JP4482695B2 - Low-temperature magnetic refrigeration work material and magnetic refrigeration system - Google Patents

Low-temperature magnetic refrigeration work material and magnetic refrigeration system Download PDF

Info

Publication number
JP4482695B2
JP4482695B2 JP2004280293A JP2004280293A JP4482695B2 JP 4482695 B2 JP4482695 B2 JP 4482695B2 JP 2004280293 A JP2004280293 A JP 2004280293A JP 2004280293 A JP2004280293 A JP 2004280293A JP 4482695 B2 JP4482695 B2 JP 4482695B2
Authority
JP
Japan
Prior art keywords
magnetic
temperature
magnetic refrigeration
refrigeration
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004280293A
Other languages
Japanese (ja)
Other versions
JP2006089840A (en
Inventor
和明 深道
麻哉 藤田
俊 藤枝
直樹 平野
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Chubu Electric Power Co Inc
Original Assignee
Tohoku University NUC
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Chubu Electric Power Co Inc filed Critical Tohoku University NUC
Priority to JP2004280293A priority Critical patent/JP4482695B2/en
Publication of JP2006089840A publication Critical patent/JP2006089840A/en
Application granted granted Critical
Publication of JP4482695B2 publication Critical patent/JP4482695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Hard Magnetic Materials (AREA)

Description

本発明は、190K以下の温度の冷却にも用いることが出来る磁気冷凍作業物質およびその磁気冷凍方式に関する。   The present invention relates to a magnetic refrigeration working material that can also be used for cooling at a temperature of 190 K or less, and a magnetic refrigeration system thereof.

オゾン層の破壊、地球温暖化などの環境破壊を引き起こすフロン系ガスを冷媒として用いる従来の気体冷凍に代わる新しい冷凍方式として磁気冷凍が注目されている。磁気冷凍では磁性体を冷媒(冷凍作業物質)とし、その磁気熱量効果、すなわち等温状態で磁性体の磁気秩序を磁場で変化させた際に生じる磁気エントロピー変化、および断熱状態で磁性体の磁気秩序を磁場で変化させた際に生じる断熱温度変化を利用する。そのためフロンおよび代替フロンガスを一切用いずに冷凍を行うことができる。加えて、磁気冷凍の冷凍効率は気体冷凍より高い。つまり、磁気冷凍は省エネにも繋がる環境に優しい冷凍方式である。磁気冷凍の実現に向けて、低い磁場で大きな磁気熱量効果を示す、高効率な冷凍作業物質の開発が望まれている。   Magnetic refrigeration is attracting attention as a new refrigeration system that replaces the conventional gas refrigeration that uses chlorofluorocarbon-based gases that cause environmental destruction such as destruction of the ozone layer and global warming. In magnetic refrigeration, a magnetic substance is used as a refrigerant (refrigeration working substance), and its magnetocaloric effect, that is, the magnetic entropy change that occurs when the magnetic order of the magnetic substance is changed by a magnetic field in an isothermal state, and the magnetic order of the magnetic substance in an adiabatic state. The adiabatic temperature change that occurs when is changed by a magnetic field is used. Therefore, refrigeration can be performed without using any chlorofluorocarbon or alternative chlorofluorocarbon gas. In addition, the refrigeration efficiency of magnetic refrigeration is higher than that of gas refrigeration. That is, magnetic refrigeration is an environmentally friendly refrigeration system that leads to energy saving. To realize magnetic refrigeration, it is desired to develop a highly efficient refrigeration material that exhibits a large magnetocaloric effect at a low magnetic field.

この様な状況において、NaZn13型La(FexSi1-x)13およびその水素吸収化合物が約190〜340
Kの温度範囲おける冷凍作業物質の候補として上げられている。La(FexSi1-x)13化合物は、キュリー温度約190
K直上において、磁場印加による常磁性から強磁性への1次相転移である遍歴電子メタ磁性転移に伴い巨大磁気熱量効果を示す。このキュリー温度はFe濃度によって可変である。更に、本化合物の約180
Kのキュリー温度は、水素吸収により340 K程度までの温度範囲でその効率を任意に制御可能であり、吸収水素量を制御することで190-340 Kの任意の温度でメタ磁性転移に起因した大きな磁気熱量効果が得られる。La(FexSi1-x)13およびその水素吸収化合物の相乗的な磁気熱量効果は、Fe濃度の磁気熱量効果を向上させることでできる。
In such a situation, NaZn 13 type La (Fe x Si 1-x ) 13 and its hydrogen absorbing compound are about 190-340.
It is raised as a candidate for a frozen working substance in the K temperature range. La (Fe x Si 1-x ) 13 compound has a Curie temperature of about 190
A giant magnetocaloric effect is shown just above K, along with the itinerant electron metamagnetic transition, which is a first-order phase transition from paramagnetism to ferromagnetism by applying a magnetic field. This Curie temperature is variable depending on the Fe concentration. In addition, about 180% of this compound.
Curie temperature of K can be controlled arbitrarily in the temperature range up to about 340 K due to hydrogen absorption, and due to metamagnetic transition at any temperature of 190-340 K by controlling the amount of absorbed hydrogen A large magnetocaloric effect is obtained. The synergistic magnetocaloric effect of La (Fe x Si 1-x ) 13 and its hydrogen absorbing compound can be achieved by improving the magnetocaloric effect of Fe concentration.

磁気冷凍は、室温近傍の冷蔵庫や冷凍庫などの家電だけでなく、ガス液化産業や、超伝導デバイスなどを支える冷凍技術への応用も期待されている。しかしながら、NaZn13型La(FexSi1-x)13は、約190
Kのキュリー温度直上において巨大磁気熱量効果を示ため、190 K以下の冷凍技術へ適応することができない。
特開2000−95862号公報 特開平6−69190号公報
Magnetic refrigeration is expected to be applied not only to home appliances such as refrigerators and freezers near room temperature, but also to refrigeration technology that supports gas liquefaction industries and superconducting devices. However, NaZn 13 type La (Fe x Si 1-x ) 13 is about 190
Since it shows a giant magnetocaloric effect just above the Curie temperature of K, it cannot be applied to refrigeration technology below 190 K.
JP 2000-95862 A JP-A-6-69190

上記のように、NaZn13型La(FexSi1-x)13は、約190
Kのキュリー温度直上において巨大磁気熱量効果を示す。本発明は、La(FexSi1-x)13のキュリー温度の低下制御を可能とし、190
K以下の温度領域で巨大磁気熱量効果を示す高性能な磁気冷凍作業物質を提供することを目的とする。
As mentioned above, NaZn 13 type La (Fe x Si 1-x ) 13 is about 190
Giant magnetocaloric effect just above the Curie temperature of K. The present invention makes it possible to control the decrease in Curie temperature of La (Fe x Si 1-x ) 13 and
The object is to provide a high-performance magnetic refrigeration working material that exhibits a giant magnetocaloric effect in the temperature range below K.

本発明によれば、磁気冷凍作業物質である NaZn13型La(FexSi1-x)13 において、Ceあるいは/およびMnを部分置換し、その組成をLa1-zCez(FexMnySi1-x-y)13 としたことを特徴とする磁気冷凍作業物質が得られる。 According to the present invention, in the NaZn 13 type La (Fe x Si 1-x ) 13 which is a magnetic refrigeration working substance, Ce or / and Mn is partially substituted with, La 1-z of the composition Ce z (Fe x Mn A magnetic refrigeration working material characterized in that y Si 1-xy ) 13 is obtained.

また、前記xの値を0.86から0.88、前記yの値を0.0から0.025、前記zの値を0.0から0.030において構成することを特徴とする磁気冷凍作業物質が得られる。     The magnetic refrigeration is characterized in that the x value is 0.86 to 0.88, the y value is 0.0 to 0.025, and the z value is 0.0 to 0.030. A working substance is obtained.

更には、前記磁気冷凍作業物質NaZn13型La1-zCez(FexMnySi1-x-y)13 を1種類あるいはその組成を変えたものを複数用いて冷却制御を行う磁気冷凍方式が得られる。 Furthermore, the magnetic refrigerant material NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13 to one or magnetic refrigeration system in which a plurality of used cooling control what changed its composition can get.

また、前記磁気冷凍作業物質NaZn13型La1-zCez(FexMnySi1-x-y)13 を用いて、温度70K付近から200K付近の範囲を冷却制御することを特徴とする磁気冷凍方式が得られる。 The magnetic refrigeration, characterized in that said using a magnetic refrigerant material NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13, to cool control range around 200K from near the temperature 70K A scheme is obtained.

また、前記磁気冷凍作業物質NaZn13型La1-zCez(FexMnySi1-x-y)13 を用いて、温度70K付近から200K付近の範囲を冷却制御する磁気冷凍方式において、NaZn13型La1-zCez(FexMnySi1-x-y)13 の組成を3種類として構成したことを特徴とする磁気冷凍方式が得られる。 Further, by using the magnetic refrigeration working substance NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13, a magnetic refrigeration system for cooling control range around 200K from near the temperature 70K, NaZn 13 magnetic refrigeration system is obtained which is characterized by being configured the composition of the type La 1-z Ce z (Fe x Mn y Si 1-xy) 13 as three.

また、前記3種類の構成は、90K付近の冷却としてLa0.65Ce0.35(Fe0.860Mn0.025Si0.115)13を、130K付近の冷却として La0.65Ce0.35(Fe0.860Mn0.025Si0.115)13 を、200K付近の冷却としてLa(Fe0.88Si0.12)13 として構成したことを特徴とする磁気冷凍方式が得られる。 Also, the three types of configuration, the La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115) 13 as a cooling near 90K, the La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115) 13 as a cooling near 130K, 200K A magnetic refrigeration system characterized by being configured as La (Fe 0.88 Si 0.12 ) 13 for cooling in the vicinity can be obtained.

また、前記磁気冷凍作業物質NaZn13型La1-zCez(FexMnySi1-x-y)13 を1種類あるいはその組成を変えたものを複数用いて冷却制御を行う磁気冷凍方式において、磁場を印加し前記磁気冷凍作業物質NaZn13型La1-zCez(FexMnySi1-x-y)13 を作動させることを特徴とする磁気冷凍方式が得られる。 In the magnetic refrigeration system for cooling control using multiple ones of the magnetic refrigeration working substance NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13 for changing one or its composition, magnetic refrigeration system, characterized in that for applying a magnetic field actuating the magnetic refrigerant material NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13 is obtained.

また、前記磁場の強さは1Tから2Tの間であることを特徴とする磁気冷凍方式が得られる。     The magnetic refrigeration system is characterized in that the strength of the magnetic field is between 1T and 2T.

本発明によれば、La1-zCez(FexMnySi1-x-y)13のCeおよびMn置換量を制御することで80~190 Kの任意の温度で、比較的低磁場で優れた磁気熱量特性を得ることができる。 According to the present invention, at any temperature La 1-z Ce z (Fe x Mn y Si 1-xy) 13 of Ce and Mn substitution amount control to be at 80 ~ 190 K, excellent in a relatively low magnetic field The magnetocaloric characteristics can be obtained.

図1にLa(Fe0.89-yMnySi0.11)13の熱磁気曲線を示す。Mn濃度の増加に伴い、キュリー温度は大きく低下する。また、Mn濃度の増加に伴いヒステリシスは減少し、キュリー温度で以下、本発明の実施の形態について図面を参照しながら説明する。
の温度誘起1次相転移は徐々に不明瞭となる。Maxwellの関係より磁気エントロピー変化は次式で示される。

Figure 0004482695
It shows the thermomagnetic curve of the La (Fe 0.89-y Mn y Si 0.11) 13 in FIG. 1. As the Mn concentration increases, the Curie temperature decreases greatly. Further, the hysteresis decreases with increasing Mn concentration, and the embodiment of the present invention will be described below with reference to the drawings at the Curie temperature.
The temperature-induced first order phase transition of becomes gradually unclear. From the Maxwell relation, the magnetic entropy change is expressed by the following equation.
Figure 0004482695

ここで、Mは磁化、Bは印加磁場、Tは温度である。つまり、一定磁場中における磁化の温度変化の大きさが磁気エントロピー変化に反映される。Mn濃度の増加に伴い、キュリー温度での磁化の温度変化が小さくなっているため、磁気エントロピー変化の減少が予測され
る。図2に、Si濃度を一定とし、Fe濃度を変えたLa(Fe0.89-yMnySi0.11)13の磁気エントロピー変化を示す。Mn濃度の増加に伴いキュリー温度が低下するため、磁気エントロピー変化はMn部分置換により磁気エントロピー変化のピークは低温側にシフトする。しかしながら、キュリー温度での磁化の温度変化がキュリー温度の低下に伴い小さくなるため、磁気エントロピー変化は徐々に小さくなる。
Here, M is magnetization, B is an applied magnetic field, and T is temperature. That is, the magnitude of the temperature change of magnetization in a constant magnetic field is reflected in the magnetic entropy change. As the Mn concentration increases, the temperature change of magnetization at the Curie temperature is reduced, so a decrease in magnetic entropy change is predicted. 2, the Si concentration is constant, shows the magnetic entropy change of La with different Fe concentrations (Fe 0.89-y Mn y Si 0.11) 13. Since the Curie temperature decreases as the Mn concentration increases, the magnetic entropy change shifts to the low temperature side due to Mn partial substitution. However, since the temperature change of magnetization at the Curie temperature becomes smaller as the Curie temperature decreases, the magnetic entropy change gradually becomes smaller.

次に、Fe濃度を一定とし、Si濃度を変えたLa(Fe0.88MnySi0.12-y)13の熱磁気曲線を図3に示す。Mn部分置換によりキュリー温度は低下する。キュリー温度が低下しても、キュリー温度での磁化の変化は、部分置換前と同程度と大きい。図4はLa(Fe0.88MnySi0.12-y)13の磁気エントロピー変化の温度依存性である。 Next, FIG. 3 shows a thermomagnetic curve of La (Fe 0.88 Mn y Si 0.12-y ) 13 with the Fe concentration kept constant and the Si concentration changed. Curie temperature falls by Mn partial substitution. Even if the Curie temperature is lowered, the change in magnetization at the Curie temperature is as large as that before partial replacement. FIG. 4 shows the temperature dependence of the magnetic entropy change of La (Fe 0.88 Mn y Si 0.12-y ) 13 .

部分置換によるキュリー温度の低下に伴い、磁気エントロピー変化のピークは低温側へシフトする。この際、磁気エントロピー変化の大きさはほとんど変化しない。その結果、本化合物は170K近傍でー21
J/kg Kの磁気エントロピー変化を示す。図1、2、3および4の結果は、Mn置換後においても大きな磁気エントロピー変化を得るには高いFe濃度が必須となる事を意味している。しかしながら、La-Mnは非固容系なために、例えば、Fe組成が0.88程度の場合、Mnの固容限は0.015程度と小さく、160から180K程度の温度範囲でしかキュリー温度を低下制御することができない。
As the Curie temperature decreases due to partial substitution, the peak of the magnetic entropy change shifts to the low temperature side. At this time, the magnitude of the magnetic entropy change hardly changes. As a result, this compound is -21 at around 170K.
The magnetic entropy change of J / kg K is shown. The results of FIGS. 1, 2, 3 and 4 indicate that a high Fe concentration is essential to obtain a large magnetic entropy change even after Mn substitution. However, since La-Mn is non-solid, for example, when the Fe composition is about 0.88, the solidity limit of Mn is as small as about 0.015, and the Curie temperature is controlled to decrease only in the temperature range of about 160 to 180K. I can't.

次に、La濃度のみを変えたLa1-zCez(Fe0.88Si0.12)13の熱磁気曲線を図5に示す。Ceの部分置換により、キュリー温度が低下し、キュリー温度での磁化の変化が顕著になる。そのため、図6に示したように、キュリー温度の低下に伴い磁気エントロピー変化も大きくなる。しかしながらCeの固容限は0.2程度と小さく、キュリー温度を大きく低下制御することはできない。 Next, a thermomagnetic curve of La 1-z Ce z (Fe 0.88 Si 0.12) 13 was changed only La concentration in FIG. Due to partial substitution of Ce, the Curie temperature decreases, and the change in magnetization at the Curie temperature becomes significant. Therefore, as shown in FIG. 6, the magnetic entropy change also increases as the Curie temperature decreases. However, the solid limit of Ce is as small as about 0.2, and the Curie temperature cannot be controlled to greatly decrease.

そこでLa(Fe0.88Si0.12)13のMnおよびCe両方の部分置換を行った。図7はLa(Fe0.88Si0.12)13、La0.8Ce0.2(Fe0.880Mn0.015Si0.105)13およびLa0.65Ce0.35(Fe0.860Mn0.025Si0.115)13の磁気エントロピー変化の温度依存性である。Fe濃度を0.88とし、MnおよびCeをほぼ固容限まで置換したLa0.8Ce0.2(Fe0.880Mn0.015Si0.105)13において、キュリー温度は130K程度まで低下し、置換前よりも大きな磁気エントロピー変化が観測される。さらに、Fe濃度を0.86とし、MnおよびCeをほぼ固容限まで置換したLa0.65Ce0.35(Fe0.860Mn0.025Si0.115)13では、磁気エントロピー変化は小さくなるが、CeおよびMnの固容限は拡大するため、80K近傍まで、動作温度が低下した。つまり、La1-zCez(FexMnySi1-x-y)13のCeおよびMnの置換量を制御することで70K〜190 Kの任意の温度で大きな磁気エントロピー変化が得られる。 Therefore, partial substitution of both Mn and Ce of La (Fe 0.88 Si 0.12 ) 13 was performed. FIG. 7 shows the temperature dependence of the magnetic entropy change of La (Fe 0.88 Si 0.12 ) 13 , La 0.8 Ce 0.2 (Fe 0.880 Mn 0.015 Si 0.105 ) 13 and La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 . In La 0.8 Ce 0.2 (Fe 0.880 Mn 0.015 Si 0.105 ) 13 in which the Fe concentration was 0.88 and Mn and Ce were substituted to almost the solid limit, the Curie temperature decreased to about 130 K, and the magnetic entropy change was larger than before substitution. Observed. Furthermore, in La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 in which the Fe concentration is 0.86 and Mn and Ce are substituted to almost the solid limit, the magnetic entropy change is small, but the solid limit of Ce and Mn is The operating temperature dropped to around 80K to expand. In other words, large magnetic entropy change can be obtained at any temperature La 1-z Ce z (Fe x Mn y Si 1-xy) 13 of Ce and Mn 70K~190 K by controlling the amount of substitution.

次に、RCPを調べた。RCPとは、磁気エントロピー変化のピークの最大値とピークの半値幅の積で定義され、一回の磁気冷凍サイクルで、磁性体が吸放出できる熱量の最大値に相当する。広い温度領域を冷却する際に、特に重要となる磁気熱量特性である。表1にLa(Fe0.88Si0.12)13、La0.8Ce0.2(Fe0.880Mn0.015Si0.105)13およびLa0.65Ce0.35(Fe0.860Mn0.025Si0.115)13のRCPを示す。ここでTcはキュリー温度である。全ての組成におけるRCPは、同程度の大きな値を持つ。従って、La1-zCez(FexMnySi1-x-y)13のCeおよびMnの置換量を制御することで80〜190 Kの任意の温度で大きなRCPを得ることができる。 Next, RCP was examined. RCP is defined as the product of the maximum value of the peak of magnetic entropy change and the half value width of the peak, and corresponds to the maximum value of the amount of heat that can be absorbed and released by the magnetic material in one magnetic refrigeration cycle. This is a magnetocaloric characteristic that is particularly important when cooling a wide temperature range. Table 1 shows RCPs of La (Fe 0.88 Si 0.12 ) 13 , La 0.8 Ce 0.2 (Fe 0.880 Mn 0.015 Si 0.105 ) 13 and La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 . Here, Tc is the Curie temperature. The RCPs in all compositions have similar large values. Therefore, it is possible to obtain a large RCP at any temperature La 1-z Ce z (Fe x Mn y Si 1-xy) 13 of Ce and Mn 80 to 190 K by controlling the amount of substitution.

そして、La(Fe0.88Si0.12)13、La0.8Ce0.2(Fe0.880Mn0.015Si0.105)13およびLa0.65Ce0.35(Fe0.860Mn0.025Si0.115)13の断熱温度変化の温度依存性を図8に示す。断熱温度変化に関しても磁気エントロピー変化と同様、Fe濃度が同じであれば、キュリー温度を低下制御しても、置換前とほぼ同程度もしくはそれ以上の値が得られる。 Figure 8 shows the temperature dependence of the adiabatic temperature change of La (Fe 0.88 Si 0.12 ) 13 , La 0.8 Ce 0.2 (Fe 0.880 Mn 0.015 Si 0.105 ) 13 and La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 . Show. Regarding the adiabatic temperature change, similarly to the magnetic entropy change, if the Fe concentration is the same, even if the Curie temperature is controlled to be lowered, a value almost equal to or higher than that before the substitution can be obtained.

一方、La0.65Ce0.35(Fe0.860Mn0.025Si0.115)13は、2Tの磁場印加では約5
Kとなるが、1 Tの磁場印加では約4 Kの断熱温度変化が観測された。この値はLa(Fe0.88Si0.12)13およびLa0.8Ce0.2(Fe0.880Mn0.015Si0.105)13の印加磁場1
Tにおける断熱温度変化とほぼ同程度である。つまり、La1-zCez(FexMnySi1-x-y)13のCeおよびMnの置換量を制御することで70Kから190 Kの任意の温度で大きな断熱温度変化が得られる。
On the other hand, La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 is about 5 when 2T magnetic field is applied.
K, but adiabatic temperature change of about 4 K was observed when 1 T magnetic field was applied. This value is the applied magnetic field of La (Fe 0.88 Si 0.12 ) 13 and La 0.8 Ce 0.2 (Fe 0.880 Mn 0.015 Si 0.105 ) 13
It is almost the same as the adiabatic temperature change at T. In other words, large adiabatic temperature change is obtained by La 1-z Ce z (Fe x Mn y Si 1-xy) 13 of Ce and Mn any temperature 190 K from 70K by controlling the amount of substitution.

La1-zCez(FexMnySi1-x-y)13はCeおよびMnの置換量を制御することで70Kから190 Kの任意の温度で、比較的低磁場で優れた磁気熱量特性を示す。 La 1-z Ce z (Fe x Mn y Si 1-xy ) 13 has excellent magnetocaloric properties in a relatively low magnetic field at any temperature from 70 K to 190 K by controlling the substitution amount of Ce and Mn. Show.

Figure 0004482695
La(Fe0.88Si0.12)13、La0.8Ce0.2(Fe0.880Mn0.015Si0.105)13およびLa0.65Ce0.35 (Fe0.860Mn0.025Si0.115)13のキュリー温度とRCP。
Figure 0004482695
Curie temperature and RCP of La (Fe 0.88 Si 0.12 ) 13 , La 0.8 Ce 0.2 (Fe 0.880 Mn 0.015 Si 0.105 ) 13 and La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 .

従って、La1-zCez(FexMnySi1-x-y)13は70Kから190
Kの温度範囲において、磁気冷凍作業物質として有望である。
Therefore, La 1-z Ce z (Fe x Mn y Si 1-xy ) 13 is from 70K to 190
It is promising as a magnetic refrigeration material in the K temperature range.

La(Fe0.89-yMnySi0.11)13のy=0.0、0.1、0.2および0.3における熱磁気曲線。Thermomagnetic curves of La (Fe 0.89-y Mn y Si 0.11 ) 13 at y = 0.0, 0.1, 0.2 and 0.3. La(Fe0.89-yMnySi0.11)13のy=0.0、0.1、0.2および0.3における磁気エントロピー変化の温度依存性。Temperature dependence of magnetic entropy change of La (Fe 0.89-y Mn y Si 0.11 ) 13 at y = 0.0, 0.1, 0.2 and 0.3. La(Fe0.88MnySi0.12-y)13のy=0.000および0.015における熱磁気曲線。 La (Fe 0.88 Mn y Si 0.12 -y) 13 thermomagnetic curve of y = 0.000 and 0.015 for. La(Fe0.88MnySi0.12-y)13のy=0.000、0.010および0.015における磁気エントロピー変化の温度依存性。Temperature dependence of magnetic entropy change of La (Fe 0.88 Mn y Si 0.12-y ) 13 at y = 0.000, 0.010 and 0.015. La1-zCez(Fe0.88Si0.12)13のz=0.0、0.1、0.2および0.3における熱磁気曲線。Thermomagnetic curves of La 1-z Ce z (Fe 0.88 Si 0.12 ) 13 at z = 0.0, 0.1, 0.2 and 0.3. La1-zCez(Fe0.88Si0.12)13のz=0.0、0.1、0.2および0.3における磁気エントロピー変化の温度依存性。Temperature dependence of magnetic entropy change of La 1-z Ce z (Fe 0.88 Si 0.12 ) 13 at z = 0.0, 0.1, 0.2 and 0.3. La(Fe0.88Si0.12)13、La0.8Ce0.2(Fe0.880Mn0.015Si0.105)13およびLa0.65Ce0.35(Fe0.860Mn0.025Si0.115)13の磁気エントロピー変化の温度依存性。Temperature dependence of magnetic entropy change of La (Fe 0.88 Si 0.12 ) 13 , La 0.8 Ce 0.2 (Fe 0.880 Mn 0.015 Si 0.105 ) 13 and La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 . La(Fe0.88Si0.12)13、La0.8Ce0.2(Fe0.880Mn0.015Si0.105)13およびLa0.65Ce0.35(Fe0.860Mn0.025Si0.115)13の断熱温度変化の温度依存性。Temperature dependence of adiabatic temperature change of La (Fe 0.88 Si 0.12 ) 13 , La 0.8 Ce 0.2 (Fe 0.880 Mn 0.015 Si 0.105 ) 13 and La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 .

Claims (2)

NaZn13型La(FexSi1-x)13 において、LaをCeに部分置換し、あるいは/およびSiをMnに部分置換した、組成式:La1-zCez(FexMnySi1-x-y)13 (0.86≦x≦0.88、0≦y≦0.03、0≦z≦0.035
0<(y+z) ) で表される磁気冷凍作業物質またはその水素吸収化合物による磁気冷凍作業物質。
In NaZn 13 type La (Fe x Si 1-x ) 13, the La is partially substituted with Ce, or / and Si was partially replaced with Mn, the composition formula: La 1-z Ce z ( Fe x Mn y Si 1 -xy ) 13 (0.86 ≦ x ≦ 0.88, 0 ≦ y ≦ 0.03, 0 ≦ z ≦ 0.035
A magnetic refrigeration working material represented by 0 <(y + z) ) or a magnetic refrigeration working material of the hydrogen absorbing compound.
磁気冷凍作業物質NaZn13型La(FexSi1-x)13 (0.86≦x≦0.88)と、請求項1記載の磁気冷凍作業物質を、その組成を変えて2種類以上用いて構成し、温度70Kから200Kの範囲を、組成式:La1-zCez(FexMnySi1-x-y)13 (0.86≦x≦0.88、0≦y≦0.03、0≦z≦0.035 )で表される一つの組成系の磁気冷凍作業物質を用いて冷却制御することを特徴とする磁気冷凍方法。 The magnetic refrigeration working material NaZn 13 type La (Fe x Si 1-x ) 13 (0.86 ≦ x ≦ 0.88) and the magnetic refrigeration working material according to claim 1 are used by changing the composition and using two or more kinds, the range of temperature 70K of 200K, the composition formula: is represented by La 1-z Ce z (Fe x Mn y Si 1-xy) 13 (0.86 ≦ x ≦ 0.88,0 ≦ y ≦ 0.03,0 ≦ z ≦ 0.035) A magnetic refrigeration method, wherein cooling control is performed using a magnetic refrigeration working material of one composition system.
JP2004280293A 2004-09-27 2004-09-27 Low-temperature magnetic refrigeration work material and magnetic refrigeration system Active JP4482695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280293A JP4482695B2 (en) 2004-09-27 2004-09-27 Low-temperature magnetic refrigeration work material and magnetic refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280293A JP4482695B2 (en) 2004-09-27 2004-09-27 Low-temperature magnetic refrigeration work material and magnetic refrigeration system

Publications (2)

Publication Number Publication Date
JP2006089840A JP2006089840A (en) 2006-04-06
JP4482695B2 true JP4482695B2 (en) 2010-06-16

Family

ID=36231092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280293A Active JP4482695B2 (en) 2004-09-27 2004-09-27 Low-temperature magnetic refrigeration work material and magnetic refrigeration system

Country Status (1)

Country Link
JP (1) JP4482695B2 (en)

Also Published As

Publication number Publication date
JP2006089840A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4703699B2 (en) Magnetic material for magnetic refrigeration, magnetic refrigeration device and magnetic refrigeration system
Balli et al. Advanced materials for magnetic cooling: Fundamentals and practical aspects
JP2007084897A (en) Magnetic refrigeration working substance, and magnetic refrigeration method
JP4950918B2 (en) Magnetic material for magnetic refrigeration equipment, heat exchange container and magnetic refrigeration equipment
US6826915B2 (en) Magnetic refrigerant material, regenerator and magnetic refrigerator
JP4783406B2 (en) Magnetic refrigeration device, magnetic refrigeration system and magnetic refrigeration method
JP2009221494A (en) Magnetic refrigerating material
Silva et al. Maximizing the temperature span of a solid state active magnetic regenerative refrigerator
JP2006089839A (en) Magnetic refrigeration working substance and magnetic refrigeration system
M’nassri Searching the conditions for a table-like shape of the magnetic entropy in the magnetocaloric LBMO 2.98/LBMO 2.95 composite
JP5330526B2 (en) Magnetic material for magnetic refrigeration, magnetic refrigeration device and magnetic refrigeration system
JP5686314B2 (en) Rare earth magnetic refrigerant for magnetic refrigeration system
KR102147433B1 (en) Magnetic refrigerator and device including the same
Hamad et al. Room temperature magnetocaloric effect of Ce0. 65Mg0. 35Co3
Cheng et al. Refrigeration effect of La (FeCoSi) 13B0. 25 compounds and gadolinium metal in reciprocating magnetic refrigerator
JP2007154233A (en) Low-temperature operation type magnetic refrigeration working substance, and magnetic refrigeration method
JP4482695B2 (en) Low-temperature magnetic refrigeration work material and magnetic refrigeration system
JP6009994B2 (en) Magnetic refrigeration material
JP6205838B2 (en) Magnetic working material for magnetic refrigeration apparatus and magnetic refrigeration apparatus
Brück et al. Transition Metal Based Magneto Caloric Materials for Energy Efficient Heat Pumps
JP6115306B2 (en) Magnetic working material for magnetic refrigeration apparatus and magnetic refrigeration apparatus
KR20060134745A (en) Nano-sized particle contained refrigerant and refrigeration cycling appliance comprising the same
Wang et al. Constant magnetothermal response in two-layered perovskite (La1− xGdx) 1.4 Ca1. 6Mn2O7
Boeije et al. Transition Metal Based Magneto Caloric Materials for Energy Efficient Heat Pumps
Canepa et al. Magnetocaloric properties of Gd/sub 7/Pd/sub 3/and related intermetallic compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250