JP4481812B2 - 赤外線センサを使用する攻撃に対する航空機の防御方法 - Google Patents

赤外線センサを使用する攻撃に対する航空機の防御方法 Download PDF

Info

Publication number
JP4481812B2
JP4481812B2 JP2004501874A JP2004501874A JP4481812B2 JP 4481812 B2 JP4481812 B2 JP 4481812B2 JP 2004501874 A JP2004501874 A JP 2004501874A JP 2004501874 A JP2004501874 A JP 2004501874A JP 4481812 B2 JP4481812 B2 JP 4481812B2
Authority
JP
Japan
Prior art keywords
infrared
aircraft
pattern
source
dispenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004501874A
Other languages
English (en)
Other versions
JP2005524816A (ja
JP2005524816A5 (ja
Inventor
オニール、メアリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2005524816A publication Critical patent/JP2005524816A/ja
Publication of JP2005524816A5 publication Critical patent/JP2005524816A5/ja
Application granted granted Critical
Publication of JP4481812B2 publication Critical patent/JP4481812B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J2/00Reflecting targets, e.g. radar-reflector targets; Active targets transmitting electromagnetic or acoustic waves
    • F41J2/02Active targets transmitting infrared radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は、赤外線センサを使用する敵の攻撃に対する航空機の防御に関する。
航空機または地上から発射されるミサイルのような軍用航空機に対して行われる敵の攻撃は、レーダセンサ、赤外線センサまたはそれら両方の組合わせにより通常誘導される。レーダセンサはターゲットの識別および位置決定において非常に正確である。しかしながら、それらは能動装置であり、レーダ信号を放射し、その放射はターゲットによって検出されて回避され、或いはレーダ源に対する反撃に使用される可能性が生じる欠点がある。
他方、赤外線センサは受動装置であり、その存在或いは動作を明らかにしない。過去20年にわたって敵の攻撃による航空機の損失の大部分は赤外線誘導ミサイルによるものである。多くの場合に、撃墜された航空機のパイロットは赤外線誘導ミサイルが爆発するまで攻撃されていることに気付かなかった。
赤外線誘導ミサイルはレーダ誘導ミサイルに比較してミサイルの赤外線センサに有効であるために最初の位置が潜在的なターゲットに接近していなければならない欠点がある。赤外線センサの視野は通常非常に狭く、数度程度である。それ故、多くの場合に、赤外線センサはミサイルの発射前に潜在的なターゲットを捕捉し、発射から迎撃までの全時間に対してターゲットに対して“ロック・オン”を維持しなければならない。ミサイルの飛行中に捕捉が失われると、そのターゲットの存在を監視するアクチブセンサを使用しないでターゲットを再捕捉することは通常不可能である。
赤外線誘導ミサイルに勝つための多くの対抗手段が存在する。歴史的には、最も普通の対抗手段は、赤外線センサを混乱させるような偽信号を使用するフレアー(発炎体)の使用がある。現世代の赤外線誘導ミサイルは、フレアーの特徴の識別に基づいてフレアーを無効にするようにプログラムされた対抗手段に対抗する手段を使用している。すなわち、その運動が前に捕捉したターゲットとは異なること、および/或いは前に捕捉したターゲットと比較してその熱放射特性が異なっていること等によって識別されることができる。ランプおよび指向性レーザが赤外線センサを盲目にさせ、または混乱させるために使用されることが可能であるが、これらの方法は寸法、重量、複雑性、およびパワーの要求等の点で欠点がある。
航空機を防御するための赤外線対抗手段の重要な進歩については米国特許6,055,909 号明細書に記載されている。この明細書に記載された方法では、発炎性その他の赤外線放射材料のディスクリートなパケットが制御された方法で放出され、点火されて赤外線信号を発生する。パケットは個々にまたはグループで放出され、それ故、種々の囮戦術が使用されることができる。
上記米国特許明細書に記載された方法は、多数の潜在的な敵の攻撃を処理するのに非常に有効である放出装置および放出戦術を提供する。しかしながら、赤外線対抗手段の効果をさらに改良する必要がある別の状態が存在する。本発明はこのような要求を満足させ、さらに関連する利点を与える。
本発明は、赤外線センサを使用するミサイルのような敵の攻撃に対して航空機を防御する方法を提供する。本発明の方法は、曳航された赤外線ソースディスペンサを使用することができ、或いは航空機本体中または航空機の外部に取付けられたポッドに組込まれたディスペンサまたはその他の形式のディスペンサのような他の状況で使用されることができる。本発明の方法は、放出された赤外線ソースの性質および/または放出の変調されたパターンを、種々の形式の赤外線センサおよび航空機が遭遇する幾何学的交戦シナリオに対して非常に有効であるように調整する。
本発明によれば、赤外線センサを使用する敵の攻撃に対して運動する航空機を防御する方法は、航空機により移動される赤外線ソースディスペンサ中に複数の放出赤外線ソースを設け、赤外線ソースの1組の赤外線放射特性は赤外線センサの1組の赤外線検出特性に応答するように選択される。赤外線ソースの変調されたパターンは赤外線ソースディスペンサから放出される。
典型的に、赤外線センサの1組の赤外線検出特性に応答するように赤外線ソースの立上がり時間と、ピークにおける時間と、および/または燃焼期間が選択される。1組の赤外線放射特性は、ミサイルの1組の動作特性および/または航空機の1組の動作特性に応答するように付加的に選択される。したがって、例えば、赤外線ソースの1組の赤外線放射特性は、赤外線センサの赤外線視野または対抗手段に対抗する赤外線センサのトリガーレベルのようなミサイルの1組の動作特性に応答するように選択される。1組の赤外線放射特性は、例えば航空機の赤外線シグネチュア特性に応答するように選択される。
別の形態では、赤外線センサを使用する敵の攻撃に対して運動する航空機を防御する方法は、航空機により移動される赤外線ソースディスペンサ中に複数の放出可能な赤外線ソースを設け、赤外線ソースディスペンサから赤外線ソースの変調されたパターンを放出するステップを含んでいる。その変調されたパターンは航空機と敵の攻撃との幾何学的交戦シナリオに応じて決定され、随意的に、しかし、好ましくは1組の赤外線センサの赤外線検出特性に応答するように決定される。放出可能な赤外線ソースの赤外線特性は前述のような方法で調整されることができる。
変調されたパターンを放出するステップは第1のグループの赤外線ソースを放出するサブステップを有していることが好ましく、そのサブステップは赤外線センサの1組の赤外線検出特性に応答するように選択された赤外線特性を有する初期ディストラクションサブパターンを含み、また、幾何学的交戦に対して調整された注意維持サブパターンを含み、随意的に赤外線センサの特性に対して調整された注意維持サブパターンを有することが好ましい。注意維持サブパターンの1例は、第1の幾何学的交戦シナリオに対する航空機の運動を運動学的に近似する運動学的サブパターンである。放出するステップはさらにその後に第2の初期ディストラクションサブパターンと、同じ赤外線センサの異なる交戦シナリオか、または異なる赤外線センサのいずれかの特性に対して調整された注意維持サブパターンとを含んでいる。典型的には第1のグループの赤外線ソースと第2のグループの赤外線ソースと間にはギャップが存在する。
したがって、赤外線センサを使用する敵の攻撃に対して運動する航空機を防御するための好ましい方法は、航空機により移動される複数の放出可能な赤外線ソースを設け、その赤外線ソースの1組の赤外線放射特性は赤外線センサの1組の赤外線検出特性に応答するように選択され、赤外線センサの赤外線検出特性および/または航空機と敵の攻撃との幾何学的交戦シナリオに応答するように決定された赤外線ソースの変調されたパターンを航空機から放出するステップを含んでいる。
この方法は、敵の攻撃の性質についての特別の情報と、防御される航空機の性質と、および航空機の防御を改善するための幾何学的交戦シナリオとを利用することにより、前記米国特許6,055,909 号明細書に記載された方法に勝る優れた方法である。多くの場合に敵の攻撃の性質についての知的な情報は航空機が敵の攻撃を受ける前に利用可能である。少なくともミサイルの1以上のタイプ、赤外線センサ、敵により利用可能で使用される攻撃戦術についてのいくつかの情報はしばしば知られている。前記米国特許明細書に記載された赤外線ソースに対する展開戦術は限定された方法でこの情報を利用する。本発明はこの使用を赤外線ソース自身の設計および選択ならびに赤外線ソースの変調パターンの放出のための技術に拡張する。
赤外線誘導ミサイルによる攻撃の性質は非常に確定が困難であり、幾つかの理由で困難な防御問題を提出する。第1に、レーダ誘導ミサイルと違って赤外線検出器は航空機が検出できるような信号を放射しないから、航空機は攻撃の事実は知らない。第2に、攻撃しているミサイルの正確な形式は確実には知られていない。通常攻撃者が特性の変化している幾つかの形式のミサイルの1以上のものを使用することについての何等かの情報は存在するが、特定の攻撃にどのミサイルが使用されるかは知らない。第3に、航空機に対するミサイルの幾何学的交戦は知られていない。すなわち、航空機の飛行方向に対してどこからミサイルが発射され、どの方向から来るか、およびその速度等は確実には知られていない。これらの不確定と、ミサイルが航空機の使用する対抗手段に勝つように設計されたミサイル中に組込まれた対抗手段に対抗する手段を有することとが組合わされて困難はさらに増大する。
前記米国特許6,055,909 号明細書には、制御されたパターンで多量の発火性の箔を散布することに基づいた幾つかの可能な防御シナリオが記載されているが、発火性の材料の性質を最適に生成する方法については示されていない。本発明の方法は、前記米国特許6,055,909 号明細書に記載された箔の散布または類似の形式の方法を使用するが、さらに種々の形式の赤外線センサを間違わせるのに最も有効な発火性の箔の性質を規定する。本発明の方法はまた前節で述べた非常に攻撃条件が不確定な状態で種々の敵の攻撃に有効に応答する変調された放出パターンを規定することによって前記米国特許明細書記載の方法よりも優れている。変調および放出解析における重要な考察は先制攻撃で長い時間にわたって放出されるように発火性材料の最も効率のよい使用である。
本発明の方法は、ミサイルのセンサがすでに航空機のシグネチュアを捕捉している最悪の場合を仮定して、まず最初にセンサの注意を航空機から放出された赤外線ソースへ間違えさせ、その後センサが航空機のシグネチュアを再捕捉しないような十分な長さの時間に対してセンサの注意を赤外線ソース上に保持させる。赤外線ソースは航空機がその放出されたパターンから離れて飛行するように航空機のさらに後方でさらに下降し、或いは放出されたパターンが航空機から離れて降下する。その結果、対向手段に対抗するミサイルの手段の能力によって後で航空機ではない信号を追跡していることを決定した場合であっても、ミサイルの限定された視野と航空機の移動とによってセンサが航空機を再捕捉することは困難になる。
本発明のその他の特徴および効果は、本発明の原理を例示として示している添付図面を参照にした以下の本発明の好ましい実施形態の詳細な説明から明らかされるであろう。しかしながら本発明の技術的範囲はこの好ましい実施形態に限定されるものではない。
図1は赤外線ソースディスペンサ24を曳航して飛行方向22に飛行している航空機20を概略的に示している。航空機はそのエンジンから放出される航空機赤外線シグネチュアプルーム25を有している。赤外線ソースディスペンサ24は赤外線ソース28の変調されたパターン26を制御可能に放出する。図2は類似しているが、図2では赤外線ソースディスペンサ24は航空機20の機内または外部に支持されたポッドとして配置されている。いずれの場合にも、赤外線ソースディスペンサ24と赤外線ソース28は、赤外線ソース28が放出されるまで航空機により運ばれる。赤外線ソースディスペンサ24は航空機20からの電気信号によって、或いは内部的または局部的に発生された制御信号によって、或いはそれらの信号の組合わせによって制御される。航空機20は1以上赤外線ソースディスペンサ24を搭載することができる。2以上赤外線ソースディスペンサ24の場合には、赤外線ソースディスペンサ24は同じタイプの赤外線ソース28を搭載してもよく、或いは異なるタイプの赤外線ソース28を搭載してもよい。赤外線ソースディスペンサ24と赤外線ソース28は前記米国特許6,055,909 号明細書に記載された形式のものが好ましく、この特許明細書はここで参考文献とされる。
図2では2以上の赤外線ソースディスペンサ24が利用および動作可能である。特に図2では、2つの赤外線ソースディスペンサ24a および24b があり、2つの赤外線ソース28a および28b のそれぞれの2つの異なったパターン26a および26b を放出する。図2は航空機20の尾部に共に設置された2つの赤外線ソースディスペンサ24a および24b を示しているが、それらは代わりに航空機の異なる部分に設置され、或いは航空機の後方に曳航されてもよく、例えば、尾部に1つと翼下のポッドに1つ、航空機の両側の2つの翼下のポッドに1つづつ、尾部に1つと他の1つは胴体のさらに前方に、1つは曳航されたデコイ中に他の1つは航空機中に、或いは任意のそれらの組合わせで設置されることができる。縦方向または横方向の間隔を隔てた位置に赤外線ソースディスペンサ24a および24b を取付けることによって、変調された赤外線ソースパターンの放出において制御される付加的な位置変数が与えられる。
第1のディスペンサ24a は第1のセットの放射特性を有する第1の赤外線ソース28a を放出し、第2のディスペンサ24b は第2のセットの放射特性を有する第2の赤外線ソース28b を放出する。赤外線ソース28a と28b は同じタイプでもよく、或いは異なるタイプでもよい。図2では、2つのパターン26a と26b とは同時に放出され、そのために両方のパターンは時間的に任意の瞬間にセンサ36により観察されることができる。しかしながらそれらは順次放出されてもよい。後述するように、本発明の方法は、赤外線ソース28の性質が敵の攻撃の性質、航空機の性質、幾何学的交戦、その他のファクターに応じて選択されてもよい。したがって、2つの異なるタイプの赤外線ソース28a および28b を設けることによってさらに有効な対抗手段変調過程を使用することができる。2つ(またはそれより多く)のタイプの赤外線ソース28の能力は単一の赤外線ソースを放出する場合の単なる2倍ではなくさらに多くの能力を与える。ここでさらに詳しく説明するように、赤外線ソース28はセンサ36の赤外線検出特性その他のファクタにしたがって選択される。2つの異なる赤外線ソース28を選択可能なパターンで同時に放出する能力は敵の攻撃手段30に対する囮作用を成功させる可能性を増加させる。さらに別の変形では、2つのタイプの赤外線ソース28a および28b は単一の赤外線ソースディスペンサ24中に負荷され、順次放出される。図1および2に示され、ここで説明した種々の特徴は両立する範囲で互いに使用されることができる。
図3は航空機20に対する敵の攻撃手段30を示しており、ここで、ミサイル32の形態で航空機20の付近に向けられている攻撃手段の飛行ベクトル34に沿ったコースに沿って飛行しているが、実際にはここで説明する防御方法により実際の航空機20から少しだけ変位している。攻撃手段30は典型的にはそのノーズに設けられた視野角度αを有する非イメージ型赤外線センサ36を有する。現在のミサイルシステムでは視野αは非常に狭く、典型的には3度より小さく、通常は1〜2度程度である。航空機20を敵の攻撃手段30から守ために、その攻撃手段30は航空機20から外れた方向であり、航空機20の背後に延在するペンシルパターン26として概略的に示されている赤外線ソース28のパターン26の方向でなければならない。
航空機20と攻撃手段30の幾何学的交戦は航空機20の飛行方向22と攻撃手段30の飛行ベクトル34との間のアスペクト角度θにより特徴付けられることができる。攻撃手段30はパターン26から攻撃手段30の飛行ベクトル34に沿って距離Rにある。センサ36の視野内である航空機20の飛行方向22に沿って位置する長さdは近似的に、
d=2Rtan(α/2)/sinθ である。
図4はセンサ36の視野内であり、図3に示された交戦中にミサイルによる攻撃手段30の距離Rの異なる3つの値に対する、角度θの関数としてセンサ36の視野内であるパターン26の全長dtotal を示しているグラフである。この交戦シナリオはパターン26を感知するために利用可能なセンサ36の視野の半分だけのセンサ36が航空機20を追跡する状態を仮定している。この計算で、センサ36の視野は1.8度であり、パターン26の全長dtotal は500フィートであるとしている。角度θの値の0度は正面からのアスペクトであり、θの90度は航空機の側面を観察している状態であり、θの180度は航空機の後方からの状態である。また、例示的に示されているが、実際の航空機のエンジンの排気ガス38は同じ角度θの関数である。
図3および4から幾何学的交戦がセンサ36により感知された赤外線エネルギに強く影響することが認められる。小さいRの値に対しては、センサの視野のパターン26は、約45度よりも大きいアスペクト角度θに対して航空機プルーム38を見るのに等しい。赤外線ソース28の均一な放出パターン26はこれらの場合に対しては十分であり、センサ36の注意が航空機プルーム38から引き離され、パターン26の方向に引付けられる。しかしながらもっと小さいアスペクト角度θおよび大きい距離R(示された3km程度)に対しては、センサのパターン26の観察は航空機のプルーム38と大きく異なっている。敵の攻撃手段30に対する精巧な対抗手段に対抗する手段では均一なパターンと航空機のエンジンのシグネチュアプルーム38とを識別してそのため放出されたパターン26は攻撃手段30を航空機から逸らすことに失敗する。
本発明によれば、赤外線ソース28とパターン26の変調とのいずれか一方或いは両方が変化されることができる。図5は一般的な方法を示している。航空機20により移動される赤外線ソースディスペンサ24中に設けられる複数の放出可能な赤外線ソース28がステップ50で準備される。これらの赤外線ソース28の1組の赤外線放射特性は赤外線センサ36の1組の赤外線検出特性に応じて選択される。その後、赤外線ソース28の変調されたパターン26は赤外線ソースディスペンサ24から放出される。パターン26は航空機20と敵の攻撃手段30の幾何学的交戦シナリオに応じて決定され、随意的にまた赤外線センサ36の1組の赤外線検出特性に応じて決定される。ステップ52はステップ54で通常反復され、2つの順次の放出ステップ52の間に時間的にギャップを有して間隔を隔てて行われる。ステップ50と52はステップ56のように反復されてもよく、2以上の赤外線ソース28が使用可能であれば異なった赤外線ソース28を選択する。例えば、2以上の赤外線ソースディスペンサ24がある場合には異なったタイプの赤外線ソース28が負荷される。
以上の説明はステップ50と52に関連するパラメータを決定するための現在の好ましい方法についてのものである。この方法はさらに十分に発展し、経験が得られるので、これらの技術はさらに洗練されたものになる可能性がある。
赤外線生成素子が赤外線ソースディスペンサ24から放出されるとき、発炎その他の熱生成作用が開始され、最大出力に上昇しその後、下降する。図6は好ましい発炎性赤外線ソース28に対する燃焼プロフィールを示している。全体の燃焼時間はtburnは10%のピーク強度から90%のピーク強度までの立上がり時間triseと、90%以上のピーク強度にある時間tpeakと、90%のピーク強度から10%のピーク強度までの発炎燃焼が降下する下降時間tfallとの合計である。90%と10%のレベルは最大値の位置を正確に決定する必要をなくし、開始および尾部効果を避けるために数学的な展開で使用される。
赤外線生成素子の特性は敵の攻撃手段の性質、航空機の性質、幾何学的交戦、およびその他の要因に応じて計算されることができる。以下は、現在好ましい赤外線生成素子の性質を設計する方法であるが、他の方法も同様に可能である。この方法では、立上がり時間triseは、図6でピーク(90%のピーク強度よりも大きい期間として定義される)が航空機20からの最小距離locmin と航空機20からの最大距離locmax との間で生じるような範囲内に位置する。この立上がり時間が小さすぎると、赤外線ソースが航空機に接近しすぎた位置でピークに到達し、敵の攻撃手段30に対する囮作用により敵の攻撃手段が航空機から外れて囮に向けられた場合でも囮動作は成功しない。その理由は、敵の攻撃手段がパターン26で爆発することにより、近接している航空機に損傷を与えるからである。立上がり時間が長すぎると、敵の攻撃手段30のセンサ36は航空機から注意を逸らさない。その理由は、囮手順の開始前にセンサ36はすでに航空機20を捕捉している最悪の場合を考えると、放出された赤外線ソースが航空機から離れ過ぎてセンサ36の視野外となるからである。
飛行方向22に沿って測定された航空機20の中心に関して最小距離は次式によって計算される。
locmin =locdisp+Lac/2+rlethal
ここで、locdispは航空機20の中心に関する赤外線ソースディスペンサ24の位置であり(中心より前方は正の数値であり、中心より後方は負の数値であ)、Lacは飛行方向22に平行に測定された航空機の長さであり、rlethalは爆発時の攻撃手段30の破壊半径である(信管の接触に対してゼロ)。
最大距離は次式によって計算され、
locmax =locdisp+Lac/2+Rtanα
ここで、Rは図3に示されているように敵の攻撃手段30の発射時の視野αにおける公称距離である。
距離は、例えば地上攻撃プロフィールで敵の攻撃手段30に曝される可能性のある期間中航空機20の最小速度vmin と最大速度vmax で割り算することにより時間に変換される。立上がり時間triseはこれら2つの時間の間にある。すなわち、
locmax /vmax >trise>locmin /vmin
ピーク期間および各赤外線ソース素子の温度は航空機の最小シグネチュアに基づいて決定され、対抗手段に対する敵の攻撃手段30の対抗手段のトリガーを避ける。すなわち、
el,max,A=Ctrig×Jac,min,A
ここで、Jel,max,Aは赤外線スペクトル帯域Aにおけるステラジアン当たりのワットによる素子の最大ピーク放射強度であり、Ctrigは問題とするミサイルがその対抗手段に対抗する手段をトリガーする比率であり、Jac,min,Aはスペクトル帯域Aにおけるステラジアン当たりのワットによる最小航空機放射強度である。
放出時間を最大にして、したがって現在の囮手順の効果を最大にするために、選択された赤外線放射材料は航空機のシグネチュアプルーム25にスペクトル的に正確に整合してはならない。すなわち、各赤外線ソースは航空機のシグネチュアプルームに対して個々にスペクトル的に正確ではない。その代わりに赤外線ソース28は航空機の排気の特性に対して整合を示すのではなく、より高い温度の燃焼でなければならない。その理由は多数の赤外線ソース28は任意の瞬間にセンサ36の視野内にあり、その幾つかは高い輝度で燃焼し、他のものはそのピーク出力にはないからである。センサはこれらの赤外線放射ソース28の平均値を知覚する。高い輝度で燃焼する赤外線放射ソースの使用は、ある期間の時間中に放出するために必要なソースが少数であることを意味しており、それは固定した容量のディスペンサに対して放出される時間を増加させる。
センサ36によって感知される時間的に任意の瞬間における見掛け上の強度は,
J=ΣJn /N
ここで、Jはセンサ36の視野中の平均放射強度であり、Jn は各赤外線ソース素子の放射強度であり、Nはセンサ36の視野中の赤外線ソースそしの全体の数であり、合計はN個の素子の全体にわたる合計である。1より多くの形式の赤外線ソース38が放出される場合には、時間的にある瞬間におけるセンサ36の視野中にある放出された赤外線ソースの全てのタイプにわたって合計される。
平均温度を決定するために、合計は多数の赤外線スペクトル帯域にわたって行われる。平均温度は材料のピーク温度よりも低い。材料の最適の温度を決定するために、ここでB帯域として示されている第2のスペクトル帯域における性能は、
el,max,B=β×Jmatch,B
ここで、Jel,max,Bは帯域Bにおけるステラジアン当たりのワットによる各赤外線ソース素子に対する最大ピーク放射強度であり、βは2つの異なったスペクトル帯域におけるエネルギの比である最適化係数であり、Jmatch,B はセンサ要求に完全に整合するための帯域Bにおけるセンサ36のステラジアン当たりのワットによる整合されたスペクトル強度である。βの値は赤外線ソース素子の粒子状態に基づいて増減されてもよい。大きいβは最小の素子サイズにおける制御性を増加させる。例えば、単一点フレアに対して、β=1であり、材料はスペクトル的に整合している。理想的な赤外線ソース素子は立上がり時間にわたって均等に広がり、βの値は2.0よりも大きい。Jel,max,Bに対するJel,max,Aの比を使用して材料の温度が決定される。
赤外線ソース素子のピーク燃焼時間は、tpeak=trise×βである。
各赤外線ソース素子の最小燃焼時間は、tburn=Rbeam(tanα)/vac
であり、ここで、Rbeamは90度のθ値(ビームの方位)に対する敵の攻撃手段30の最大発射距離であり、vacは航空機の平均速度である。
この式の展開からtburn、trise、tpeakの値および図6のピークにおける赤外線ソース素子の最大温度がステップ50で使用するために示された限界内で決定される。すなわち、1組の赤外線ソースの赤外線放射特性は赤外線センサの1組の赤外線検出特性(例えばαおよびCtrigの値)、1組のミサイルの動作特性(例えばその距離)、および1組の航空機の動作特性(例えばその速度)に応じて選択される。
一度これらの赤外線ソースの特性が設定されるならば、ステップ52の変調されたパターンが決定される。変調されたパターンは典型的には複数の赤外線ソースのグループを含んでおり、各グループはサブパターンに分割されている。
好ましい方法では、各グループでは、“初期デストラクションサブパターン”と呼ばれる赤外線エネルギ出力の初期のピークバーストが存在し、センサ36に対して航空機20よりも関心を引くターゲットを与え、それによってセンサは最初に航空機20から離れて放出された赤外線ソースに引付けられる。最小のジャミング対信号比(J/Smin )を得るために必要とされる初期デストラクションサブパターンで放出される赤外線ソース28の数Npeakは、最悪の場合の航空機シグネチュアに基づいて決定される。もしもミサイルの警戒が利用可能であれば、この選択は幾何学的交戦シナリオのアスペクト角度に基づいて調整されてもよい。Npeakの値は次の式で計算される。
peak=(J/Smin )×(Jtarget)/Jel,max,A
ここで、Jtargetは航空機のピーク放射強度であり、Jel,max,Aは帯域Aの各赤外線ソース素子のピーク放射強度である。
初期デストラクションサブパターンは、センサ36に対して航空機20のシグネチュアよりも関心を引くセンサの視野内のエネルギのバーストを与え、それ故、センサはインテリジェントに潜在的なターゲットとして初期デストラクションを解析する。しかしながら、変調されたパターンには幾つかの別の特徴が欠けているため、インテリジェントなセンサにより赤外線ソースパターンをさらに解析することにより、その赤外線ソースパターンは囮であることガ決定され、前に捕捉されたターゲットを再捕捉しようとして“対抗手段に対抗する手段”と呼ばれるプロセスを求める。例えば、インテリジェントなセンサは最初に捕捉したターゲットの前に決定した通路を推定させる順方向バイアスを含み、その推定された位置でターゲット航空機20を再捕捉しようとする。
それ故、放出された赤外線ソース28の各グループはさらに幾何学的交戦および/または赤外線センサの特性および/または速度のような航空機の特性に応答するように選択された“注意維持サブパターン”を含んでおり、それは放出されたパターンが関心のある実際のターゲットであることをインテリジェントなセンサが確信することにより赤外線ソースに赤外線センサの捕捉を維持させようとする。注意維持サブパターンの決定および利用は少数の通常の発炎体ではなく、発炎箔のような多数のディスクリートな赤外線ソースを使用することによる重要な利点の1つを明らかにする。
放出された赤外線ソースのそれぞれの順次のグループは一般的に異なった注意維持サブパターンを有している。図7は概略的な例示による方法を示している。放出された赤外線ソースの第1のグループ70では、単一の大きいバーストの形態の初期デストラクションサブパターン72に続いて注意維持サブパターン74が放出される。注意維持サブパターン74は3つの短いバースト76a, 76b, 76c と、それに続く少し遅れた第4の短いバースト76d として示されている。各バースト72, 76a, 76b, 76c, 76dは赤外線ソースディスペンサ24からの赤外線ソースの放出により形成されているが、異なった数である。大きいバーストは多数の赤外線ソースの迅速な放出により生成される。バーストの強度およびスペクトル内容はさらに前に論じたように決定された放出材料の性質によってさらに決定される。
第2のグループ78は時間的および空間的ギャップ80を有して第1のグループ70に後続している。第2のグループ78は初期デストラクションサブパターン82を含んでおり、それはこの場合には第1のグループ70の初期デストラクションサブパターン72と同じであり、それに続いて注意維持サブパターン84が放出され、それは第1のグループの注意維持サブパターン74とは異なっている。
第3のグループ86が時間的および空間的ギャップ88を有して第2のグループ78に後続している。第3のグループ86は初期デストラクションサブパターン90を含んでおり、それはこの場合には初期デストラクションサブパターン72および82とは異なっており、それに続いて注意維持サブパターン92が放出され、それは注意維持サブパターン74および84とは異なっている。
第4のグループ94は航空機20によって放出されているところである。
各グループ70, 78, 86, および94では、2以上、好ましくは3以上のバーストが存在する。それらのバーストは互いに時間的および空間的に分離されている。好ましい方法においては、第1のバーストは初期デストラクションサブパターンを規定し、後続するバーストは注意維持サブパターンを規定している。注意維持サブパターンで2以上のバーストを使用することにより、センサ36の特性に対して注意維持サブパターンを調整することが可能になる。各バーストは多数の個別の赤外線ソース28を有しており、各バーストの強度はバースト内の赤外線ソース28の数に依存している。グループ間にはギャップ80および88のようなギャップが存在する。それらのギャップはグループと航空機との間を空間的および時間的に分離することによりセンサ36による航空機20の再捕捉を阻止する。
グループ70, 78, 86, および94は、種々の形式のセンサおよび種々の幾何学的交戦シナリオに対する初期デストラクションおよび注意維持に対する最大の可能性を与えるために異なったパターンにされている。例えば両方のセンサのタイプが確実に知られておらず、センサのタイプAおよびセンサのタイプBだけが知られており、幾何学的交戦が知られていない最悪の場合には、第1のグループ70は0〜45度のアスペクト角度θにおいてセンサのタイプAに対して応答して囮としての最大の機会を与えるようにパターン化され、第2のグループ78は45〜90度のアスペクト角度θにおいてセンサのタイプAに対して応答して囮としての最大の機会を与えるようにパターン化され、第3のグループ86は0〜45度のアスペクト角度θにおいてセンサのタイプBに対して応答して囮としての最大の機会を与えるようにパターン化され、第4のグループ94は45〜90度のアスペクト角度θにおいてセンサのタイプBに対して応答して囮としての最大の機会を与えるようにパターン化される。それに続いて、図示されていないグループが、残りの可能なアスペクト角度におけるセンサタイプAに指向するパターンおよび残りの可能なアスペクト角度θにおけるセンサタイプBに指向するパターンを与えるためにこのタイプのシーケンスに後続する。場合によっては変調シナリオは組合わされ、例えば、特定の幾何学的交戦においてセンサタイプAを引付ける同じグループのパターンが同じ幾何学的交戦においてセンサタイプBに対しても有効であり、したがって二重化は必要ない。これらの変調パターンは各センサタイプの既知の特性と図3および4に示されたような幾何学的交戦から決定される。
放出パターンは、センサタイプおよび幾何学的交戦の全てのシナリオが放出された後に反復される。ミサイルを最初に間違わせるように注意を引き付けて、それにより航空機の捕捉を失敗させるために、赤外線センサに対して防御される航空機よりも引き付けられる1以上の赤外線ソースグループが赤外線センサに対して与えられることが必要である。したがって、攻撃するミサイルの典型的な飛行時間が3〜15秒であり、放出した各グループの典型的な期間が0.6秒である場合には少なくとも5つの赤外線ソース28のグループが最小で3秒の飛行時間中に放出されることができる。この多数の放出されたグループにより、広範囲の変調戦術がセンサのタイプおよび幾何学的交戦シナリオだけではなく、ミサイルが使用する異なった対抗手段に対抗する戦術のようなその他の要因に対しても対応することが可能になる。最小値よりもさらに長い飛行時間は、付加的なグループが放出されれば敵の攻撃に対する囮の可能性を増加させる。
本発明の方法の別の特徴は、放出の変調が、航空機が攻撃者について知っていること、および航空機攻撃を受けた課程中にその攻撃者についての付加的な情報を獲得したことのような多くの要因に応じて変更することが可能である。例えば、もしも、攻撃のアスペクト角度θが135〜180度の範囲(後方からの攻撃形態の普通のシナリオ)である可視および計器による観測のような付加的な情報を航空機が得たが、ミサイルの性質は知られていない場合には、ディスペンサ24からの赤外線ソースの放出の変調は直ちに変更されて、それにより次に放出される全ての放出グループ(現在の攻撃中)は135〜180度のアスペクト角度θにおけるセンサタイプAまたはセンサタイプBに指向される。例えば、さらにミサイルがタイプAのセンサを使用するものであることが識別され、アスペクト角度θが160度であることが識別された場合のような情報が得られた場合には、変調はさらに精密に調整されて、次のグループは囮によりミサイルが逸らされるまでアスペクト角度160度でタイプAのセンサに対して指向される。これらの精密調整ステップは例示として示され、実際的ではない。大抵の場合には、変調の精密調整は、未知のミサイルによる別の類似の攻撃の可能性、最初のミサイルの識別がエラーであったこと、航空機自身がアスペクト角度を変化させるような操縦をすること等を考慮して赤外線ソースの放出パターンの変調の若干の変更を残している。最良の戦術の展開は特定のミサイルの識別および交戦シナリオ、ならびに防御される航空機の識別に依存している。
本発明の方法はまた、できるだけ赤外線ソース材料の使用を節約するために赤外線ソース材料および放出パターンを選択する。通常の閃光では、航空機の搭乗員が攻撃が行われていることに気付いた後にのみ閃光を放出する方法が通常実用されており、そのような知覚が生じないと航空機は全く防御されない。本発明の方法では、航空機は十分な量の赤外線ソースを搭載することが可能であり、それは例えば数分のような長い時間にわたって変調されたパターンで放出されることができ、したがって航空機が最も危険である全体的に露出される期間中に放出されることができる。例えば、地上攻撃用の航空機は地上攻撃を行なっているとき最も危険であり、地上攻撃動作を開始するとき変調された放出を開始して安全な高度に戻り最も被害を受け易い区域を出る地上攻撃の完了まで変調された放出を続けることができる。
本発明の特定の実施形態について例示により詳細に説明したが、種々の変形、変更が本発明の技術的範囲を逸脱することなく可能である。したがって、本発明は特許請求の範囲の記載以外によって限定されることはない。
赤外線ソースのパターンを放出する赤外線ソースディスペンサを曳航する航空機の概略図。 機上ディスペンサから赤外線ソースのパターンを放射する航空機の概略図。 幾何学的交戦シナリオの概略図。 赤外線ソースのパターンからのミサイルの種々の距離に対する図3の幾何学的交戦シナリオにおけるアスペクト角度θの関数として赤外線ソースのパターンの観察のグラフ図。 本発明を実施する方法のブロックフロー図。 赤外線ソースの燃焼プロフィールの理想化されたグラフ図。 変調パターンの概略図。

Claims (8)

  1. 赤外線センサを使用する敵のミサイルの攻撃に対して運動する航空機を防御する方法において、
    航空機により移動される赤外線ソースのディスペンサ中に複数の放出可能な赤外線ソースを設け、この赤外線ソースのディスペンサは第1と第2の2個のディスペンサを含んでおり、その第1のディスペンサは第1のセットの赤外線放射特性を有する第1の赤外線ソースを放出し、第2のディスペンサは第2のセットの赤外線放射特性を有する第2の赤外線ソースを放出するように構成され、
    それらの赤外線ソースはそれぞれ、敵のミサイルが備えていることが予想される複数のタイプの赤外線センサの中の選択された1つ赤外線検出特性のセットに応答する赤外線パターンを共同して放射する1組の赤外線ソースから構成され
    敵のミサイルが備えていることが予想される複数のタイプの赤外線センサ中の選択された1つのタイプの赤外線センサの赤外線検出特性のセットに対応する赤外線パターンを放射する1組の赤外線ソースを赤外線ソースディスペンサから放出して変調されたパターンの赤外線放射を発生させ、そのパターンの発生においては、
    最初に第1の初期ディストラクションサブパターンを放出し、その後、第1の初期ディストラクションサブパターンとは異なるパターンを有する第1の注意維持サブパターンを放出して変調されたパターンの赤外線放射を発生させる航空機の防御方法。
  2. 第1の初期ディストラクションサブパターンは少なくとも2つの赤外線ソースの第1の初期ディストラクションサブパターンバーストを含み、
    第1の注意維持サブパターンは少なくとも2つの赤外線ソースの第1の注意維持サブパターンバーストを含んでいる請求項記載の方法。
  3. 前記1組の赤外線ソースを赤外線ソースディスペンサから放出して変調されたパターンの赤外線放射を発生させるステップにおいて、
    さらに、第2の初期ディストラクションサブパターンを放出し、その後、第1の初期ディストラクションサブパターンおよび第2の初期ディストラクションサブパターンとは異なるパターンを有する第2の注意維持サブパターンを放出する請求項1記載の方法。
  4. 前記1組の赤外線ソースは、赤外線センサの赤外線検出特性に応答するように赤外線ソースの立上がり時間と、ピークにおける時間と、燃焼期間との少なくとも1つを選択される請求項1記載の方法。
  5. 前記1組の赤外線ソースは、航空機の1組の動作特性に応答するようにそれぞれの赤外線ソースの放射特性が選択される請求項1記載の方法。
  6. 前記1組の赤外線ソースは、赤外線センサの赤外線視野に応答するようにそれぞれの赤外線放射特性が選択される請求項1記載の方法。
  7. 前記1組の赤外線ソースは、対抗手段に対抗する赤外線センサのトリガーレベルに応答するようにそれぞれの赤外線放射特性が選択される請求項1記載の方法。
  8. 赤外線センサを使用する敵のミサイルの攻撃に対して運動する航空機を防御する方法において、
    航空機により移動される赤外線ソースのディスペンサ中に複数の放出可能な赤外線ソースを設け、この赤外線ソースのディスペンサは第1と第2の2個のディスペンサを含んでおり、その第1のディスペンサは第1のセットの赤外線放射特性を有する第1の赤外線ソースを放出し、第2のディスペンサは第2のセットの赤外線放射特性を有する第2の赤外線ソースを放出するように構成され、
    それらの赤外線ソースはそれぞれ、敵のミサイルが備えていることが予想される複数のタイプの赤外線センサの中の選択された1つのタイプの赤外線検出特性のセットに応答する赤外線パターンを共同して放射する1組の赤外線ソースからそれぞれ構成され
    敵のミサイルが備えていることが予想される複数のタイプの赤外線センサ中の選択された1つの赤外線センサの赤外線検出特性のセットに対応する赤外線パターンを放射する1組の赤外線ソースを赤外線ソースディスペンサから放出して変調されたパターンの赤外線放射を発生させ、そのパターンの発生においては、
    最初に第1の初期ディストラクションサブパターンを放出し、その後、第1の初期ディストラクションサブパターンとは異なるパターンを有する第1の注意維持サブパターンを放出して変調されたパターンの赤外線放射を発生させ
    前記変調されたパターンは、赤外線センサの1組の赤外線検出特性と、航空機と敵のミサイルとの幾何学的交戦シナリオとの少なくとも1つに応答するように決定される航空機の防御方法。
JP2004501874A 2002-05-03 2003-04-25 赤外線センサを使用する攻撃に対する航空機の防御方法 Expired - Fee Related JP4481812B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/139,005 US6662700B2 (en) 2002-05-03 2002-05-03 Method for protecting an aircraft against a threat that utilizes an infrared sensor
PCT/US2003/012914 WO2003093757A1 (en) 2002-05-03 2003-04-25 Method for protecting an aircraft against a threat that utilizes an infrared sensor

Publications (3)

Publication Number Publication Date
JP2005524816A JP2005524816A (ja) 2005-08-18
JP2005524816A5 JP2005524816A5 (ja) 2006-07-06
JP4481812B2 true JP4481812B2 (ja) 2010-06-16

Family

ID=29269481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004501874A Expired - Fee Related JP4481812B2 (ja) 2002-05-03 2003-04-25 赤外線センサを使用する攻撃に対する航空機の防御方法

Country Status (8)

Country Link
US (1) US6662700B2 (ja)
EP (1) EP1502071A1 (ja)
JP (1) JP4481812B2 (ja)
AU (1) AU2003223737B2 (ja)
CA (1) CA2478922A1 (ja)
IL (2) IL161558A0 (ja)
NO (1) NO20035854L (ja)
WO (1) WO2003093757A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040011235A1 (en) * 2000-12-13 2004-01-22 Callaway James Dominic Infra-red emitting decoy flare
IL151672A (en) * 2002-09-10 2008-06-05 Patrick Bar-Avi Infrared-guided missile defense system
US6825791B2 (en) * 2002-12-20 2004-11-30 Sanders Design International, Inc. Deceptive signature broadcast system for aircraft
US20050150371A1 (en) * 2003-01-29 2005-07-14 Rickard John T. System and method for the defense of aircraft against missile attack
US6929214B2 (en) * 2003-07-22 2005-08-16 Northrop Grumman Corporation Conformal airliner defense (CAD) system
US20050062638A1 (en) * 2003-09-24 2005-03-24 Zeineh Rashid A. Missile deflector for airplanes
US7899644B2 (en) * 2004-02-05 2011-03-01 Bae Systems Information And Electronic Systems Integration Inc. Threat launch detection system and method
US20060065774A1 (en) * 2004-02-13 2006-03-30 Airbus Anti-missile protection device for an aircraft
US7028947B2 (en) * 2004-04-30 2006-04-18 Mlho, Inc. Self-powered tethered decoy for heat-seeking transport aircraft missile defense
US8339580B2 (en) * 2004-06-30 2012-12-25 Lawrence Livermore National Security, Llc Sensor-guided threat countermeasure system
US7617776B1 (en) * 2004-09-27 2009-11-17 Diffraction, Ltd. Selective emitting flare nanosensors
US7377217B2 (en) * 2004-10-18 2008-05-27 The Boeing Company Decoy device and system for anti-missile protection and associated method
US7505693B1 (en) * 2004-12-31 2009-03-17 Bae Systems Information And Electronic Systems Integration Inc. Miniature waveform modulator with full pulse by pulse timing control
US7992496B2 (en) * 2005-04-28 2011-08-09 Alloy Surfaces Company, Inc. Decoys for infra-red radiation seeking missiles and methods of producing and using the same
AU2006330065B2 (en) * 2005-04-28 2011-12-01 Alloy Surfaces Company, Inc. Decoys for infra-red radiation seeking missiles and methods of producing and using the same
US7343861B1 (en) * 2005-05-31 2008-03-18 The United States Of America As Represented By The Secretary Of The Navy Device and method for producing an infrared emission at a given wavelength
DE102005035251A1 (de) * 2005-07-25 2007-02-01 Rheinmetall Waffe Munition Gmbh Verfahren und Vorrichtung zur Täuschung infrarot-, radar- als auch Dual Mode- gelenkter Flugkörper
US7367531B2 (en) * 2005-08-09 2008-05-06 Greene Leonard M Systems and methods for evading heat seeking missles
US7370836B2 (en) * 2005-08-09 2008-05-13 Greene Leonard M Missile defense system and methods for evading heat seeking missiles
US7400287B2 (en) * 2006-02-17 2008-07-15 Honeywell International Inc. Smart chaff
US20070234922A1 (en) * 2006-04-11 2007-10-11 Van Laar Kurt D Countermeasures radiation source for missile decoys
DE602007007289D1 (de) * 2007-03-27 2010-08-05 Saab Ab Sicherheitsanordnung für ein Entladungssignalsystem
US8005657B2 (en) * 2008-04-23 2011-08-23 Lockheed Martin Corporation Survivability mission modeler
US8185256B2 (en) 2008-04-23 2012-05-22 Lockheed Martin Corporation Threat prioritization using engagement timeline
US8280702B2 (en) * 2008-07-08 2012-10-02 Lockheed Martin Corporation Vehicle aspect control
US8537048B2 (en) * 2008-09-26 2013-09-17 The Boeing Company Active chaff
US8305252B2 (en) * 2009-08-14 2012-11-06 The United States Of America As Represented By The Secretary Of The Navy Countermeasure device for a mobile tracking device
US20120210855A1 (en) * 2010-02-22 2012-08-23 Bae Systems Information And Electronic Systems Integration Inc. System and method for launching countermeasures to missile attack
RU2600136C1 (ru) * 2015-06-18 2016-10-20 Акционерное общество "Научно-исследовательский институт "Экран" Способ использования тепловой ловушки
RU2617008C1 (ru) * 2016-06-02 2017-04-19 Владимир Иванович Винокуров Способ применения тепловой ловушки
KR101962271B1 (ko) * 2017-12-07 2019-03-26 국방과학연구소 적외선 화염모사장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150848A (en) 1961-06-28 1964-09-29 Samuel E Lager Method of decoying a missile from its intended target
US4183302A (en) * 1967-11-06 1980-01-15 General Dynamics Pomona Division Sequential burst system
US6352031B1 (en) * 1972-08-18 2002-03-05 Northrop Grumman Corporation Radiative countermeasures method
FR2383419A1 (fr) * 1977-03-07 1978-10-06 Lacroix E Valise lance-leurres pour la deception des systemes de guidage d'armes
US4406227A (en) * 1981-04-09 1983-09-27 The United States Of America As Represented By The Secretary Of The Army System for multistage, aerial dissemination and rapid dispersion of preselected substances
FR2507304A1 (fr) * 1981-06-03 1982-12-10 Lacroix E Dispositif lance-leurre infrarouge a mise en oeuvre rapide avec double securite
DE3421708A1 (de) * 1984-06-12 1985-12-12 Buck Chemisch-Technische Werke GmbH & Co, 7347 Bad Überkingen Einrichtung zur erzeugung einer scheinzielwolke, insbesondere einer infrarot-scheinzielwolke
DE3612183A1 (de) * 1986-04-11 1987-10-22 Wegmann & Co Verfahren zur ablenkung von durch radar- und/oder infrarotstrahlung gelenkten flugkoerpern, insbesondere zum schutz von seeschiffen und schiffsverbaenden sowie einrichtung zur durchfuehrung des verfahrens
SE469196B (sv) * 1991-10-02 1993-05-24 Nobeltech Electronics Ab Faellarenhet samt faellarsystem innefattande minst en saadan faellarenhet
US5411225A (en) * 1993-07-26 1995-05-02 Lannon; Robert G. Reusable non-pyrotechnic countermeasure dispenser cartridge for aircraft
US5773745A (en) * 1994-06-06 1998-06-30 Alliant Defense Electronic Systems, Inc. Method and device for cutting and dispensing of adversarial interaction countermeasures
US5915694A (en) * 1998-01-09 1999-06-29 Brum; Roger D. Decoy utilizing infrared special material
US6055909A (en) 1998-09-28 2000-05-02 Raytheon Company Electronically configurable towed decoy for dispensing infrared emitting flares
JP2001356000A (ja) * 2000-06-14 2001-12-26 Asahi Kasei Corp 航空機用曳航式フレア

Also Published As

Publication number Publication date
NO20035854L (no) 2003-12-30
JP2005524816A (ja) 2005-08-18
WO2003093757A1 (en) 2003-11-13
AU2003223737A1 (en) 2003-11-17
CA2478922A1 (en) 2003-11-13
US6662700B2 (en) 2003-12-16
IL161558A0 (en) 2004-09-27
IL161558A (en) 2010-12-30
AU2003223737B2 (en) 2006-07-06
US20030205126A1 (en) 2003-11-06
EP1502071A1 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP4481812B2 (ja) 赤外線センサを使用する攻撃に対する航空機の防御方法
JP3429276B2 (ja) 赤外線放射閃光装置を放出するための電子的に構成可能な曳航デコイ
US8066218B2 (en) Anti-missile defense suite
US5472533A (en) Spectrally balanced infrared flare pyrotechnic composition
IL188087A (en) Method of protection against missiles of vehicles and execution facility
US10948270B2 (en) Method and defense system for combating threats
US10670376B2 (en) Method and device for providing a dummy target for protecting a vehicle and/or an object from radar-guided seeker heads
US20230099600A1 (en) Applications of ultra-short pulse laser systems
JPH05157495A (ja) 赤外線を放射している物体をミサイルから防御する方法およびその方法を実施するための落下可能な物体
US20220026181A1 (en) Method for protecting moving or stationary objects from approaching laser-guided threats
US8704699B2 (en) Dipole based decoy system
RU2629464C1 (ru) Способ защиты летательных аппаратов от ракет, оснащенных головками самонаведения с матричным фотоприемным устройством
RU2146352C1 (ru) Противоракетная ракета
RU2371665C2 (ru) Способ защиты объектов техники морского и сухопутного базирования и устройство для его осуществления
IL281525B1 (en) A method of protecting vehicles through identification as friend or foe
NZ752067B2 (en) Method and defence system for combating threats
GB2524669A (en) A self-propelled flying device to simulate a hostile firing action

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4481812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees