JP4482264B2 - Mold for resin molding - Google Patents

Mold for resin molding Download PDF

Info

Publication number
JP4482264B2
JP4482264B2 JP2002081364A JP2002081364A JP4482264B2 JP 4482264 B2 JP4482264 B2 JP 4482264B2 JP 2002081364 A JP2002081364 A JP 2002081364A JP 2002081364 A JP2002081364 A JP 2002081364A JP 4482264 B2 JP4482264 B2 JP 4482264B2
Authority
JP
Japan
Prior art keywords
mold
resin molding
graphite
molding surface
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002081364A
Other languages
Japanese (ja)
Other versions
JP2003276029A (en
Inventor
利猛 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chuzosho Co Ltd
Original Assignee
Kimura Chuzosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chuzosho Co Ltd filed Critical Kimura Chuzosho Co Ltd
Priority to JP2002081364A priority Critical patent/JP4482264B2/en
Publication of JP2003276029A publication Critical patent/JP2003276029A/en
Application granted granted Critical
Publication of JP4482264B2 publication Critical patent/JP4482264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂成形用金型に関し、特に加工の手間がかからず、かつ高い表面精度が得られる樹脂成形用金型に関する。
【0002】
【従来の技術】
従来、樹脂成形用金型を製造するには、鍛造された炭素鋼等の型用鋼を作成し、この型用鋼を金型の形状に切削加工したり、あるいは、黒鉛粒径の細かい球状黒鉛、CV鋳鉄でおおむね金型の形状に鋳造し、そして、更に金型の成形面を所定の精度となるよう研磨加工等で仕上げていた。
【0003】
【発明が解決しようとする課題】
しかしながら、鍛造された炭素鋼等を用いた場合、型用鋼のブロックから徐々に削り出していき、金型を成形するため、加工の工数が多く、手間がかかり、制作日数、制作コスト等が大きくなるということがあった。またブロックから徐々に削り出していくため、削りだしのため発生する材料の無駄も多かった。
【0004】
一方鋳造で製造する場合は、加工部分がほぼ成形面だけであるため、鍛造から成形する場合より加工の手間は少ないが、鋳造のため成形面に微少なひけ巣(ミクロシュリンケージ)が発生することがある。成形面にミクロシュリンケージが生じてしまうと、成形された樹脂成形品の表面にミクロシュリンケージが転写され、突状の出っ張りができ好ましくない。
【0005】
本発明は、加工が簡易で、仕上がり精度の高い樹脂成形用金型を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明では、上記課題を解決するため、次のように樹脂成形用金型を構成した。
【0007】
D型黒鉛組織の片状黒鉛鋳鉄で形成された樹脂成形用金型において、前記D型黒鉛組織の前記片状黒鉛鋳鉄は、形成を鋳型表面へのTiの塗布により成形面に行い、平面で観察したときの平均長さが0.05mm以下の黒鉛であり、かつ該黒鉛間の平均距離が0.02mm以下である樹脂成形用金型を形成した。
【0009】
Cを2.6〜3.8wt%、Siを1.2〜2.6wt%とし、かつ炭素当量(CE)が4.3以下とした樹脂成形用金型を形成した。
【0014】
成形面のD型黒鉛の割合としては、50%以上であることが望ましい。冷やし金を用いた場合は、共晶セルが細かくなることから、20%以上であればよい。
【0015】
【発明の実施の形態】
本発明にかかる樹脂成形用金型の製造方法について説明する。
【0016】
樹脂成形用金型2は、図1に示すように一対の金型からなり、それぞれの内面の樹脂成形面4がD型黒鉛組織6となっている。図6および図7にD型黒鉛組織の例を示す。図に示すように、黒鉛がD型黒鉛となっていることがわかる。
【0017】
図8は、D型黒鉛組織以外の組織を示す。
【0018】
特にD型黒鉛組織6は、その断面を観察すると、黒鉛の平均長さが0.05mm以下であり、かつ隣り合った黒鉛間の平均距離が0.02mm以下であることが好ましい。またCを2.6〜3.8wt%、Siを1.2〜2.6wt%とし、かつ炭素当量(CE)が4.3以下としてある。
【0019】
一般に金属内では黒鉛は連続しており、断面で観察したとき上記のようになっていることが必要である。Cが2.6wt%以下となるとチル化、ひけ巣が生じやすくなり、3.8wt%以上であると黒鉛が粗大になり、金型の面粗度が悪化する。また、過共晶成分となると、粗大なキッシュ黒鉛(C型黒鉛)が現れ、面粗度が悪くなる。
【0020】
Siが、1.2wt%以下となると、チルになり、2.6wt%以上であると黒鉛が粗大になり、金型の面粗度が悪化する。また炭素当量(CE)は3.0から4.3以下の範囲である。少ないとチル化、ひけ巣が生じやすくなり、多いと黒鉛が粗大になり、金型の面粗度が悪化する。黒鉛当量とは、黒鉛と同等の働きをする成分を含めて換算した黒鉛の量であり、Siの場合には、C+1/3Siで計算される。
【0021】
金型2の成形面4をD型黒鉛組織6とするには、図2に示すように、樹脂成形用金型2を鋳造により成形するとき、鋳型8の内部に冷やし金10を適宜配置する。これにより成形面4の冷却速度が速くなり、成形面4がD型黒鉛組織6となる。鋳造により成形面4にD型黒鉛組織6が成形された金型原型を製造したなら、成形面6を研磨する等の仕上げ作業を行い、樹脂成形用金型2を完成させる。
【0022】
冷やし金10等により冷却速度を速くすると、比較的パーライトが多くなり、CuやNiの添加を減少できる。なお、D型黒鉛組織はフェライトになりやすいため、CuやNiを添加し、パーライト化し、ひけ巣の発生を防止するようにしてもよい。
【0023】
次に、金型の製造方法の他の例を述べる。この例は、鋳鉄にTiを所定量添加して樹脂成形用金型2の金型原型の鋳造を行い、D型黒鉛組織からなる金型原型を形成する。このようにして、D型黒鉛組織の金型原型を製造したなら、成形面4の研磨等を行い樹脂成形用金型2を完成させる。
【0024】
Tiを添加してD型黒鉛組織6を形成する場合は、鋳鉄の湯にTiをSの3倍以上添加することが好ましい。また、CuやNiを添加し、基地をパーライト化する。更にMnの含有率を高めたり、Cr、Moなどの元素を添加してパーライト率を増大させることができるが、この場合には、ひけ性の増加が見られる。Mn、Cr、Mo、P、Vなどの元素を添加するとミクロシュリンケージが増加するので好ましくない。
【0025】
更に、鋳鉄の湯にTiを添加し、金型原型の全体をD型黒鉛組織の鋳鉄としたが、これに限らず、図3に示すように樹脂成形用金型を鋳造する鋳型8の内面、すなわち成形面4となるべき箇所にTiを予め塗布するようにしてもよい。このように、樹脂成形用金型2を鋳造する鋳型8の内面にTiを塗布して鋳造した場合、樹脂成形用金型2の成形面4付近におけるTiの含有量が増加し、図1に示すように成形面4をD型黒鉛組織6に形成することができる。これにより、成形面4の表面の平滑度が高く、むしれ等の発生しない高い品質の樹脂成形用金型2を成形することができた。
【0026】
また、図4に示すように成形面4の部分に、成形面4とほぼ同じ形状に形成した鍛造品5を用い、樹脂成形用金型3のその他の箇所を鋳造により形成してもよい。これによると、成形面4を鍛造品5とできるので、ミクロシュリンケージの発生を防止でき、かつ、鍛造のブロックを切削する必要がなく、樹脂成形用金型3を容易に加工できる。更に図5に示すように鍛造品5の裏面にパイプ12を予め配置させておいてもよい。
【0027】
【発明の効果】
樹脂成形用金型の樹脂成形面をD型黒鉛組織として樹脂成形用金型を形成したので、加工時や研磨時に表面のむしれがなく、かつミクロシュリンケージのない高品質の樹脂成型用金型を得ることができる。また、成形面に高い鏡面性を持たせることができ。また、黒鉛形状が細かいD型であるため、成形面の加工性も良好となる。
【0028】
更に、成形面をあらかじめ鍛造品で成形し、成形面以外の他の部分を鋳造で成形すれば、精度の高い成形面を有する樹脂整形用金型を容易に成形できる。
【図面の簡単な説明】
【図1】本発明の樹脂成形用金型を示す図である。
【図2】本発明の樹脂成形用金型を成形する例を示す図である。
【図3】本発明の樹脂成形用金型を成形する他の例を示す図である。
【図4】本発明の樹脂成形用金型の他の例を示す図である。
【図5】本発明の樹脂成形用金型の他の例を示す図である。
【図6】組織を示す図である。
【図7】組織を示す図である。
【図8】各組織を示す図である。
【符号の説明】
2、3 樹脂成形用金型
4 成形面
5 鍛造品
6 D型黒鉛組織
8 鋳型
10 冷やし金
12 パイプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin molding die, and more particularly, to a resin molding die that does not require processing work and that provides high surface accuracy.
[0002]
[Prior art]
Conventionally, in order to manufacture a mold for resin molding, a mold steel such as forged carbon steel is prepared, and the mold steel is cut into a mold shape, or a spherical shape with a fine graphite particle size is formed. It was cast into a generally mold shape with graphite and CV cast iron, and the molding surface of the mold was further finished by polishing or the like so as to have a predetermined accuracy.
[0003]
[Problems to be solved by the invention]
However, when using forged carbon steel, etc., it is gradually cut out from the mold steel block, and the mold is formed, which requires a lot of work and labor, production days, production costs, etc. There was something that would get bigger. In addition, since the material was gradually cut out from the block, there was a lot of wasted material generated during the cutting.
[0004]
On the other hand, in the case of manufacturing by casting, since the processed part is almost only the molding surface, the processing time is less than in the case of molding from forging, but a minute shrinkage (micro shrinkage) occurs on the molding surface due to casting. Sometimes. If micro-shrinkage occurs on the molding surface, the micro-shrinkage is transferred to the surface of the molded resin molded product, which is not preferable because a protruding protrusion is formed.
[0005]
An object of the present invention is to provide a mold for resin molding that is easy to process and has high finishing accuracy.
[0006]
[Means for Solving the Problems]
In the present invention, in order to solve the above problems, a resin molding die is configured as follows.
[0007]
In a resin molding die formed of flake graphite cast iron having a D-type graphite structure, the flake graphite cast iron having the D-type graphite structure is formed on the molding surface by applying Ti to the mold surface, and is flat. A resin molding die having an average length of 0.05 mm or less when observed and an average distance between the graphites of 0.02 mm or less was formed.
[0009]
A resin molding die having C of 2.6 to 3.8 wt%, Si of 1.2 to 2.6 wt%, and a carbon equivalent (CE) of 4.3 or less was formed.
[0014]
The proportion of D-type graphite on the molding surface is desirably 50% or more. When the chiller is used, since the eutectic cell becomes fine, it may be 20% or more.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A method for producing a resin mold according to the present invention will be described.
[0016]
As shown in FIG. 1, the resin molding die 2 is composed of a pair of molds, and the resin molding surface 4 of each inner surface is a D-type graphite structure 6. 6 and 7 show examples of the D-type graphite structure. As shown in the figure, it can be seen that the graphite is D-type graphite.
[0017]
FIG. 8 shows a structure other than the D-type graphite structure.
[0018]
In particular, when the cross section of the D-type graphite structure 6 is observed, the average length of graphite is preferably 0.05 mm or less, and the average distance between adjacent graphites is preferably 0.02 mm or less. C is 2.6 to 3.8 wt%, Si is 1.2 to 2.6 wt%, and the carbon equivalent (CE) is 4.3 or less.
[0019]
In general, graphite is continuous in a metal, and it is necessary to have the above as observed in a cross section. When C is 2.6 wt% or less, chilling and shrinkage are likely to occur, and when it is 3.8 wt% or more, the graphite becomes coarse and the surface roughness of the mold deteriorates. Moreover, when it becomes a hypereutectic component, coarse quiche graphite (C-type graphite) will appear, and surface roughness will worsen.
[0020]
When Si is 1.2 wt% or less, it becomes chill, and when it is 2.6 wt% or more, the graphite becomes coarse and the surface roughness of the mold deteriorates. The carbon equivalent (CE) is in the range of 3.0 to 4.3. If the amount is small, chilling and shrinkage nests are likely to occur. If the amount is large, graphite becomes coarse and the surface roughness of the mold deteriorates. The graphite equivalent is an amount of graphite converted including a component having the same function as graphite. In the case of Si, it is calculated by C + 1 / 3Si.
[0021]
In order to make the molding surface 4 of the mold 2 have a D-type graphite structure 6, as shown in FIG. 2, when the resin molding mold 2 is molded by casting, a cooling mold 10 is appropriately disposed inside the mold 8. . Thereby, the cooling rate of the molding surface 4 is increased, and the molding surface 4 becomes the D-type graphite structure 6. When a mold master having the D-type graphite structure 6 formed on the molding surface 4 by casting is manufactured, finishing operations such as polishing of the molding surface 6 are performed to complete the resin molding die 2.
[0022]
When the cooling rate is increased with the cooling metal 10 or the like, the amount of pearlite is relatively increased, and the addition of Cu and Ni can be reduced. Since the D-type graphite structure is likely to become ferrite, Cu or Ni may be added to make it pearlite to prevent the formation of sink marks.
[0023]
Next, another example of the mold manufacturing method will be described. In this example, a predetermined amount of Ti is added to cast iron, and the mold prototype of the resin molding mold 2 is cast to form a mold prototype composed of a D-type graphite structure. In this manner, when a mold master having a D-type graphite structure is manufactured, the molding surface 4 is polished and the resin molding mold 2 is completed.
[0024]
When Ti is added to form the D-type graphite structure 6, it is preferable to add Ti three times or more to S in cast iron water. Also, Cu or Ni is added to make the base pearlite. Further, the pearlite ratio can be increased by increasing the Mn content or by adding elements such as Cr and Mo. In this case, however, an increase in sinkability is observed. The addition of elements such as Mn, Cr, Mo, P and V is not preferable because the micro shrinkage increases.
[0025]
Further, Ti is added to the cast iron hot water, and the entire mold master is cast iron having a D-type graphite structure. However, the present invention is not limited to this, and the inner surface of the mold 8 for casting a resin mold as shown in FIG. That is, Ti may be applied in advance to a portion to be the molding surface 4. As described above, when Ti is applied to the inner surface of the mold 8 for casting the resin molding die 2 and cast, the Ti content in the vicinity of the molding surface 4 of the resin molding die 2 is increased. As shown, the molding surface 4 can be formed in a D-type graphite structure 6. Thereby, the smoothness of the surface of the molding surface 4 was high, and it was possible to mold a high-quality resin molding die 2 that does not cause peeling.
[0026]
Moreover, as shown in FIG. 4, the forged product 5 formed in the shape of the molding surface 4 in the part of the molding surface 4 may be used, and the other location of the resin molding die 3 may be formed by casting. According to this, since the molding surface 4 can be a forged product 5, the occurrence of micro shrinkage can be prevented, and the forging block need not be cut, and the resin molding die 3 can be easily processed. Further, as shown in FIG. 5, the pipe 12 may be arranged in advance on the back surface of the forged product 5.
[0027]
【The invention's effect】
Since the resin molding surface is formed with the resin molding surface of the resin molding die as a D-type graphite structure, there is no surface peeling during processing or polishing, and there is no micro-shrinkage. A mold can be obtained. In addition, the molding surface can have high specularity. Moreover, since the graphite shape is a fine D shape, the workability of the molding surface is also good.
[0028]
Furthermore, if the molding surface is molded in advance with a forged product and the other portions other than the molding surface are molded by casting, a resin shaping mold having a highly accurate molding surface can be easily molded.
[Brief description of the drawings]
FIG. 1 is a view showing a resin molding die of the present invention.
FIG. 2 is a view showing an example of molding a resin molding die of the present invention.
FIG. 3 is a view showing another example of molding the resin mold according to the present invention.
FIG. 4 is a view showing another example of a resin mold according to the present invention.
FIG. 5 is a view showing another example of a resin molding die according to the present invention.
FIG. 6 is a diagram showing an organization.
FIG. 7 is a diagram showing an organization.
FIG. 8 is a diagram showing each organization.
[Explanation of symbols]
2, 3 Mold for resin molding 4 Molding surface 5 Forged product 6 D-type graphite structure 8 Mold 10 Cooling metal 12 Pipe

Claims (2)

D型黒鉛組織の片状黒鉛鋳鉄で形成された樹脂成形用金型において、前記D型黒鉛組織は、鋳型表面へのTiの塗布により表面に形成を行い、平面で観察したときの平均長さが0.05mm以下の黒鉛であり、かつ該黒鉛間の平均距離が0.02mm以下であることを特徴とする樹脂成形用金型。  In a resin molding die formed of flake graphite cast iron having a D-type graphite structure, the D-type graphite structure is formed on the surface by applying Ti to the mold surface, and the average length when observed in a plane Is a graphite having a thickness of 0.05 mm or less, and an average distance between the graphites is 0.02 mm or less. Cを2.6〜3.8wt%、Siを1.2〜2.6wt%とし、かつ炭素当量(CE)が4.3以下としたことを特徴とする請求項1に記載の樹脂成形用金型。 2. The resin molding according to claim 1, wherein C is 2.6 to 3.8 wt%, Si is 1.2 to 2.6 wt%, and a carbon equivalent (CE) is 4.3 or less . Mold.
JP2002081364A 2002-03-22 2002-03-22 Mold for resin molding Expired - Fee Related JP4482264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002081364A JP4482264B2 (en) 2002-03-22 2002-03-22 Mold for resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002081364A JP4482264B2 (en) 2002-03-22 2002-03-22 Mold for resin molding

Publications (2)

Publication Number Publication Date
JP2003276029A JP2003276029A (en) 2003-09-30
JP4482264B2 true JP4482264B2 (en) 2010-06-16

Family

ID=29206559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002081364A Expired - Fee Related JP4482264B2 (en) 2002-03-22 2002-03-22 Mold for resin molding

Country Status (1)

Country Link
JP (1) JP4482264B2 (en)

Also Published As

Publication number Publication date
JP2003276029A (en) 2003-09-30

Similar Documents

Publication Publication Date Title
EP1711291B1 (en) Cylinder liner for insert casting
EP2422902B1 (en) Cylinder liner for insert casting use
CN107087366A (en) Metal middle frame structure processing technology, metal middle frame structure and electronic equipment
CA2614552A1 (en) Cylinder liner and engine
JP2956306B2 (en) Splash and manufacturing method of scroll fluid machine
CN101099983A (en) Metal thin plate calendaring resin die
CN105311801B (en) The manufacture method of batting faceplate of golf club head
JP5243157B2 (en) Manufacturing method of casting for tire mold
JP4482264B2 (en) Mold for resin molding
JP5726043B2 (en) Spheroidal graphite cast iron steel pipe forming roll and method for producing the same
JPH1136030A (en) Aluminum alloy for piston, and manufacture of piston
CN104550700A (en) Cold mold casting method of rubber
JP2004351485A (en) Method for working metal and work formed product
JP2005271006A (en) Metallic mold for casting and producing method therefor
JPH0399767A (en) Method for manufacturing internal chilling piping in casting metallic mold
JP3667723B2 (en) Manufacturing method of tire mold
KR900001097B1 (en) Cast metallic mold for molding plastic
JP3241300B2 (en) Mold casting method for casting accessory metal fittings made of dissimilar metals
CN108356689A (en) A kind of manufacturing method of titanium alloy Middle casing support plate and runner
JPH11268044A (en) Resin molding die and manufacture thereof
JPS58119434A (en) Sliding material for mechanical seal
CN203184593U (en) Hammer mandrel
JP3895304B2 (en) Manufacturing method of tire mold
JP2615463B2 (en) Free-cutting graphite cast steel and method for manufacturing machine parts using the same
JPS62282766A (en) Manufacture of composite gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4482264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees