JP4483165B2 - Process for producing optically active 3- (methylamino) -1- (2-thienyl) propan-1-ol and production intermediate - Google Patents

Process for producing optically active 3- (methylamino) -1- (2-thienyl) propan-1-ol and production intermediate Download PDF

Info

Publication number
JP4483165B2
JP4483165B2 JP2002289068A JP2002289068A JP4483165B2 JP 4483165 B2 JP4483165 B2 JP 4483165B2 JP 2002289068 A JP2002289068 A JP 2002289068A JP 2002289068 A JP2002289068 A JP 2002289068A JP 4483165 B2 JP4483165 B2 JP 4483165B2
Authority
JP
Japan
Prior art keywords
mmaa
optically active
salt
water
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002289068A
Other languages
Japanese (ja)
Other versions
JP2004123596A (en
Inventor
健一 酒井
ルミ子 櫻井
睦 湯澤
郁 畠平
Original Assignee
山川薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山川薬品工業株式会社 filed Critical 山川薬品工業株式会社
Priority to JP2002289068A priority Critical patent/JP4483165B2/en
Publication of JP2004123596A publication Critical patent/JP2004123596A/en
Application granted granted Critical
Publication of JP4483165B2 publication Critical patent/JP4483165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学活性な3−(メチルアミノ)−1−(2−チエニル)プロパン−1−オール(以下、「MMAA」と略称する)の製造方法に関する。本発明はまた、光学活性なMMAAを製造する過程で中間体として得られる、新規なジアステレオマー塩化合物にも関する。本発明によって得られる光学活性なMMAAは、薬理学的に活性な化合物の合成における重要な中間体であり、とくに抗うつ剤や尿失禁症の治療薬として期待されている新薬「デュロキセチン」(EP273658)製造の中間体として有用である。
【0002】
【従来の技術】
デュロキセチンを製造する技術としては、つぎの合成法が知られている。すなわち、MMAAの類似化合物である、光学活性な3−(ジメチルアミノ)−1−(2−チエニル)プロパン−1−オール(以下、「DATP」と略称する)を、ナフタレン化合物と縮合させてナフチル体とした後、脱メチル化してデュロキセチンとするルートである(Chirality in Industry II, (1997), p99)。
【化7】

Figure 0004483165
【0003】
上記の脱メチル化を行なう方法としては、ナフチル誘導体をトリクロロ酢酸クロリドと反応させる方法(特開平4−226948、およびTetrahedron Lett., 31(49), 7101 (1990))や、フェノキシカルボン酸クロリドと反応させる方法(特開平7−188065)が知られている。しかし、このような脱メチル化方法には、トリクロロ酢酸クロリド自体が有害であるという事実や、合成の収率が低いこと、さらには、反応中に一部ラセミ化が起こることなどの欠点がある。つまり、脱メチル化のルートを通る限り、得られるデュロキセチンの収率が低いという不利益があり、かつ、ラセミ化による光学純度低下という、品質上の問題を避けることができない。
【0004】
一方、DATPの脱メチル体であるMMAAをデュロキセチン製造の中間体として用いれば、脱メチル化反応は不要になるので、この反応に伴うラセミ化や収率低下という問題を避けることができ、さらに、既知の方法(EP273658など)により、MMAAとナフタレン化合物とを縮合させれば、下記のようにして、容易にデュロキセチンを合成することができるはずである。
【化8】
Figure 0004483165
【0005】
光学分割を伴う製造方法であれば、光学分割によって回収される不要な(R)−MMAAを常法によりラセミ化し、光学活性体の製造に再利用することができるので、原料のムダがない。しかし、これまでに、光学分割により光学活性なMMAAを製造する方法は知られていなかった。この事実に着目した発明者らは、鋭意研究の結果、光学分割によるMMAAの製造に成功し、その工業的実施を可能にした。
【0006】
【発明が解決しようとする課題】
本発明の目的は、薬理学的に活性な化合物の合成における中間体として重要な地位を占める、光学活性なMMAAを製造するにあたり、発明者らが得た知見を活用し、分割剤として、安価であって、どちらの対掌体も工業的規模で容易に入手することができる化合物を使用し、所望に応じて、MMAAの(S)−体および(R)−体のどちらでも、高い光学純度をもって得ることができる、工業的実施に適した光学活性MMAAの製造方法を提供することにある。
【0007】
これらの光学活性体を製造する過程で中間体として生成するジアステレオマー塩は、新規な化合物であって、これを提供することもまた、本発明の目的に含まれる。
【0008】
【課題を解決するための手段】
本発明の光学活性なMMAAを製造する方法は、下式の(RS)−MMAAを、
【化9】
Figure 0004483165
光学活性マンデル酸または光学活性α-メトキシフェニル酢酸を分割剤として用い、反応媒体として、水、または水とエタノール、プロパノールおよびブタノールから選んだ1種または2種以上のアルコールとの混合物を使用し、ジアステレオマー法により光学分割することを特徴とする。
【0009】
【発明の実施の形態】
MMAAの類縁物質であるラセミDATPが光学活性マンデル酸によって光学分割できることは、すでに知られている(Chirality in Industry II, (1997), p99)。しかしながら、発明者らがこの既知の方法をラセミMMAAに転用することを企てて実験したところ、既知の条件では光学分割ができないどころか、結晶(ジアステレオマー塩)の沈殿すら認められないことが確認された。
【0010】
発明者らは、こうした差が出る原因を検討し、二級アミンであるMMAAと、三級アミンであるDATPとの間の水素結合能の差にもとづくものと判断し、三級アミンに対してプロトンが1個多い二級アミンの水素結合能を高めることを意図して、分割溶媒として、プロティックな溶媒である水を加えた。この試みは成功し、MMAAは、マンデル酸とみごとに塩を形成して沈殿することが見出され、この結晶を分離することにより、光学活性なMMAAを、高収率かつ高純度で得られることが明らかになった。さらに、光学分割剤として、マンデル酸誘導体や酒石酸誘導体を使用しても、同様な光学分割ができることを見出して、本発明を完成するに至ったわけである。
【0011】
本発明の製造方法は、ジアステレオマー法として実施する。すなわち、前掲のラセミMMAAに対し、反応媒体中で、光学分割剤を作用させてジアステレオマー塩を形成させ、一方のジアステレオマー塩を分離した後、この塩を分解して、所望の光学活性なMMAAを得る。
【0016】
ジアステレオマー塩の形成は、もちろん適宜の反応媒体中で行なう。ジアステレオマー塩を形成する反応の媒体としては、ジアステレオマー塩のうち難溶性塩が晶出しやすく、その一方で易溶性塩およびジアステレオマー塩を形成していないMMAAは、よく溶解するものが好ましく、そのような見地から媒体を選択する。
【0017】
適切な反応媒体としては、まず水が挙げられ、つぎに、水とメタノール、エタノール、1−プロパノール、イソプロパノールおよびブタノールから選んだ1種または2種以上のアルコールとの混合物が挙げられる。
【0019】
光学分割剤の使用量は、(RS)−MMAA 1モルに対し、分割剤が0.3〜1.1モル、好ましくは0.4〜1.0モルの比率とする。光学分割剤や反応媒体の種類によって、最適なモル比は異なる。
【0020】
ジアステレオマー塩を形成する反応の進め方には、とりたてて制約はない。具体例を挙げれば、反応媒体に原料のラセミ体を入れ、常圧で媒体の沸点以下の温度に加熱して溶解し、そこへ分割剤を添加するのが普通である。添加は一度に行なってもよいし、徐々に行なってもよい。原料のラセミ体を反応媒体に完全に溶解させる必要はなく、一部だけが溶解し、残りが懸濁している状態で分割剤を加えても、ジアステレオマー塩を生成させることができる。分割剤は、媒体に溶かした形で添加してもよい。
【0021】
ジアステレオマー塩法による光学分割の成績は、要するに、難溶性塩の溶解度と易溶性塩の溶解度との差ができるだけ大きくなるような条件を実現できるか否か、によって決定される。本発明の光学分割においては、反応媒体の極性の程度とその使用量、および分割剤の種類とその使用量に関して、好適な組み合わせがある。後記する実施例のデータを参考に、必要ならば若干の実験を追加することによって、最適な条件を見つけることができるであろう。
【0022】
つぎに、ジアステレオマー塩を形成させた反応混合物を濾過または遠心分離して、難溶性のジアステレオマー塩を得る。この塩を分解し、そこから(R)−または(S)−MMAAを取得する解塩の方法は、この塩が有機アミンとカルボン酸との塩であることから、強い塩基または強い酸を作用させればよい。実際の操作は、有機溶媒と水との混合液中で、ジアステレオマー塩に水酸化ナトリウムのような、無機の強塩基などを作用させればよく、光学活性なMMAAは、有機溶媒中の溶液として得ることができる。使用する有機溶媒は、トルエン、酢酸エチル、ジエチルエーテル、メチル−tert−ブチルエーテルのような、水とあまり溶け合わないものが適当である。
【0023】
光学活性なMMAAは、芳香族炭化水素類に対する溶解度がラセミ体の溶解度に比べてあまり高くないので、この性質を利用して精製を行なうことができる。ジアステレオマー塩の解塩の媒体としてトルエンのような芳香族炭化水素を用いると、抽出操作後ある程度濃縮したところで結晶が析出するため、析出した結晶をそのまま再結晶させることにより、精製することができる。粗製品の光学純度が90%程度であっても、再結晶により、精製品の光学純度を99%以上に高めることができる。
【0024】
【実施例】
以下の実施例におけるMMAAの光学純度の測定は、HPLCにより、下記の条件で行なった。
カラム:「SHISEIDO Chiral CD-Ph」5μm 4.6m I.D.×250mm
移動層:0.2M 過塩素酸ナトリウム水溶液/アセトニトリル(70/30)
流量:1.0mL/min.
カラム温度:35℃
検出器:日本分光「UV−970」波長235nm Rtは、
(R)−MMAA:11分、(S)−MMAA:13分。
【0025】
[実施例1]
(S)−MMAA・(S)−マンデル酸1水和物の製造
(光学活性マンデル酸によるMMAAの光学分割)
(RS)―MMAAの100g(0.584mol)を2−ブタノール190gに入れ、そこへ(S)−マンデル酸89g(0.584mol)を加えて(モル比1:1)、さらに水21g(1.17mol)を加えた後、加熱して溶解した。溶液を35℃まで徐冷し、別に用意した(S)−MMAA・(S)−マンデル酸塩・1水和物を種晶として少量加え、20℃に冷却した。析出した結晶を濾過分離した後、乾燥して83.2gの(S)−MMAA・(S)−マンデル酸1水和物の塩を得た。原料として用いた(RS)−MMAA中の(S)−MMAAを基準とする収率は83.4%であり、この塩のMMAAの光学純度は、75.2%deであった。
【0026】
この塩を、水と2−ブタノールの混合溶媒から再結晶したところ、光学純度95.3%deの(S)−MMAA・(S)−マンデル酸1水和物66.1gを得た。原料として用いた(RS)−MMAA中の(S)−MMAAを基準とする収率は,66.4%であった。
【0027】
融点:69.9−71.0℃
旋光度:[α]D 20+26.4° (c 1.0,EtOH)
水分:5.27%(カールフィッシャ−滴定)
IR KBr(cm-1):3470,3208,1618,1586,
1491,1051,701
H−NMR(CDCl3,400MHz):δ7.37−7.40(m,3H),7.22−7.25(m,2H),7.17(d,J=5.2Hz,1H),.96(dd,J=3.2,5.2Hz,1H),6.90(d,J=3.2Hz,1H),4.89(dd,J=4.8,8.0Hz,1H),4.60(s,1H),2.86−2.91(m,2H),2.44(s,3H),1.92−1.99(m,2H).
【0028】
[実施例2]
(S)−MMAAの製造
実施例1で製造したジアステレオマー塩(S)−MMAA・(S)−マンデル酸塩・1水和物に水を加え、水酸化ナトリウムの30%水溶液を添加した後、2−ブタノールを加えて振とうした。分離した有機層を減圧濃縮し、得られた濃縮液にトルエンを加えて加熱した後、45℃まで徐冷し、別に用意した(S)−MMAAを種晶として少量加え、室温まで冷却した。析出した結晶を濾過分離した後、乾燥して43.8gの(S)−MMAAを得た。粗製塩に対する収率は66%であり、光学純度は99.9%eeであった。
【0029】
融点:70.5−73.0℃
旋光度:[α]D 20−16.5°(c 1.0,EtOH)
IR KBr(cm-1):3384,3284,1489,1303,
1178,1110,1085,709.
H−NMR(400MHz):(d6−DMSO,400MHz):δ 7.20(d,J=5.2Hz,1H),6.96(dd,J=3.2,5.2Hz,1H),6.92(d,J=3.2Hz,1H),5.17(dd,J=3.2,8.0Hz,1H),2.94(ddd,J=3.6,5.6,8.0Hz,1H),2.84(ddd,J=3.2,9.2,12.0Hz,1H),2.42(s,3H),1.85−2.00(m,2H).
【0030】
[実施例3]
光学活性α−メトキシフェニル酢酸によるMMAAの光学分割
(RS)−MMAAの1.00g(5.84mmol)を2−プロパノール5gに入れ、そこへ(R)−α−メトキシフェニル酢酸0.96g(5.84mmol)を加えて(モル比1:1)、さらに水0.1gを加えた後、加熱して溶解した。溶液を25℃まで徐冷し、別に用意した(S)−MMAA・(R)−α−メトキシフェニル酢酸塩を種晶として少量加え、20℃に冷却した。析出した結晶を濾過分離した後、乾燥して0.51gの、粗製(S)−MMAA・(R)−α−メトキシフェニル酢酸塩を得た。原料として用いた(RS)−MMAA中の(S)−MMAAを基準とする収率は52%であり、この塩のMMAAの光学純度は、73.3%deであった。この塩を、さらに2−プロパノールから再結晶し、精製(S)−MMAA・(R)−α−メトキシフェニル酢酸塩を得た。精製塩中のMMAAの光学純度は、100%deであった。
【0031】
融点:106.0−106.8℃
旋光度:[α]D 20−61.3°(c 1.0,EtOH)
IR KBr(cm-1):3316,3062,2876,1620,1567,1395,1196,1093,1073,700
【0032】
参考例1
光学活性O,O’−ジ−(p−トルオイル)酒石酸によるMMAAの光学分割
(RS)−MMAAの1.00g(5.84mmol)をエタノール5gに入れ、そこへ(2R,3R)−(−)−O,O’−ジ−(p−トルオイル)酒石酸2.26g(5.84mol)を加えて(モル比1:1)、加熱して溶解した。溶液を39℃まで徐冷し、別に用意した(S)−MMAA・(2R,3R)−(−)−O,O’−ジ−(p−トルオイル)酒石酸を種晶として少量加え、20℃に冷却した。析出した結晶を濾過分離した後、乾燥して1.53gの(S)−MMAA・(2R,3R)−(−)−O,O’−ジ−(p−トルオイル)酒石酸を得た。原料として用いた(RS)−MMAA中の(S)−MMAAを基準とする収率は94%であり、この塩のMMAAの光学純度は,52.9%deであった。
【0033】
参考例2
光学活性−O,O’−ジベンゾイル酒石酸によるMMAAの光学分割
(RS)―MMAAの1.00g(5.84mmol)をエタノール5gに入れ、そこへ(2R,3R)−(−)−O,O’−ジベンゾイル酒石酸2.09g(5.84mol)を加えて(モル比1:1)、加熱して溶解した。溶液を39℃まで徐冷し、別に用意した(S)−MMAA・(2R,3R)−(−)−O,O’−ジベンゾイル酒石酸を種晶として少量加え、20℃に冷却した。析出した結晶を濾過分離した後、乾燥して、2.29gの(R)−MMAA・(2R,3R)−(−)−O,O’−ジベンゾイル酒石酸を得た。原料として用いた(RS)−MMAA中の(R)−MMAAを基準とする収率は148%であり、この塩のMMAAの光学純度は,13.1%deであった。
【0034】
[比較例1]
反応溶媒が水を含まない場合の、(S)−MMAA・(S)−マンデル酸の製造(RS)−MMAAの100g(0.584mol)を2−ブタノール190gに入れ、そこへ(S)−マンデル酸89g(0.584mol)を加えて(モル比1:1)加熱して溶解した。常温まで冷却したが、結晶は析出しなかった。
【0035】
【発明の効果】
本発明の製造方法によれば、光学活性なMMAAのうち、所望に応じて、(R)−体および(S)−体のどちらでも製造することができる。本発明の製造方法は、入手が容易で、価格も高くない光学分割剤を使用して、高収率で高純度の光学活性MMAAを得ることができるので、工業的に有利に実施できる。このようにして本発明は、種々の化合物の合成における中間体として有用な光学活性MMAAの高純度品を、低コストかつ工業的規模で提供することに成功した。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing optically active 3- (methylamino) -1- (2-thienyl) propan-1-ol (hereinafter abbreviated as “MMAA”). The present invention also relates to a novel diastereomeric salt compound obtained as an intermediate in the process of producing optically active MMAA. The optically active MMAA obtained by the present invention is an important intermediate in the synthesis of pharmacologically active compounds, and in particular, a new drug “duloxetine” (EP273658) which is expected as an antidepressant and a therapeutic agent for urinary incontinence. ) Useful as an intermediate in production.
[0002]
[Prior art]
As a technique for producing duloxetine, the following synthesis method is known. That is, an optically active 3- (dimethylamino) -1- (2-thienyl) propan-1-ol (hereinafter abbreviated as “DATP”), which is a similar compound of MMAA, is condensed with a naphthalene compound to form naphthyl. It is a route to deloxetine after demethylation (Chirality in Industry II, (1997), p99).
[Chemical 7]
Figure 0004483165
[0003]
As a method for performing the above-mentioned demethylation, a method in which a naphthyl derivative is reacted with trichloroacetic acid chloride (JP-A-4-226948 and Tetrahedron Lett., 31 (49), 7101 (1990)), phenoxycarboxylic acid chloride and A reaction method (Japanese Patent Laid-Open No. 7-188065) is known. However, such a demethylation method has drawbacks such as the fact that trichloroacetic acid chloride itself is harmful, a low synthesis yield, and a partial racemization during the reaction. . That is, as long as it passes through the route of demethylation, there is a disadvantage that the yield of duloxetine obtained is low, and the quality problem of optical purity reduction due to racemization cannot be avoided.
[0004]
On the other hand, if MMAA, which is a demethylated form of DATP, is used as an intermediate for the production of duloxetine, the demethylation reaction is unnecessary, so the problems of racemization and yield reduction associated with this reaction can be avoided. If MMAA and a naphthalene compound are condensed by a known method (such as EP273658), duloxetine should be easily synthesized as follows.
[Chemical 8]
Figure 0004483165
[0005]
If the production method involves optical resolution, unnecessary (R) -MMAA recovered by optical resolution can be racemized by a conventional method and reused in the production of an optically active substance. However, until now, no method for producing optically active MMAA by optical resolution has been known. The inventors who paid attention to this fact succeeded in manufacturing MMAA by optical resolution as a result of earnest research, and made it possible to implement it industrially.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to utilize the knowledge obtained by the inventors in producing optically active MMAA, which occupies an important position as an intermediate in the synthesis of pharmacologically active compounds. Both enantiomers are compounds that are readily available on an industrial scale and, if desired, both the (S)-and (R) -forms of MMAA have high optical properties. An object of the present invention is to provide a method for producing an optically active MMAA suitable for industrial practice, which can be obtained with purity.
[0007]
The diastereomeric salt generated as an intermediate in the process of producing these optically active substances is a novel compound, and providing it is also included in the object of the present invention.
[0008]
[Means for Solving the Problems]
The method for producing the optically active MMAA of the present invention comprises (RS) -MMAA of the following formula:
[Chemical 9]
Figure 0004483165
Optically active mandelic acid or optically active α-methoxyphenylacetic acid is used as a resolving agent , and water or a mixture of water and one or more alcohols selected from ethanol, propanol and butanol is used as a reaction medium, It is characterized by optical resolution by a diastereomer method.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
It is already known that racemic DATP, which is a related substance of MMAA, can be optically resolved by optically active mandelic acid (Chirality in Industry II, (1997), p99). However, when the inventors conducted an experiment to divert this known method to racemic MMAA, it was found that precipitation of crystals (diastereomeric salts) was not recognized, in addition to optical resolution under known conditions. confirmed.
[0010]
The inventors examined the cause of this difference and determined that it was based on the difference in hydrogen bonding ability between MMAA, which is a secondary amine, and DATP, which is a tertiary amine. In order to increase the hydrogen bonding ability of a secondary amine having one proton, water as a protic solvent was added as a resolving solvent. This attempt was successful, and it was found that MMAA forms a salt with mandelic acid and precipitates, and by separating the crystals, optically active MMAA can be obtained in high yield and high purity. It became clear. Furthermore, the inventors have found that the same optical resolution can be achieved even when a mandelic acid derivative or a tartaric acid derivative is used as the optical resolution agent, and thus the present invention has been completed.
[0011]
The production method of the present invention is carried out as a diastereomer method. That is, the above-mentioned racemic MMAA is reacted with an optical resolving agent in a reaction medium to form a diastereomeric salt. After separating one diastereomeric salt, this salt is decomposed to obtain a desired optical compound. Active MMAA is obtained.
[0016]
The formation of diastereomeric salts is of course carried out in a suitable reaction medium. As a reaction medium for forming a diastereomeric salt, a hardly soluble salt of the diastereomeric salt is easily crystallized, while MMAA which does not form a readily soluble salt or a diastereomeric salt dissolves well. Preferably, the medium is selected from such a viewpoint.
[0017]
Suitable reaction medium, first with water and the like, then, water and methanol, ethanol, 1-propanol, a mixture of one or more alcohols selected from isopropanol and butanol.
[0019]
The amount of the optical resolving agent used is such that the resolving agent is 0.3 to 1.1 mol, preferably 0.4 to 1.0 mol, per 1 mol of (RS) -MMAA. The optimal molar ratio varies depending on the type of the optical resolution agent and the reaction medium.
[0020]
There are no particular restrictions on the way the diastereomeric salt is formed. As a specific example, it is common to place a racemic raw material in a reaction medium, dissolve it by heating to a temperature below the boiling point of the medium at normal pressure, and add a resolving agent thereto. Addition may be performed at once or gradually. It is not necessary to completely dissolve the racemic raw material in the reaction medium, and a diastereomeric salt can be formed even if a resolving agent is added in a state where only a part is dissolved and the rest is suspended. The resolving agent may be added in a form dissolved in the medium.
[0021]
The result of the optical resolution by the diastereomeric salt method is basically determined by whether or not a condition in which the difference between the solubility of the hardly soluble salt and the solubility of the easily soluble salt can be realized as much as possible can be realized. In the optical resolution of the present invention, there are suitable combinations regarding the degree of polarity of the reaction medium and the amount of use thereof, and the type of the splitting agent and the amount thereof used. The optimum conditions can be found by adding some experiments if necessary with reference to the data of Examples described later.
[0022]
Next, the reaction mixture in which the diastereomeric salt is formed is filtered or centrifuged to obtain a hardly soluble diastereomeric salt. The salt decomposing method for decomposing this salt and obtaining (R)-or (S) -MMAA therefrom is a salt of an organic amine and a carboxylic acid. You can do it. The actual operation may be performed by allowing an inorganic strong base such as sodium hydroxide to act on the diastereomeric salt in a mixture of an organic solvent and water. It can be obtained as a solution. As the organic solvent to be used, those which do not dissolve in water such as toluene, ethyl acetate, diethyl ether and methyl-tert-butyl ether are suitable.
[0023]
Optically active MMAA can be purified by utilizing this property because the solubility in aromatic hydrocarbons is not so high compared to the solubility of racemic compounds. When an aromatic hydrocarbon such as toluene is used as a medium for desolvation of the diastereomeric salt, crystals are precipitated after concentration to some extent after the extraction operation. Therefore, the crystals can be purified by recrystallization as they are. it can. Even if the optical purity of the crude product is about 90%, the optical purity of the purified product can be increased to 99% or more by recrystallization.
[0024]
【Example】
The optical purity of MMAA in the following examples was measured by HPLC under the following conditions.
Column: “SHISEIDO Chiral CD-Ph” 5 μm 4.6 m ID x 250 mm
Moving layer: 0.2M aqueous solution of sodium perchlorate / acetonitrile (70/30)
Flow rate: 1.0 mL / min.
Column temperature: 35 ° C
Detector: JASCO "UV-970" wavelength 235nm Rt
(R) -MMAA: 11 minutes, (S) -MMAA: 13 minutes.
[0025]
[Example 1]
Production of (S) -MMAA · (S) -mandelic acid monohydrate (optical resolution of MMAA with optically active mandelic acid)
100 g (0.584 mol) of (RS) -MMAA was put in 190 g of 2-butanol, 89 g (0.584 mol) of (S) -mandelic acid was added thereto (molar ratio 1: 1), and further 21 g of water (1 .17 mol) was added and dissolved by heating. The solution was gradually cooled to 35 ° C., and a small amount of (S) -MMAA · (S) -mandelate · monohydrate prepared separately was added as a seed crystal and cooled to 20 ° C. The precipitated crystals were separated by filtration and dried to obtain 83.2 g of a salt of (S) -MMAA · (S) -mandelic acid monohydrate. The yield based on (S) -MMAA in (RS) -MMAA used as a raw material was 83.4%, and the optical purity of MMAA of this salt was 75.2% de.
[0026]
When this salt was recrystallized from a mixed solvent of water and 2-butanol, 66.1 g of (S) -MMAA · (S) -mandelic acid monohydrate having an optical purity of 95.3% de was obtained. The yield based on (S) -MMAA in (RS) -MMAA used as a raw material was 66.4%.
[0027]
Melting point: 69.9-71.0 ° C
Optical rotation: [α] D 20 + 26.4 ° (c 1.0, EtOH)
Moisture: 5.27% (Karl Fischer-titration)
IR KBr (cm −1 ): 3470, 3208, 1618, 1586,
1491, 1051, 701
1 H-NMR (CDCl 3 , 400 MHz): δ 7.37-7.40 (m, 3H), 7.22-7.25 (m, 2H), 7.17 (d, J = 5.2 Hz, 1H) ),. 96 (dd, J = 3.2, 5.2 Hz, 1H), 6.90 (d, J = 3.2 Hz, 1H), 4.89 (dd, J = 4.8, 8.0 Hz, 1H) 4.60 (s, 1H), 2.86-2.91 (m, 2H), 2.44 (s, 3H), 1.92-1.99 (m, 2H).
[0028]
[Example 2]
Production of (S) -MMAA Water was added to the diastereomeric salt (S) -MMAA · (S) -mandelate salt monohydrate produced in Example 1, and a 30% aqueous solution of sodium hydroxide was added. Then, 2-butanol was added and shaken. The separated organic layer was concentrated under reduced pressure, toluene was added to the obtained concentrated liquid and heated, and then slowly cooled to 45 ° C., and a small amount of (S) -MMAA prepared separately was added as a seed crystal and cooled to room temperature. The precipitated crystals were separated by filtration and dried to obtain 43.8 g of (S) -MMAA. The yield based on the crude salt was 66%, and the optical purity was 99.9% ee.
[0029]
Melting point: 70.5-73.0 ° C
Optical rotation: [α] D 20 -16.5 ° (c 1.0, EtOH)
IR KBr (cm −1 ): 3384, 3284, 1489, 1303
1178, 1110, 1085, 709.
1 H-NMR (400 MHz): (d 6 -DMSO, 400 MHz): δ 7.20 (d, J = 5.2 Hz, 1H), 6.96 (dd, J = 3.2, 5.2 Hz, 1H ), 6.92 (d, J = 3.2 Hz, 1H), 5.17 (dd, J = 3.2, 8.0 Hz, 1H), 2.94 (ddd, J = 3.6, 5.). 6, 8.0 Hz, 1 H), 2.84 (ddd, J = 3.2, 9.2, 12.0 Hz, 1 H), 2.42 (s, 3 H), 1.85-2.00 (m , 2H).
[0030]
[Example 3]
Optical resolution of MMAA with optically active α-methoxyphenylacetic acid (RS) -1.00 g (5.84 mmol) of MMAA was placed in 5 g of 2-propanol, and 0.96 g of (R) -α-methoxyphenylacetic acid (5 .84 mmol) (molar ratio 1: 1), 0.1 g of water was further added, and the mixture was dissolved by heating. The solution was gradually cooled to 25 ° C., and a small amount of (S) -MMAA · (R) -α-methoxyphenyl acetate prepared separately was added as a seed crystal and cooled to 20 ° C. The precipitated crystals were separated by filtration and dried to obtain 0.51 g of crude (S) -MMAA. (R) -α-methoxyphenyl acetate. The yield based on (S) -MMAA in (RS) -MMAA used as a raw material was 52%, and the optical purity of MMAA of this salt was 73.3% de. This salt was further recrystallized from 2-propanol to obtain purified (S) -MMAA · (R) -α-methoxyphenyl acetate. The optical purity of MMAA in the purified salt was 100% de.
[0031]
Melting point: 106.0-106.8 ° C
Optical rotation: [α] D 20 -61.3 ° (c 1.0, EtOH)
IR KBr (cm −1 ): 3316, 3062, 2876, 1620, 1567, 1395, 1196, 1093, 1073, 700
[0032]
[ Reference Example 1 ]
Optical resolution of MMAA with optically active O, O′-di- (p-toluoyl) tartaric acid 1.00 g (5.84 mmol) of (RS) -MMAA was placed in 5 g of ethanol, and (2R, 3R)-(− ) -O, O′-di- (p-toluoyl) tartaric acid 2.26 g (5.84 mol) was added (molar ratio 1: 1) and dissolved by heating. The solution was gradually cooled to 39 ° C, and a small amount of (S) -MMAA · (2R, 3R)-(−)-O, O′-di- (p-toluoyl) tartaric acid prepared separately was added as a seed crystal, and 20 ° C. Cooled to. The precipitated crystals were separated by filtration and dried to obtain 1.53 g of (S) -MMAA. (2R, 3R)-(−) — O, O′-di- (p-toluoyl) tartaric acid. The yield based on (S) -MMAA in (RS) -MMAA used as a raw material was 94%, and the optical purity of MMAA of this salt was 52.9% de.
[0033]
[ Reference Example 2 ]
Optical resolution of MMAA with optically active —O, O′-dibenzoyltartaric acid (RS) —1.00 g (5.84 mmol) of MMAA is placed in 5 g of ethanol, and (2R, 3R)-(−) — O, O 2.09 g (5.84 mol) of '-dibenzoyltartaric acid was added (molar ratio 1: 1) and dissolved by heating. The solution was slowly cooled to 39 ° C., and a small amount of separately prepared (S) -MMAA · (2R, 3R)-(−) — O, O′-dibenzoyltartaric acid was added as a seed crystal and cooled to 20 ° C. The precipitated crystals were separated by filtration and dried to obtain 2.29 g of (R) -MMAA. (2R, 3R)-(−) — O, O′-dibenzoyltartaric acid. The yield based on (R) -MMAA in (RS) -MMAA used as a raw material was 148%, and the optical purity of MMAA of this salt was 13.1% de.
[0034]
[Comparative Example 1]
Production of (S) -MMAA · (S) -Mandelic Acid (RS) -MMAA 100 g (0.584 mol) in 190 g of 2-butanol when the reaction solvent does not contain water, into (S)- 89 g (0.584 mol) of mandelic acid was added (molar ratio 1: 1) and dissolved by heating. Although cooled to room temperature, crystals did not precipitate.
[0035]
【The invention's effect】
According to the production method of the present invention, either (R) -isomer or (S) -isomer can be produced as desired among optically active MMAAs. The production method of the present invention can be carried out industrially advantageously because an optically active MMAA having a high yield and high purity can be obtained using an optical resolution agent that is easily available and inexpensive. In this way, the present invention has succeeded in providing a high-purity product of optically active MMAA useful as an intermediate in the synthesis of various compounds at a low cost and on an industrial scale.

Claims (4)

光学活性な3−(メチルアミノ)−1−(2−チエニル)プロパン−1−オール(以下、「MMAA」と略称する)を製造する方法であって、下式の(RS)−MMAAを、
Figure 0004483165
下式で表される光学活性マンデル酸
Figure 0004483165
(式中、*は不斉炭素原子の位置を示す。)
を分割剤として用い、反応媒体として、水、または水とエタノール、プロパノールおよびブタノールから選んだ1種または2種以上のアルコールとの混合物を使用し、ジアステレオマー法により光学分割することを特徴とする製造方法。
A method for producing optically active 3- (methylamino) -1- (2-thienyl) propan-1-ol (hereinafter abbreviated as “MMAA”), wherein (RS) -MMAA of the following formula is:
Figure 0004483165
Optically active mandelic acid represented by the following formula
Figure 0004483165
(In the formula, * indicates the position of the asymmetric carbon atom.)
Is used as a resolving agent, and water or a mixture of water and one or more alcohols selected from ethanol, propanol and butanol is used as a reaction medium, and optical resolution is performed by a diastereomer method. Manufacturing method.
光学活性な3−(メチルアミノ)−1−(2−チエニル)プロパン−1−オール(以下、「MMAA」と略称する)を製造する方法であって、下式の(RS)−MMAAを、
Figure 0004483165
下式で表される光学活性α-メトキシフェニル酢酸
Figure 0004483165
(式中、*は不斉炭素原子の位置を示す。)
を分割剤として用い、反応媒体として、水、または水とエタノール、プロパノールおよびブタノールから選んだ1種または2種以上のアルコールとの混合物を使用し、ジアステレオマー法により光学分割することを特徴とする製造方法。
A method for producing optically active 3- (methylamino) -1- (2-thienyl) propan-1-ol (hereinafter abbreviated as “MMAA”), wherein (RS) -MMAA of the following formula is:
Figure 0004483165
Optically active α-methoxyphenylacetic acid represented by the following formula
Figure 0004483165
(In the formula, * indicates the position of the asymmetric carbon atom.)
Is used as a resolving agent, and water or a mixture of water and one or more alcohols selected from ethanol, propanol and butanol is used as a reaction medium, and optical resolution is performed by a diastereomer method. Manufacturing method.
下式の(S)−MMAA・(S)−マンデル酸・1水和物の塩。
Figure 0004483165
A salt of (S) -MMAA · (S) -mandelic acid · monohydrate of the following formula:
Figure 0004483165
下式の(S)−MMAA・(R)−α−メトキシフェニル酢酸の塩の結晶
Figure 0004483165
A crystal of a salt of (S) -MMAA · (R) -α-methoxyphenylacetic acid of the following formula.
Figure 0004483165
JP2002289068A 2002-10-01 2002-10-01 Process for producing optically active 3- (methylamino) -1- (2-thienyl) propan-1-ol and production intermediate Expired - Fee Related JP4483165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289068A JP4483165B2 (en) 2002-10-01 2002-10-01 Process for producing optically active 3- (methylamino) -1- (2-thienyl) propan-1-ol and production intermediate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289068A JP4483165B2 (en) 2002-10-01 2002-10-01 Process for producing optically active 3- (methylamino) -1- (2-thienyl) propan-1-ol and production intermediate

Publications (2)

Publication Number Publication Date
JP2004123596A JP2004123596A (en) 2004-04-22
JP4483165B2 true JP4483165B2 (en) 2010-06-16

Family

ID=32281387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289068A Expired - Fee Related JP4483165B2 (en) 2002-10-01 2002-10-01 Process for producing optically active 3- (methylamino) -1- (2-thienyl) propan-1-ol and production intermediate

Country Status (1)

Country Link
JP (1) JP4483165B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0606851A2 (en) * 2005-02-21 2009-07-21 Lonza Ag process for the preparation of enantiomerically pure 1-substituted 3-amino alcohols
WO2007067581A1 (en) 2005-12-05 2007-06-14 Teva Pharmaceutical Industries Ltd. 2-(n-methyl-propanamine)-3-(2-naphthol) thiophene, an impurity of duloxetine hydrochloride
EP1888554A2 (en) 2006-02-21 2008-02-20 Teva Pharmaceutical Industries Ltd Process for the preparation of (s)-(-)-n,n-dimethyl-3-(2-thienyl)-3-hydroxypropanamine, a duloxetine intermediate
CN101657438A (en) 2006-12-22 2010-02-24 斯索恩有限公司 The method for preparing duloxetine and related compound
US8258313B2 (en) 2007-07-19 2012-09-04 Tokuyama Corporation Compound having hydantoin ring and method of producing the same
WO2009084493A1 (en) * 2007-12-27 2009-07-09 Toray Fine Chemicals Co., Ltd. Optically active 3-aminopyrrolidine salt, process for production thereof, and method for optical resolution of 3-aminopyrrolidine
JP5683273B2 (en) * 2008-12-12 2015-03-11 第一三共株式会社 Process for producing optically active carboxylic acid
US8981122B2 (en) 2010-03-24 2015-03-17 Sumitomo Seika Chemicals Co., Ltd. Method for producing optically active N-monoalkyl-3-hydroxy-3-arylpropylamine compound
WO2011161255A2 (en) * 2010-06-25 2011-12-29 Ucb Pharma Gmbh Novel process for the preparation of nitrogen substituted aminotetralins derivatives

Also Published As

Publication number Publication date
JP2004123596A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP3826208B2 (en) Optically pure albuterol isomer-selective preparation
KR20070057703A (en) Enantiomerically pure atomoxetine and tomoxetine mandelate
JP4483165B2 (en) Process for producing optically active 3- (methylamino) -1- (2-thienyl) propan-1-ol and production intermediate
JPH11505229A (en) Method for producing 4-aryl-piperidine derivatives
JP2011503122A (en) Separation of 4,5-dimethoxy-1- (methylaminomethyl) -benzocyclobutane
JP2009509958A (en) Resolution of α- (phenoxy) phenylacetic acid derivatives with naphthylalkylamines
JP2005247828A (en) Method for producing optically active serine derivative
US7119211B2 (en) Process for preparing optically active 3-(methylamino)-1-(2-thienyl) propan-1-ol and intermediates for preparation
JP2003507357A (en) Method for preparing adrenaline
JP2011012032A (en) Method for producing optically active 3-aminopiperidine and production intermediate
JP4397987B2 (en) Process for producing optically active pipecolic acid
WO1998029398A1 (en) Process for preparing optically active 2-piperazinecarboxylic acid derivatives
KR20090117888A (en) PROCESS FOR THE RESOLUTION OF HOMOCYSTEINE-gamma-THIOLACTONE
JP4752285B2 (en) Efficient optical resolution of trifluorolactic acid
JP2002193933A (en) Production method of optically active piperidine derivative and its acid salt
WO2007035003A1 (en) Process for producing optically active piperazine compound
WO2005103005A1 (en) PROCESS FOR SELECTIVELY PRODUCING OPTICALLY ACTIVE ISOMER OF β-PYRIDYLALANINE
JP2005075754A (en) Method for optical resolution of trans-1,2-bis(3,5-dimethylphenyl)-1,2-ethanediamine
JP2016222628A (en) Method for producing duloxetine hydrochloride
JP3157117B2 (en) Optical resolution method of piperidine derivative
JP2003146943A (en) Method for producing optically active 2-hydroxy-3- nitropropionic acid
JPH10109977A (en) Production of optically active pyridazinone derivative
CN115108961A (en) Indole-substituted cyclohexadienone hydrazone compound and synthesis method thereof
JP2002187875A (en) Method for producing optically active 2-amino-5- methoxytetralin
JP3284605B2 (en) Method for producing optically active 1- (1-naphthyl) ethylamine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees