JP4481589B2 - Method for producing bisphosphine - Google Patents

Method for producing bisphosphine Download PDF

Info

Publication number
JP4481589B2
JP4481589B2 JP2003127900A JP2003127900A JP4481589B2 JP 4481589 B2 JP4481589 B2 JP 4481589B2 JP 2003127900 A JP2003127900 A JP 2003127900A JP 2003127900 A JP2003127900 A JP 2003127900A JP 4481589 B2 JP4481589 B2 JP 4481589B2
Authority
JP
Japan
Prior art keywords
formula
group
borane
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003127900A
Other languages
Japanese (ja)
Other versions
JP2004331540A (en
Inventor
浩仁 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2003127900A priority Critical patent/JP4481589B2/en
Publication of JP2004331540A publication Critical patent/JP2004331540A/en
Application granted granted Critical
Publication of JP4481589B2 publication Critical patent/JP4481589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は触媒系の成分であり、オレフィンのカルボニル化において使用できる触媒の配位子として、特に有用なホスフィン化合物の製造方法及び新規な製造中間体に関する。
【0002】
【従来の技術】
オレフィンのカルボニル化反応に使用されるホスフィン化合物の製造方法は、例えば下記反応式に示される方法が知られている(特許文献1及び特許文献2参照)。
【化9】

Figure 0004481589
【0003】
従来のホスフィン化合物の製造方法は、特許文献2に記載の方法では、副生物が多数産出され、非常に収率の悪い方法であった。また、特許文献1に記載の方法では、2種類の塩基(ナトリウム t−ブトキシド及びn−ブチルリチウム)とテトラメチルエチレンジアミン(TMEDA)を必要とし、操作が煩雑であった。更に、これらの2つの技術では、酸化に対して不安定な最終目的物を再結晶によって精製しなければならず、そのために収率が低下するという問題点があった。
一方、非特許文献1には、ボラン錯体を経由して、ホスフィン化合物を合成する方法が記載されている。
【0004】
【特許文献1】
国際公開第99/47528パンフレット
【特許文献2】
国際公開第02/48094パンフレット
【非特許文献1】
リデア マッキンスリー(Lydia McKinstry)他1名「テトラへドロン(Tetrahedron)」(英国)ペルガモン(Pergamon)社、1995年、Vol.51、No.28 p7655−7666
【0005】
【発明が解決しようとする課題】
本発明は、触媒の配位子として有用な式[1]
【化10】
Figure 0004481589
(式中、R1、R2及びR3は同一又は相異なってもよく、結合して環を形成してよい炭化水素基を表し、L1及びL2は、置換されてよい炭素数1〜6の炭化水素基を表し、Xは、置換されていてもよいアリール基を表す。)
で表されるホスフィン化合物を特別な塩基を使うことなく簡便な操作で、工業的に有利な収率のよい製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意検討した結果、式[4]
【化11】
Figure 0004481589
(式中、R1、R2、R3、L1、L2及びXは前記と同じ意味を表す。)
で表される精製が容易で、新規なボラン錯体中間体を製造することによって、操作が容易で、高収率で式[1]で表される化合物を製造できることを見出した。
【0007】
すなわち、本発明は、前記式[1]で表される化合物の製造方法であって、
第1工程) 式[2]
【化12】
Figure 0004481589
(Yは脱離基、L1、L2及びXは前記と同じ意味を表す。)で表される化合物と
【化13】
Figure 0004481589
(式中、Mは金属原子を表し、R1、R2及びR3は前記と同じ意味を表す。)
で表される化合物とを反応させて式[4]で表されるボラン錯体を製造する工程及び、
第2工程) 前記ボラン錯体[4]から脱ボランを行う工程よりなることを特徴とする製造方法に関する。
【0008】
【発明の実施の形態】
式[1]に表される置換されてよい炭化水素基であるR1、R2及びR3は、広い範囲の成分から独立に選択できる。好ましくは、置換されていてよい炭素数1〜6の低級アルキル基であり、枝分かれであってもまたは直鎖であってもよい。さらに、ヘテロ原子を含んでもよく、R1とR2、R2とR3およびR3とR1のお互いが連結して環を形成してもよい。例えば、Rはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ペンチル基、シクロプロピル基、シクロブチル基、シクロヘキシル基等を挙げることができる。その中で好ましい態様としては、R1、R2及びR3はメチル基又はエチル基から選択される置換基で、最も好ましい態様としては、R1、R2及びR3は、全てメチル基である場合である。
【0009】
結合基のL1及びL2は、低級のアルキル基、例えば、炭素数1〜4の低級アルキレン基である。炭素数1〜4の低級アルキレンの例として、メチレン基、エチレン基、トリメチレン基等が挙げられる。好ましい態様としては、L1及びL2のどちらかがメチレン基又はエチレン基であるときで、特に好ましい態様としては、L1及びL2の両方がメチレン基であるときである。
【0010】
Xはアリール基又はヘテロアリール基であり、単環式の芳香族炭化水素基だけでなく、縮合多環式の炭化水素基も含まれる。例えば1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基、1,2−ナフチレン基、1,3−ナフチレン基、2,3−ナフチレン基、1,4−ナフチレン基等が挙げられる。アリール基上のL1及びL2の置換位置に限定はないが、触媒の配位子として望ましいのは、アリール基の隣接する炭素原子上、例えば1,2−フェニレン基または2,3−ナフチレン基等である。
【0011】
前記アリール基は任意の数、例えば1〜6個の同一又は相異なる置換基を有していてもよい。かかる置換基としては、例えば、フッ素、塩素及びヨウ素等のハロゲン原子、メチル基、エチル基、n−プロピル基及びイソプロピル基等の炭素数1〜6のアルキル基、ビニル基、アリル基等の炭素数2〜6のアルケニル基、フェニル基、1−ナフチル基等の炭素数6〜20のアリール基、メトキシ基、エトキシ基、n−プロポキシ基等の炭素数1〜6のアルコキシ基、ニトロ基、モノトリフロロメチル基、ジフロロメチル基、トリフロロメチル基等の炭素数1〜6のハロアルキル基、シアノ基等を挙げることができる。
【0012】
本発明の製造方法により有利に製造できる化合物の例は、ビス(ジ−t−ブチルホスフィノ)−o−キシレン、ビス(ジ−t−ネオペンチルホスフィノ)−o−キシレンまたはビス1,2(ジ−t−ブチルホスフィノ)ナフタレンである。
【0013】
第1工程では、適当な溶媒に溶解した式[5]
【化14】
Figure 0004481589
(R1、R2及びR3は前記と同じ意味を表す)
で表される化合物にボラン化合物を添加し式[6]
【化15】
Figure 0004481589
(R1、R2及びR3は前記と同じ意味を表す)
で表される中間体を生成させ、続いて有機金属化合物を添加し、式[3]で表される化合物を製造する。この式[3]で表される化合物と式[2]で表される化合物とを反応させることにより式[4]で表される化合物を製造する。また、式[5]で表される化合物とボラン化合物との反応により得られる式[6]で表される中間体を単離した後、有機金属化合物及び式[2]で表される化合物と反応させ、式[4]で表される化合物を製造して用いてもよい。
【0014】
Yは脱離基を表し、ハロゲン原子、アリールスルホオキシ基、アルキルスルホニルオキシ基等を表す。その中でもハロゲン原子が、反応の後処理が容易で、経済的にも優れるため好ましく、反応において副生物が少ない塩素原子が特に好ましい。
【0015】
ボラン化合物は、ボラン・THF錯体や、ボランジメチルスルフィド等を例示することができる。この反応で使用される溶媒は、中間体、生成物と反応しなければ特に制限はないが、例えばジエチルエーテル、メチルt−ブチルエーテル、n−プロピルエーテル、テトラヒドロフラン(THF)等のエーテル系溶媒並びにヘキサン、ヘプタン、トルエン等の炭化水素基を挙げることができる。さらに、これらの混合溶媒も使用することができる。溶媒量については特に制限はないが、少なすぎると攪拌の点で、多すぎると経済性等で問題である。
【0016】
ボラン化合物と式[5]で表される化合物との反応は、望ましくは、脱気した溶媒を用いて不活性な気体中で行う必要がある。不活性な気体とは、窒素、アルゴンなどを例示することができる。この場合の反応温度については特に限定はないが、室温以下、できれば−20℃〜25℃で行うのが望ましい。反応時間については特に限定はないが、通常は数分〜数時間で完結する。
【0017】
上記中間体に、有機金属化合物を添加し、反応させる。ここで使用される有機金属化合物は、n−ブチルリチウム(n−BuLi)、t−ブチルリチウム、カリウム t−ブトキシドなどが例示される。この場合の反応温度についても特に限定はないが、室温以下、好ましくは、−20℃〜25℃で行うのが望ましい。反応時間についても特に限定はないが、通常は数分〜数時間で完結する。
【0018】
上記反応溶液に式[2]で表される化合物を添加し、反応を完結させる。反応温度は、特に限定はないが、望ましくは室温またはそれ以下、例えば、−20℃〜25℃であることが望ましい。ここで得られる式[4]で表されるホスフィン−ボラン錯体は酸素に対して安定であり、空気中で再結晶等の精製操作を行うことができる。
【0019】
第2工程では、式[4]で表されるボラン錯体を必要に応じて溶媒に溶解し、酸または塩基を用いて脱保護反応によって目的とする式[1]で表される化合物を得る。
この反応は、望ましくは、脱気した溶媒を用いて不活性な気体中で行う必要がある。不活性な気体とは窒素およびアルゴンを例示することができる。
【0020】
酸で脱ボラン反応を行う場合の酸は、ボランの脱保護に使用される酸であれば特に制限がないが、例えばテトラフルオロホウ酸、トリフルオロメタンスルホン酸、メタンスルホン酸などが使用される。酸を使用する量については脱ボランが可能であれば特に制限はないが、テトラフルオロホウ酸の場合、式[4]で表される化合物に対し、4当量以上、望ましくは、5当量程度必要である。
【0021】
この反応で使用される溶媒は、生成物と反応しなければ特に制限はないが、例えば、ジクロロメタンやクロロホルムなどのハロゲン系炭化水素が使用される。溶媒量については、特に制限はないが、少なすぎると攪拌効率の低下という面で、多すぎると経済性が悪いという面で問題がある。反応時間についても特に限定はないが、数分〜数十時間で完結する。反応温度については特に限定はないが、室温で、例えば−10℃〜25℃で行うのが望ましい。
【0022】
反応完結後、アルカリ水溶液に反応液を加え、攪拌したのち分液し、濃縮して目的物を得ることができる。アルカリ水溶液は、炭酸水素ナトリウム水溶液、炭酸ナトリウム水溶液、水酸化ナトリウム水溶液等を例示することができる。
【0023】
塩基で脱ボラン反応を行う場合の塩基は、ボランの脱保護に使用される塩基であれば特に制限はないが、有機アミン、例えばモルホリン、ジエチルアミン等の2級アミンが使用される。この反応で使用される塩基の量は、脱ボラン反応が完結すれば特に制限はないが、溶媒量程度、望ましくは、式[4]で表される化合物に対して、10当量以上必要である。また、必要に応じて溶媒に希釈して反応を行う事もできる。反応時間については特に制限はないが数分〜数十時間で完結する。反応温度については0℃〜使用する塩基の沸点であることが望ましい。
【0024】
【実施例】
次に実施例によってこの発明を具体的に説明するが、この発明の範囲はこれらの例示に限定されるものではない。
【0025】
[実施例1]ビスホスフィンボラン(式[7])の合成(1)
窒素雰囲気下、脱気したTHF10mlに溶解したジ−t−ブチルホスフィン1.85ml中へボラン・THF錯体(1M溶液)10mlを滴下し、30分間撹拌した。続いてn−ブチルリチウム(1.4M溶液)7.5mlを滴下し、30分間撹拌した。得られた溶液を0℃に冷却し、α、α’−ジクロロ−o―キシレン0.88gを加えた後、室温で1晩撹拌した。反応液を水にあけ酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、濃縮した。得られた結晶をヘキサンで洗浄し、目的物を1.70g(収率80.5%)得た。
1H NMR (300MHz, CDCl3) δ: 7.58-7.62 (m, 2H), 7.13-7.17 (m, 2H), 3.39 (d, 4H), 1.26 (d, 36H).
【0026】
[実施例2]ホスフィン−ボラン錯体(式[6]で表される化合物であってR1、R2及びR3がメチル基)の合成
での製造)
窒素雰囲気下、脱気した塩化メチレン10mlに溶解したジ−t−ブチルホスフィン3.52ml中へボラン・ジメチルスルフィド錯体(10M溶液)2.3mlを滴下し、1時間撹拌した。反応液を水洗後、無水硫酸マグネシウムで乾燥、濃縮して粗生成物を得た。フラッシュシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)に付し、目的物を2.72g(収率89%)得た。
【0027】
[実施例3]ビスホスフィンボラン(式[7])の合成(2)
窒素雰囲気下、式[6](R1、R2及びR3がメチル基の化合物)で表されるホスフィン−ボラン錯体2.70gをTHF20mlに溶解し、0℃に冷却した。n−ブチルリチウム(1.6M溶液)12.6mlを滴下したのち、室温まで昇温して30分間撹拌した。得られた溶液を再び0℃に冷却して、α、α’-ジブロモ−o−キシレン2.00gを加えた後、室温で1晩撹拌した。反応液を希塩酸水にあけ、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)に付し、目的物[5]を1.49g(収率47%)得た。
【0028】
[実施例4]α、α’−ビス(ジ−t−ブチルホスフィノ)−o−キシレンの合成(1)
窒素雰囲気下、脱気した塩化メチレン20mlに溶解したビスホスフィンボラン(式[7])1.00gを0℃に冷却し、テトラフルオロホウ酸ジエチルエーテル溶液(54wt.%)3.3mlを滴下した後、室温で1晩撹拌した。反応液へ脱気した飽和重曹水30mlを加え、激しく撹拌した後分液し、無水硫酸ナトリウムで乾燥後、濃縮して目的物を定量的に得た。
1H NMR (300MHz, CDCl3) δ: 7.48-7.58 (m, 2H), 7.00-7.10 (m, 2H), 3.04 (d, 4H), 1.14 (d, 36H).
【0029】
[実施例5]α、α’−ビス(ジ−t−ブチルホスフィノ)−o−キシレンの合成(2)
窒素雰囲気下、脱気したモルホリン3mlにビスホスフィンボラン(式[7])0.40gを加えて60℃に加熱し、2時間撹拌した。室温に冷却後、モルホリンを減圧下で留去し、得られた粗生成物をアルゴン雰囲気下でシリカゲルカラムクロマトグラフィー(ベンゼン溶媒)に付し、目的物を定量的に得た。
【0030】
【発明の効果】
本発明により、触媒系の成分として有用なホスフィン化合物を従来の特別な塩基を使う方法(特許文献1参照)や直接ジアルキルホスフィンとハロゲン化アルキルを反応させる方法(特許文献2参照)より収率よく簡便に製造することができる。このホスフィン化合物は、WO96/19434に記載されているように、オレフィンのカルボニル化において使用できる触媒系の成分として有用である。また、その方法により製造されるボラン錯体で、R1、R2及びR3がすべてメチル基、L1及びL2がメチレン基、Xがフェニレン基である化合物、すなわち式[7]で表される化合物は新規化合物であり、オレフィンのカルボニル化の触媒として有用な化合物[1]の製造中間体として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a phosphine compound and a novel production intermediate which are particularly useful as ligands for a catalyst which can be used in the carbonylation of olefins and is a component of a catalyst system.
[0002]
[Prior art]
As a method for producing a phosphine compound used in the olefin carbonylation reaction, for example, a method represented by the following reaction formula is known (see Patent Document 1 and Patent Document 2).
[Chemical 9]
Figure 0004481589
[0003]
The conventional method for producing a phosphine compound is a method with a very poor yield because the method described in Patent Document 2 produces many by-products. In addition, the method described in Patent Document 1 requires two kinds of bases (sodium t-butoxide and n-butyllithium) and tetramethylethylenediamine (TMEDA), and the operation is complicated. Furthermore, these two techniques have the problem that the final target which is unstable to oxidation must be purified by recrystallization, which reduces the yield.
On the other hand, Non-Patent Document 1 describes a method of synthesizing a phosphine compound via a borane complex.
[0004]
[Patent Document 1]
International Publication No. 99/47528 Pamphlet [Patent Document 2]
International Publication No. 02/48094 [Non-Patent Document 1]
Lydia McKintory and one other person, “Tetrahedron” (UK) Pergamon, 1995, Vol. 51, no. 28 p7655-7666
[0005]
[Problems to be solved by the invention]
The present invention provides compounds of formula [1] useful as catalyst ligands.
[Chemical Formula 10]
Figure 0004481589
(In the formula, R 1 , R 2 and R 3 may be the same or different and each represents a hydrocarbon group which may be bonded to form a ring, and L 1 and L 2 have 1 carbon atom which may be substituted. Represents a hydrocarbon group of ˜6, and X represents an optionally substituted aryl group.)
It is an object of the present invention to provide an industrially advantageous production method having a good yield by a simple operation without using a special base.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has found that the formula [4]
Embedded image
Figure 0004481589
(In the formula, R 1 , R 2 , R 3 , L 1 , L 2 and X have the same meaning as described above.)
It was found that the compound represented by the formula [1] can be produced in a high yield with easy operation by producing a novel borane complex intermediate.
[0007]
That is, the present invention is a method for producing a compound represented by the formula [1],
First step) Formula [2]
Embedded image
Figure 0004481589
(Y is a leaving group, L 1 , L 2 and X are as defined above) and
Figure 0004481589
(In the formula, M represents a metal atom, and R 1 , R 2 and R 3 represent the same meaning as described above.)
A step of producing a borane complex represented by the formula [4] by reacting with a compound represented by:
2nd process) It is related with the manufacturing method characterized by including the process of deboraneing from said borane complex [4].
[0008]
DETAILED DESCRIPTION OF THE INVENTION
R 1 , R 2 and R 3 , which may be substituted hydrocarbon groups represented by formula [1], can be independently selected from a wide range of components. Preferably, it is a lower alkyl group having 1 to 6 carbon atoms which may be substituted, and may be branched or linear. Further, it may contain a hetero atom, and R 1 and R 2 , R 2 and R 3, and R 3 and R 1 may be linked to each other to form a ring. For example, R includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-pentyl group, a cyclopropyl group, a cyclobutyl group, a cyclohexyl group, and the like. In a preferred embodiment, R 1 , R 2 and R 3 are substituents selected from a methyl group or an ethyl group. In a most preferred embodiment, R 1 , R 2 and R 3 are all methyl groups. It is the case.
[0009]
L 1 and L 2 of the linking group are a lower alkyl group, for example, a lower alkylene group having 1 to 4 carbon atoms. Examples of the lower alkylene having 1 to 4 carbon atoms include a methylene group, an ethylene group, and a trimethylene group. A preferred embodiment is when either L 1 or L 2 is a methylene group or an ethylene group, and a particularly preferred embodiment is when both L 1 and L 2 are methylene groups.
[0010]
X is an aryl group or a heteroaryl group, and includes not only a monocyclic aromatic hydrocarbon group but also a condensed polycyclic hydrocarbon group. For example, 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,2-naphthylene group, 1,3-naphthylene group, 2,3-naphthylene group, 1,4-naphthylene group, etc. Is mentioned. The substitution positions of L 1 and L 2 on the aryl group are not limited, but desirable as a ligand for the catalyst is a carbon atom adjacent to the aryl group, such as a 1,2-phenylene group or 2,3-naphthylene. Group.
[0011]
The aryl group may have an arbitrary number, for example, 1 to 6 identical or different substituents. Examples of the substituent include halogen atoms such as fluorine, chlorine, and iodine, alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, and isopropyl group, and carbons such as vinyl group and allyl group. An alkenyl group having 2 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms such as a phenyl group and a 1-naphthyl group, an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group and an n-propoxy group, a nitro group, C1-C6 haloalkyl groups, such as a monotrifluoromethyl group, a difluoromethyl group, and a trifluoromethyl group, a cyano group, etc. can be mentioned.
[0012]
Examples of compounds that can be advantageously produced by the production process of the present invention are bis (di-t-butylphosphino) -o-xylene, bis (di-t-neopentylphosphino) -o-xylene or bis-1,2 (Di-t-butylphosphino) naphthalene.
[0013]
In the first step, the formula [5] dissolved in a suitable solvent
Embedded image
Figure 0004481589
(R 1 , R 2 and R 3 represent the same meaning as described above)
A borane compound is added to the compound represented by formula [6]
Embedded image
Figure 0004481589
(R 1 , R 2 and R 3 represent the same meaning as described above)
Next, an intermediate represented by the formula [3] is added to produce the compound represented by the formula [3]. The compound represented by the formula [4] is produced by reacting the compound represented by the formula [3] with the compound represented by the formula [2]. Further, after isolating the intermediate represented by the formula [6] obtained by the reaction of the compound represented by the formula [5] and the borane compound, the organometallic compound and the compound represented by the formula [2] You may make it react and manufacture and use the compound represented by Formula [4].
[0014]
Y represents a leaving group and represents a halogen atom, an arylsulfoxy group, an alkylsulfonyloxy group, or the like. Among them, a halogen atom is preferable because it can be easily post-treated and economically excellent, and a chlorine atom with few by-products in the reaction is particularly preferable.
[0015]
Examples of the borane compound include borane / THF complex and borane dimethyl sulfide. The solvent used in this reaction is not particularly limited as long as it does not react with an intermediate or a product. For example, ether solvents such as diethyl ether, methyl t-butyl ether, n-propyl ether, tetrahydrofuran (THF) and hexane , Hydrocarbon groups such as heptane and toluene. Furthermore, these mixed solvents can also be used. Although there is no restriction | limiting in particular about the amount of solvent, When too small, it is a point at stirring, and when too large, it is a problem by economical efficiency.
[0016]
The reaction between the borane compound and the compound represented by the formula [5] should desirably be performed in an inert gas using a degassed solvent. Examples of the inert gas include nitrogen and argon. The reaction temperature in this case is not particularly limited, but it is desirable to carry out the reaction at room temperature or lower, preferably -20 ° C to 25 ° C. Although there is no limitation in particular about reaction time, Usually, it is completed in several minutes-several hours.
[0017]
An organometallic compound is added to the intermediate and reacted. Examples of the organometallic compound used here include n-butyllithium (n-BuLi), t-butyllithium, potassium t-butoxide and the like. There is no particular limitation on the reaction temperature in this case, but it is desirable that the reaction be carried out at room temperature or lower, preferably -20 ° C to 25 ° C. The reaction time is not particularly limited, but it is usually completed in several minutes to several hours.
[0018]
The compound represented by the formula [2] is added to the reaction solution to complete the reaction. The reaction temperature is not particularly limited, but is desirably room temperature or lower, for example, −20 ° C. to 25 ° C. The phosphine-borane complex represented by the formula [4] obtained here is stable against oxygen and can be purified by recrystallization or the like in air.
[0019]
In the second step, the borane complex represented by the formula [4] is dissolved in a solvent as necessary, and the desired compound represented by the formula [1] is obtained by deprotection reaction using an acid or a base.
This reaction should desirably be carried out in an inert gas using a degassed solvent. Examples of the inert gas include nitrogen and argon.
[0020]
The acid used in the deborane reaction with an acid is not particularly limited as long as it is an acid used for the deprotection of borane. For example, tetrafluoroboric acid, trifluoromethanesulfonic acid, methanesulfonic acid and the like are used. The amount of the acid used is not particularly limited as long as it can be deboraneed, but in the case of tetrafluoroboric acid, 4 equivalents or more, preferably about 5 equivalents are required with respect to the compound represented by the formula [4]. It is.
[0021]
The solvent used in this reaction is not particularly limited as long as it does not react with the product. For example, halogen-based hydrocarbons such as dichloromethane and chloroform are used. The amount of the solvent is not particularly limited, but if it is too small, there is a problem in that the stirring efficiency is lowered, and if it is too large, the economy is poor. The reaction time is not particularly limited, but it can be completed in several minutes to several tens of hours. Although there is no limitation in particular about reaction temperature, it is desirable to carry out at room temperature, for example, -10 degreeC-25 degreeC.
[0022]
After completion of the reaction, the reaction solution is added to an aqueous alkali solution, stirred and then separated and concentrated to obtain the desired product. Examples of the alkaline aqueous solution include a sodium hydrogen carbonate aqueous solution, a sodium carbonate aqueous solution, and a sodium hydroxide aqueous solution.
[0023]
The base in the case of performing the deborane reaction with a base is not particularly limited as long as it is a base used for the deprotection of borane, but an organic amine, for example, a secondary amine such as morpholine or diethylamine is used. The amount of the base used in this reaction is not particularly limited as long as the deborane reaction is completed, but it should be about the amount of the solvent, preferably 10 equivalents or more with respect to the compound represented by the formula [4]. . Moreover, it can also dilute to a solvent as needed and can react. Although there is no restriction | limiting in particular about reaction time, it is completed in several minutes-dozens of hours. The reaction temperature is preferably 0 ° C. to the boiling point of the base used.
[0024]
【Example】
EXAMPLES Next, the present invention will be specifically described by way of examples. However, the scope of the present invention is not limited to these examples.
[0025]
[Example 1] Synthesis of bisphosphine borane (formula [7]) (1)
Under a nitrogen atmosphere, 10 ml of borane / THF complex (1M solution) was added dropwise to 1.85 ml of di-t-butylphosphine dissolved in 10 ml of degassed THF, followed by stirring for 30 minutes. Subsequently, 7.5 ml of n-butyllithium (1.4 M solution) was added dropwise and stirred for 30 minutes. The resulting solution was cooled to 0 ° C., 0.88 g of α, α′-dichloro-o-xylene was added, and the mixture was stirred overnight at room temperature. The reaction mixture was poured into water, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated. The obtained crystals were washed with hexane to obtain 1.70 g (yield: 80.5%) of the desired product.
1 H NMR (300MHz, CDCl 3 ) δ: 7.58-7.62 (m, 2H), 7.13-7.17 (m, 2H), 3.39 (d, 4H), 1.26 (d, 36H).
[0026]
[Example 2] Production by synthesis of phosphine-borane complex (compound represented by formula [6], wherein R 1 , R 2 and R 3 are methyl groups)
Under a nitrogen atmosphere, 2.3 ml of borane-dimethylsulfide complex (10M solution) was added dropwise to 3.52 ml of di-t-butylphosphine dissolved in 10 ml of degassed methylene chloride and stirred for 1 hour. The reaction solution was washed with water, dried over anhydrous magnesium sulfate and concentrated to obtain a crude product. Flash silica gel column chromatography (hexane / ethyl acetate) gave 2.72 g (yield 89%) of the desired product.
[0027]
[Example 3] Synthesis of bisphosphine borane (formula [7]) (2)
Under a nitrogen atmosphere, 2.70 g of a phosphine-borane complex represented by the formula [6] (a compound in which R 1 , R 2, and R 3 are methyl groups) was dissolved in 20 ml of THF and cooled to 0 ° C. After 12.6 ml of n-butyllithium (1.6 M solution) was added dropwise, the mixture was warmed to room temperature and stirred for 30 minutes. The resulting solution was cooled again to 0 ° C., and 2.00 g of α, α′-dibromo-o-xylene was added, followed by stirring overnight at room temperature. The reaction mixture was poured into dilute hydrochloric acid, extracted with ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated. The crude product was subjected to silica gel column chromatography (hexane / ethyl acetate) to obtain 1.49 g (yield 47%) of the desired product [5].
[0028]
[Example 4] Synthesis of α, α'-bis (di-t-butylphosphino) -o-xylene (1)
Under nitrogen atmosphere, 1.00 g of bisphosphine borane (formula [7]) dissolved in 20 ml of degassed methylene chloride was cooled to 0 ° C., and 3.3 ml of tetrafluoroboric acid diethyl ether solution (54 wt.%) Was added dropwise. Thereafter, the mixture was stirred overnight at room temperature. To the reaction solution was added 30 ml of degassed saturated aqueous sodium hydrogen carbonate, and the mixture was vigorously stirred and then separated, dried over anhydrous sodium sulfate, and concentrated to obtain the desired product quantitatively.
1 H NMR (300MHz, CDCl 3 ) δ: 7.48-7.58 (m, 2H), 7.00-7.10 (m, 2H), 3.04 (d, 4H), 1.14 (d, 36H).
[0029]
[Example 5] Synthesis of α, α'-bis (di-t-butylphosphino) -o-xylene (2)
Under a nitrogen atmosphere, 0.40 g of bisphosphine borane (formula [7]) was added to 3 ml of degassed morpholine, heated to 60 ° C., and stirred for 2 hours. After cooling to room temperature, morpholine was distilled off under reduced pressure, and the resulting crude product was subjected to silica gel column chromatography (benzene solvent) under an argon atmosphere to quantitatively obtain the desired product.
[0030]
【The invention's effect】
According to the present invention, a phosphine compound useful as a component of a catalyst system is obtained in a higher yield than a conventional method using a special base (see Patent Document 1) or a method in which a dialkylphosphine and an alkyl halide are directly reacted (see Patent Document 2). It can be easily manufactured. This phosphine compound is useful as a component of a catalyst system that can be used in the carbonylation of olefins, as described in WO 96/19434. Further, it is a borane complex produced by the method, wherein R 1 , R 2 and R 3 are all methyl groups, L 1 and L 2 are methylene groups, and X is a phenylene group, that is, represented by the formula [7] This compound is a novel compound and is useful as an intermediate for the production of compound [1] useful as a catalyst for olefin carbonylation.

Claims (2)

第1工程)不活性気体雰囲気下、脱気した溶媒中で、ジ−t−ブチルホスフィンとボラン・THF錯体又はボラン・ジメチルスルフィド錯体とを反応させて式[6’]
Figure 0004481589
で表される化合物を製造した後に、連続して有機金属化合物と反応させて、式[3’
Figure 0004481589
(式中、Mは金属原子を表す。)
で表される化合物を製造し、さらに、式[2’]
Figure 0004481589
(Yは脱離基を表す。
表される化合物と反応させて、式[4’
Figure 0004481589
表されるボラン錯体を生成する工程及び、
第2工程)前記ボラン錯体式[4’]から脱ボランを行う工程よりなることを特徴とする式[1’]
Figure 0004481589
で表される化合物の製造方法。
First step) Di-t-butylphosphine is reacted with borane / THF complex or borane / dimethylsulfide complex in a degassed solvent under an inert gas atmosphere to form the formula [6 ′].
Figure 0004481589
And then continuously reacting with an organometallic compound to produce a compound represented by the formula [ 3 ′ ]
Figure 0004481589
(In the formula, M represents a metal atom.)
And a compound represented by formula [2 ′]
Figure 0004481589
(Y represents a desorption group.)
In reacted with a compound represented by the formula [4 ']
Figure 0004481589
Process and generates a borane complex represented in,
Step 2) Formula [1 ′], which comprises a step of deboraneating from the borane complex formula [ 4 ′ ].
Figure 0004481589
The manufacturing method of the compound represented by these .
式[1’]の化合物がα,α’−ビス(ジ−t−ブチルホスフィノ)−o−キシレンである請求項1に記載の方法。The method according to claim 1, wherein the compound of the formula [ 1 ' ] is α, α'-bis (di-t-butylphosphino) -o-xylene.
JP2003127900A 2003-05-06 2003-05-06 Method for producing bisphosphine Expired - Fee Related JP4481589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127900A JP4481589B2 (en) 2003-05-06 2003-05-06 Method for producing bisphosphine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127900A JP4481589B2 (en) 2003-05-06 2003-05-06 Method for producing bisphosphine

Publications (2)

Publication Number Publication Date
JP2004331540A JP2004331540A (en) 2004-11-25
JP4481589B2 true JP4481589B2 (en) 2010-06-16

Family

ID=33504240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127900A Expired - Fee Related JP4481589B2 (en) 2003-05-06 2003-05-06 Method for producing bisphosphine

Country Status (1)

Country Link
JP (1) JP4481589B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091445A1 (en) * 2006-02-08 2007-08-16 Japan Science And Technology Agency Bis(phosphine)boronium salts, process for preparation of bis(phosphine)boronium salts, and bis(phosphine)boronium salts prepared by the process
JP5223045B2 (en) * 2006-02-08 2013-06-26 独立行政法人科学技術振興機構 Method for producing diphosphine compound, diphosphine compound produced by this production method and intermediate product
CN107098932A (en) * 2017-06-29 2017-08-29 管德新 A kind of synthetic method of benzyl class part available for hydroformylation reaction

Also Published As

Publication number Publication date
JP2004331540A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP4481589B2 (en) Method for producing bisphosphine
CN109535120B (en) Preparation method of 7-substituted-3, 4,4, 7-tetrahydrocyclobutane coumarin-5-ketone
JP5283494B2 (en) Method for producing fluorene derivative
JP2004026691A (en) Method for producing, polymerizable monomer of fluorine-containing styrene polymer and intermediate compound used therefor
CN108698988B (en) Process for preparing aminothiol ester compounds and salts thereof
JP4649733B2 (en) Method for producing acetophenone compound containing trifluoromethyl group
JP5448572B2 (en) Acetyl compound, method for producing the acetyl compound, and method for producing a naphthol compound using the acetyl compound
JPH07330786A (en) Optically active tertiary phosphine compound, transition metal complex with the same as ligand and production method using the complex
CN110981919B (en) Method for synthesizing octatomic amidine cyclic palladium compound by one-pot method and application thereof
JP2003034676A (en) Method for producing styrene sulfonic acid esters
JP2002069026A (en) Method for manufacturing (e)-3-methyl-2- cyclopentadecenone
JP4572372B2 (en) Method for producing optically active quaternary carbon-containing compound
JP4490152B2 (en) 1,1-dialkyl-3- (4-phenanthrenyl) -2-propyn-1-ol derivative
JP5039271B2 (en) 4- (Trialkylsilylethynyl) phenanthrene derivatives
JP4147302B2 (en) 1-Indanone production method
JP4243683B2 (en) Method for producing 1-tetralone
JP4105482B2 (en) Process for producing trihalo-substituted aromatic compounds
JP4781048B2 (en) Process for producing disubstituted β-ketoesters
JP3590980B2 (en) Optically active tertiary phosphine compound, transition metal complex having the same as ligand, and use thereof
JP4839678B2 (en) Method for producing dihalogenated biaryl derivative
JP2021178811A (en) Production method of aromatic ether compound or aromatic sulfhydryl compound
KR101356454B1 (en) Method of preparing unsaturated aldehyde compound
JP4505876B2 (en) 4-halobenzofuran derivative and method for producing the same
JP2002226430A (en) Method for producing aromatic carboxylate having substituent
JP2009107943A (en) Method for producing bisphosphine oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees