JP4482471B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP4482471B2
JP4482471B2 JP2005077427A JP2005077427A JP4482471B2 JP 4482471 B2 JP4482471 B2 JP 4482471B2 JP 2005077427 A JP2005077427 A JP 2005077427A JP 2005077427 A JP2005077427 A JP 2005077427A JP 4482471 B2 JP4482471 B2 JP 4482471B2
Authority
JP
Japan
Prior art keywords
suction
compressor
gas
gas supply
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005077427A
Other languages
Japanese (ja)
Other versions
JP2006257994A (en
Inventor
中村  元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005077427A priority Critical patent/JP4482471B2/en
Priority to CN200610071801A priority patent/CN100591917C/en
Publication of JP2006257994A publication Critical patent/JP2006257994A/en
Application granted granted Critical
Publication of JP4482471B2 publication Critical patent/JP4482471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、圧縮機本体に潤滑、軸封のために油を供給するように構成された圧縮機に係り、より詳しくは、そのような圧縮機を駆動する電動機の冷却構造に関する。   The present invention relates to a compressor configured to supply oil for lubrication and shaft sealing to a compressor body, and more particularly to a cooling structure for an electric motor that drives such a compressor.

従来より、圧縮機のインペラやスクリューロータを駆動する電動機は、高速回転するため発熱量が大きく、これを冷却する冷却機構が必須である。このような冷却機構として、一般的にロータ軸に直結したファンによる強制冷却や、外部の冷却装置による冷却空気の供給等が従来より用いられてきた。   Conventionally, an electric motor that drives an impeller and a screw rotor of a compressor rotates at a high speed, and thus generates a large amount of heat. A cooling mechanism for cooling the motor is essential. As such a cooling mechanism, generally, forced cooling by a fan directly connected to a rotor shaft, supply of cooling air by an external cooling device, and the like have been conventionally used.

しかしながら、ロータ軸にファンを直結する場合は、ロータ軸長が長くなるので高速回転するロータ軸の回転支持が困難になり、また、外部の冷却装置により冷却空気を供給する場合には、別系統の動力源や冷却機を必要とし、装置が複雑となってコストアップの要因になるという問題点を有していた。   However, when the fan is directly connected to the rotor shaft, the rotor shaft length becomes long, so that it becomes difficult to support the rotation of the rotor shaft that rotates at high speed, and when cooling air is supplied from an external cooling device, a separate system is required. The power source and the cooling machine are required, and the apparatus becomes complicated, resulting in a cost increase.

そこで、上記問題点を解決するため提案されている従来の電動機とその冷却方法につき、図3および図4を用いて以下に説明する。先ず、図3は、従来の発明に係る高速モータ駆動圧縮機(特許文献1参照)の全体構成図である。この図3に示す高速モータ駆動圧縮機11は、1段インペラ53で圧縮したガスを中間冷却して2段インペラ54に導く中間冷却装置56とを備え、前記ロータ軸51は、2段インペラ54に供給された冷却圧縮ガスを電動機内に導入する冷却ガス導入孔57と、これと連通しかつ電動機の回転子と固定子の隙間に連通する冷却孔58を有する。   Therefore, a conventional electric motor proposed for solving the above problems and a cooling method thereof will be described below with reference to FIGS. First, FIG. 3 is an overall configuration diagram of a high-speed motor-driven compressor according to a conventional invention (see Patent Document 1). The high-speed motor-driven compressor 11 shown in FIG. 3 includes an intermediate cooling device 56 that intermediately cools the gas compressed by the first-stage impeller 53 and guides it to the second-stage impeller 54, and the rotor shaft 51 has a two-stage impeller 54. A cooling gas introduction hole 57 for introducing the cooling compressed gas supplied to the motor into the electric motor, and a cooling hole 58 communicating with the cooling gas and communicating with the gap between the rotor and the stator of the electric motor.

そして、上記従来の高速モータ駆動圧縮機の冷却方法によれば、1段インペラ53で圧縮したガスを、中間冷却装置56が内蔵するインタークーラで中間冷却して2段インペラ54に導き、ここで再圧縮して高圧縮比を得て、前記中間冷却した圧縮ガスを、ロータ軸51を通して電動機の前記回転子52aと固定子52bとの隙間に噴射して、ロータ軸51、回転子52aおよび固定子52bとを冷却するものである。   According to the conventional cooling method of the high-speed motor-driven compressor, the gas compressed by the first stage impeller 53 is intermediately cooled by the intercooler built in the intermediate cooling device 56 and led to the second stage impeller 54, where Recompression is performed to obtain a high compression ratio, and the intermediate-cooled compressed gas is injected through the rotor shaft 51 into the gap between the rotor 52a and the stator 52b of the electric motor, so that the rotor shaft 51, the rotor 52a and the fixed gas are fixed. The child 52b is cooled.

次に、図4は、従来の他の発明に係る高速回転電動機(特許文献2参照)の全体構成図である。この図4に示す高速回転電動機12は、電動機12の固定子16に、回転子15に向けて設けた冷却用の空気を供給する噴射口19と、該噴射口19内に設けられ水滴を供給するノズル10とを備えている。   Next, FIG. 4 is an overall configuration diagram of a high-speed rotary electric motor (see Patent Document 2) according to another conventional invention. The high-speed rotary motor 12 shown in FIG. 4 supplies the stator 16 of the motor 12 with an injection port 19 that supplies cooling air provided toward the rotor 15, and supplies water droplets provided in the injection port 19. And a nozzle 10 to be used.

また、上記従来の電動機の冷却方法によれば、1段インペラ13で圧縮したガスをインタークーラで中間冷却して2段インペラ14に導き、ここで再圧縮して高圧縮比を得て、前記中間冷却した圧縮ガスを、微細水滴と共に前記回転子15と固定子16との隙間に噴射して、前記回転子15と固定子16とを冷却するものである。
特開2001−254699号公報 特開2002−17071号公報
Further, according to the above conventional cooling method of the electric motor, the gas compressed by the first stage impeller 13 is intermediately cooled by the intercooler and led to the second stage impeller 14, where it is recompressed to obtain a high compression ratio, The intermediate-cooled compressed gas is injected into a gap between the rotor 15 and the stator 16 together with fine water droplets to cool the rotor 15 and the stator 16.
JP 2001-254699 A JP 2002-17071 A

上記従来例に係る前者の高速モータ駆動圧縮機とその冷却方法によれば、圧縮機自身で圧縮した空気を電動機の冷却に使用するため、当該圧縮機が吐出できる空気量が減ってしまう。また、中間冷却機で水分を減らした圧縮空気を使用しても、大気圧まで膨張させる際の温度低下により電動機内で水分も凝縮し、電動機内部に錆を生じてしまうという問題点を有する。   According to the former high-speed motor-driven compressor and its cooling method according to the above conventional example, the air compressed by the compressor itself is used for cooling the electric motor, so that the amount of air that can be discharged by the compressor is reduced. Further, even if compressed air with reduced moisture is used in the intermediate cooler, moisture is condensed in the motor due to a temperature drop during expansion to atmospheric pressure, and rust is generated inside the motor.

更に、上記従来例に係る後者の電動機とその冷却方法によれば、前記回転子と固定子との隙間に、微細水滴を前記冷却用空気と共に噴射することにより、前記回転子と固定子とを冷却する。しかしながら、電動機内のコイルにはミクロなピンホールが存在しており、電動機の停止により電動機内部が降温した際、凝縮した水滴が付着すると電気絶縁性が低下し、短絡を生ずるリスクがある。また、電動機内の固定子、回転子および駆動軸等が水分の付着により、前者と同様に錆を生じてしまう。   Furthermore, according to the latter electric motor and the cooling method thereof according to the conventional example, the rotor and the stator can be connected by injecting fine water droplets together with the cooling air into the gap between the rotor and the stator. Cooling. However, there is a micro pinhole in the coil in the motor, and when the inside of the motor cools down due to the stop of the motor, if the condensed water droplets adhere, there is a risk that the electrical insulation is lowered and a short circuit occurs. In addition, the stator, rotor, drive shaft, and the like in the electric motor are rusted similarly to the former due to the adhesion of moisture.

従って、本発明の目的は、内部に電気的な短絡や錆を発生させたり大きなコストアップを伴うことなく、圧縮機を駆動する電動機の効果的な冷却構造を提供することにある。   Accordingly, it is an object of the present invention to provide an effective cooling structure for an electric motor that drives a compressor without causing an electrical short circuit or rust in the interior or accompanying a large cost increase.

前記目的を達成するために、本発明の請求項1に係る圧縮機が採用した手段は、電動機により駆動される圧縮機本体と、この圧縮機本体の吸込口に一端側が接続され、前記吸込口に流入させる気体の流量を調整する吸込調整弁が設けられた吸込流路とを備えた圧縮機において、前記電動機のケーシングに気体供給口と気体排出口とを設け、前記吸込流路の吸込調整弁の上流側と気体供給口とを、吸込調整弁に向かって流れる気体の一部を前記ケーシングに供給する気体供給路により連通させると共に、前記気体排出口と吸込流路の吸込調整弁の下流側とを、気体供給路から供給された気体を吸込流路の吸込調整弁の下流側に流入させる気体排出路により連通させたことを特徴とするものである。   In order to achieve the above object, the means employed by the compressor according to claim 1 of the present invention includes a compressor body driven by an electric motor, and one end side connected to the suction port of the compressor body, and the suction port In a compressor provided with a suction flow path provided with a suction adjustment valve for adjusting a flow rate of gas flowing into the motor, a gas supply port and a gas discharge port are provided in the casing of the motor, and suction adjustment of the suction flow path is performed. The upstream side of the valve and the gas supply port are communicated with each other by a gas supply path that supplies a part of the gas flowing toward the suction adjustment valve to the casing, and the gas discharge port and the suction flow path downstream of the suction adjustment valve. The side is communicated with a gas discharge passage through which the gas supplied from the gas supply passage flows into the downstream side of the suction adjustment valve of the suction passage.

本発明の請求項2に係る圧縮機が採用した手段は、請求項1項記載の圧縮機において、前記気体排出路に、吸込流路の吸込調整弁の下流側に向かう気体の流れを許容する向きに逆止弁を介装したことを特徴とするものである。   The means employed by the compressor according to claim 2 of the present invention is the compressor according to claim 1, wherein the gas discharge passage allows the gas flow toward the downstream side of the suction adjustment valve of the suction passage. A check valve is interposed in the direction.

本発明の請求項3に係る圧縮機が採用した手段は、請求項1または2のうちの何れか一つの項に記載の圧縮機において、前記気体供給路の吸込流路への接続位置は、吸込流路に介装された吸込調整弁の上流側に設けた吸込フィルターの下流側であることを特徴とするものである。   The means employed by the compressor according to claim 3 of the present invention is the compressor according to any one of claims 1 or 2, wherein the connection position of the gas supply path to the suction flow path is: It is the downstream of the suction filter provided in the upstream of the suction adjustment valve interposed by the suction flow path.

本発明の請求項に係る圧縮機が採用した手段は、請求項1乃至のうちの何れか一つの項に記載の圧縮機において、前記ケーシングにおける気体供給口の位置は、該ケーシング内の駆動軸の前記圧縮機本体への嵌挿部の反対側であり、前記ケーシングにおける気体排出口の位置は、前記嵌挿部と同一側であることを特徴とするものである。 The means employed by the compressor according to claim 4 of the present invention is the compressor according to any one of claims 1 to 3 , wherein the position of the gas supply port in the casing is within the casing. The drive shaft is on the opposite side of the insertion portion into the compressor body , and the position of the gas discharge port in the casing is on the same side as the insertion portion .

本発明の請求項に係る圧縮機が採用した手段は、請求項に記載の圧縮機において、前記ケーシング内の駆動軸の圧縮機本体への嵌挿部の下方に、溜まった油を気体排出口に排出する油溜部を設けたことを特徴とするものである。 Means the compressor is adopted according to claim 5 of the present invention is the compressor according to claim 4, below the inserting portion of the compressor body of the drive shaft within the casing, the oil accumulated gas An oil reservoir for discharging is provided at the discharge port.

本発明の請求項に係る圧縮機が採用した手段は、請求項に記載の圧縮機において、前記ケーシングの駆動軸の圧縮機本体への嵌挿部の直下に油受を設けると共に、この油受と油溜部とを連通させる油回収路を設けたことを特徴とするものである。 The means employed by the compressor according to claim 6 of the present invention is the compressor according to claim 5 , wherein the casing is provided with an oil receiver just below the insertion portion of the drive shaft of the casing into the compressor body. An oil recovery path is provided that allows the oil receiver and the oil reservoir to communicate with each other.

本発明の請求項に係る圧縮機が採用した手段は、請求項1乃至のうちの何れか一つの項に記載の圧縮機において、前記吸込流路の吸込調整弁の上流側に、三方のうちの一方に空気供給路が接続される三方弁を介装し、電動機のケーシングに固定子の温度Tを検出する温度検出器を設けると共に、予め設定した前記固定子の仕様温度Tと温度検出器で検出された固定子温度Tとの温度差ΔT(=T−T)を求め、求めた温度差ΔTが小さい時には気体供給路への気体供給量が増加するように、求めた温度差ΔTが大きい時には気体供給路への気体供給量が減少するように、三方弁の開度を制御するコントローラを設けたことを特徴とするものである。 The compressor employed in the compressor according to claim 7 of the present invention is the compressor according to any one of claims 1 to 6 , in three directions on the upstream side of the suction adjustment valve of the suction channel. while the interposed a three-way valve air supply passage is connected among, provided with a temperature detector for detecting the temperature T of the stator to the casing of the motor, the specified temperature T h of the stator set in advance The temperature difference ΔT (= T h −T) from the stator temperature T detected by the temperature detector was obtained, and the gas supply amount to the gas supply path was increased when the obtained temperature difference ΔT was small. A controller for controlling the opening of the three-way valve is provided so that the gas supply amount to the gas supply path decreases when the temperature difference ΔT is large.

本発明の請求項1に係る圧縮機によれば、電動機により駆動される圧縮機本体と、この圧縮機本体の吸込口に一端側が接続され、前記吸込口に流入させる気体の流量を調整する吸込調整弁が設けられた吸込流路とを備えた圧縮機において、前記電動機のケーシングに気体供給口と気体排出口とを設け、前記吸込流路の吸込調整弁の上流側と気体供給口とを、吸込調整弁に向かって流れる気体の一部を前記ケーシングに供給する気体供給路により連通させ、吸込口に流入した気体の一部を電動機のケーシング内に導入することによって、固定子や回転子を冷却する構成とした。   According to the compressor according to claim 1 of the present invention, the compressor main body driven by the electric motor, and the suction end that is connected to the suction port of the compressor main body and adjusts the flow rate of the gas flowing into the suction port. In the compressor having a suction flow path provided with a regulating valve, a gas supply port and a gas discharge port are provided in the casing of the electric motor, and an upstream side of the suction adjustment valve in the suction flow path and a gas supply port are provided. A part of the gas flowing toward the suction adjusting valve is communicated by a gas supply path for supplying the casing, and a part of the gas flowing into the suction port is introduced into the casing of the electric motor, whereby the stator or the rotor It was set as the structure which cools.

同時に、前記気体排出口と吸込流路の吸込調整弁の下流側とを、気体供給路から供給された気体を吸込流路の吸込調整弁の下流側に流入させる気体排出路により連通させて、前記ケーシング内に導入した冷却後の気体を排出させる構成とした。   At the same time, the gas discharge port and the downstream side of the suction adjustment valve of the suction flow path are communicated by a gas discharge path that allows the gas supplied from the gas supply path to flow into the downstream side of the suction adjustment valve of the suction flow path, The cooled gas introduced into the casing is discharged.

即ち、当該圧縮機の吸込流路に自らが吸込んだ気体を、電動機のケーシング内に供給し、要部を冷却後再度吸込流路に戻す構成としたのである。そのため、水分を含む気体を供給することによる発錆の問題や、別系統の冷却装置を要しコストアップとなったりすることなく、電動機の冷却を行うことが可能となる。   That is, the gas that has been sucked into the suction passage of the compressor is supplied into the casing of the electric motor, and the main part is cooled and then returned to the suction passage again. Therefore, it is possible to cool the electric motor without causing a problem of rusting due to supply of a gas containing moisture and a cost increase due to the need for a separate cooling device.

また、本発明の請求項2に係る圧縮機によれば、請求項1記載の圧縮機において、前記気体排出路に、吸込流路の吸込調整弁の下流側に向かう気体の流れを許容する向きに逆止弁を介装したため、圧縮機本体が停止状態となっても、吸込流路側から電動機側に気体が逆流することがない。更に、本発明の請求項2に係る圧縮機によれば、圧縮機本体内の潤滑油が逆流して電動機内に入るような事態を回避できる。   In the compressor according to claim 2 of the present invention, in the compressor according to claim 1, the gas discharge path is allowed to allow a gas flow toward the downstream side of the suction adjustment valve of the suction flow path. Since the check valve is interposed, the gas does not flow backward from the suction flow path side to the electric motor side even when the compressor main body is stopped. Furthermore, according to the compressor concerning Claim 2 of this invention, the situation where the lubricating oil in a compressor main body flows backward and enters into an electric motor can be avoided.

また一方、本発明の請求項3に係る圧縮機によれば、請求項1または2のうちの何れか一つの項に記載の圧縮機において、前記気体供給路の吸込流路への接続位置は、吸込流路の吸込調整弁の上流側に設けた吸込フィルターの下流側であるため、清浄度の高い冷却気体を電動機内に送り、電動機内への不純物混入に伴う絶縁不良等の不具合を回避することができる。   On the other hand, according to the compressor according to claim 3 of the present invention, in the compressor according to any one of claims 1 and 2, the connection position of the gas supply path to the suction flow path is Because it is on the downstream side of the suction filter provided upstream of the suction adjustment valve in the suction flow path, a highly clean cooling gas is sent into the motor to avoid problems such as poor insulation due to contamination of impurities in the motor. can do.

更に、本発明の請求項に係る圧縮機によれば、請求項1乃至のうちの何れか一つの項に記載の圧縮機において、前記ケーシングにおける気体供給口の位置は、該ケーシング内の駆動軸の前記圧縮機本体への嵌挿部の反対側であり、前記ケーシングにおける気体排出口の位置は、前記嵌挿部と同一側であるとしたので、電動機のケーシング内部を流通する円滑な冷却気体の流れが形成されるため、電動機を効率良く冷却することができる。 Furthermore, according to the compressor of claim 4 of the present invention, in the compressor according to any one of claims 1 to 3 , the position of the gas supply port in the casing is within the casing. Since the drive shaft is on the opposite side of the insertion portion to the compressor body , and the position of the gas discharge port in the casing is on the same side as the insertion portion, a smooth flow through the casing of the motor can be achieved. Since the flow of the cooling gas is formed, the electric motor can be efficiently cooled.

更にまた、本発明の請求項に係る圧縮機によれば、請求項に記載の圧縮機において、前記ケーシング内の駆動軸の圧縮機本体への嵌挿部の下方に、溜まった油を気体排出口に排出する油溜部を設けたので、駆動軸を伝達して圧縮機本体側から電動機側に漏洩する潤滑油を、前記油溜部に滴下して回収することが可能となる。 Furthermore, according to the compressor according to claim 5 of the present invention, in the compressor according to claim 4 , the accumulated oil is placed below the insertion portion of the drive shaft in the casing into the compressor body. Since the oil reservoir for discharging to the gas outlet is provided, it is possible to collect the lubricating oil leaking from the compressor main body side to the electric motor side by dropping to the oil reservoir by transmitting the drive shaft.

また、本発明の請求項に係る圧縮機によれば、請求項に記載の圧縮機において、前記ケーシングの駆動軸の圧縮機本体への嵌挿部の直下に油受を設けると共に、この油受と油溜部とを連通させる油回収路を設けたことにより、潤滑油の回収を更に効果的に行うことができる。 Further, according to the compressor according to claim 6 of the present invention, in the compressor according to claim 5 , the oil receiver is provided immediately below the fitting insertion portion of the drive shaft of the casing to the compressor body, and By providing an oil recovery path that allows the oil receiver and the oil reservoir to communicate with each other, the lubricating oil can be recovered more effectively.

そして更に、本発明の請求項に係る圧縮機によれば、請求項1乃至のうちの何れか一つの項に記載の圧縮機において、前記吸込流路の吸込調整弁の上流側に、三方のうちの一方に空気供給路が接続される三方弁を介装し、電動機のケーシングに固定子の温度Tを検出する温度検出器を設けると共に、予め設定した前記固定子の仕様温度Tと温度検出器で検出された固定子温度Tとの温度差ΔT(=T−T)を求め、求めた温度差ΔTが小さい時には気体供給路への気体供給量が増加するように、求めた温度差ΔTが大きい時には気体供給路への気体供給量が減少するように、三方弁の開度を制御するコントローラを設けたことにより、電動機の冷却に必要な最低限の気体流量だけ吸込流路より供給されるので、製造する圧縮気体の吐出流量の低減を極力抑止できる。 Furthermore, according to the compressor according to claim 7 of the present invention, in the compressor according to any one of claims 1 to 6 , on the upstream side of the suction adjustment valve of the suction flow path, interposed a three-way valve air supply passage is connected to one of the three sides, provided with a temperature detector for detecting the temperature T of the stator to the casing of the electric motor, specified temperature of the stator preset T h And a temperature difference ΔT (= T h −T) between the temperature detected by the temperature detector and the stator temperature T, and when the obtained temperature difference ΔT is small, the gas supply amount to the gas supply path is increased. By providing a controller that controls the opening of the three-way valve so that the amount of gas supplied to the gas supply path decreases when the temperature difference ΔT is large, the suction flow is only the minimum gas flow required for cooling the motor. Since it is supplied from the road, Reduction of the flow rate can be as much as possible deterrence.

先ず、本発明の形態1に係る圧縮機の構成を、その冷却系統図である図1を用いて以下に説明する。この圧縮機は、雌雄一対のスクリューロータ(図示せず)が噛み合って、ロータケーシング内部に回転可能に収容されてなる構造を有する圧縮機本体20を備えている。圧縮機本体20の吸込口20aには、吸込流路28が接続され、その吐出口20bには吐出流路29が接続されている。そして、圧縮機本体20を構成する前記雌雄一対のスクリューロータのうちの一方(通常は雄ロータ)が電動機22の駆動軸26に接続されている。   First, the structure of the compressor which concerns on Embodiment 1 of this invention is demonstrated below using FIG. 1 which is the cooling system figure. The compressor includes a compressor body 20 having a structure in which a pair of male and female screw rotors (not shown) are meshed with each other and are rotatably accommodated inside the rotor casing. A suction flow path 28 is connected to the suction port 20a of the compressor body 20, and a discharge flow path 29 is connected to the discharge port 20b. One (usually a male rotor) of the pair of male and female screw rotors constituting the compressor body 20 is connected to a drive shaft 26 of an electric motor 22.

この電動機22によりスクリューロータを回転させることによって、吸込流路28から供給される気体を、圧縮機本体20にて圧縮し高圧流体として吐出流路29に吐出する。
上記電動機22は、ケーシング23の内面に固定された固定子25と、駆動軸26を中心に回転する回転子24から成り、前記駆動軸26の回転力を、嵌挿部37を介して圧縮機本体20のスクリューロータへ伝達している。
By rotating the screw rotor by the electric motor 22, the gas supplied from the suction flow path 28 is compressed by the compressor body 20 and discharged to the discharge flow path 29 as a high-pressure fluid.
The electric motor 22 includes a stator 25 fixed to the inner surface of the casing 23 and a rotor 24 that rotates about a drive shaft 26, and the rotational force of the drive shaft 26 is compressed through a fitting portion 37. It is transmitted to the screw rotor of the main body 20.

前記吸込流路28には、その吸込流路28を通過する気体の流量を調整する吸込調整弁21が設けられており、コントローラ30によりその弁開度が制御される。そして、電動機22のケーシング23には気体供給口31が設けられており、前記電動機22は、吸込調整弁21の上流側とケーシング23の気体供給口31とを気体供給路34により連通させ、吸込流路28に流入した気体の一部を、前記電動機22のケーシング23内に導入して冷却する構成となっている。   The suction flow path 28 is provided with a suction adjustment valve 21 that adjusts the flow rate of the gas passing through the suction flow path 28, and the valve opening degree is controlled by the controller 30. A gas supply port 31 is provided in the casing 23 of the electric motor 22, and the electric motor 22 communicates the upstream side of the suction adjustment valve 21 and the gas supply port 31 of the casing 23 through a gas supply path 34. A part of the gas flowing into the flow path 28 is introduced into the casing 23 of the electric motor 22 and cooled.

そして同時に、前記ケーシング23に設けられた気体排出口32と吸込流路28の吸込調整弁21の下流側とを、気体排出路35により連通させて、ケーシング23内に導入した冷却後の気体を吸込流路28へ排出させるのである。   At the same time, the gas discharge port 32 provided in the casing 23 and the downstream side of the suction adjustment valve 21 of the suction flow path 28 are communicated by the gas discharge path 35, and the cooled gas introduced into the casing 23 is supplied. It is discharged to the suction flow path 28.

前記気体排出路35には、吸込流路28の吸込調整弁21の下流側に向かう気体の流れを許容する向きに逆止弁40が介装されている。これにより、圧縮機本体20が停止状態となっても、吸込流路28側から電動機22のハウジング23側に気体が逆流するのを防止することができる。更に、圧縮機本体20内の潤滑油が逆流して電動機22内に入るような事態を回避できる。   A check valve 40 is interposed in the gas discharge passage 35 in a direction that allows a gas flow toward the downstream side of the suction adjustment valve 21 of the suction passage 28. Thereby, even if the compressor main body 20 becomes a stop state, it can prevent that a gas flows backward from the suction flow path 28 side to the housing 23 side of the electric motor 22. Further, it is possible to avoid a situation in which the lubricating oil in the compressor body 20 flows backward and enters the electric motor 22.

また、前記気体供給路34の吸込流路28への接続位置は、吸込流路28の吸込調整弁21の上流側に設けた吸込フィルター36の下流側とするのが好ましい。これによって、清浄度の高い冷却気体を電動機22内に送ることができる。更に、前記気体排出路35の吸込流路28への接続位置は、圧縮機本体20の吸込口20aの近傍に配置するのが好ましい。そうすれば、後述するように、その負圧力により排出気体を容易に吸込流路28に排出することができる。   Further, the connection position of the gas supply path 34 to the suction flow path 28 is preferably downstream of the suction filter 36 provided on the upstream side of the suction adjustment valve 21 of the suction flow path 28. As a result, a cooling gas having a high cleanliness can be sent into the electric motor 22. Further, the connection position of the gas discharge path 35 to the suction flow path 28 is preferably disposed in the vicinity of the suction port 20 a of the compressor body 20. If it does so, exhaust gas can be easily discharged | emitted by the negative pressure to the suction flow path 28 so that it may mention later.

尚、前記吸込流路28においては、図1に示した吸込フィルター36の上流側流路A点と、前記フィルター36と吸込調整弁21の間の流路B点とでは、吸込フィルター36や流路による圧力損失により圧力差が生じる。例えば、定格出力37kWの圧縮機において、前記流路B点の圧力は、流路A点の圧力(=大気圧)より約10kPa低圧となっている。また、前記吸込流路28上、更に下流の吸込調整弁21と吸込口20aとの間の流路C点の圧力は、流路B点より更に3.5kPa低下している。   In the suction flow path 28, the upstream flow path A point of the suction filter 36 and the flow path B point between the filter 36 and the suction adjustment valve 21 shown in FIG. Pressure difference is caused by pressure loss due to the road. For example, in a compressor with a rated output of 37 kW, the pressure at the channel B is about 10 kPa lower than the pressure at the channel A (= atmospheric pressure). Further, the pressure at the flow path C point on the suction flow path 28 and between the suction adjustment valve 21 and the suction port 20a further downstream is further reduced by 3.5 kPa from the flow path B point.

上記理由により、図1に示したように、気体供給路34の吸込流路28への接続位置は、気体排出路35の吸込流路28への接続位置より上流側とし、かつ吸込流路28の高圧側から低圧側に、吸込流路28→気体供給路34→気体供給口31→電動機22→気体排出口32→気体排出路35→吸込流路28の順に連通させるのが好ましい。   For the above reasons, as shown in FIG. 1, the connection position of the gas supply path 34 to the suction flow path 28 is upstream from the connection position of the gas discharge path 35 to the suction flow path 28, and the suction flow path 28. It is preferable that the suction flow path 28 → the gas supply path 34 → the gas supply port 31 → the electric motor 22 → the gas discharge port 32 → the gas discharge path 35 → the suction flow path 28 are communicated in this order from the high pressure side to the low pressure side.

ケーシング23における前記気体供給口31の位置は、駆動軸26とは反対側、換言すれば回転子24を基準として、嵌挿部37がある側とは反対側とされている。また、ケーシング23における気体排出口32の位置は、駆動軸26側、換言すれば回転子24を基準として、嵌挿部37がある側と同一側とされている。そのため、電動機22のケーシング23内部の固定子25と回転子24との隙間を流通する円滑な冷却気体の流れ44が形成され、電動機22を効率良く冷却することができる。   The position of the gas supply port 31 in the casing 23 is set on the side opposite to the drive shaft 26, in other words, on the side opposite to the side where the insertion portion 37 is provided with respect to the rotor 24. Further, the position of the gas discharge port 32 in the casing 23 is the same side as the drive shaft 26 side, in other words, the side where the fitting insertion portion 37 is located with respect to the rotor 24. Therefore, a smooth cooling gas flow 44 that flows through the gap between the stator 25 and the rotor 24 inside the casing 23 of the electric motor 22 is formed, and the electric motor 22 can be efficiently cooled.

また、吸込流路28には、その吸込流路28を通過する気体の流量を調整する吸込調整弁21が設けられている。この吸込調整弁21は、吐出流路29に設けられた、図示しない圧力計や流量計等からの検出信号に基づいて、コントローラ30によりその弁開度を調整される。   Further, the suction flow path 28 is provided with a suction adjustment valve 21 that adjusts the flow rate of the gas passing through the suction flow path 28. The suction adjustment valve 21 is adjusted by a controller 30 based on a detection signal from a pressure gauge, a flow meter, etc. (not shown) provided in the discharge passage 29.

尚、前記吸込流路28の吸込調整弁21の上流側に、三方のうちの一方に空気供給路が接続される三方弁46を介装してある。そして、電動機22のケーシング23に、固定子25の温度Tを検出する温度検出器45を設けている。前記コントローラ30は、この温度検出器45からの信号に基づき、予め設定した前記固定子25の仕様温度Tと温度検出器45で検出された固定子温度Tとの温度差ΔT(=T−T)を求める。 In addition, a three-way valve 46 having an air supply path connected to one of the three sides is interposed on the upstream side of the suction adjustment valve 21 in the suction passage 28. And the temperature detector 45 which detects the temperature T of the stator 25 is provided in the casing 23 of the electric motor 22. The controller 30, based on a signal from the temperature detector 45, the temperature difference [Delta] T (= T h between the detected stator temperature T at the specified temperature T h and the temperature detector 45 of the stator 25 which is set in advance -T).

そして同時に、前記コントローラ30は、求めた温度差ΔTが小さい時には気体供給路34への気体供給量が増加するように、求めた温度差ΔTが大きい時には気体供給路34への気体供給量が減少するように、三方弁46の開度を制御する。これにより、電動機22の冷却に必要な最低限の気体流量だけ吸込流路28より供給されるので、製造される圧縮気体の吐出流量の低下を極力抑止できる。   At the same time, the controller 30 reduces the gas supply amount to the gas supply path 34 when the calculated temperature difference ΔT is large so that the gas supply amount to the gas supply path 34 increases when the calculated temperature difference ΔT is small. Thus, the opening degree of the three-way valve 46 is controlled. Thereby, since only the minimum gas flow rate required for cooling of the electric motor 22 is supplied from the suction flow path 28, the fall of the discharge flow rate of the compressed gas manufactured can be suppressed as much as possible.

尚、前記気体供給路34より供給され、気体排出路35により吸込流路28へ排出される冷却用気体は、電動機22内部を冷却し除熱する熱量に相当するだけ、その温度は上昇する。圧縮機本体20が吸込む気体の温度が上昇すると、重量流量が低下してしまうので、前記気体供給路34を介して電動機22内に供給される冷却用気体は、少量であることが望ましい。上記の制御構成とすることにより、冷却に必要な最低限の気体流量だけを吸込流路28より供給するので、この点からも好ましい。   The temperature of the cooling gas supplied from the gas supply path 34 and discharged to the suction flow path 28 by the gas discharge path 35 rises as much as it corresponds to the amount of heat that cools the interior of the motor 22 and removes heat. When the temperature of the gas sucked by the compressor body 20 rises, the weight flow rate decreases, so it is desirable that the amount of cooling gas supplied into the electric motor 22 through the gas supply path 34 is small. By adopting the above control configuration, only the minimum gas flow rate necessary for cooling is supplied from the suction flow path 28, which is preferable from this point.

また、前記ケーシング23内の駆動軸26の圧縮機本体20への嵌挿部37の下方に、溜まった油を気体排出口32に排出する油溜部43を設ける構成とした。これによって、駆動軸26を伝達して圧縮機本体20側から電動機22側に漏洩する潤滑油を、前記油溜部43に滴下して気体排出口32から気体排出路35を介して、圧縮機本体20に回収することが可能となる。従って、電動機の固定子や回転子等の電動機内部の要部が油で汚染されることがない。   Further, an oil reservoir 43 for discharging the accumulated oil to the gas discharge port 32 is provided below the insertion portion 37 of the drive shaft 26 in the casing 23 to the compressor body 20. As a result, the lubricating oil that transmits the drive shaft 26 and leaks from the compressor body 20 side to the electric motor 22 side is dropped onto the oil reservoir 43 and passes through the gas discharge path 35 from the gas discharge port 32. It can be collected in the main body 20. Therefore, main parts inside the motor such as the stator and rotor of the motor are not contaminated with oil.

尚、温度差ΔTに基づく三方弁46の開度の制御は、例えば次のように行う。前記コントローラ30には、仕様温度としてThの外、Tl(Th>Tl)という値が予め設定されている。そして、前記コントローラ30は、三方弁46を通過する気体の流量を100%とした場合、吸込調整弁21の方に流れる流量をa%、気体供給路34へ(即ち、電動機22の方へ)流れる流量を(100−a)%というように、気体を分岐して流すことができるように、三方弁46の開度を制御するものとする。 The opening degree of the three-way valve 46 based on the temperature difference ΔT is controlled as follows, for example. In addition to T h , a value of T l (T h > T l ) is preset in the controller 30 as a specification temperature. When the flow rate of the gas passing through the three-way valve 46 is 100%, the controller 30 sets the flow rate flowing toward the suction adjusting valve 21 to a%, the gas supply path 34 (that is, toward the electric motor 22). The opening degree of the three-way valve 46 is controlled so that the gas can be branched and flowed such that the flowing flow rate is (100-a)%.

そして、このaという数値には100より小、0より大なるaminという数値が最小値として設定される。つまり、この圧縮機が停止状態になく、通常の運転状態にある時には、aは100以下、amin以上の範囲で変化するものとされる。換言すれば、三方弁46を通過した気体の内、少なくともamin%以上は吸込調整弁21の方へ流れるように構成される。 The numerical value a min is set as a minimum value which is smaller than 100 and larger than 0. That is, when the compressor is not in a stopped state and is in a normal operation state, a changes within a range of 100 or less and a min or more. In other words, at least a min % or more of the gas that has passed through the three-way valve 46 is configured to flow toward the suction adjustment valve 21.

そして、Th>T>Tlである場合、コントローラ30はaを以下の式1に基づき算出する。
a=100+(amin−100)×(T−Tl)/(Th−Tl) ………式1
前記温度差ΔTを利用して上記式1を表記すると、以下の式2の通りとなる。
a=100+(amin−100)×{(Th−ΔT)−Tl}/(Th−Tl) ………式2
When T h >T> T l , the controller 30 calculates a based on Equation 1 below.
a = 100 + (a min −100) × (T−T l ) / (T h −T l ) ( 1 )
When the above equation 1 is expressed using the temperature difference ΔT, the following equation 2 is obtained.
a = 100 + (a min −100) × {(T h −ΔT) −T l } / (T h −T l ) (2)

尚、十分に電動機22の固定子25の温度Tが低く、温度TがTl以下、即ちΔTが(Th−Tl)以上である場合、aを100とする。また逆に、電動機22の固定子25の温度Tが高く、温度Tが仕様温度Th以上、即ち、ΔTが0以下である場合、aをaminとする。また、コントローラ30は、この電動機22の固定子25の温度Tが仕様温度Th以上である状態が一定時間以上継続すると、音声信号等による警報を発するよう構成されていることが望ましい。 When the temperature T of the stator 25 of the electric motor 22 is sufficiently low and the temperature T is equal to or lower than T 1 , that is, ΔT is equal to or higher than (T h −T 1 ), a is set to 100. Conversely, the temperature T of the stator 25 of the motor 22 is high, the temperature T is the specified temperature T h or more, i.e., if ΔT is less than or equal to 0, the a and a min. Further, the controller 30, the state temperature T of the stator 25 of the motor 22 is equal to or higher than the specified temperature T h is continues for a predetermined time or more, it is preferably configured to issue a warning by sound signal or the like.

次に、本発明の形態2に係る圧縮機について、その冷却系統図である図2を用いて以下に説明する。尚、本発明の形態2が上記形態1と相違するところは、潤滑油回収の構造に相違があり、その他は全く同構成であるから、潤滑油回収の構造についての説明に止めるものとする。   Next, the compressor which concerns on Embodiment 2 of this invention is demonstrated below using FIG. 2 which is the cooling system figure. Note that the second embodiment of the present invention differs from the first embodiment in that there is a difference in the structure of the lubricating oil recovery, and the rest of the configuration is exactly the same.

即ち、本発明の形態1においては、ケーシング23内の駆動軸26の圧縮機本体20への嵌挿部37の下方に、溜まった油を気体排出口32に排出する油溜部43を設ける構成としたが、本発明の形態2においては、更に、前記ケーシング23の駆動軸26の圧縮機本体20への嵌挿部37の直下に油受41を設けると共に、この油受41と油溜部43とを連通させる油回収路42を設ける構成とした。このような構成とすることにより、潤滑油の回収を更に効果的に行える。   That is, in the first embodiment of the present invention, the oil reservoir 43 that discharges the accumulated oil to the gas discharge port 32 is provided below the insertion portion 37 of the drive shaft 26 in the casing 23 to the compressor body 20. However, in the second embodiment of the present invention, an oil receiver 41 is further provided immediately below the fitting insertion portion 37 of the drive shaft 26 of the casing 23 to the compressor body 20, and the oil receiver 41 and the oil reservoir portion are provided. The oil recovery path 42 that communicates with the engine 43 is provided. With such a configuration, the lubricating oil can be recovered more effectively.

次に、本発明の圧縮機に係る電動機の冷却効果について、定格出力37kWの電動機を
備えた従来の圧縮機を用い、その冷却構造を変えて実施した比較テストの結果を以下に説
明する。上記電動機の軸端に外扇ファンを設け、電動機のケーシング外被から冷却する従
来の圧縮機の構成では、定格出力時の電動機固定子温度は150℃であった。一方、前記
電動機の外扇ファンを除去し、本発明に係る図1の構成に改造した圧縮機において、気体
供給路から電動機のケーシング内に40L/minの空気を供給した結果、定格出力時の
固定子温度は130℃に低下した。
Next, as for the cooling effect of the electric motor according to the compressor of the present invention, the result of a comparative test carried out using a conventional compressor equipped with an electric motor with a rated output of 37 kW and changing the cooling structure will be described below. In the conventional compressor configuration in which an outer fan is provided at the shaft end of the motor and the motor casing is cooled, the motor stator temperature at the rated output is 150 ° C. On the other hand, as a result of supplying 40 L / min of air from the gas supply path into the casing of the motor in the compressor modified to the configuration of FIG. The stator temperature dropped to 130 ° C.

以上のように、本発明に係る圧縮機によれば、電動機により駆動される圧縮機本体と、この圧縮機本体の吸込口に一端側が接続され、前記吸込口に流入させる気体の流量を調整する吸込調整弁が設けられた吸込流路とを備えた圧縮機において、前記電動機のケーシングに気体供給口と気体排出口とを設け、前記吸込流路の吸込調整弁の上流側と気体供給口とを、吸込調節弁に向かって流れる気体の一部を前記ケーシングに供給する気体供給路により連通させ、吸込口に流入した気体の一部を電動機のケーシング内に導入して冷却する構成とした。   As described above, according to the compressor of the present invention, one end side is connected to the compressor main body driven by the electric motor and the suction port of the compressor main body, and the flow rate of the gas flowing into the suction port is adjusted. In a compressor provided with a suction flow path provided with a suction adjustment valve, a gas supply port and a gas discharge port are provided in the casing of the electric motor, and an upstream side of the suction adjustment valve of the suction flow path and a gas supply port In this configuration, a part of the gas flowing toward the suction control valve is communicated by a gas supply path that supplies the casing, and a part of the gas flowing into the suction port is introduced into the casing of the electric motor for cooling.

また同時に、前記気体排出口と吸込流路の吸込調整弁の下流側とを、気体供給路から供給された気体を吸込流路の吸込調整弁の下流側に流入させる気体排出路により連通させて、導入した冷却後の気体を排出させる構成としたことにより、水分を含む気体を供給することによる錆発生や大きなコストアップとなったりすることなく、当該圧縮機自身が吸気する気体を利用して電動機の冷却を行うことが可能となる。   At the same time, the gas discharge port and the downstream side of the suction adjustment valve of the suction flow path are communicated with each other by a gas discharge path that allows the gas supplied from the gas supply path to flow into the downstream side of the suction adjustment valve of the suction flow path. By adopting a configuration for discharging the introduced cooled gas, the compressor itself uses the gas sucked in without causing rust generation or a large cost increase due to the supply of moisture-containing gas. It becomes possible to cool the electric motor.

尚、本発明に係る圧縮機の冷却構造は、上述の如くスクリュー圧縮機を例に説明したが、その他のターボ圧縮機やレシプロ圧縮機等にも、その主旨を適用可能なことは言うまでもない。また、本発明に係る形態は、電動機の駆同軸が圧縮機本体のロータ軸と直結した図で説明したが、両者の軸間にカップリングや減速機を介して回転を伝達する場合も当然含まれる。   The compressor cooling structure according to the present invention has been described by taking the screw compressor as an example as described above, but needless to say, the gist can be applied to other turbo compressors, reciprocating compressors, and the like. Moreover, although the form which concerns on this invention demonstrated with the figure which the drive coaxial of the electric motor was directly connected with the rotor shaft of the compressor main body, naturally the case where rotation is transmitted via a coupling or a reduction gear between both shafts is also included. It is.

更に、前述の本発明の形態1および形態2では、共に吸込流路28の吸込調整弁21の上流側に三方弁46を介装してある例を示した。本発明はそれに限らず、その三方弁46を削除し、吸込流路28から単に気体供給路34が分岐するように構成しても良い。但し、その場合、気体が主に吸込流路28を通過するようにし、吸込調整弁21による流量の調整を有効なものとするために、気体供給路34を吸込流路28に比して径がかなり小さい細管で形成したり、気体供給路34にオリフィスを介装するのが望ましい。   Furthermore, in the first and second embodiments of the present invention described above, an example is shown in which the three-way valve 46 is interposed on the upstream side of the suction adjustment valve 21 in the suction flow path 28. The present invention is not limited to this, and the three-way valve 46 may be omitted and the gas supply path 34 may be simply branched from the suction flow path 28. However, in that case, in order to make the gas mainly pass through the suction flow path 28 and to effectively adjust the flow rate by the suction adjustment valve 21, the diameter of the gas supply path 34 is larger than that of the suction flow path 28. However, it is desirable that the gas supply path 34 is formed with an orifice.

また、三方弁46を削除し、吸込流路28から単に気体供給路34が分岐するように構成した上で、気体供給路34に開閉弁を介装しても良い。この時、当該開閉弁を、電動機22の固定子25の温度Tが前記Tl以上となった場合には開弁し、それ以外の場合には閉弁するように制御することが好ましい。 Alternatively, the three-way valve 46 may be omitted and the gas supply path 34 may be simply branched from the suction flow path 28, and an open / close valve may be interposed in the gas supply path 34. At this time, the on-off valve, opened when the temperature T of the stator 25 of the motor 22 are out of the T l or more, it is preferable to control so as to close otherwise.

尚、前述の本発明の形態1および形態2では、吸込調整弁21と三方弁46は、同一の制御機器であるコントローラ30にて制御されるものである例を示したが、本発明はそれに限らない。両者は、異なる制御機器にて制御されるものであっても良い。   In the first and second embodiments of the present invention, the suction adjusting valve 21 and the three-way valve 46 are controlled by the controller 30 which is the same control device. Not exclusively. Both may be controlled by different control devices.

本発明の形態1に係る圧縮機の冷却系統図である。It is a cooling system figure of the compressor concerning form 1 of the present invention. 本発明の形態2に係る圧縮機の冷却系統図である。It is a cooling system figure of the compressor concerning form 2 of the present invention. 従来の高速モータ駆動圧縮機の全体構成図である。It is a whole block diagram of the conventional high-speed motor drive compressor. 従来の高速回転電動機の模式図である。It is a schematic diagram of the conventional high-speed rotary motor.

A…吸込フィルターの上流側の流路,B…吸込フィルターと吸込調整弁の間の流路,
C…吸込調整弁と吸込口との間の流路,
20…圧縮機本体, 20a…吸込口, 20b…吐出口,21…吸込調整弁,
22…電動機, 23…ケーシング, 24…固定子, 25…回転子,
26…駆動軸, 27…軸受, 28…吸込流路, 29…吐出流路,
30…コントローラ, 31…気体供給口, 32…気体排出口,
34…気体供給路, 35…気体排出路, 36…吸気フィルター, 37…嵌挿部,
40…逆止弁, 41…油受, 42…油回収路, 43…油溜部,
44…冷却気体の流れ, 45…温度検出器, 46…三方弁
A: A flow path upstream of the suction filter, B: A flow path between the suction filter and the suction adjustment valve,
C: Flow path between the suction adjustment valve and the suction port,
20 ... Compressor body, 20a ... Suction port, 20b ... Discharge port, 21 ... Suction adjustment valve,
22 ... Electric motor, 23 ... Casing, 24 ... Stator, 25 ... Rotor,
26 ... Drive shaft, 27 ... Bearing, 28 ... Suction passage, 29 ... Discharge passage,
30 ... Controller, 31 ... Gas supply port, 32 ... Gas discharge port,
34 ... Gas supply path, 35 ... Gas discharge path, 36 ... Intake filter, 37 ... Insertion part,
40 ... Check valve, 41 ... Oil receiver, 42 ... Oil recovery path, 43 ... Oil reservoir,
44 ... Flow of cooling gas, 45 ... Temperature detector, 46 ... Three-way valve

Claims (7)

電動機により駆動される圧縮機本体と、この圧縮機本体の吸込口に一端側が接続され、前記吸込口に流入させる気体の流量を調整する吸込調整弁が設けられた吸込流路とを備えた圧縮機において、前記電動機のケーシングに気体供給口と気体排出口とを設け、前記吸込流路の吸込調整弁の上流側と気体供給口とを、吸込調整弁に向かって流れる気体の一部を前記ケーシングに供給する気体供給路により連通させると共に、前記気体排出口と吸込流路の吸込調整弁の下流側とを、気体供給路から供給された気体を吸込流路の吸込調整弁の下流側に流入させる気体排出路により連通させたことを特徴とする圧縮機。   A compressor provided with a compressor body driven by an electric motor, and a suction flow path provided with a suction adjustment valve that is connected to one end of the suction port of the compressor body and adjusts the flow rate of gas flowing into the suction port. In the machine, a gas supply port and a gas discharge port are provided in the casing of the electric motor, and a part of the gas flowing toward the suction adjustment valve is provided on the upstream side of the suction adjustment valve and the gas supply port of the suction passage. The gas supply path that supplies the casing communicates with the gas discharge port and the downstream side of the suction adjustment valve of the suction flow path, and the gas supplied from the gas supply path is placed downstream of the suction adjustment valve of the suction flow path. A compressor characterized in that it is communicated by an inflow gas discharge passage. 前記気体排出路に、吸込流路の吸込調整弁の下流側に向かう気体の流れを許容する向きに逆止弁を介装したことを特徴とする請求項1に記載の圧縮機。   2. The compressor according to claim 1, wherein a check valve is interposed in the gas discharge path in a direction allowing a gas flow toward a downstream side of the suction adjustment valve of the suction flow path. 前記気体供給路の吸込流路への接続位置は、吸込流路の吸込調整弁の上流側に設けた吸込フィルターの下流側であることを特徴とする請求項1または2のうちの何れか一つの項に記載の圧縮機。   3. The connection position of the gas supply path to the suction flow path is the downstream side of a suction filter provided on the upstream side of the suction adjustment valve of the suction flow path. A compressor according to one of the sections. 前記ケーシングにおける気体供給口の位置は、該ケーシング内の駆動軸の前記圧縮機本体への嵌挿部の反対側であり、前記ケーシングにおける気体排出口の位置は、前記嵌挿部と同一側であることを特徴とする請求項1乃至のうちの何れか一つの項に記載の圧縮機。 The position of the gas supply port in the casing is the opposite side of the insertion portion of the drive shaft in the casing to the compressor body , and the position of the gas discharge port in the casing is on the same side as the insertion portion. The compressor according to any one of claims 1 to 3 , wherein the compressor is provided. 前記ケーシング内の駆動軸の圧縮機本体への嵌挿部の下方に、溜まった油を気体排出口に排出する油溜部を設けたことを特徴とする請求項に記載の圧縮機。 The compressor according to claim 4 , wherein an oil reservoir for discharging the accumulated oil to a gas discharge port is provided below a portion where the drive shaft in the casing is fitted into the compressor body. 前記ケーシングの駆動軸の圧縮機本体への嵌挿部の直下に油受を設けると共に、この油受と油溜部とを連通させる油回収路を設けたことを特徴とする請求項に記載の圧縮機。 Provided with a oil pan directly below the inserting portion of the compressor body of the drive shaft of the casing, according to claim 5, characterized in that a oil recovery passage for communicating the the oil receiving and oil reservoir Compressor. 前記吸込流路の吸込調整弁の上流側に、三方のうちの一方に空気供給路が接続される三方弁を介装し、電動機のケーシングに固定子の温度Tを検出する温度検出器を設けると共に、予め設定した前記固定子の仕様温度Tと温度検出器で検出された固定子温度Tとの温度差ΔT(=T−T)を求め、求めた温度差ΔTが小さい時には気体供給路への気体供給量が増加するように、求めた温度差ΔTが大きい時には気体供給路への気体供給量が減少するように、三方弁の開度を制御するコントローラを設けたことを特徴とする請求項1乃至のうちの何れか一つの項に記載の圧縮機。 A temperature detector for detecting the temperature T of the stator is provided in the casing of the motor, with a three-way valve connected to one of the three sides upstream of the suction adjustment valve of the suction flow path. together, determine the temperature difference ΔT between the stator temperature T detected at the specified temperature T h and a temperature detector of the stator set in advance (= T h -T), when the temperature difference ΔT obtained is small gas supply A controller for controlling the opening of the three-way valve is provided so that the gas supply amount to the gas supply passage decreases when the obtained temperature difference ΔT is large so that the gas supply amount to the passage increases. The compressor according to any one of claims 1 to 6 .
JP2005077427A 2005-03-17 2005-03-17 Compressor Active JP4482471B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005077427A JP4482471B2 (en) 2005-03-17 2005-03-17 Compressor
CN200610071801A CN100591917C (en) 2005-03-17 2006-03-16 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005077427A JP4482471B2 (en) 2005-03-17 2005-03-17 Compressor

Publications (2)

Publication Number Publication Date
JP2006257994A JP2006257994A (en) 2006-09-28
JP4482471B2 true JP4482471B2 (en) 2010-06-16

Family

ID=37002324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005077427A Active JP4482471B2 (en) 2005-03-17 2005-03-17 Compressor

Country Status (2)

Country Link
JP (1) JP4482471B2 (en)
CN (1) CN100591917C (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2206927A1 (en) * 2009-01-13 2010-07-14 Siemens Aktiengesellschaft Machine for fluid transportation
FR2944393B1 (en) * 2009-04-09 2014-10-17 Converteam Technology Ltd COIL FOR A ROTATING ELECTRIC MACHINE
WO2011093135A1 (en) * 2010-01-26 2011-08-04 ナブテスコ株式会社 Air compression device for railroad vehicle
TWI397483B (en) * 2010-01-26 2013-06-01 Nabtesco Corp Air compression apparatus for railroad vehicle
JP5489825B2 (en) * 2010-02-10 2014-05-14 ナブテスコ株式会社 Air compressor for railway vehicles
JP5174073B2 (en) 2010-03-18 2013-04-03 三菱重工業株式会社 Electric supercharger
JP5433643B2 (en) 2011-07-15 2014-03-05 三菱重工業株式会社 Electric supercharging device and multistage supercharging system
CN104235043B (en) * 2013-06-19 2016-08-10 株式会社神户制钢所 Compressor
CN104935116A (en) * 2015-06-23 2015-09-23 江门市蒙德电气股份有限公司 Cooling structure of air compressor motor
CN106762634A (en) * 2017-01-10 2017-05-31 麦克维尔空调制冷(苏州)有限公司 The single screw rod type refrigerating compressor that a kind of motor is independently cooled down
JP6860456B2 (en) * 2017-05-09 2021-04-14 株式会社神戸製鋼所 Compressor
GB2571533B (en) * 2018-02-28 2022-06-08 Safran Electrical & Power A coolant system
CN114278589A (en) * 2022-01-05 2022-04-05 北京临近空间飞艇技术开发有限公司 Helium gas compressor
CN114278604A (en) * 2022-01-05 2022-04-05 北京临近空间飞艇技术开发有限公司 Helium gas compressor of anti-surge start-up under high back pressure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS43756Y1 (en) * 1966-10-01 1968-01-17
JPH05202889A (en) * 1992-01-29 1993-08-10 Mitsubishi Electric Corp Motor-driven pump
JPH112196A (en) * 1997-06-13 1999-01-06 Hitachi Ltd Rotary compressor system
JP2000240596A (en) * 1998-12-25 2000-09-05 Daikin Ind Ltd Turbo compressor
JP2001012375A (en) * 1999-06-10 2001-01-16 Buyu So Roots suction.compressore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS43756Y1 (en) * 1966-10-01 1968-01-17
JPH05202889A (en) * 1992-01-29 1993-08-10 Mitsubishi Electric Corp Motor-driven pump
JPH112196A (en) * 1997-06-13 1999-01-06 Hitachi Ltd Rotary compressor system
JP2000240596A (en) * 1998-12-25 2000-09-05 Daikin Ind Ltd Turbo compressor
JP2001012375A (en) * 1999-06-10 2001-01-16 Buyu So Roots suction.compressore

Also Published As

Publication number Publication date
JP2006257994A (en) 2006-09-28
CN100591917C (en) 2010-02-24
CN1834456A (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP4482471B2 (en) Compressor
CN203067286U (en) Screw type compressor
KR101303173B1 (en) Vacuum pump unit
US20060061222A1 (en) Air bearing and motor cooling
JP5480971B2 (en) Air compressor for railway vehicles
US7575421B2 (en) Integral motor cooling and compressor inlet
JP2012020728A (en) Cabin air compressor apparatus and method for cooling the same
JP2007298029A (en) Compressor with oil bypass
CN102859195A (en) Freezing machine
WO2011093135A1 (en) Air compression device for railroad vehicle
CN210623084U (en) Oil injection multistage compressor system
CA2782003C (en) Breathing air unit
JP2006283649A (en) Compressor and its operation control method
JP5696548B2 (en) Screw compressor
US20110016914A1 (en) Turbo compressor and refrigerator
GB2416806A (en) Compressor arrangement with intercooler and air bearings
JP5844980B2 (en) Two-stage screw compression refrigeration system
KR101802839B1 (en) Turbo compressor and driving method of thereof
CN116917626A (en) Mobile oil-free multistage compressor device and method for controlling the same
JP5980754B2 (en) Oil-cooled air compressor and control method thereof
KR20190044685A (en) Utility vehicle systems including screw compressors and electric motors
JP2006329157A (en) Oil injection type compressor
JP7286869B2 (en) Lubricated screw compressor
JP2011214475A (en) Intake air cooling device and operating method for the same
JP5484992B2 (en) Intake air cooling device and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4482471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350