JP2011117728A - Method of detecting harmful substance to environment, detector, and detection system - Google Patents

Method of detecting harmful substance to environment, detector, and detection system Download PDF

Info

Publication number
JP2011117728A
JP2011117728A JP2009186175A JP2009186175A JP2011117728A JP 2011117728 A JP2011117728 A JP 2011117728A JP 2009186175 A JP2009186175 A JP 2009186175A JP 2009186175 A JP2009186175 A JP 2009186175A JP 2011117728 A JP2011117728 A JP 2011117728A
Authority
JP
Japan
Prior art keywords
wood
hazardous substance
cca
environmental hazardous
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009186175A
Other languages
Japanese (ja)
Inventor
Nobuaki Hattori
順昭 服部
Keisuke Ando
恵介 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009186175A priority Critical patent/JP2011117728A/en
Publication of JP2011117728A publication Critical patent/JP2011117728A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To identify environmental pollutants contained in wood and to determine the quantities thereof. <P>SOLUTION: By applying laser light to wood that threatens to contain chemicals or metals harmful to environments, the surface of the wood is turned into plasma. Light (fluorescence, phosphorescence, etc.) coming out therefrom is condensed and analyzed through spectroscopic analysis to detect substances such as chromium and arsenic that threaten to adversely affect the environments. This allows waste wood containing harmful substances to be properly determined, allowing the waste wood to be assorted, and then, recycled, rejected, or treated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、環境に対する有害物質の検出方法、検出装置及び検出システムに関する。より詳しくは、木材に含まれるクロム、ヒ素等の環境に悪影響を与える有害物質を正確に検出する方法、検出装置、検出システムに関する。   The present invention relates to a detection method, a detection apparatus, and a detection system for harmful substances to the environment. More specifically, the present invention relates to a method, a detection apparatus, and a detection system for accurately detecting harmful substances that adversely affect the environment such as chromium and arsenic contained in wood.

CCA(クロム、銅、ヒ素)処理木材はCCA薬剤を木材に加圧注入したものである。優れた防腐効果を持つが、CCA処理木材を廃棄・処分する際に、ヒ素が気化、飛散することや、クロムの焼却灰中への残留により、人間や環境に与える悪影響が懸念されている。
そこで、木材を廃棄する際にはCCA処理を施した木材か否かを検出し、分別して廃棄する必要があるが、それができない場合は、埋め立て等で一括処理してきた。
CCA (chrome, copper, arsenic) -treated wood is obtained by pressurizing a CCA agent into wood. Although it has an excellent antiseptic effect, there are concerns that arsenic vaporizes and scatters when CCA-treated wood is discarded and disposed of, and that chrome remains in the incineration ash, which may adversely affect humans and the environment.
Therefore, when discarding wood, it is necessary to detect whether the wood has been subjected to CCA treatment, and it is necessary to sort and discard it.

これまでに開発されている検出装置は正確性が不十分か、大型で使いにくい、放射線が出るなど、現場で使いにくいという問題があった。そのため、正確で小型のCCA検出装置、システム、方法等が求められていた。また、CCA以外にも、人体や環境に有害な金属等を含む木材も存在することから、それらを検出する検出装置、システム、方法等が求められている。   The detection devices that have been developed so far have insufficient accuracy, are large and difficult to use, and are difficult to use in the field, such as radiation. Therefore, an accurate and small CCA detection device, system, method and the like have been demanded. In addition to CCA, there are woods that contain metals that are harmful to the human body and the environment, so detection devices, systems, methods, and the like for detecting them are required.

簡便な機器が現在市販されているが、これは正確性に欠け、CCA含有木材以外も陽性判定をしたり、CCA含有木材を陰性判定するミスが出るなど問題があった。   A simple device is currently available on the market, but this is not accurate, and there are problems such as making positive determinations other than CCA-containing wood and making mistakes in determining CCA-containing wood negative.

これらの問題を解決できれば、CCA処理木材を正確かつ簡便に判別できることから、環境に悪影響を与える廃木材を分別し、木材リサイクルの適正化が可能になると期待されるため、CCAの正確かつ簡便な検出装置、システム、検出方法開発が望まれていた。   If these problems can be resolved, CCA-treated wood can be accurately and easily identified, so it is expected that waste wood that adversely affects the environment will be separated and wood recycling can be optimized. Development of detection devices, systems, and detection methods has been desired.

佐藤敏幸,叶内剛広,安藤規男,小林正男:光学式木材防腐剤検出法の開発、山形県工業技術センター報告,NO34,p.5-8,2002Toshiyuki Sato, Takehiro Kanai, Norio Ando, Masao Kobayashi: Development of optical wood preservative detection method, Yamagata Industrial Technology Center report, NO34, p.5-8, 2002

解決しようとする課題は、有害な薬剤を含む木材を判別することである。すなわち、本発明は木材中の有害な物質、特にクロム、ヒ素等の有害金属類を正確に検出できる検出装置、システム、方法を提供するものである。   The problem to be solved is to identify wood that contains harmful drugs. That is, the present invention provides a detection apparatus, system, and method that can accurately detect harmful substances in wood, particularly harmful metals such as chromium and arsenic.

上記課題を解決するために、本発明は、木材にレーザー(「レーザ」ということもあるが意味は全く同じである)を照射することによりプラズマを発生させ、その後の蛍光を計測することにより、クロム、ヒ素、銅の含有量を測定し、その含有量に基づき、CCA処理された木材であるか否かを判定することを最も主要な特徴とする。   In order to solve the above-mentioned problem, the present invention generates plasma by irradiating wood with a laser (sometimes referred to as “laser”, but the meaning is exactly the same), and then measures fluorescence. The main feature is to measure the content of chromium, arsenic, and copper and to determine whether the wood is CCA-treated wood based on the content.

本明細書では、以下の発明が提供される。
(1)レーザー照射手段と、集光手段と、レーザー光を通過させかつ蛍光を反射させる手段と、分光分析手段を有する環境有害物質測定システムが提供される。本発明によれば、レーザー照射手段と集光手段により焦点を絞って木材にレーザーを照射し、照射部位から出る蛍光を反射させて第2の集光手段に集め、集光手段により分光分析手段に蛍光を誘導して蛍光強度を測定できるという効果が得られる。
In the present specification, the following inventions are provided.
(1) An environmental hazardous substance measuring system having a laser irradiation unit, a condensing unit, a unit that transmits laser light and reflects fluorescence, and a spectroscopic analysis unit is provided. According to the present invention, the laser beam is focused by the laser irradiation unit and the condensing unit to irradiate the wood with the laser, and the fluorescence emitted from the irradiated part is reflected and collected in the second condensing unit. An effect is obtained that fluorescence intensity can be measured by inducing fluorescence.

(2)集光手段が2以上である(1)の環境有害物質測定システム
(3)集光手段が集光レンズである(1)の環境有害物質測定システム
(2) The environmental hazardous substance measuring system according to (1) having two or more condensing means (3) The environmental hazardous substance measuring system according to (1) wherein the condensing means is a condensing lens

(4)集光レンズの焦点距離と分光分析手段との距離が焦点距離又は焦点距離よりも遠い距離である(3)の環境有害物質測定システム (4) The environmental hazardous substance measuring system according to (3), wherein the focal length of the condensing lens and the spectral analysis means are the focal length or a distance farther than the focal length.

(5)レーザー光を通過させる手段が穴付ミラーである(1)の環境有害物質測定システム。 (5) The environmental hazardous substance measuring system according to (1), wherein the means for allowing the laser beam to pass is a mirror with a hole.

(6)穴付ミラーの穴の直径が1mmないし15mmである(5)の環境有害物質測定システム。より好ましくは3mm以上でもよい。
(7)環境有害物質がクロム、銅、ヒ素である(1)ないし(6)の環境有害物質測定システム
(8)さらにデータ分析手段を有する(1)ないし(7)の環境有害物質測定システム
(6) The environmental hazardous substance measuring system according to (5), wherein the hole diameter of the mirror with holes is 1 mm to 15 mm. More preferably, it may be 3 mm or more.
(7) Environmental hazardous substance measurement system according to (1) to (6), wherein the environmental hazardous substance is chromium, copper, or arsenic. (8) Environmental hazardous substance measurement system according to (1) to (7), further comprising data analysis means.

(9)木材に対し、レーザーを照射する工程と、照射部位からの蛍光を集光する工程と、集光した蛍光を分光分析することからなる環境有害物質検出方法が提供される。
(10)さらに、データを分析し、環境有害物質を含むか否かを判定する(9)の環境有害物質検出方法
(9) There is provided an environmental hazardous substance detection method comprising a step of irradiating a wood with a laser, a step of condensing the fluorescence from the irradiated region, and spectroscopic analysis of the collected fluorescence.
(10) Further, the method for detecting environmental hazardous substances according to (9), wherein data is analyzed to determine whether or not it contains environmental hazardous substances

(11)環境有害物質が、クロム、銅、ヒ素である(9)または(10)の環境物質検出方法
(12)レーザー照射部位からの蛍光を集光する前に反射させる工程を有する(9)ないし(11)の環境有害物質検出方法
(11) The environmental hazardous substance is chromium, copper, or arsenic (9) or (10) the environmental substance detection method (12) having a step of reflecting the fluorescent light from the laser irradiation site before condensing (9) Or (11) environmental hazardous substance detection method

(13)レーザー照射手段と、集光手段と、分光分析手段を有する環境有害物質測定システム
が提供される。
(13) An environmental hazardous substance measuring system having a laser irradiation unit, a condensing unit, and a spectroscopic analysis unit is provided.

本発明においては木材にレーザー光を照射して表面をプラズマ状態にし、そこから出る蛍光を分析することにより、クロム、ヒ素等を検出することができる、という利点がある。     In the present invention, there is an advantage that chromium, arsenic and the like can be detected by irradiating wood with laser light to bring the surface into a plasma state and analyzing the fluorescence emitted therefrom.

図1は 直接集光系を表す図である。(実施例2,3,4,5)FIG. 1 is a diagram showing a direct condensing system. (Examples 2, 3, 4, 5) 図2は 直接集光系における分光器の位置調整を示す図である。(実施例2,3,4,5)FIG. 2 is a diagram showing the position adjustment of the spectroscope in the direct focusing system. (Examples 2, 3, 4, 5) 図3は 改良後の集光系を示す図である。(実施例2,3,4,5)FIG. 3 is a diagram showing the light collecting system after improvement. (Examples 2, 3, 4, 5) 図4は 改良後の集光系の蛍光等の集光方法を表す説明図である。(実施例2,3,4,5)FIG. 4 is an explanatory view showing a condensing method such as fluorescence of the condensing system after improvement. (Examples 2, 3, 4, 5) 図5は 光学系改良前後のスペクトル(PT)を表すグラフである。(実施例3)FIG. 5 is a graph showing the spectrum (PT) before and after optical system improvement. Example 3 図6は データ処理後のスペクトル(PT)を表すグラフである。(実施例3)FIG. 6 is a graph showing the spectrum (PT) after data processing. Example 3 図7は データ処理前のスペクトル(不明を除く各種サンプル)を表すグラフである。(実施例4)FIG. 7 is a graph showing spectra (various samples excluding unknown) before data processing. (Example 4) 図8は データ処理後のスペクトル(不明を除く各種サンプル)を表すグラフである。(実施例4)FIG. 8 is a graph showing spectra after data processing (various samples except unknown). (Example 4) 図9は CCA処理木材から検出されたAsのピークを表すグラフである。(実施例5)FIG. 9 is a graph showing the peak of As detected from CCA-treated wood. (Example 5) 図10は CCA処理木材以外のスペクトル(Asピーク検出波長域)を表すグラフである。(実施例5)FIG. 10 is a graph showing spectra (As peak detection wavelength range) other than CCA-treated wood. (Example 5) 図11は CCA処理木材から検出されたCrのピークを表すグラフである。(実施例5)FIG. 11 is a graph showing the peak of Cr detected from CCA-treated wood. (Example 5) 図12は CCA処理木材以外のスペクトル(Crピーク検出波長域)を表すグラフである。(実施例5)FIG. 12 is a graph showing spectra (Cr peak detection wavelength region) other than CCA-treated wood. (Example 5) 図13は 光学系改良後における相対発光強度の散布図である。(実施例4)FIG. 13 is a scatter diagram of the relative light emission intensity after the optical system improvement. (Example 4)

本発明によれば、レーザー照射手段と、集光手段と、レーザー光を通過させかつ蛍光を反射させる手段と、分光分析手段及び解析部からなるCCA木材判定システムが提供される。レーザー照射装置は一定レベル以上の強度のレーザーを発振できるものであれば特に制限されない。一定レベル以上の強度とは、木材に照射した場合に、プラズマを発生させられる強度以上の強度を言う。YAGレーザーがもっとも好ましく用いられるが、上記の目的に使えるものであれば特に制限されない。YAGレーザーの一例としては、例えば、QスイッチNd:YAGレーザTempest 10 (New Wave Research社製)等が挙げられるがこれに限定されない。   According to the present invention, there is provided a CCA wood determination system including a laser irradiation unit, a condensing unit, a unit that transmits laser light and reflects fluorescence, a spectral analysis unit, and an analysis unit. The laser irradiation apparatus is not particularly limited as long as it can oscillate a laser having a certain level or higher intensity. The intensity above a certain level refers to an intensity higher than the intensity at which plasma can be generated when wood is irradiated. A YAG laser is most preferably used, but is not particularly limited as long as it can be used for the above purpose. An example of the YAG laser includes, but is not limited to, a Q switch Nd: YAG laser Tempest 10 (New Wave Research).

集光手段としては典型的には集光レンズ、凹面鏡等が用いられるがこれらに限られない。レーザー照射手段から発振されたレーザーを集光レンズにより集め、木材表面上に焦点を結ばせることにより、木材表面をプラズマ化し、励起状態から基底状態に戻る際の発光(蛍光、りん光等)を反射手段により第2の集光手段に誘導し、集光して分光器に誘導する。   Typically, a condensing lens, a concave mirror, or the like is used as the condensing means, but is not limited thereto. The laser emitted from the laser irradiation means is collected by a condensing lens and focused on the surface of the wood, so that the surface of the wood is turned into plasma and emitted light (fluorescence, phosphorescence, etc.) when returning from the excited state to the ground state. The light is guided to the second light collecting means by the reflecting means, condensed and guided to the spectroscope.

「レーザー光を通過させ」とは、レーザー光を反射板のレーザー光源とは反対側にある木材表面に当てるために反射板を通過させる、という意味で、ハーフミラーのように当たった光の略半分を反射し、略半分を通過させるものでもよく、あるいは、反射板の内部にレーザーを通過させられるだけの大きさの穴をあけてもよい(穴付誘多膜平面ミラー)。穴の大きさはレーザーを通す際のレーザー光の絞り具合にもよるが、3mm〜20mm、より望ましくは5mm〜15mmなどが考えられるが、要するに、照射するレーザーのビーム径より一回り大きければよい。一回り大きいとは、レーザービームがミラーに当たって干渉波を出さない程度に大きいことを意味する。   “Let the laser beam pass” means that the laser beam is passed through the reflector in order to apply it to the surface of the wood opposite to the laser light source of the reflector. It may be one that reflects half and allows almost half to pass, or a hole that is large enough to allow the laser to pass through it may be drilled inside (a multi-layer flat mirror with a hole). The size of the hole depends on how much the laser beam is reduced when passing through the laser, but it may be 3 mm to 20 mm, more preferably 5 mm to 15 mm. However, in short, it may be larger than the beam diameter of the laser to be irradiated. . The term “larger” means that the laser beam is large enough not to hit the mirror and emit an interference wave.

「蛍光を反射させる」とは、レーザーを木材表面に当てた際に出る蛍光を第2の集光手段に集めるために反射させることを意味する。これにより、蛍光の進行方向を集光手段の方向に変えることができる。反射させるために、目的の波長を効率良く反射させる薬剤をコーディングしてもよい。   “Reflect the fluorescence” means that the fluorescence emitted when the laser is applied to the surface of the wood is reflected so as to be collected in the second light collecting means. Thereby, the advancing direction of fluorescence can be changed to the direction of a condensing means. In order to reflect, an agent that efficiently reflects a target wavelength may be coded.

第2の集光手段としては、集光レンズが好適に用いられる。本発明の場合、集光レンズの焦点距離と分光器の位置が必ずしも一致する必要はない。集光レンズの焦点距離にかかわらず、前後に動かして、よりよい分光分析結果が得られる距離を決定すればよい。   A condensing lens is preferably used as the second light condensing means. In the case of the present invention, the focal length of the condenser lens and the position of the spectroscope do not necessarily match. Regardless of the focal length of the condenser lens, it may be moved back and forth to determine the distance at which a better spectral analysis result can be obtained.

分光分析機としては、測定波長範囲として190nm〜300nmの範囲を含み、分解能が0.15nmよりも細かいものであれば用いることができる。例えば、StellarNet社のEPP2000HR等が好適に使用できるがこれに限られない。   A spectroscopic analyzer can be used as long as it has a measurement wavelength range of 190 nm to 300 nm and a resolution smaller than 0.15 nm. For example, EPP2000HR manufactured by StellarNet can be suitably used, but is not limited thereto.

以下、実施例により本発明を更に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these.

供試材料
本実施例では表1に示す31種類の供試木材を用いた。略称の凡例を表2に示す。
供試木材
Test Material In this example, 31 kinds of test wood shown in Table 1 were used. The abbreviation legend is shown in Table 2.
Test wood

薬剤または木材の略称 Abbreviation for drug or wood

サンプル中のCJ1は漏水クレーム現場からの廃材であり、サンプル到着時には湿潤状態であった。このため、CJ1に対する実験は自然乾燥させ、木材の表面状態が他のサンプルと同条件になった時点で照射を行った。
表3に各供試木材の提供企業と、CCA処理木材が提供された企業についてはCCAの号数が判明していればそれを記す。
供試木材提供企業とCCA薬剤の種類
CJ1 in the sample was a waste material from the site of the water leakage complaint and was wet when the sample arrived. For this reason, the experiment for CJ1 was naturally dried and irradiated when the surface condition of the wood was the same as that of the other samples.
Table 3 shows the CCA numbers for companies that provide each specimen wood and the companies that provided CCA-treated wood, if known.
Types of timber suppliers and CCA chemicals

使用機器
光学系
LIBSを構成する機器として、光学系の部分を以下に示す。
a) レーザ
励起源であるレーザには、EO・QスイッチNd:YAGレーザ(NEW WAVE RESEARCH社、Tempest10)を用いた。YAGレーザは小型な躯体であり、短パルス・高出力のビームを放出できる特長を持つ。 レーザの仕様を表4に示す。
レーザの仕様
Equipment used Optical system
The parts of the optical system are shown below as equipment constituting LIBS.
a) An EO / Q-switched Nd: YAG laser (NEW WAVE RESEARCH, Tempest 10) was used as the laser as the laser excitation source. YAG laser is a small housing and has the feature of emitting short pulses and high power beams. Table 4 shows the specifications of the laser.
Laser specifications

b) レーザ光 集光レンズ
供試木材に対して、表面をプラズマ化させるのに十分なエネルギー密度でレーザ光を照射するため、集光レンズとして焦点距離150mmの平凸レンズ(シグマ光機(株)製、SLB-25-150P)を用いた。
b) Laser light Condensation lens The plano-convex lens with a focal length of 150 mm (Sigma Kogyo Co., Ltd.) is used as a condensing lens to irradiate the sample wood with laser light at an energy density sufficient to make the surface into plasma. Manufactured by SLB-25-150P).

c) スペクトロメータ(分光・検出器)
スペクトロメータ(以下分光器)には、測定波長範囲190〜300nm、分解能が0.15nmのStellarNet社製、EPP2000HR(仕様:表6)を用いた。この分光器の分散素子は回折格子で、内部の光学配置はチェルニターナ型である。コンピュータに接続すると、得た光の波長と強度をスペクトルとして表示できる。
分光器の入射スリット手前に石英のコリメータレンズを取り付け、このレンズに集まった光が分光部へ入射する形態で利用した。
なお、レーザと分光器はAvantes社,AvaSpec-2048 Fiber Optic
Spectrometerを端子としてケーブルで接続し、同期して使用した。
分光器の仕様
c) Spectrometer (spectrometer / detector)
As a spectrometer (hereinafter referred to as a spectroscope), EPP2000HR (specification: Table 6) manufactured by StellarNet having a measurement wavelength range of 190 to 300 nm and a resolution of 0.15 nm was used. The dispersive element of this spectroscope is a diffraction grating, and the internal optical arrangement is a Cernitana type. When connected to a computer, the wavelength and intensity of the obtained light can be displayed as a spectrum.
A quartz collimator lens was attached in front of the entrance slit of the spectroscope, and the light collected on this lens was used in the form of entering the spectroscopic section.
Lasers and spectrometers are available from Avantes, AvaSpec-2048 Fiber Optic
Spectrometer was connected as a terminal with a cable and used in synchronization.
Spectrometer specifications

d) その他の実験条件
レーザ、分光器の設定については、分光器の露光時間は30ms、レーザと分光器の遅延時間は0msで実験を行った(表7)。露光時間とは分光器が測定を行う時間を表し、本実験で用いた分光器における最も短い露光時間である30msを用いた。遅延時間(delay time)とはレーザの発進後、分光器が測定を開始するまでの時間を指す。遅延時間を設定すると、プラズマの制動輻射を避けて測定を行うことができる。本実験では分光器に遅延時間を設定することができなかったので、レーザの発進と分光器の測定開始が同時に始まる状態で実験を行った。
レーザ照射条件と分光器測定条件
d) Other experimental conditions Regarding the setting of the laser and the spectroscope, the experiment was performed with the exposure time of the spectroscope being 30 ms and the delay time of the laser and the spectroscope being 0 ms (Table 7). The exposure time represents the time during which the spectroscope performs measurement, and 30 ms, which is the shortest exposure time in the spectroscope used in this experiment, was used. The delay time refers to the time from the start of the laser until the spectroscope starts measurement. When the delay time is set, measurement can be performed while avoiding plasma bremsstrahlung. In this experiment, the delay time could not be set in the spectrometer, so the experiment was conducted in the state where the start of the laser and the measurement start of the spectrometer started simultaneously.
Laser irradiation conditions and spectrometer measurement conditions

また、実験はCrやAsなど毒性元素を含む試料をプラズマ化させるため、木製カバー内で排気しながら行った。
以上の条件で以下の実施例の実験を行った。
The experiment was conducted while evacuating the sample in a wooden cover in order to turn the sample containing toxic elements such as Cr and As into plasma.
The experiment of the following example was conducted on the above conditions.

プラズマ発光の集光光学系
供試木材をレーザに対し斜めに配置し、プラズマ発光を直接分光器で検出する機器構成とした(図1)。この機器構成は、CCA処理木材の判別装置を現場で用いる際、最も簡便、経済的なシステムを構築することを目的に考案された。
この直接集光系では、図2のように木材の角度や分光器との位置関係を微調整して、最適なスペクトルを得ていた。具体的にはベースラインの上昇を抑え、かつ元素のピーク強度が一定強度、あるいは判別可能な程度に測定できるように設定した。また、分光器の測定可能強度を超え、スペクトルの比較ができなくなるサチュレーションという現象をなるべく起こさない状態で照射を行った。
Concentration optical system for plasma emission The test wood was placed at an angle to the laser, and the instrument configuration was such that plasma emission was detected directly with a spectroscope (Fig. 1). This equipment configuration was devised for the purpose of constructing the simplest and most economical system when using a CCA-treated wood discriminating device in the field.
In this direct condensing system, an optimum spectrum is obtained by finely adjusting the angle of the wood and the positional relationship with the spectroscope as shown in FIG. Specifically, it was set so that the rise in the baseline was suppressed, and the peak intensity of the element could be measured at a constant intensity or discriminable level. Further, the irradiation was performed in a state where the phenomenon of saturation exceeding the measurable intensity of the spectroscope and causing the spectrum to be compared was not caused as much as possible.

これに対し、検出が難しかったAsのピークを判別可能な程度に検出することと、2発目(回目)以降もある程度安定したスペクトルを測定することを目的として、さらに光学系の改良を試みた。光学系改良後の機器配置を図3に示す。
この光学系でレーザ光を集光する平凸レンズは直接集光系と同様だが、木材由来からの炭素、またCCA処理木材に特有のAs、Crのピークを含む波長範囲にして225〜270nmのプラズマ発光を効率よく反射させるため、45°傾斜穴付誘多膜平面ミラー(シグマ光機(株)製、TFM-30C05-248-KH05-45、以下穴付ミラー)と、穴付ミラーによって反射したプラズマ発光を集光し、分光器へ送るため、焦点距離40mmの平凸レンズ(シグマ光機(株)製、SLSQ-30-40P)を新たに配置した。これら2つの新しい光学機器とレーザ集光用の平凸レンズをあわせたものをトッププレート(シグマ光機(株)製、OBB-1216)の上に配置し、これを改良後の光学系ユニットとして実験に供した。
On the other hand, we tried to further improve the optical system for the purpose of detecting the peak of As, which was difficult to detect, to the extent that it can be discriminated, and measuring a spectrum that was stable to some extent after the second (second). . FIG. 3 shows the equipment layout after the optical system improvement.
The plano-convex lens that condenses the laser light with this optical system is the same as the direct condensing system, but plasma from 225 to 270 nm in the wavelength range including carbon derived from wood and As and Cr peaks peculiar to CCA-treated wood. In order to reflect the light emission efficiently, it was reflected by a 45 ° tilted multi-layered flat mirror (manufactured by Sigma Koki Co., Ltd., TFM-30C05-248-KH05-45, hereinafter a mirror with a hole) and a mirror with a hole. A plano-convex lens (SLSQ-30-40P, manufactured by Sigma Koki Co., Ltd.) with a focal length of 40 mm was newly arranged to collect the plasma emission and send it to the spectrometer. A combination of these two new optical devices and a plano-convex lens for laser focusing is placed on the top plate (Sigma Optical Co., Ltd., OBB-1216), and this is used as an improved optical system unit. It was used for.

光学系改良後は、供試木材を常にレーザに対して直角に配置しているため、木材の角度を調整する必要はなくなった。しかしプラズマ発光集光用レンズの焦点距離が40mmであるにも関わらず、実測において40mmでは微弱なピークしか測定できず、コリメータレンズとプラズマ発光集光レンズの距離を50mmとするとピーク強度が光学系改良前と同程度に得られたので、光学系改良後の実験はこの距離に分光器を配置して行った。図4に機器の位置関係を示す。
以上の機器配置、設定でそれぞれの実験を行った。
After the optical system was improved, the specimen wood was always placed at a right angle to the laser, so there was no need to adjust the wood angle. However, although the focal length of the plasma emission condensing lens is 40 mm, only a weak peak can be measured at 40 mm in the actual measurement. When the distance between the collimator lens and the plasma emission condensing lens is 50 mm, the peak intensity is the optical system. Since it was obtained to the same extent as before the improvement, the experiment after the improvement of the optical system was carried out by placing a spectroscope at this distance. FIG. 4 shows the positional relationship between devices.
Each experiment was carried out with the above equipment arrangement and settings.

木材由来の炭素ピークとして以前検出されたのは193.20nm、229.96nm、247.96nmのピークである。しかし、光学系改良後に使用した穴付ミラーの反射率が100%に近いのは波長225〜270nmの間であり、この範囲の炭素のピークは229.96nm、247.96nmの2つである。なお、これら元素ピークの同定は米国標準技術局(NIST)の元素発光波長表などにより行った。   The 193.20 nm, 229.96 nm, and 247.96 nm peaks were previously detected as wood-derived carbon peaks. However, the reflectivity of the mirror with a hole used after the optical system improvement is close to 100% between wavelengths 225 to 270 nm, and the two carbon peaks in this range are 229.96 nm and 247.96 nm. These element peaks were identified by the element emission wavelength table of the National Institute of Standards and Technology (NIST).

光学系の改良前後で同様の波形、また炭素ピークが検出された。このことから、LIBSによる測定は種々の光学系設定に対応できる事、また、光学系などの条件設定に左右されず安定した元素のピークを検出することが可能であると考えられる。
炭素について、229.96nm、247.96nmの2つのピークは光学系改良前では照射50回程度まで1回目とほぼ変わらない強度でピークが検出されている。これについては光学系改良後も同様で、同一箇所に対する照射100回以上でも1回目と同様のピークが得られる事から、光学系改良前よりも安定したスペクトルを得る事が可能と考えられる。この理由として、光学系改良前では試料を分光器に対して斜めに配置していたため、同一箇所に対する複数回の照射によって生じた斜めの穴によってプラズマの指向性が妨げられるのに対し、光学系改良後ではレーザ照射によって生じる穴も試料に対し直角であるため、光学系改良前よりも指向性の制限が小さくなったと考えられる。更に、プラズマ発光をミラーによって反射させてから分光器に送るため、光学系改良前よりもプラズマ発光の集光を広範囲に行える。これら2つの効果により、光学系改良前よりも安定したスペクトルを得られることにつながったと考えられる。
Similar waveforms and carbon peaks were detected before and after the improvement of the optical system. From this, it is considered that the measurement by LIBS can cope with various optical system settings, and that it is possible to detect stable element peaks regardless of the condition settings of the optical system and the like.
Regarding carbon, two peaks at 229.96 nm and 247.96 nm were detected with an intensity that is almost the same as that of the first time up to about 50 irradiations before the improvement of the optical system. This is the same after improvement of the optical system, and the same peak as the first time can be obtained even after irradiation of the same spot 100 times or more. Therefore, it is considered possible to obtain a more stable spectrum than before the improvement of the optical system. The reason for this is that the sample was placed obliquely with respect to the spectroscope before the improvement of the optical system, so that the directivity of the plasma was hindered by the oblique holes caused by multiple irradiations to the same location, whereas the optical system After the improvement, the holes generated by laser irradiation are also perpendicular to the sample, so the directivity limit is considered to be smaller than before the optical system improvement. Furthermore, since the plasma emission is reflected by the mirror and then sent to the spectroscope, the plasma emission can be collected in a wider range than before the optical system is improved. These two effects are thought to have led to a more stable spectrum than before the improvement of the optical system.

As、Crなどの標的元素については、光学系改良前後を問わず、照射回数ごとにピークが小さくなる傾向にあった。しかし、このピーク強度の減衰についても、光学系改良後の方が緩やかであった。これも同様の理由によるものと考えられる。   For target elements such as As and Cr, the peak tended to decrease with each irradiation, regardless of the optical system improvement. However, this peak intensity attenuation was more gradual after the optical system improvement. This is also considered to be due to the same reason.

また、ピーク値の偏差にも違いが見られた。直接集光系においては同一箇所への複数回照射は、サチュレーションが起こった場合を除いて行わず、基本的に1回目のスペクトルをデータとし、10箇所へ照射したものを平均化して1サンプルのスペクトルとしていた。改良後の集光系でも、10箇所分のデータを取ったところ、木材由来の炭素やAs、Crなど標的元素のピーク値の偏差が光学系改良前の3分の1程度であった。この理由についても、上記の安定したスペクトルが得られる事に起因していると考えられる。このため、光学系改良前の実験は以前と同様に行ったが、光学系改良後は同一箇所における照射の2〜5回目を用い、これを3箇所分行ったものを平均化して1サンプルのスペクトルとした。   There was also a difference in peak value deviation. In the direct condensing system, multiple times of irradiation to the same location are not performed unless saturation occurs. Basically, the first spectrum is used as data, and 10 samples are averaged and one sample is averaged. It was a spectrum. Even with the improved light collection system, data for 10 locations were collected, and the deviation of the peak values of target elements such as wood-derived carbon, As, and Cr was about one-third that before the optical system improvement. It is considered that this reason is also due to the fact that the above stable spectrum is obtained. For this reason, the experiment before the improvement of the optical system was performed as before, but after the improvement of the optical system, the 2nd to 5th irradiations at the same location were used, and this was performed for 3 locations, and one sample was averaged. The spectrum was used.

ここで照射2〜5回目としたのは、表面の異物などによって照射1回目では基準となる炭素のピーク247.96nmが一定強度以上に検出されなかったためである。光学系改良前は、この247.96nmのピーク強度を1500として正規化し、全サンプルのスペクトルを相対的に評価していた。光学系改良前後では炭素247.96nmのピーク値がほぼ同じであったため、2〜5回目のうち、247.96nmのピーク強度が1000を超えたデータを取り、これを3箇所分平均化してスペクトル化した。これによって、廃材においても表面異物の影響を避け、的確な処理薬剤の同定が行えると考えられる。   The reason for the second to fifth irradiation is that the reference carbon peak 247.96 nm was not detected at a certain intensity or more in the first irradiation due to foreign matter on the surface. Before the improvement of the optical system, the peak intensity at 247.96 nm was normalized as 1500, and the spectra of all samples were relatively evaluated. Since the peak value of carbon 247.96nm was almost the same before and after the optical system improvement, the data of 247.96nm peak intensity exceeding 1000 was taken from the 2nd to 5th time, and this was averaged for 3 locations and spectralized. . As a result, it is considered that the treatment chemical can be accurately identified while avoiding the influence of the surface foreign matter even in the waste material.

実験条件の検討
以上を踏まえて、本実験での実験条件を検討した。
光学系改良前のものはベースラインが500でほぼ一定であったためベースラインについては補正を行わず、炭素247.96nmのピーク値を1500に正規化することでスペクトルの比較を行っていた。しかし、光学系改良後は改良前に比べ若干ベースラインがシフトする傾向にあった(図6)。このため、1nm区間での最小値を読み取り値ごと(0.05nm)にずらしながら計算し、これをつないだものをベースラインとした。ベースライン補正は、生データからこのベースライン値を減算することで行った。また、サンプル間のスペクトルを比較するために正規化を行ったが、炭素247.96nmのベースラインからの強度は光学系改良前後とも変わらず1000程度であったため、このピーク値を1000として行うこととした(図8)。
Examination of experimental conditions Based on the above, the experimental conditions in this experiment were examined.
Before the optical system improvement, the baseline was almost constant at 500, so the baseline was not corrected, and the spectrum was compared by normalizing the peak value of carbon 247.96 nm to 1500. However, after the improvement of the optical system, the baseline tended to shift slightly compared to before the improvement (FIG. 6). For this reason, the minimum value in the 1 nm interval was calculated while shifting every reading (0.05 nm), and the result obtained by connecting these values was taken as the baseline. Baseline correction was performed by subtracting this baseline value from the raw data. In addition, normalization was performed to compare the spectra between samples, but the intensity from the baseline of carbon 247.96 nm was about 1000, unchanged before and after the optical system improvement. (FIG. 8).

なお、スペクトルにおけるピークは光学系改良後の方がより安定していたため、以降のスペクトルはすべて光学系改良後のデータを用いている。また、CCA処理木材を判別する際に、As、Crのピーク強度での散布図を作成した(図13)。このような散布図を作成し、適当な閾値を決めることでCCAであるかどうかを判定できる。ここでは光学系改良前後の比較を行うが、散布図にする際は光学系改良前のデータにも光学系改良後と同様のベースライン補正、正規化を行うものとした。次頁の表7に、光学系改良前後の相違点、また本実験でのデータ処理をまとめる。
光学系改良前後の相違点、本実験でのデータ処理方法
Since the peaks in the spectrum were more stable after the improvement of the optical system, all of the subsequent spectra use data after the improvement of the optical system. In addition, when discriminating CCA-treated wood, a scatter diagram was prepared at the peak intensity of As and Cr (FIG. 13). Whether or not it is CCA can be determined by creating such a scatter diagram and determining an appropriate threshold. Here, the comparison before and after the improvement of the optical system is performed, but when making a scatter diagram, the baseline correction and normalization similar to those after the improvement of the optical system are performed on the data before the optical system improvement. Table 7 on the next page summarizes the differences between before and after the improvement of the optical system, and the data processing in this experiment.
Differences before and after optical system improvement, data processing method in this experiment


供試材料への直接照射による定性分析―目的と方法
CCA処理木材の判別を現場で的確に行える手法の開発という目的から、前節までで検討した条件に基づきスペクトルの測定を行い、CCA処理木材判別のための指標を検討した。得られたスペクトルはすべてベースライン補正した後、正規化処理して比較・分析した。この実験ではレーザの照射は全て、供試材料の防腐処理面に行った。CCAなど加圧注入の方式がとられているものについては、木口面の目視によって十分な薬剤注入が確認された部分に行った。
Qualitative analysis by direct irradiation of test materials-purpose and method
For the purpose of developing a method that can accurately identify CCA-treated wood in the field, we measured the spectrum based on the conditions studied in the previous section and examined the indicators for CCA-treated wood. All obtained spectra were baseline corrected and then normalized and compared and analyzed. In this experiment, all laser irradiation was performed on the preservative surface of the test material. For those using a pressure injection method such as CCA, the injection was performed on a portion where sufficient drug injection was confirmed by visual inspection of the mouth end.

レーザー誘起ブレイクダウン分光法(LIBS)による定性分析結果
実験結果から、CCA処理木材の判別に有効なピークが225〜270nmの間に存在することが判明した。Asについては228.89nm、Crについては266〜268nmの3つ(Crは短波長の区間に3つ連続したピークを特徴とする)で、その中でも最も強いピークを持つ267.83nmである。さらに前述した炭素のピーク229.66nmと247.96nmもこの区間に入っている。このため、スペクトルの比較はすべてこの波長区間内で行った。CCAの構成成分であるCuのピークについては実験で213〜225nmに発見されているが、ACQやCUAZなどCCA以外の木材防腐剤もCuを含んでいることから、判別対象としては適当でない。
From the results of qualitative analysis by laser-induced breakdown spectroscopy (LIBS), it was found that a peak effective for discrimination of CCA-treated wood exists between 225 and 270 nm. As is 228.89 nm for Cr and 266 to 268 nm for Cr (Cr is characterized by three consecutive peaks in the short wavelength section), of which 267.83 nm has the strongest peak. Furthermore, the carbon peaks 229.66nm and 247.96nm mentioned above are also in this section. For this reason, all spectrum comparisons were made within this wavelength interval. The peak of Cu, which is a constituent component of CCA, has been found in the experiment at 213 to 225 nm, but wood preservatives other than CCA such as ACQ and CUAZ also contain Cu, and thus are not suitable for discrimination.

Asのピークは、照射部により多少ピーク値に違いは見られたが、データ処理後は大きな違いは見られなかった(As
228.89nmピーク値でおよそ60〜170程度。図10、11)。CCA処理木材のサンプルには未使用材と廃材(築年数10〜30年)があるが、築年数と相対発光強度に相関は見られなかった。また、As 235.01nmのピークについても認められたが、直近に非CCA処理木材からも検出されるピークがあったため、今回は対象としなかった。
The peak of As was slightly different in peak value depending on the irradiated part, but no significant difference was observed after data processing (As
About 60-170 at 228.89nm peak value. 10 and 11). CCA-treated wood samples include unused wood and waste wood (aged 10-30 years), but there was no correlation between age and relative luminescence intensity. The peak at As 235.01nm was also observed, but this time it was not included because there was a peak detected in non-CCA treated wood.

Crのピークについても観察された。Cr 267.83nmのピークでCCA処理木材を判別すると誤判定なく判別できた。図12に示すように、CCA処理木木材以外で測定された同じ波長域のスペクトルは最大でも100以下である。一方CCA処理木材からのスペクトルは最低でも300以上を示している(図11)。   A Cr peak was also observed. When the CCA-treated wood was discriminated at the peak of Cr 267.83 nm, it could be discriminated without erroneous judgment. As shown in FIG. 12, the spectrum in the same wavelength range measured except for CCA-treated wood is 100 or less at the maximum. On the other hand, the spectrum from CCA-treated wood shows at least 300 or more (FIG. 11).

なお、本実験で測定された各元素のピーク値は前述した文献の値とわずかにずれていた。具体的には文献値よりも0〜0.12nm短波長側にシフトして観察された。また、処理不明のサンプルのうち、XC1について照射面によってCrのピークが観察される場合があった。以降、XC1については照射によってCrのピークが観察されなかったものをXC1-a、観察されたものをXC1-bとする。   In addition, the peak value of each element measured in this experiment was slightly different from the above-mentioned literature values. Specifically, it was observed shifted from 0 to 0.12 nm shorter wavelength than the literature value. In addition, among the samples whose processing was unknown, there was a case where a Cr peak was observed on the irradiated surface for XC1. Hereinafter, for XC1, XC1-a indicates that the Cr peak was not observed by irradiation, and XC1-b indicates that it was observed.

蛍光X線分析による定性分析結果
サンプルについてはLIBS以外での分析結果がなかったため、蛍光X線分析による定性分析を行った。蛍光X線分析(以下XRF)は試料にX線を照射することで発生した蛍光X線を分光・検出し、計数する分析手法である。蛍光X線とは、照射したX線によって内殻電子が励起される際に生じる空孔に外殻電子が遷移する際に放出されるX線で、この蛍光X線によって元素の特定を行うのがXRFである。特長としては、多元素同時分析を迅速に行えること、試料を非破壊で行えること、試料の化学的前処理を必要としないことなどが挙げられる。ICPとXRFの違いを比較すると、超微量元素の定量についてはICPのほうが有利であるが、XRFのほうが全体的な精度は高い。
Qualitative analysis result by fluorescent X-ray analysis Since there was no analysis result other than LIBS, the sample was subjected to qualitative analysis by fluorescent X-ray analysis. X-ray fluorescence analysis (hereinafter referred to as XRF) is an analysis method in which fluorescent X-rays generated by irradiating a sample with X-rays are dispersed, detected, and counted. Fluorescent X-rays are X-rays that are emitted when outer-shell electrons transition to vacancies that are generated when inner-shell electrons are excited by irradiated X-rays. Elements are identified by this fluorescent X-ray. Is XRF. Features include the ability to perform multi-element simultaneous analysis quickly, the ability to perform non-destructive specimens, and the absence of chemical pretreatment of the specimen. Comparing the differences between ICP and XRF, ICP is more advantageous for quantifying ultra-trace elements, but XRF has higher overall accuracy.

XRFによる定性分析に用いた機器は、蛍光X線分析装置RIX3000(理学電機工業株式会社)である。この機器では、サンプラーの中に試料を詰め、X線の管理区域内において減圧して照射を行う。このため、各試料は3.5mm四方、厚さ約5mmに調製し、絶乾した後に実験に供した。なお、この木片はすべて薬剤処理面から採取した。   The instrument used for the qualitative analysis by XRF is a fluorescent X-ray analyzer RIX3000 (Rigaku Corporation). In this instrument, a sampler is filled with a sample, and irradiation is performed under reduced pressure in an X-ray controlled area. For this reason, each sample was prepared in a 3.5 mm square and a thickness of about 5 mm, and was subjected to an experiment after being completely dried. All the pieces of wood were collected from the drug-treated surface.

XRFによる定性分析の結果、CCA処理木材、つまりCC1、CJ1、CT1〜11には全てAs、Crが含まれていることが確認された。また、処理不明の木材のうち、XT1からCrとAsが薬剤処理されていると考えられるX線強度で検出されたなお、非CCA処理木材から、As、Crが薬剤処理されていると考えられる強度で検出されたものはなかった。また、XRFでCCA処理木材と判別されたもののうちAs、Crの強度が最も大きかったXT1については裏面についても測定を行った(これをXT1backとする)。表8に各サンプルにおけるCr、Cu、AsのX線強度を示す。(N.D.はNot Detectedの略とする)
蛍光X線分析による定性分析結果
As a result of qualitative analysis by XRF, it was confirmed that CCA-treated wood, that is, CC1, CJ1, and CT1 to 11 all contain As and Cr. In addition, among the untreated wood, XT1 was detected with X-ray intensity that Cr and As are considered to be treated with chemicals. It is thought that As and Cr were treated with chemicals from non-CCA treated wood. None were detected by intensity. In addition, among the XT1 whose strength of As and Cr was the highest among those identified as CCA-treated wood by XRF, the back side was also measured (this is referred to as XT1back). Table 8 shows the X-ray intensity of Cr, Cu and As in each sample. (ND stands for Not Detected)
Qualitative analysis results by X-ray fluorescence analysis

比較例
市販装置による定性分析結果
緒言でも触れたCCA処理木材判別装置に、近赤外の吸光スペクトルによりCCAを判別するWood scan(ハイウッド株式会社)がある23)。本実験では、LIBSとXRFに加え、このWood
scanによる判定結果から、CCA定性判別の比較を行った。なお、Wood scanによる定性分析は全てLIBS、XRFと同じ面に行った。
Results of qualitative analysis using a comparative commercial apparatus There is a Wood scan (Highwood Co., Ltd.) 23) which distinguishes CCA from a near-infrared absorption spectrum as a CCA-treated wood discrimination apparatus mentioned in the introduction. In this experiment, in addition to LIBS and XRF, this Wood
CCA qualitative discrimination was compared based on the results of scan. In addition, all qualitative analyzes by Wood scan were performed on the same surface as LIBS and XRF.

Wood scanでは、付属の説明書に従って測定部を木材に押し付け、三箇所の測定値の平均によってCCAを判別した。測定時に出た値が一定以上であるとCCAと判別される設定になっている。Wood scanによる判定ではその値が一定以上であるとBAD、すなわちCCA処理木材であると判定され、それ以外はGOODとなり非CCAとされる。
この装置では、CCA以外の銅系薬剤、ACQやCUAZもBADと判定される事があり正確性に問題がある。この他にも、CCA以前の代表的な木材防腐剤であったクレオソート油がBADと判定される。また、木材表面に塗装が行われていたり、著しい汚れがあったりすると判定できないなど、現場での実用性に応えきれない面がある。Wood scanによる判定結果をGOOD(非CCA)、BAD(CCA)で表9に示す。
Wood scanによるCCA処理木材判定結果
In Wood scan, the measurement part was pressed against the wood according to the attached instructions, and CCA was determined by averaging the measured values at three locations. It is set to be determined as CCA if the value obtained during measurement is above a certain level. In the judgment by Wood scan, if the value is above a certain value, it is judged that it is BAD, that is, CCA-treated wood, otherwise it is GOOD and non-CCA.
In this device, copper-based drugs other than CCA, ACQ, and CUAZ may also be judged as BAD, and there is a problem in accuracy. In addition to this, creosote oil, which was a typical wood preservative before CCA, is determined to be BAD. In addition, it cannot be determined that the wood surface has been painted or has significant dirt, so that it cannot fully meet the practicality in the field. Table 9 shows the judgment results by Wood scan as GOOD (non-CCA) and BAD (CCA).
CCA treated wood judgment result by Wood scan

蛍光X線・Wood scanの分析とも行った結果、蛍光X線分析ではCCA処理木材以外からはAs、Crが検出されたものはなかった。しかし、Wood scanによる判定結果ではACQ、CUAZが処理された木材は全てBAD、つまりCCA処理木材であると判定された。逆にCCAが処理されていたCT1、CT3ではGOODと判定され、CCAが処理されているにも関わらず非CCA処理木材であると判定された。  As a result of both X-ray fluorescence and wood scan analysis, no X-ray analysis detected As or Cr from CCA-treated wood. However, the wood scan results showed that all wood treated with ACQ and CUAZ was BAD, that is, CCA-treated wood. Conversely, CT1 and CT3 that were treated with CCA were judged as GOOD, and even though CCA was treated, they were judged as non-CCA treated wood.

本発明は家屋等から出る廃木材のリサイクル事業に利用することができる。   The present invention can be used for a recycling business of waste wood from a house or the like.

Claims (12)

レーザー照射手段と、集光手段と、レーザー光を通過させかつ蛍光を反射させる手段と、分光分析手段を有する環境有害物質測定システム。 An environmental hazardous substance measuring system comprising: a laser irradiation means; a light collecting means; a means for allowing laser light to pass through and reflecting fluorescence; and a spectroscopic analysis means. 集光手段が2以上である請求項1の環境有害物質測定システム。 The environmental hazardous substance measuring system according to claim 1, wherein the light collecting means is two or more. 集光手段が集光レンズである請求項1または請求項2の環境有害物質測定システム。 The environmental hazardous substance measuring system according to claim 1 or 2, wherein the condensing means is a condensing lens. 集光レンズの焦点距離と分光分析手段との距離が焦点距離又は焦点距離よりも遠い距離である請求項1ないし請求項3のいずれか1項に記載の環境有害物質測定システム The environmental hazardous substance measuring system according to any one of claims 1 to 3, wherein a distance between the focal length of the condenser lens and the spectroscopic analysis means is a focal length or a distance farther than the focal length. レーザー光を通過させる手段が穴付ミラーである請求項1ないし請求項4のいずれか1項に記載の環境有害物質測定システム。 The environmental hazardous substance measuring system according to any one of claims 1 to 4, wherein the means for allowing the laser beam to pass is a mirror with a hole. 穴付ミラーの穴の直径が1mmないし15mmである請求項5の環境有害物質測定システム。 6. The environmental hazardous substance measuring system according to claim 5, wherein the diameter of the hole of the mirror with a hole is 1 mm to 15 mm. 環境有害物質がクロム、銅、ヒ素である請求項1ないし請求項6のいずれか1項に記載の環境有害物質測定システム。 The environmental hazardous substance measuring system according to any one of claims 1 to 6, wherein the environmental hazardous substance is chromium, copper, or arsenic. さらにデータ分析手段を有する請求項1ないし請求項7のいずれか1項に記載の環境有害物質測定システム。 The environmental hazardous substance measuring system according to any one of claims 1 to 7, further comprising data analysis means. 木材に対し、レーザーを照射する工程と、照射部位からの蛍光を集光する工程と、集光した蛍光を分光分析することからなる環境有害物質検出方法が提供される。 Provided is a method for detecting an environmental hazardous substance comprising a step of irradiating a wood with a laser, a step of condensing the fluorescence from the irradiated site, and spectroscopic analysis of the collected fluorescence. さらに、データを分析し、環境有害物質を含むか否かを判定する請求項9の環境有害物質検出方法。 Furthermore, the environmental hazardous substance detection method of Claim 9 which analyzes data and determines whether an environmental hazardous substance is included. 環境有害物質が、クロム、銅、ヒ素である請求項9または請求項10の環境物質検出方法。 The environmental hazardous substance detection method according to claim 9 or 10, wherein the environmental hazardous substance is chromium, copper, or arsenic. レーザー照射部位からの蛍光を集光する前に反射させる工程を有する請求項9ないし請求項11のいずれか1項に記載の環境有害物質検出方法。 The method for detecting an environmentally hazardous substance according to any one of claims 9 to 11, further comprising a step of reflecting fluorescence from the laser irradiation site before condensing.
JP2009186175A 2009-08-10 2009-08-10 Method of detecting harmful substance to environment, detector, and detection system Withdrawn JP2011117728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186175A JP2011117728A (en) 2009-08-10 2009-08-10 Method of detecting harmful substance to environment, detector, and detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186175A JP2011117728A (en) 2009-08-10 2009-08-10 Method of detecting harmful substance to environment, detector, and detection system

Publications (1)

Publication Number Publication Date
JP2011117728A true JP2011117728A (en) 2011-06-16

Family

ID=44283248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186175A Withdrawn JP2011117728A (en) 2009-08-10 2009-08-10 Method of detecting harmful substance to environment, detector, and detection system

Country Status (1)

Country Link
JP (1) JP2011117728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499559A (en) * 2013-10-15 2014-01-08 福建省邵武市永飞化工有限公司 Method for measuring content of arsenic in fluorite powder
JP2015152566A (en) * 2014-02-19 2015-08-24 国立研究開発法人日本原子力研究開発機構 Method for analyzing concentrations of elements in vitrified waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499559A (en) * 2013-10-15 2014-01-08 福建省邵武市永飞化工有限公司 Method for measuring content of arsenic in fluorite powder
JP2015152566A (en) * 2014-02-19 2015-08-24 国立研究開発法人日本原子力研究開発機構 Method for analyzing concentrations of elements in vitrified waste

Similar Documents

Publication Publication Date Title
JP6022210B2 (en) Method and apparatus for measuring concentration of metal surface adhering component
JP5706955B2 (en) Quantitative analysis method of target element in sample using laser plasma spectrum
JP2007218683A (en) Analysis method and analyzer for bromine compound
Uhl et al. Fast analysis of wood preservers using laser induced breakdown spectroscopy
Taschuk et al. Detection and mapping of latent fingerprints by laser-induced breakdown spectroscopy
Zivkovic et al. Elemental analysis of aluminum alloys by laser induced breakdown spectroscopy based on TEA CO2 laser
US20120002191A1 (en) Standoff spectroscopy using a conditioned target
JP2009068969A (en) Method and device for measuring substances containing concrete
Huber et al. Analysis of the metal vapour during laser beam welding
JP5840400B2 (en) Method and apparatus for measuring concentration of metal surface adhering component
JP2011117728A (en) Method of detecting harmful substance to environment, detector, and detection system
CA2785590C (en) Detection of an anomaly in a biological material
Tawfik et al. Damage profile of HDPE polymer using laser-induced plasma
Nicolodelli et al. Laser-induced breakdown spectroscopy of environmental and synthetic samples using non-intensified CCD: optimization of the excitation wavelength
Aono et al. Rapid identification of CCA-treated wood using laser-induced breakdown spectroscopy
EP0911627A1 (en) Analysis of chemical elements
Idris et al. Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS)
Jurado-López et al. An atypical interlaboratory assay: looking for an updated hallmark (-jewelry) method
Bi et al. Study of solution calibration of NIST soil and glass samples by laser ablation inductively coupled plasma mass spectrometry
JP2005164431A (en) Method and apparatus for identifying plastics
JP2006275621A (en) Analyzer
Choi et al. Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy
Sormunen et al. Characterizing plastics containing brominated flame retardants with combined LIBS and Raman spectroscopy
JP2005134273A (en) Apparatus for measuring concentration of constituents in particles contained in the atmosphere, or the like
Taschuk et al. Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106