により近似直線を引き、この近似直線の傾きを分析対象元素と試料構成主要元素の発光強度比として求め、この発光強度比に基づいて分析対象元素の濃度を定量分析することを特徴とするレーザ発光分光分析法。
(3)前記(2)において、前記分析対象元素の沸点が前記試料構成主要元素の沸点よりも低い場合、前記近似直線が、前記発光強度分布の下方接線であることを特徴とするレーザ発光分光分析法。
(4)前記(2)において、前記分析対象元素の沸点が前記試料構成主要元素の沸点よりも高い場合、前記近似直線が、前記発光強度分布の上方接線であることを特徴とするレーザ発光分光分析法。
That is, the gist configuration of the present invention is as follows.
( 1 ) When performing component analysis of the sample by dispersing the wavelength of excitation light from the plasma generated on the sample by laser pulse irradiation and measuring the emission intensity of the dispersed excitation light,
Measure the emission intensity for each laser pulse, extract the emission intensity data of a certain ratio from the measured total emission intensity data in ascending order of selective evaporation, and obtain the emission intensity ratio of the element to be analyzed and the main constituent elements of the sample. A laser emission spectroscopic analysis method characterized by quantitatively analyzing the concentration of an element to be analyzed based on the emission intensity ratio.
(2) In performing the component analysis of the sample in (1),
Measure the emission intensity of the element to be analyzed and the main constituent element of the sample for each laser pulse. From the measured total emission intensity data, the emission intensity distribution with the target element to be analyzed as the vertical axis and the main constituent element of the sample as the horizontal axis The emission intensity data of a certain ratio is extracted from the created emission intensity distribution in ascending order of occurrence of selective evaporation, an approximate line is drawn from the extracted data by the method of least squares, and the slope of this approximate line is analyzed. A laser emission spectroscopic analysis method characterized in that the concentration of an analysis target element is quantitatively analyzed based on the emission intensity ratio of the main constituent elements of the sample and the sample.
(3) The laser emission spectroscopy according to (2), wherein, when the boiling point of the analysis target element is lower than the boiling point of the main constituent element of the sample, the approximate straight line is a lower tangent line of the emission intensity distribution. Analytical method.
(4) In the above (2), when the boiling point of the element to be analyzed is higher than the boiling point of the main constituent element of the sample, the approximate straight line is an upper tangent line of the emission intensity distribution. Analytical method.

本発明のレーザ発光分光分析法によれば、複数のレーザパルスによる発光強度を全て積算して定量計算していた従来法よりも、高い精度で試料成分元素の定量分析を行うことができる。   According to the laser emission spectroscopic analysis method of the present invention, it is possible to perform quantitative analysis of sample component elements with higher accuracy than the conventional method in which all the emission intensities by a plurality of laser pulses are integrated and quantitatively calculated.

以下、本発明を具体的に説明する。
さて、レーザ発光分光分析法により、分析試料の組成(濃度)を定量する場合、1回のレーザパルス照射により得られる各元素の発光強度は、極めて微弱であるため、複数回のレーザパルス照射によって得られる発光強度を積算することにより、信号強度の安定化と共に、分析精度の向上を図っている
The present invention will be specifically described below.
Now, when the composition (concentration) of an analysis sample is quantified by laser emission spectroscopy, the emission intensity of each element obtained by one laser pulse irradiation is extremely weak. By integrating the obtained emission intensity, the signal intensity is stabilized and the analysis accuracy is improved.

また、照射されるレーザパルスのエネルギーのばらつき、集光光学系ならびに検出系の経時変化の影響を軽減するために、分析対象元素の発光強度と共に、試料を構成する主要元素の発光強度を同時に計測し、分析対象元素の発光強度と試料構成主要元素の発光強度の強度比を求め、規格化することにより、分析機会ごとのばらつきの低減を図っている。試料中の分析対象元素と主要構成元素の関係は、代表的には合金の組成にみられる。例えば、鉄クロム合金であるステンレス合金中のクロム濃度を定量する場合では、主要構成元素は鉄であり、分析対象元素はクロムである。主要構成元素は最大の濃度を有する成分であることが一般的であるが、安定して精度良い発光強度が得られるならば必ずしもこれに限定されない。
そして、得られた発光強度あるいは発光強度比を、濃度既知の標準試料を用いて予め作成した検量線と照合することにより、試料中元素の濃度を定量している。
In addition, in order to reduce the effects of laser pulse energy variations and the time-dependent changes in the condensing optical system and detection system, the emission intensity of the main elements that compose the sample is measured together with the emission intensity of the target element. In addition, the intensity ratio between the emission intensity of the analysis target element and the emission intensity of the main constituent element of the sample is obtained and standardized to reduce variation for each analysis opportunity. The relationship between the element to be analyzed and the main constituent elements in the sample is typically found in the composition of the alloy. For example, when the chromium concentration in a stainless alloy, which is an iron-chromium alloy, is quantified, the main constituent element is iron and the analysis target element is chromium. The main constituent element is generally a component having the maximum concentration, but is not necessarily limited to this as long as the emission intensity can be stably and accurately obtained.
Then, the concentration of the element in the sample is quantified by comparing the obtained emission intensity or emission intensity ratio with a calibration curve prepared in advance using a standard sample with a known concentration.

かようなレーザ発光分光分析法における分析精度劣化の一因として、試料に照射されるレーザパルスのエネルギーやパワーのばらつきが考えられることから、発明者らは、レーザパルス毎の発光強度をチェック、検証することにより、分析精度の向上が期待できると考え、分析対象元素とその規格化のための試料構成主要元素の発光強度の挙動およびそれらの相関について綿密な調査を行った。   As one of the causes of the degradation of analysis accuracy in such laser emission spectroscopy, since the variation in energy and power of the laser pulse irradiated on the sample is considered, the inventors checked the emission intensity for each laser pulse, We thought that the analysis accuracy could be improved by the verification, and conducted a thorough investigation on the behavior of the emission intensity of the analysis target element and the main constituent elements of the sample for the standardization and their correlation.

その結果、従来は、得られた発光強度を全て積算したデータを基に分析を行っていたのであるが、得られた発光強度の一部には、選択蒸発、すなわち試料の構成元素のうち沸点の低い元素が先に蒸発することにより、試料の組成と異なる組成のプラズマが生成し、かような選択蒸発に由来するデータが、分析精度を大きく劣化させていることを突き止めた。   As a result, in the past, analysis was performed based on data obtained by integrating all of the obtained luminescence intensities. However, some of the luminescence intensities obtained were selective evaporation, that is, the boiling point of the constituent elements of the sample. As a result, the plasma having a composition different from the composition of the sample was generated by the evaporation of the low element first, and it was found that the data derived from the selective evaporation greatly deteriorated the analysis accuracy.

なお、前述した特許文献1に記載の方法では、この選択蒸発により生じる異常データを排除できず、そのためこれらのデータ抽出方法をレーザ発光分光分析法に適用したとしても十分な分析精度の向上は期待できない。
すなわち、特許文献1に記載の方法は、各元素の発光強度分布の平均値および標準偏差から発光強度の閾値を定め、その範囲内の発光データを採用することによって分析精度の向上を図ろうとするものであるが、選択蒸発による異常データは、沸点の低い元素の強度が高いことが特徴であり、分布の平均値や中央値とは相関がないからである。
In the method described in Patent Document 1 described above, abnormal data generated by this selective evaporation cannot be excluded, and therefore, even if these data extraction methods are applied to laser emission spectroscopy, sufficient improvement in analysis accuracy is expected. Can not.
That is, the method described in Patent Document 1 attempts to improve analysis accuracy by determining a threshold value of emission intensity from the average value and standard deviation of the emission intensity distribution of each element and adopting emission data within the range. However, abnormal data due to selective evaporation is characterized by a high strength of elements having a low boiling point, and there is no correlation with the average or median of the distribution.

そこで、発明者らは、かような選択蒸発に由来するデータを効果的に排除できるデータの抽出法について鋭意検討を重ねた結果、本発明に想到するに至ったのである。   Thus, the inventors have intensively studied a data extraction method capable of effectively eliminating data derived from such selective evaporation, and as a result, arrived at the present invention.

まず、本発明の基となった、分析対象元素と試料構成主要元素の発光強度比の平均値と強度分布の標準偏差を用いる方法(以下、参考法という)ついて説明する First, a method (hereinafter referred to as a reference method) using the average value of the emission intensity ratio of the element to be analyzed and the main constituent elements of the sample and the standard deviation of the intensity distribution, which is the basis of the present invention, will be described .

この参考法は、複数回のレーザパルス照射について分析対象元素および試料構成主要元素の発光強度比を各レーザパルス毎に算出し、それらの平均値および標準偏差(σ)を求めた上で、発光強度比が、(発光強度比の平均値−α1×σ)〜(発光強度比の平均値+α2×σ)の範囲のデータのみを抽出する、すなわち発光強度分布上で異常な発光を示すデータを除去することにより、分析精度を向上させたものである。
ここで、α1、α2は、抽出するデータ量を最適化するための係数であり、計測、記録したデータの個数と相関があり、予め求めておくことができる。α1,α2が0.2未満の場合には、抽出されるデータ範囲が狭くなりすぎ、その結果、繰返し分析時のデータ再現性が劣るという問題が生じる。一方、α1、α2が2.0を超えた場合には、ほとんどのデータが抽出範囲内に入り、抽出の効果がなくなってしまう。
そこで、この参考法では、係数α1、α2については、それぞれ0.2〜2.0の範囲に限定する
なお、分析対象元素の沸点が、試料構成主要元素の沸点よりも低い場合にはα1>α2とした方が、逆の場合にはα1<α2とした方が、分析精度が一層向上する。
例えば、分析対象元素がCr、試料構成主要元素がFeの場合には、α1=0.8〜1.5、α2
0.2〜0.5程度とするのが好適である。
This reference method calculates the emission intensity ratio of the element to be analyzed and the main constituent elements of the sample for each laser pulse irradiation, calculates the average value and standard deviation (σ), and then emits light. Only data in which the intensity ratio is in the range of (average value of emission intensity ratio−α 1 × σ) to (average value of emission intensity ratio + α 2 × σ), that is, shows abnormal emission on the emission intensity distribution. Analysis accuracy is improved by removing the data.
Here, α 1 and α 2 are coefficients for optimizing the amount of data to be extracted, have a correlation with the number of measured and recorded data, and can be obtained in advance. When α 1 and α 2 are less than 0.2, the data range to be extracted becomes too narrow, and as a result, there arises a problem that data reproducibility at the time of repeated analysis is poor. On the other hand, when α 1 and α 2 exceed 2.0, most of the data falls within the extraction range, and the extraction effect is lost.
Therefore, in this reference method , the coefficients α 1 and α 2 are limited to the range of 0.2 to 2.0, respectively.
When the boiling point of the element to be analyzed is lower than the boiling point of the main constituent element, α 1 > α 2 is better, and α 12 is better in the opposite case. improves.
For example, when the analysis target element is Cr and the sample constituent main element is Fe, α 1 = 0.8 to 1.5, α 2 =
It is preferable to set it to about 0.2 to 0.5.

図1に、ステンレス鋼中のCr定量のために、分析対象元素としてCr、試料構成主要元素としてFeを選択し、これらの元素についてレーザパルス毎の発光強度をプロットした発光強度分布図を示す。横軸はFeの発光強度、縦軸はCrの発光強度であり、各プロットはレ−ザパルス毎の発光強度データである。なお、測定は、ステンレス鋼塊をバンドソーで切断した断面にレーザパルスを照射することにより実施した。   FIG. 1 shows an emission intensity distribution chart in which Cr is determined as an analysis target element and Fe is selected as a sample constituent main element for determination of Cr in stainless steel, and emission intensity for each laser pulse is plotted for these elements. The horizontal axis is the emission intensity of Fe, the vertical axis is the emission intensity of Cr, and each plot is the emission intensity data for each laser pulse. In addition, the measurement was implemented by irradiating the laser pulse to the cross section which cut | disconnected the stainless steel ingot with the band saw.

図1に示したとおり、発光強度分布は、分析した試料のCr,Fe濃度比に対応した特定の発光強度付近に集中し、個々の発光強度は数百〜数万カウントの範囲で広く分布していることが確認できた。このように、広い範囲にわたってデータが分布するのは、個々のレーザパルスの試料上におけるエネルギー密度やパワー密度のばらつきにより、試料の蒸発量が変化しているためと考えられる。また、Fe発光強度に対し、Cr発光強度が高い側に分布が広がっているのは、Feに比べて沸点が低いCrで選択蒸発が起きているためと考えられる。   As shown in FIG. 1, the emission intensity distribution is concentrated around a specific emission intensity corresponding to the Cr / Fe concentration ratio of the analyzed sample, and the individual emission intensity is widely distributed in the range of several hundred to several tens of thousands of counts. It was confirmed that Thus, the data is distributed over a wide range because the evaporation amount of the sample is changed due to variations in energy density and power density of each laser pulse on the sample. Also, the reason why the distribution spreads to the side where the Cr emission intensity is high with respect to the Fe emission intensity is considered to be because selective evaporation occurs in Cr having a lower boiling point than that of Fe.

このように、個々のレーザパルスから得られる発光強度データは試料の選択蒸発の影響が反映されていると考えられるので、この影響を排除してデータを抽出すること、すなわち発光強度比の平均値から選択蒸発のない側のデータを抽出することにより、試料組成を反映した発光強度比が得られると考えられる。   In this way, the emission intensity data obtained from each laser pulse is considered to reflect the effect of selective evaporation of the sample. Therefore, extracting the data by eliminating this influence, that is, the average value of the emission intensity ratio It is considered that the emission intensity ratio reflecting the sample composition can be obtained by extracting the data on the side without selective evaporation.

この考えの下で開発されたのが、上記した参考法であり、この方法により、分析精度の向上を図ることができる。
この参考法に従うデータの抽出要領を、図2に図解する。この例は、α1=1.0、α2=0.3としてデータを抽出した場合である。なお、各データは図1と共通であり、抽出したデータは白丸で示している。参考法により、前記した選択蒸発の発生が小さいと考えられる領域のデータが効率的に抽出されていることがわかる。
The reference method described above was developed based on this idea, and this method can improve the analysis accuracy.
The data extraction procedure according to this reference method is illustrated in FIG. In this example, data is extracted with α 1 = 1.0 and α 2 = 0.3. Each data is the same as in FIG. 1, and the extracted data is indicated by white circles. From the reference method , it can be seen that the data of the region considered that the occurrence of the selective evaporation is small is efficiently extracted.

次に、本発明について説明する。本発明の方法は、計測された全発光強度データから選択蒸発の発生が小さい順に一定比率の発光強度データを抽出して発光強度比を求める方法であり、具体的には、分析対象元素と試料構成主要元素の発光強度分布の下方接線を用いる方法が例示できる。 Next, the present invention will be described. This onset Ming method extracts the luminous intensity data of the fixed ratio in order generation is less selective evaporation from the total emission intensity data measured is a method for determining the light emission intensity ratio, specifically, the analyte element A method using the lower tangent of the emission intensity distribution of the main constituent elements of the sample can be exemplified.

前述したとおり、レーザパルス毎のデータから作成した発光強度分布は、試料の選択蒸発の影響を受けているため、この影響を排除する必要がある。
図1に示したように、発光強度分布における縦軸の元素の沸点が横軸の元素の沸点より低い場合は、分布の上側に選択蒸発の影響を反映したデータが現れることから、発光強度比の小さい発光強度データほど選択蒸発の発生が小さいと考えられる。そのため、選択蒸発の発生が小さい発光強度データは、発光強度比の小さいものを抽出することで得られる。このようにして抽出したデータに対し最小自乗法で直線を引くと、例えば図3に示すように、強度分布の下方接線が求められ、その傾きを分析試料の発光強度比として用いることにより、分析精度の向上を図ることができる。なお、各データは図1と共通であり、抽出したデータは白丸で示している。また、図3に表示した下方接線は、個々の発光データのうち強度比の低いほうの10%を抽出して算出した。
As described above, since the emission intensity distribution created from the data for each laser pulse is affected by the selective evaporation of the sample, it is necessary to eliminate this influence.
As shown in FIG. 1, when the boiling point of the element on the vertical axis in the emission intensity distribution is lower than the boiling point of the element on the horizontal axis, the data reflecting the influence of selective evaporation appears on the upper side of the distribution. The smaller the emission intensity data, the smaller the occurrence of selective evaporation. For this reason, emission intensity data with small occurrence of selective evaporation can be obtained by extracting data with a small emission intensity ratio. When a straight line is drawn on the data extracted in this way by the method of least squares, for example, as shown in FIG. 3, the lower tangent of the intensity distribution is obtained, and the slope is used as the emission intensity ratio of the analysis sample. The accuracy can be improved. Each data is the same as in FIG. 1, and the extracted data is indicated by white circles. Further, the lower tangent shown in FIG. 3 was calculated by extracting 10% of the individual emission data having the lower intensity ratio.

ここに、下方接線を得るには、得られた強度分布のうち強度比が低い領域(全体の5〜20%程度)のみに着目し、これらのデータについて最小自乗法により、近似直線を求めれば良い。
なお、発光強度分布における縦軸の元素の沸点が横軸の元素の沸点より高い場合には、逆に上方接線を利用すべきであることはいうまでもない。ただし、発明者らの検討の範囲では、上方接線を求めるためのデータには選択蒸発による異常データが多く含まれる傾向があるので、精度の良い定量結果を得るには下方接線を求める方がよい。
Here, in order to obtain the lower tangent line, focus on only the region where the intensity ratio is low (about 5 to 20% of the whole) in the obtained intensity distribution, and obtain an approximate straight line for these data by the method of least squares. good.
Needless to say, when the boiling point of the element on the vertical axis in the emission intensity distribution is higher than the boiling point of the element on the horizontal axis, the upper tangent should be used. However, within the scope of the inventors' investigation, the data for obtaining the upper tangent tends to include a lot of abnormal data due to selective evaporation, so it is better to obtain the lower tangent in order to obtain an accurate quantitative result. .

次に、本発明の実施に使用するレーザ発光分光分析装置の構成について具体的に説明する。
図4に、本発明の実施に使用して好適なレーザ発光分光分析装置の一例を示し、図中、番号1はレーザ発振器、2は反射ミラー、3は集光レンズ、4は試料、5は励起光反射集光ミラー、6は分光器、7は光検出器、8はパルス毎のデータ保管のためのメモリ、9は制御コンピュータである。
Next, the configuration of the laser emission spectroscopic analyzer used for carrying out the present invention will be specifically described.
FIG. 4 shows an example of a laser emission spectrometer suitable for use in the practice of the present invention. In the figure, reference numeral 1 denotes a laser oscillator, 2 denotes a reflection mirror, 3 denotes a condenser lens, 4 denotes a sample, 5 denotes Excitation light reflecting / condensing mirror, 6 is a spectroscope, 7 is a photodetector, 8 is a memory for storing data for each pulse, and 9 is a control computer.

レーザ発振器1から照射されたレーザパルスは、反射ミラー2、集光レンズ3を介して試料4の表面に集光照射され、試料上にプラズマを生成する。プラズマからの励起光は、励起光反射集光ミラー5により集光されて分光器6に導かれる。分光器6に入射した励起光は波長分散され、分析元素の発光線波長に対応した位置に設置された光検出器7で、発光強度が検出される。検出された発光強度は、デジタルデータに変換されたのち、データ保管メモリ8に蓄積され、制御用コンピュータ9でデータ抽出処理および定量計算がなされる。
なお、制御用コンピュータ9に十分高速なアナログ/デジタル変換回路が備わっており、レーザパルス毎のデータをリアルタイムで計測記録できる場合には、データ保管メモリ8を省略することもできる。
また、制御コンピュータ9は、レーザ発振器1の発振と同期させて光検出器8の検出タイミングを制御する。
The laser pulse emitted from the laser oscillator 1 is condensed and irradiated on the surface of the sample 4 through the reflecting mirror 2 and the condenser lens 3 to generate plasma on the sample. The excitation light from the plasma is condensed by the excitation light reflecting / condensing mirror 5 and guided to the spectrometer 6. The excitation light incident on the spectroscope 6 is wavelength-dispersed, and the emission intensity is detected by the photodetector 7 installed at a position corresponding to the emission line wavelength of the analysis element. The detected light emission intensity is converted into digital data, and then stored in the data storage memory 8. The control computer 9 performs data extraction processing and quantitative calculation.
If the control computer 9 is provided with a sufficiently high speed analog / digital conversion circuit and data for each laser pulse can be measured and recorded in real time, the data storage memory 8 can be omitted.
The control computer 9 controls the detection timing of the photodetector 8 in synchronization with the oscillation of the laser oscillator 1.

本発明における光検出器としては、レーザ照射直後にプラズマから放出される連続光と元素発光光とを分離するために、2.0μsより短時間の高速ゲートが可能な検出器を用いることが好ましく、例えば高速アンプを備えた光電子増倍管、インテンシファイアを備えたCCD検出器などが有利に適合する。   As the photodetector in the present invention, it is preferable to use a detector capable of high-speed gate in a time shorter than 2.0 μs in order to separate continuous light emitted from plasma immediately after laser irradiation and elemental light. For example, a photomultiplier tube with a high-speed amplifier, a CCD detector with an intensifier, etc. are advantageously suitable.

分光器としては、分析対象元素および試料構成主要元素の発光線を、それらの近傍の妨害元素の発光線から分離可能な波長分解能を有するものであれば良く、従来の分光分析法で用いられている波長分散型の分光器を用いることができる。   The spectroscope needs only to have a wavelength resolution capable of separating the emission lines of the element to be analyzed and the main constituent elements of the sample from the emission lines of the interfering elements in the vicinity thereof, and is used in conventional spectroscopic methods. A wavelength dispersion type spectroscope can be used.

レーザ発振器としては、従来のレーザ発光分光分析法で使用されているNd:YAGレーザなどのパルスレーザを用いれば良い。   As the laser oscillator, a pulse laser such as an Nd: YAG laser used in a conventional laser emission spectroscopic analysis method may be used.

表1に示す各種濃度のFe−Cr合金(フェライト系ステンレス鋼)中のCr濃度を、従来法、発明法1および発明法2に従って測定した。
得られた結果を表1に比較して示す。
レーザパルスとしては、波長:1064nm、エネルギー:100mJ、パルス幅:10nsのNd:YAGレーザを用いた。レーザパルスの集光には、焦点距離:250mmの集光レンズを、分光器には1000mmの真空分光器を、光検出器には光電子増倍管を用いた。
そして、各ステンレス鋼試料に対し、2000ショットのレーザパルス照射を行い、発光強度データを計測記録し、得られた発光強度分布から適宜データを抽出をしてCr元素の定量を行った。
The Cr concentrations in various concentrations of Fe—Cr alloys (ferritic stainless steel) shown in Table 1 were measured according to the conventional method, Invention Method 1 and Invention Method 2.
The obtained results are shown in comparison with Table 1.
As the laser pulse, an Nd: YAG laser having a wavelength of 1064 nm, an energy of 100 mJ, and a pulse width of 10 ns was used. For focusing the laser pulse, a condenser lens with a focal length of 250 mm was used, a 1000 mm vacuum spectrometer was used for the spectrometer, and a photomultiplier tube was used for the photodetector.
Then, each stainless steel sample was irradiated with 2000 shots of laser pulses, emission intensity data was measured and recorded, and data was appropriately extracted from the obtained emission intensity distribution to quantify Cr elements.

Figure 0004483492
Figure 0004483492

従来法は、全レーザパルスの発光強度データを全て積算した後に発光強度比を求めた場合、すなわち次式により発光強度比Rを求めた場合の定量結果である。
R=Σ(ICr1+ICr2+ICr3+・・・+ICr1998+ICr1999+ICr2000
/Σ(IFe1+IFe2+IFe3+・・・+IFe1998+IFe1999+IFe2000
ただし、ICrおよびIFeはそれぞれ、CrおよびFeの発光強度(Intencity)である。
The conventional method is a quantitative result when the emission intensity ratio is obtained after integrating the emission intensity data of all laser pulses, that is, when the emission intensity ratio R is obtained by the following equation.
R = Σ (ICr 1 + ICr 2 + ICr 3 +... + ICr 1998 + ICr 1999 + ICr 2000 )
/ Σ (IFe 1 + IFe 2 + IFe 3 +... + IFe 1998 + IFe 1999 + IFe 2000 )
However, ICr and IFe are emission intensity (Intencity) of Cr and Fe, respectively.

参考法は、上記した参考法により分析した結果であり、発光強度比の平均値および標準偏差を用いて、α1=1.0、α2=0.3としてデータを抽出した場合、 すなわち(平均値−1.0×標準偏差)〜(平均値+0.3×標準偏差)の範囲でデータを抽出した結果である。なお、上記のα1,α2は、実施例に用いた装置と同じ装置により、表1に示した各試料の定量を試み、精度が最も高くなるように予め決定しておいた数値である。 The reference method is a result of analysis by the above-described reference method. When data is extracted with α 1 = 1.0 and α 2 = 0.3 using the average value and standard deviation of the emission intensity ratio, that is, (average value−1.0 It is the result of extracting data in the range of (* standard deviation) to (average value + 0.3 * standard deviation). The above α 1 and α 2 are numerical values determined in advance so as to obtain the highest accuracy by trying to quantify each sample shown in Table 1 using the same device as that used in the examples. .

発明法は、本発明の方法により分析した結果であり、発光強度分布の下方接線を利用した例である。下方接線の算出には、Cr/Fe発光強度比が低い点200個(10%相当)を用い、最小自乗法により近似直線を求め、それを下方接線とし、その傾きをその試料の発光強度比として定量計算を行った。 Invention method is a result of analyzing by the onset Ming method is an example using the lower tangent line of the luminous intensity distribution. To calculate the lower tangent line, 200 points with low Cr / Fe emission intensity ratio (equivalent to 10%) are used, an approximate straight line is obtained by the method of least squares, it is set as the lower tangent line, and the slope is the emission intensity ratio of the sample. Quantitative calculation was performed.

表1から明らかなように、本発明に従いデータを抽出して成分分析を行うことにより、より正確な、化学分析によるCr濃度に近い値が得られ、従来法に比べて分析精度が格段に向上している。   As is clear from Table 1, by extracting data according to the present invention and performing component analysis, a more accurate value close to the Cr concentration by chemical analysis can be obtained, and the analysis accuracy is significantly improved compared to the conventional method. is doing.

レーザパルス毎の発光強度分布の一例を示した図である。It is the figure which showed an example of the light emission intensity distribution for every laser pulse. 参考法に従う発光強度データの抽出要領を示した図である。It is the figure which showed the extraction point of the emitted light intensity data according to a reference method . 本発明法に従う下方接線の算出要領を示した図である。It is a diagram showing a calculation procedure of the lower tangential line according to the present onset Akinori. 本発明にかかるレーザ発光分光分析装置の主要構成例を示した図である。It is the figure which showed the main structural examples of the laser emission spectroscopy analyzer concerning this invention.

符号の説明Explanation of symbols

1 レーザ発振器
2 反射ミラー
3 集光レンズ
4 試料
5 励起光反射集光ミラー
6 分光器
7 光検出器
8 パルスデータ保管メモリ
9 制御コンピュータ
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Reflecting mirror 3 Condensing lens 4 Sample 5 Excitation light reflecting condensing mirror 6 Spectrometer 7 Photodetector 8 Pulse data storage memory 9 Control computer

Claims (4)

レーザパルス照射により試料上に生成するプラズマからの励起光を波長分散させ、この分散された励起光の発光強度を計測することにより、該試料の成分分析を行うに際し、
レーザパルス毎の発光強度を計測し、計測された全発光強度データから選択蒸発の発生が小さい順に一定比率の発光強度データを抽出して、分析対象元素と試料構成主要元素の発光強度比を求め、この発光強度比に基づいて分析対象元素の濃度を定量分析することを特徴とするレーザ発光分光分析法。
In performing component analysis of the sample by dispersing the wavelength of the excitation light from the plasma generated on the sample by laser pulse irradiation and measuring the emission intensity of the dispersed excitation light,
Measure the emission intensity for each laser pulse, extract the emission intensity data of a certain ratio from the measured total emission intensity data in ascending order of selective evaporation, and obtain the emission intensity ratio of the element to be analyzed and the main constituent elements of the sample. A laser emission spectroscopic analysis method characterized by quantitatively analyzing the concentration of an element to be analyzed based on the emission intensity ratio.
請求項1において、前記試料の成分分析を行うに際し、In performing the component analysis of the sample according to claim 1,
レーザパルス毎の分析対象元素と試料構成主要元素の発光強度を計測し、計測された全発光強度データから、該分析対象元素を縦軸、該試料構成主要元素を横軸とする発光強度分布を作成し、作成された発光強度分布から選択蒸発の発生が小さい順に一定比率の発光強度データを抽出し、抽出したデータに対し最小自乗法により近似直線を引き、この近似直線の傾きを分析対象元素と試料構成主要元素の発光強度比として求め、この発光強度比に基づいて分析対象元素の濃度を定量分析することを特徴とするレーザ発光分光分析法。Measure the emission intensity of the element to be analyzed and the main constituent element of the sample for each laser pulse. From the measured total light emission intensity data, the emission intensity distribution with the vertical axis of the target element and the horizontal axis of the main constituent element of the sample The emission intensity data of a certain ratio is extracted from the created emission intensity distribution in ascending order of occurrence of selective evaporation, an approximate line is drawn from the extracted data by the method of least squares, and the slope of this approximate line is analyzed. A laser emission spectroscopic analysis method characterized in that the concentration of an analysis target element is quantitatively analyzed based on the emission intensity ratio of the main constituent elements of the sample and the sample.
請求項2において、前記分析対象元素の沸点が前記試料構成主要元素の沸点よりも低い場合、前記近似直線が、前記発光強度分布の下方接線であることを特徴とするレーザ発光分光分析法。3. The laser emission spectroscopic analysis method according to claim 2, wherein when the boiling point of the analysis target element is lower than the boiling point of the main constituent element of the sample, the approximate straight line is a lower tangent of the emission intensity distribution. 請求項2において、前記分析対象元素の沸点が前記試料構成主要元素の沸点よりも高い場合、前記近似直線が、前記発光強度分布の上方接線であることを特徴とするレーザ発光分光分析法。3. The laser emission spectroscopic analysis method according to claim 2, wherein when the boiling point of the analysis target element is higher than the boiling point of the main constituent element of the sample, the approximate straight line is an upper tangent line of the emission intensity distribution.
JP2004262641A 2004-09-09 2004-09-09 Laser emission spectroscopy Expired - Fee Related JP4483492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262641A JP4483492B2 (en) 2004-09-09 2004-09-09 Laser emission spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262641A JP4483492B2 (en) 2004-09-09 2004-09-09 Laser emission spectroscopy

Publications (2)

Publication Number Publication Date
JP2006078340A JP2006078340A (en) 2006-03-23
JP4483492B2 true JP4483492B2 (en) 2010-06-16

Family

ID=36157928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262641A Expired - Fee Related JP4483492B2 (en) 2004-09-09 2004-09-09 Laser emission spectroscopy

Country Status (1)

Country Link
JP (1) JP4483492B2 (en)

Also Published As

Publication number Publication date
JP2006078340A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4046612B2 (en) X-ray fluorescence analyzer combined with laser-induced fluorescence quantum analyzer
JP5706955B2 (en) Quantitative analysis method of target element in sample using laser plasma spectrum
US6008896A (en) Method and apparatus for spectroscopic analysis of heterogeneous materials
US9958395B2 (en) Laser induced breakdown spectroscopy (LIBS) apparatus for the detection of mineral and metal contamination in liquid samples
JP6022210B2 (en) Method and apparatus for measuring concentration of metal surface adhering component
Bridge et al. Characterization of automobile float glass with laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry
US6794670B1 (en) Method and apparatus for spectrometric analysis of turbid, pharmaceutical samples
JPH0915156A (en) Spectroscopic measuring method and measuring device
CN110987903B (en) LIBS matrix effect correction method and application thereof
Ciucci et al. CF-LIPS: a new approach to LIPS spectra analysis
KR20170052256A (en) Apparatus and method for measuring concentration of material
JP2009068969A (en) Method and device for measuring substances containing concrete
US20220341784A1 (en) Methods, algorithms and systems for sub-nanosecond digital signal processing of photomultiplier tube response to enable multi-photon counting in raman spectroscopy
JP3651755B2 (en) Gas component concentration measuring apparatus and gas component concentration measuring method
US8082111B2 (en) Optical emission spectroscopy qualitative and quantitative analysis method
JP4483492B2 (en) Laser emission spectroscopy
EP1987910B1 (en) A method for instantly evaluating the quality of a weld
Jurado-López et al. An atypical interlaboratory assay: looking for an updated hallmark (-jewelry) method
JP5472175B2 (en) Method of identifying B compound species in steel
JP3660938B2 (en) Component analysis method using laser
JP2006275621A (en) Analyzer
CA2287024C (en) Method and apparatus for spectroscopic analysis of heterogeneous materials
JP5436319B2 (en) Spectroscopic measuring method, spectroscopic measuring device
JP2011117728A (en) Method of detecting harmful substance to environment, detector, and detection system
JP2005134273A (en) Apparatus for measuring concentration of constituents in particles contained in the atmosphere, or the like

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4483492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees