JP3590980B2 - Optically active tertiary phosphine compound, transition metal complex having the same as ligand, and use thereof - Google Patents

Optically active tertiary phosphine compound, transition metal complex having the same as ligand, and use thereof Download PDF

Info

Publication number
JP3590980B2
JP3590980B2 JP01534194A JP1534194A JP3590980B2 JP 3590980 B2 JP3590980 B2 JP 3590980B2 JP 01534194 A JP01534194 A JP 01534194A JP 1534194 A JP1534194 A JP 1534194A JP 3590980 B2 JP3590980 B2 JP 3590980B2
Authority
JP
Japan
Prior art keywords
group
optionally substituted
mmol
alkyl group
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01534194A
Other languages
Japanese (ja)
Other versions
JPH07149776A (en
Inventor
民生 林
泰広 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP01534194A priority Critical patent/JP3590980B2/en
Priority to US08/280,814 priority patent/US5523437A/en
Priority to EP94111780A priority patent/EP0647647B1/en
Priority to DE69428755T priority patent/DE69428755T2/en
Publication of JPH07149776A publication Critical patent/JPH07149776A/en
Application granted granted Critical
Publication of JP3590980B2 publication Critical patent/JP3590980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【産業上の利用分野】
本発明は、種々の遷移金属に配位することにより、様々な不斉合成反応における有用な触媒を形成する新規なホスフィン化合物およびその用途に関するものである。
【0002】
【従来の技術】
従来、不斉合成反応に用いられる遷移金属触媒については数多くの報告がなされており、これらの中でも光学活性な3級ホスフィン化合物を配位子とするルテニウム、パラジウム、ロジウム等の遷移金属錯体は、不斉合成の触媒として優れた性能を有することが広く知られている。(日本化学会編、化学総説32「有機金属錯体の化学」、PP237 〜238 、昭和57年)。
【0003】
更に、軸不斉を有する2,2’−ビスジフェニルホスフィノ−1,1’−ビナフチルは特に優れた配位子であることが知られており、特開昭55−61937号公報には、これを配位子としたロジウム錯体がすでに報告されている。
【0004】
【発明が解決しようとする課題】
しかしながら、反応の種類またはその反応基質によっては、これらのホスフィン錯体を用いても、生成物の選択性、転化率、触媒作用の持続性において必ずしも充分なものとは言い難い。
【0005】
【課題を解決するための手段】
本発明者らはこのような問題を解決するために、鋭意検討した結果、種々の不斉合成反応において、反応の立体選択性あるいは位置選択性および転化率に優れ、かつ高い触媒活性を有する新規なホスフィン化合物を見いだし本発明に至った。
【0006】
すなわち、本発明は一般式(1)

Figure 0003590980
(式中、Rは、水素原子、炭素数5〜7のシクロアルキル基または低級アルキル基を示す。ここで低級アルキル基は、ハロゲン原子、低級アルコキシ基、低級アルコキシアルコキシ基もしくはフェニル基で置換されていてもよい。Rはフェニル基を示す。ここでフェニル基は、アルキル基、アルコキシ基もしくはハロゲン原子で置換されていてもよい。RおよびRは、それぞれ水素原子またはメチル基を示すが、同時に水素原子であることはない。あるいはRおよびR全体で基−CH=CH−CH=CH−を示す。)
で示される3級ホスフィン化合物、該化合物を配位子とする遷移金属錯体およびその用途を提供するものである。
【0007】
一般式(1)で示される3級ホスフィン化合物において、
の炭素数5〜7のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。また、ハロゲン原子、低級アルコキシ基、低級アルコキシアルコキシ基もしくはフェニル基で置換されていてもよい低級アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、t−ブチル基、フルオロメチル基、2,2,2−トリフルオロエチル基、メトキシメチル基、メトキシエトキシメチル基、メトキシプロピル基、ベンジル基、ジフェニルメチル基、フェニルプロピル基等が挙げられるが、特に炭素数1〜4のアルキル基、メトキシメチル基、メトキシエトキシメチル基が好ましい。
としては、無置換のフェニル基の他に、メチル基、エチル基、プロピル基、ブチル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フッ素原子、塩素原子、臭素原子等で置換されたフェニル基が挙げられる。
【0008】
また、本発明の3級ホスフィン化合物(1)は、光学活性体である(+)体および(−)体が存在し、本発明はこれらの(+)体、(−)体およびラセミ体のいずれをも含むものである。
【0009】
本発明の3級ホスフィン化合物(1)は、例えば次の反応経路に従って製造することができる。
Figure 0003590980
(式中、Rは、ハロゲン原子、低級アルコキシ基、低級アルコキシアルコキシ基もしくはフェニル基で置換されていてもよい低級アルキル基、または炭素数5〜7のシクロアルキル基を示し、Rは前記と同じ意味を表わす。)
【0010】
すなわち、炭化水素、ハロゲン化炭化水素、エーテル類等を溶媒とし、3,3’−ジヒドロキシ−4,4’−ビフェナントリル(4)に、2〜20モル倍好ましくは3〜10モル倍の芳香族アミン、3級アミン等の塩基存在下、2〜20モル倍好ましくは2〜6モル倍の無水トリフルオロメタンスルホン酸を−20〜100℃好ましくは−10〜50℃で1〜10時間作用させることにより3,3’−ビス(トリフルオロメタンスルホニルオキシ)−4,4’−ビフェナントリル(5)を得ることができる。
【0011】
得られた化合物(5)に対し、ジメチルスルホキシド等の極性溶媒中、1〜20モル倍好ましくは5〜10モル倍の3級アミン等の塩基および0.1〜1モル倍好ましくは0.4〜0.6モル倍のパラジウム−ホスフィン触媒存在下、1〜10モル倍好ましくは2〜4モル倍のジアリールホスフィンオキシドを−20〜100℃好ましくは0℃〜50℃で1〜20時間作用させることにより、3−ジアリールホスフィニル−3’−トリフルオロメタンスルホニルオキシ−4,4’−ビフェナントリル(6)を得ることができる。
【0012】
このようにして得られた化合物(6)に対し、水、アルコール類、エーテル類、あるいはこれらの混合溶媒中、1〜20モル倍好ましくは5〜10モル倍の水酸化アルカリ等の塩基を加え、−20〜100℃好ましくは0℃〜80℃で1〜20時間加水分解反応を行い、反応後酸析することにより3−ジアリールホスフィニル−3’−ヒドロキシ−4,4’−ビフェナントリル(7)を得ることができる。
【0013】
この化合物(7)に対し、アルコール類、エーテル類、ケトン類等の極性溶媒中、1〜20モル倍好ましくは5〜15モル倍の炭酸アルカリ等の塩基の存在下、1〜20モル倍好ましくは5〜15モル倍のハロゲン化アルキル等のアルキル化剤を−20〜120℃好ましくは40〜100℃で1〜10時間作用させることにより3−ジアリールホスフィニル−3’−アルコキシ−4,4’−ビフェナントリル(8)を得ることができる。
【0014】
こうして得られた化合物(8)に対し、炭化水素、ハロゲン化炭化水素、エーテル類等の溶媒中、1〜100モル倍好ましくは40〜60モル倍の3級アミン等の塩基存在下、1〜50モル倍好ましくは10〜20モル倍のトリクロロシラン等の還元剤を作用させ、−20〜150℃で1〜5時間反応させることにより化合物(1a)を得ることができる。
【0015】
一方、本発明の3級ホスフィン化合物のうちRが水素原子であるもの(1b)は、例えば次の反応経路に従って製造することができる。
Figure 0003590980
(式中、Rはアルキル基、アルコキシ基もしくはハロゲン原子で置換されていてもよいフェニル基を示す)
【0016】
すなわち、前述の方法と同様にして3−ジアリールホスフィニル−3’−ヒドロキシ−4,4’−ビフェナントリル(7)を得、これに対し、炭化水素、ハロゲン化炭化水素、エーテル類等の溶媒中、1〜100モル倍好ましくは40〜60モル倍の3級アミン等の塩基存在下、1〜50モル倍好ましくは10〜20モル倍のトリクロロシラン等の還元剤を作用させ、−20〜150℃で1〜5時間反応させることにより化合物(1b)が合成される。
【0017】
本発明の化合物(1)の製造において、各工程の反応は基質の軸不斉の環境を保持して進行するため、出発原料に光学活性な3,3’−ジヒドロキシ−4,4’−ビフェナントリル(4)を用いれば、最終生成物には光学活性な化合物(1)が得られる。また、ラセミ体の3,3’−ジヒドロキシ−4,4’−ビフェナントリル(4)を用いれば、ラセミ体の化合物(1)が得られてくる。よって、使用の目的により、光学活性体およびラセミ体を作り分けることが可能である。
【0018】
また、本発明によって得られる3級ホスフィン化合物(1)は、配位子として遷移金属に配位し、錯体を形成する。この錯体を形成する遷移金属としては、パラジウム、ロジウム、ルテニウム等が挙げられる。本発明に係る遷移金属錯体のうち、例えばパラジウム錯体を製造する方法の例としては、日本化学会編「第4版 実験化学講座」、第18巻、有機金属錯体、1991年 丸善 P.393に記載の方法に従い、ジベンゾニトリルパラジウムジクロリドと本発明の3級ホスフィン化合物(1)を反応させて製造することができる。
【0019】
本発明によって得られる3級ホスフィン化合物(1)の光学活性体を配位子とする遷移金属錯体を、不斉合成反応、例えば、不斉還元反応等の触媒として用いると、高い収率かつ高い不斉収率で選択的に目的物を得ることができる。すなわち、3級ホスフィン化合物(1)の光学活性体を配位子とする遷移金属錯体を触媒とし、一般式(2)
Figure 0003590980
(式中、nは1または0を示し、Rは水素原子、アルキル基、シクロアルキル基基、アルケニル基、シクロアルケニル基、または置換されていてもよいフェニル基を示し、Rは水素原子、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、あるいはアルキル基で置換されていてもよいケイ素原子または置換されていてもよいフェニル基で置換されたケイ素原子を示し、Rはnが1の場合、置換されていてもよいアルキル基、または置換されていてもよいフェニル基を示し、nが0の場合、置換されていてもよいアルキル基、置換されていてもよいフェニル基、または水素原子を示す。)
で示される化合物を、一般式(1)で示される光学活性な3級ホスフィン化合物を配位子とする遷移金属錯体の存在下還元剤を作用させ還元することにより高収率かつ高い不斉収率で選択的に一般式(3)
Figure 0003590980
(式中、R、Rは前記と同じ意味を表わし、*印は不斉炭素原子であることを示す。)
で示される光学活性な末端オレフィン化合物を製造することができる。
【0020】
一般式(2)および(3)で示される化合物において、Rとしては、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、t−ブチル基、シクロペンチル基、シクロへキシル基、3−ペンテニル基、4−メチル−3−ペンテニル基、2−シクロヘキセニル基、3−シクロヘキセニル基、フェニル基、p−トリル基等が挙げられ、R4 としては、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、t−ブチル基、シクロペンチル基、シクロへキシル基、3−ペンテニル基、4−メチル−3−ペンテニル基、2−シクロヘキセニル基、3−シクロヘキセニル基、トリメチルシリル基、トリエチルシリル基、フェニルジメチルシリル基等が挙げられる。
また、Rとしては、nが1の場合、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、t−ブチル基、ベンジル基、フェニル基、p−トリル基が挙げられ、nが0の場合、これに追加して水素原子が挙げられる。
【0021】
一般式(3)で示される化合物は、一般式(2)で示される化合物から、例えば次の方法で製造することができる。すなわち、炭化水素、ハロゲン化炭化水素、エーテル類等を溶媒とし、化合物(2)に対し、0.00001〜0.1モル倍好ましくは0.001〜0.05モル倍の光学活性な3級ホスフィン化合物(1)、0.000001〜0.05モル倍好ましくは0.0001〜0.02モル倍のトリス(ジベンジリデンアセトン)(クロロホルム)ジパラジウム(0)等のパラジウム錯体、および1〜10モル倍好ましくは1〜2モル倍の1,8−ビス(ジメチルアミノ)ナフタレン等の有機塩基存在下、1〜20モル倍好ましくは1〜5モル倍のギ酸を−20〜100℃好ましくは−10〜50℃で1〜24時間作用させることにより光学活性な化合物(3)が合成される。
還元剤としては、ギ酸、ギ酸アンモニウム、ギ酸トリメチルアンモニウム、ギ酸トリエチルアンモニウム等が挙げられる。
【0022】
また、この不斉還元反応において、ギ酸にかえて、重水素置換されたギ酸(DCOOD)を使用すると、高い収率かつ高い不斉収率で選択的に3級炭素が重水素化された一般式(9)
Figure 0003590980
(式中、R、Rおよび*印は前記と同じ意味を表わす。)
で示される光学活性な末端オレフィン化合物を製造できる。
【0023】
【発明の効果】
本発明によって得られる3級ホスフィン化合物(1)の光学活性体を配位子とする遷移金属錯体を、不斉合成反応、例えば、不斉還元反応等の触媒として用いると、高い収率かつ高い不斉収率で選択的に目的物を得ることができる。また、本発明に係る3級ホスフィン化合物(1)の光学活性体のうち、(+)体または(−)体のいずれか一方を選択し、これを配位子とする遷移金属錯体を触媒として使用することにより、不斉合成反応において目的とする絶対立体配置の生成物を選択的に得ることができる。
【0024】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明は、これらに限定されるものではない。
尚、実施例中の分析は次の分析装置を用いて行った。
旋光計:DIP−370型(日本分光工業株式会社製)
H−NMRスペクトル:JNM−EX270型(270MHz、日本電子株式会社製) 内部標準:テトラメチルシラン
31P−NMRスペクトル:JNM−EX270型(109MHz、日本電子株式会社製) 外部標準:リン酸
【0025】
原料合成
ラセミの3,3’−ジヒドロキシ−4,4’−ビフェナントリルをJ.Chem.Soc.,Chem.Commun.,1065(1985)に記載の方法に従い合成した。このラセミ混合物6.1gをHPLC(カラム:Sumichiral OA−2000(住友化学製)、移動相:n−ヘキサン/1,2−ジクロロエタン/エタノール=80/15/5、紫外線検出器:波長254nm)により光学分割し、(R)−(−)−3,3’−ジヒドロキシ−4,4’−ビフェナントリルと(S)−(+)−3,3’−ジヒドロキシ−4,4’−ビフェナントリルを各2.9g得た。光学純度はそれぞれ99.9%ee、99.5%eeであった。
【0026】
実施例1−(1)
(R)−(−)−3,3’−ジヒドロキシ−4,4’−ビフェナントリル1.91g(4.89mmol)とピリジン1.97ml(24.4mmol)のジクロロメタン溶液中に、氷冷下、無水トリフルオロメタンスルホン酸5.50g(19.5mmol)を滴下した。0℃で1時間撹拌後、溶媒を留去した。残査を酢酸エチル50mlで希釈し、5%塩酸水、飽和重曹水および飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥後溶媒を留去し、粗生成物を得た。これをシリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製し、(R)−(−)−3,3’−ビス(トリフルオロメタンスルホニルオキシ)−4,4’−ビフェナントリル3.15gを得た。収率100%。
融点:162.5〜163.0℃
旋光度[α] 22−18.2(C=0.4,CHCl
Figure 0003590980
【0027】
実施例1−(2)
窒素雰囲気下、(R)−(−)−3,3’−ビス(トリフルオロメタンスルホニルオキシ)−4,4’−ビフェナントリル3.15g(4.84mmol)、ジフェニルホスフィンオキシド2.93g(14.5mmol)、酢酸パラジウム433mg(1.93mmol)、1,4−ビス(ジフェニルホスフィノ)プロパン796mg(1.93mmol)を、ジイソプロピルエチルアミン5.2g(40.1mmol)のジメチルスルホキシド35ml溶液中に注加後、150℃で10時間撹拌した。冷却後、反応混合物を減圧下濃縮し、残査を酢酸エチルで希釈し、希塩酸および飽和重曹水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去して粗生成物を得た。
これをシリカゲルカラムクロマトグラフィー(移動相:n−ヘキサン/酢酸エチル=1/1)で精製し、(R)−(+)−3−ジフェニルホスフィニル−3’−トリフルオロメタンスルホニルオキシ−4,4’−ビフェナントリル2.41gを得た。収率70%。
融点:254.0〜255.0℃
旋光度[α] 20+15.0(C=0.82,CHCl
31P NMR(CDCl3 ) δppm:29.6(s)
Figure 0003590980
【0028】
実施例1−(3)
(R)−(+)−3−ジフェニルホスフィニル−3’−トリフルオロメタンスルホニルオキシ−4,4’−ビフェナントリル985mg(1.40mmol)をメタノール2.5ml、1,4−ジオキサン5mlの混合溶媒に溶解し、3N水酸化ナトリウム水溶液5mlを加え、室温で9時間撹拌した。氷冷下、反応液に濃塩酸を加えて酸性(pH1程度)とした後、酢酸エチルで2回抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去して粗生成物を得た。
これをシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル)で精製し、(R)−(−)−3−ジフェニルホスフィニル−3’−ヒドロキシ−4,4’−ビフェナントリル794mgを得た。収率99%。
旋光度[α] 20−63.4(C=0.55,CHCl
H NMR(CDCl) δppm:6.26〜8.07(m,26H)、8.55(brs,1H)
31P NMR(CDCl) δppm:32.6(s)
【0029】
実施例1−(4)
(R)−(−)−3−ジフェニルホスフィニル−3’−ヒドロキシ−4,4’−ビフェナントリル792mg(1.38mmol)、無水炭酸カリウム1.79g(13.02mmol)のアセトン30ml懸濁液中にヨウ化メチル1.85g(13.02mmol)を加え、5時間還流させた。冷却後、反応液をセライト濾過し、ジエチルエーテルで洗浄して濾液と合わせ、濾洗液の溶媒を留去して粗生成物を得た。
これをシリカゲルクロマトグラフィー(移動相:n−ヘキサン/酢酸エチル=1/3)で精製し、(R)−(+)−3−ジフェニルホスフィニル−3’−メトキシ−4,4’−ビフェナントリル781mgを得た。収率97%。
融点:218.0〜219.5℃
旋光度[α] 20+85.8(C=0.50,CHCl
H NMR(CDCl) δppm:3.43(s,3H)、6.63〜7.90(m,26H)
31P NMR(CDCl) δppm:29.2(s)
Figure 0003590980
【0030】
実施例1−(5)
窒素雰囲気下、(R)−(+)−3−ジフェニルホスフィニル−3’−メトキシ−4,4’−ビフェナントリル185mg(0.31mmol)、トリエチルアミン1.23g(12.1mmol)のトルエン5ml溶液中に、0℃でトリクロロシラン617mg(4.55mmol)を加えた後昇温し、110℃で10時間加熱撹拌した。室温まで冷却し、反応液をジエチルエーテルで希釈した後、少量の飽和重曹水を加えて反応を止めた。これをセライト濾過し、ジエチルエーテルで洗浄して濾液と合わせ、濾洗液を無水硫酸マグネシウムで乾燥後、溶媒を留去して粗生成物を得た。
これをカラムクロマトグラフィー(移動相:n−ヘキサン/ジクロロメタン=1/1)で精製し、(R)−(+)−3−ジフェニルホスフィノ−3’−メトキシ−4,4’−ビフェナントリル161mgを得た。収率91%。
融点:209.5〜210.0℃
旋光度[α] 20+271.6(C=1.29,CHCl
H NMR(CDCl) δppm:3.07(s,3H)、6.58〜8.12(m,26H)
31P NMR(CDCl) δppm:−12.3(s)
Figure 0003590980
【0031】
実施例2
実施例1で得られた(R)−(+)−3−ジフェニルホスフィノ−3’−メトキシ−4,4’−ビフェナントリル(6.24mg,0.011mmol)とトリス(ジベンジリデンアセトン)(クロロホルム)ジパラジウム(0)(2.6mg,0.0025mmol)をガラスシュレンクに入れ、窒素雰囲気下、ジオキサンを加え溶解した。この中に氷浴下1,8−ビス(ジメチルアミノ)ナフタレン(128.6mg,0.60mmol)、ギ酸(52.5mg,1.14mmol)を順に加えた。さらに同温度でゲラニルメチル炭酸エステル(104.5mg,0.49mmol)を加えた後、20℃で17時間撹拌した。反応液をペンタンで希釈・水洗し、有機層を無水硫酸マグネシウムで乾燥後、シリカゲルに通して濾過した。溶媒を減圧下留去し、(S)−3,7−ジメチル−1,6−オクタジエン68.0mgを無色油状物として得た。収率99%以上。光学純度85%ee。
旋光度[α] 20+8.1(C=1.6,CHCl
H NMR(CDCl) δppm:0.98(d,J=7.0Hz,3H)、1.27〜1.36(m,2H)、1.60(s,3H)、1.67(s,3H)、1.96(q,J=7.0Hz,2H)、2.12(heptet,J=7Hz,1H)、4.88〜4.99(m,2H)、5.05〜5.15(m,1H)、5.70(ddd,J=17.1,10.1,7.0Hz,1H)
【0032】
比較例
実施例2において、(R)−(+)−3−ジフェニルホスフィノ−3’−メトキシ−4,4’−ビフェナントリルのかわりに(R)−(+)−2−ジフェニルホスフィノ−2’−メトキシ−1,1’−ビナフチルを用いて、実施例2に準拠して実施した。その結果、(S)−3,7−ジメチル−1,6−オクタジエンが収率99%で得られたが、光学純度は76%eeであった。
【0033】
参考例1
(S)−3,7−ジメチル−1,6−オクタジエン(85%ee)(61mg,0.44mmol)を水20ml,t−ブチルアルコール10mlに溶解し、氷冷下、過マンガン酸カリウム(185mg,1.17mmol)、メタ過沃素酸ナトリウム(1.46g,6.86mmol)、炭酸カリウム(366mg,2.64mmol)を加えた。反応液に3N水酸化ナトリウム水溶液を加えてpH8とし、室温で2時間撹拌した。氷冷下、同反応液に濃塩酸を加えてpH1とし、反応液の色が赤褐色から黄色に変わるまで亜硝酸ナトリウムを加え、反応液をジエチルエーテルで抽出した。有機層を3N水酸化ナトリウム水溶液で2回抽出した後、水層をジエチルエーテルで1回洗浄した。水層に濃塩酸を加えてpH1とした後ジエチルエーテルで3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、(S)−2−メチルペンタンジカルボン酸38mgを淡黄色油状物として得た。収率58%。光学純度85%ee。
旋光度[α] 20+17.4(C=1.63,CHCl
H NMR(CDCl) δppm:1.23(d,J=7.0Hz,3H)、1.8〜2.1(m,2H)、2.4〜2.7(m,3H)、9.0〜10.5(br,2H)
【0034】
参考例2
(S)−2−メチルペンタンジカルボン酸(85%ee)(10mg,0.68mmol)をTHF0.5mlに溶解し、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド30μl、アニリン(15mg,0.16mmol)を加え、40℃で1時間撹拌した。反応液に濃塩酸を加え、酢酸エチルで抽出した。溶媒を減圧下留去し、粗生成物を得た。
これをカラムクロマトグラフィー(移動相:n−ヘキサン/酢酸エチル=1/1)で精製し、(S)−2−メチルペンタンジカルボン酸ジアニリドを白色固体として得た。
このジアミド体の鏡像異性体過剰率をHPLC(カラム:Sumichiral OA−4100(住友化学製)、移動相:n−ヘキサン/1,2−ジクロロエタン/エタノール=50/15/1、紫外線検出器:波長254nm)により測定したところ、85%eeであった。
旋光度[α] 20+10.0(C=0.32,CHCl
H NMR(CDCl) δppm:1.26(d,J=7.0Hz,3H)、1.89〜2.10(m,2H)、2.43〜2.49(m,2H)、2.61〜2.69(m,2H)、7.06〜7.14(m,2H)、7.13〜7.35(m,4H)、7.49〜7.57(m,4H)、8.05(brs,2H)
【0035】
実施例3
実施例2において、ゲラニルメチル炭酸エステルのかわりにネリルメチル炭酸エステルを用いて、実施例2に準拠して実施した。その結果、(R)−3,7−ジメチル−1,6−オクタジエンが収率99%以上で得られた。光学純度は82%eeであった。
【0036】
実施例4
実施例2において、ゲラニルメチル炭酸エステルのかわりにtrans−3−シクロヘキシル−2−ブテニルメチル炭酸エステルを用いて、実施例2に準拠して実施した。その結果、(R)−3−シクロヘキシル−1−ブテンが収率96%で得られた。光学純度は85%eeであった。
旋光度[α] 24+4.2(C=1.9,CHCl
H NMR(CDCl) δppm:0.98(d,J=6.9Hz,3H)、0.92〜1.78(m,11H)、1.91〜2.04(m,1H)、4.88〜4.94(m,2H)、5.68(m,1H)
【0037】
実施例5
実施例2において、ゲラニルメチル炭酸エステルのかわりにtrans−3−フェニル−2−ブテニルメチル炭酸エステルを用いて、実施例2に準拠して実施した。その結果、(R)−3−フェニル−1−ブテンが収率91%で得られた。光学純度は64%eeであった。
旋光度[α] 25−2.2(C=0.7,CHCl
H NMR(CDCl) δppm:1.39(d,J=6.8Hz,3H)、2.48(quintet,J=6.8Hz,1H)、5.04(dd,J=10.5,16.0Hz,2H)、6.02(ddd,J=6.8,10.5,16.0Hz,1H)、7.19〜7.34(m,5H)
【0038】
実施例6
実施例2において、ギ酸(HCOOH)のかわりに重水素化されたギ酸(DCOOD)を用いて、実施例2に準拠して実施した。その結果、(S)−3,7−ジメチル−3−2 H−1,6−オクタジエンが収率93%、光学純度84%eeで得られた。
旋光度[α] 20+10.4°(C=2.0 , CHCl
H NMR(CDCl) δppm:0.98(s,3H)、1.25〜1.34(t,J=6.8Hz,2H)、1.60(s,3H)、1.68(s,3H)、1.96(q,J=6.8Hz,2H)、4.90(ddd,J=17.1,9.9,2.0Hz,2H)、5.05〜5.15(m,1H)、5.70(dd,J=17.1,9.9Hz,1H)
【0039】
実施例7
実施例4において、ギ酸(HCOOH)のかわりに重水素化されたギ酸(DCOOD)を用いて、実施例4に準拠して実施した。その結果、(R)−3−シクロヘキシル−3−2 H−1−ブテンが収率94%、光学純度85%eeで得られた。
旋光度[α] 24+6.0(C=1.0,CHCl
H NMR(CDCl) δppm:0.95(s,3H)、0.88〜1.78(m,11H)、1.91〜2.04(m,1H)、4.88〜4.94(m,2H)、5.65〜5.76(m,1H)
【0040】
実施例8−(1)
実施例1で得られた(R)−(+)−3−ジフェニルホスフィノ−3’−メトキシ−4,4’−ビフェナントリル(10.2mg,0.018mmol)とトリス(ジベンジリデンアセトン)(クロロホルム)ジパラジウム(0)(4.7mg,0.0045mmol)をガラスシュレンクに入れ、窒素雰囲気下、ジオキサン1mlを加え溶解した。この中に氷浴下1,8−ビス(ジメチルアミノ)ナフタレン(77.1mg,0.36mmol)、ギ酸(30.1mg,0.65mmol)を順に加えた。さらに同温度でcis−3−フェニル−3−トリエチルシリル−2−プロペニルメチル炭酸エステル(90.3mg,0.29mmol)を加えた後、20℃で33時間撹拌した。反応液をペンタンで希釈、水洗し、有機層を無水硫酸マグネシウムで乾燥後、シリカゲルに通して濾過した。溶媒を減圧下留去し、(R)−3−フェニル−3−トリエチルシリル−1−プロペン66.3mgを無色油状物として得た。収率95%(光学純度88%ee)。光学純度は、実施例8−(2)に従い、文献既知物質に誘導し、その比旋光度およびLC分析より決定した。
旋光度[α] 20−55.2(C=1.0,PhH)
H NMR(CDCl) δppm:0.53(q,J=7.5Hz,6H)、0.89(t,J=7.5Hz,9H)、3.17(d,J=9.9Hz,1H)、4.49〜5.04(m,2H)、6.26(ddd,J=9.9,10.5,16.8Hz,1H)、7.12〜7.19(m,2H)、7.26〜7.35(m,3H)
Figure 0003590980
【0041】
実施例8−(2)
実施例8−(1)で得られた(R)−3−フェニル−3−トリエチルシリル−1−プロペン(16.8mg,0.072mmol)の塩化メチレン溶液(2ml)にピバルアルデヒド(6.4mg,0.074mmol)、1M四塩化チタンの塩化メチレン溶液(75μl,0.075mmol)を−78℃で加え、5分間撹拌した。反応液に水を加え、塩化メチレンで抽出し、無水硫酸マグネシウムで乾燥した。溶媒を留去後、残査をシリカゲルカラムクロマトグラフィー(移動相:塩化メチレン)で精製し、(R)−trans−2、2−ジメチル−6−フェニル−5−ヘキセン−3−オールを10.3mg得た。収率72%。この化合物の比旋光度は[α] 20+39.5(C=0.6,CCl)であり、J. Org. Chem. 48, 281(1983).に記載された91%eeの(R)−(+)−trans−2、2−ジメチル−6−フェニル−5−ヘキセン−3−オールの比旋光度[α] 20+44.7(C=0.5,CCl)から(R)体であると分かる。また、既に報告されている(R)−3−フェニル−3−トリエチルシリル−1−プロペンのようなα位に不斉炭素を持つ光学活性アリルシランとアルデヒドとの反応の立体化学から判断し、(R)−3−フェニル−3−トリエチルシリル−1−プロペンの絶対配置を(R)と決定した。
更に、このようにして得られた(R)−trans−2、2−ジメチル−6−フェニル−5−ヘキセン−3−オールを常法に従い、3、5−ジニトロフェニルカルバメートへ誘導し、光学異性体分離用カラムにてHPLC分析を行うことにより光学純度を88%eeと決定した。
【0042】
実施例9
実施例8−(1)において、cis−3−フェニル−3−トリエチルシリル−2−プロペニルメチル炭酸エステルのかわりにcis−3−トリエチルシリル−2−ブテニルメチル炭酸エステルを用いて、実施例8−(1)に準拠して実施した。その結果、(S)−3−トリエチルシリル−1−ブテンが収率90%、光学純度72%eeで得られた。
尚、(S)−3−トリエチルシリル−1−ブテンの立体配置はJ. Org. Chem. 51, 3773(1986). に記載の同化合物{(S)−(−)(49%ee):[α] 20−27.2(C=3.5,PhH)}から(S)体であると決定し、光学純度は実施例8−(2)と同様にして3、5−ジニトロフェニルカルバメートへ誘導し、光学異性体分離用カラムにてHPLC分析を行うことにより72%eeと決定した。
旋光度[α] 20−38.1(C=0.65,PhH)
H NMR(CDCl) δppm:0.55(q,J=7.9Hz,6H)、0.96(t,J=7.9Hz,9H)、1.09(d,J=6.9Hz,3H)、1.77(quintet,J=6.9Hz,1H)、4.85(m,2H)、5.93(m,1H)
【0043】
実施例10−(1)
2−ヒドロキシ−7ーメチルーナフタレンを常法により酸化すればラセミの2,2’−ジヒドロキシ−7,7’ージメチルー1,1’−ビナフチルをあたえる。(J.Chem.Soc.,Chem.Commun.,1065(1985))このラセミ混合物6gをHPLC(カラム:Sumichiral OA−2000(住友化学製)、移動相:n−ヘキサン/1,2−ジクロロエタン/エタノール=80/15/5、紫外線検出器:波長254nm)により光学分割すれば、(R)−(+)−2,2’−ジヒドロキシ−7,7’ージメチルー1,1’−ビナフチルと(S)−(ー)−2,2’−ジヒドロキシ−7,7’ージメチルー1,1’−ビナフチルを得る。
【0044】
実施例10−(2)
(R)−(+)−2,2’−ジヒドロキシ−7,7’ージメチルー1,1’−ビナフチル1.54g(4.89mmol)とピリジン1.97ml(24.4mmol)のジクロロメタン溶液中に、氷冷下、無水トリフルオロメタンスルホン酸5.50g(19.5mmol)を滴下した。0℃で1時間撹拌後、溶媒を留去する。残査を酢酸エチル50mlで希釈し、5%塩酸水、飽和重曹水および飽和食塩水で洗浄する。有機層を無水硫酸ナトリウムで乾燥後溶媒を留去し、粗生成物を得る。
これをシリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製すれば、(R)−(+)−2,2’−ビス(トリフルオロメタンスルホニルオキシ)−7,7’ージメチルー1,1’−ビナフチル2.49gを得る。収率99%。
Figure 0003590980
【0045】
実施例10−(3)
窒素雰囲気下、(R)−(+)−2,2’−ビス(トリフルオロメタンスルホニルオキシ)−7,7’ージメチルー1,1’−ビナフチル2.49g(4.84mmol)、ジフェニルホスフィンオキシド2.93g(14.5mmol)、酢酸パラジウム433mg(1.93mmol)、1,4−ビス(ジフェニルホスフィノ)プロパン796mg(1.93mmol)を、ジイソプロピルエチルアミン5.2g(40.1mmol)のジメチルスルホキシド35ml溶液中に注加後、150℃で10時間撹拌する。冷却後、反応混合物を減圧下濃縮し、残査を酢酸エチルで希釈し、希塩酸および飽和重曹水で洗浄する。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去して粗生成物を得る。
これをシリカゲルカラムクロマトグラフィー(移動相:n−ヘキサン/酢酸エチル=1/1)で精製し、(R)−(+)−2−ジフェニルホスフィニル−2’−トリフルオロメタンスルホニルオキシ−7,7’ージメチル−1,1’−ビナフチル2.20gを得る。収率72%。
Figure 0003590980
【0046】
実施例10−(4)
(R)−(+)−2−ジフェニルホスフィニル−2’−トリフルオロメタンスルホニルオキシ−7,7’ージメチル−1,1’−ビナフチル883mg(1.40mmol)をメタノール2.5ml、1,4−ジオキサン5mlの混合溶媒に溶解し、3N水酸化ナトリウム水溶液5mlを加え、室温で9時間撹拌する。氷冷下、反応液に濃塩酸を加えて酸性(pH1程度)とし、酢酸エチルで2回抽出する。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去して粗生成物を得る。
これをシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル)で精製し、(R)−(+)−2−ジフェニルホスフィニル−2’−ヒドロキシ−7,7’ージメチル−1,1’−ビナフチル691mgを得た。収率99%。
H NMR(CDCl ) δppm:(m,26H)、(brs,1H)
31P NMR(CDCl ) δppm:
Figure 0003590980
【0047】
実施例10−(5)
(R)−(+)−2−ジフェニルホスフィニル−2’−ヒドロキシ−7,7’ージメチル−1,1’−ビナフチル688mg(1.38mmol)、無水炭酸カリウム1.79g(13.02mmol)のアセトン30ml懸濁液中にヨウ化メチル1.85g(13.02mmol)を加え、5時間還流させる。冷却後、反応液をセライト濾過し、ジエチルエーテルで洗浄して濾液と合わせ、濾洗液の溶媒を留去して粗生成物を得る。
これをシリカゲルクロマトグラフィー(移動相:n−ヘキサン/酢酸エチル=1/3)で精製し、(R)−(+)−2−ジフェニルホスフィニル−2’−メトキシ−7,7’ージメチル−1,1’−ビナフチル781mgを得る。収率98%。
H NMR(CDCl ) δppm:(s,3H)、(m,26H)
31P NMR(CDCl ) δppm:(s)
Figure 0003590980
【0048】
実施例10−(6)
窒素雰囲気下、(R)−(+)−2−ジフェニルホスフィニル−2’−メトキシ−7,7’ージメチル−1,1’−ビナフチル159mg(0.31mmol)、トリエチルアミン1.23g(12.1mmol)のトルエン5ml溶液中に、0℃でトリクロロシラン617mg(4.55mmol)を加えた後昇温し、110℃で10時間加熱撹拌する。室温まで冷却し、反応液をジエチルエーテルで希釈した後、少量の飽和重曹水を加えて反応を止める。これをセライト濾過し、ジエチルエーテルで洗浄して濾液と合わせ、濾洗液を無水硫酸マグネシウムで乾燥後、溶媒を留去すれば粗生成物を与える。
これをカラムクロマトグラフィー(移動相:n−ヘキサン/ジクロロメタン=1/1)で精製し、(R)−(+)−2−ジフェニルホスフィノ−2’−メトキシ−7,7’ージメチル−1,1’−ビナフチル142mgを得る。収率92%。
H NMR(CDCl ) δppm:(s,3H)、(m,26H)
31P NMR(CDCl ) δppm:(s)
Figure 0003590980
【0049】
実施例11
実施例2において、(R)−(+)−3−ジフェニルホスフィノ−3’−メトキシ−4,4’−ビフェナントリルにかえ、実施例10で得られる(R)−(+)−2−ジフェニルホスフィノ−2’−メトキシ−7,7’−ジメチル−1,1’−ビナフチルを用いて、実施例2に準拠して実施した。その結果、(S)−3,7−ジメチル−1,6−オクタジエンが得られる。[0001]
[Industrial applications]
The present invention relates to a novel phosphine compound which forms a useful catalyst in various asymmetric synthesis reactions by coordinating to various transition metals, and a use thereof.
[0002]
[Prior art]
Conventionally, many reports have been made on transition metal catalysts used for asymmetric synthesis reactions, and among these, transition metal complexes such as ruthenium, palladium, and rhodium having an optically active tertiary phosphine compound as a ligand include: It is widely known that it has excellent performance as a catalyst for asymmetric synthesis. (Chemical Review 32, "Chemistry of Organometallic Complexes", edited by The Chemical Society of Japan, PP237-238, 1982).
[0003]
Further, 2,2′-bisdiphenylphosphino-1,1′-binaphthyl having axial asymmetry is known to be a particularly excellent ligand, and JP-A-55-61937 discloses that Rhodium complexes using this as a ligand have already been reported.
[0004]
[Problems to be solved by the invention]
However, depending on the type of reaction or its reaction substrate, the use of these phosphine complexes is not always sufficient in terms of product selectivity, conversion, and sustained catalytic action.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve such problems, and as a result, in various asymmetric synthesis reactions, a novel catalyst having excellent reaction stereoselectivity or regioselectivity and conversion and high catalytic activity. A novel phosphine compound has been found, and the present invention has been achieved.
[0006]
That is, the present invention relates to the general formula (1)
Figure 0003590980
(Where R1Represents a hydrogen atom, a cycloalkyl group having 5 to 7 carbon atoms or a lower alkyl group. Here, the lower alkyl group may be substituted with a halogen atom, a lower alkoxy group, a lower alkoxyalkoxy group or a phenyl group. R2Represents a phenyl group. Here, the phenyl group may be substituted with an alkyl group, an alkoxy group or a halogen atom. R7And R8Represents a hydrogen atom or a methyl group, but is not a hydrogen atom at the same time. Or R7And R8In all, it represents the group -CH = CH-CH = CH-. )
And a transition metal complex having the compound as a ligand and a use thereof.
[0007]
In the tertiary phosphine compound represented by the general formula (1),
R1Examples of the cycloalkyl group having 5 to 7 carbon atoms include a cyclopentyl group and a cyclohexyl group. Examples of the lower alkyl group which may be substituted with a halogen atom, a lower alkoxy group, a lower alkoxyalkoxy group or a phenyl group include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a t-butyl group, and a fluoro group. Examples include a methyl group, a 2,2,2-trifluoroethyl group, a methoxymethyl group, a methoxyethoxymethyl group, a methoxypropyl group, a benzyl group, a diphenylmethyl group, and a phenylpropyl group. Alkyl, methoxymethyl and methoxyethoxymethyl are preferred.
R2As phenyl substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a fluorine atom, a chlorine atom, a bromine atom, etc. Groups.
[0008]
The tertiary phosphine compound (1) of the present invention has (+)-form and (-)-form which are optically active forms, and the present invention relates to these (+)-form, (-)-form and racemic form. Both are included.
[0009]
The tertiary phosphine compound (1) of the present invention can be produced, for example, according to the following reaction route.
Figure 0003590980
(Where R6Represents a halogen atom, a lower alkoxy group, a lower alkyl group optionally substituted by a lower alkoxyalkoxy group or a phenyl group, or a cycloalkyl group having 5 to 7 carbon atoms;2Represents the same meaning as described above. )
[0010]
That is, a hydrocarbon, a halogenated hydrocarbon, an ether or the like is used as a solvent, and 2 to 20 moles, preferably 3 to 10 moles of an aromatic compound is added to 3,3′-dihydroxy-4,4′-biphenanthryl (4). In the presence of a base such as an amine or a tertiary amine, 2 to 20 moles, preferably 2 to 6 moles of trifluoromethanesulfonic anhydride is allowed to act at -20 to 100C, preferably -10 to 50C for 1 to 10 hours. Thus, 3,3′-bis (trifluoromethanesulfonyloxy) -4,4′-biphenanthryl (5) can be obtained.
[0011]
In a polar solvent such as dimethyl sulfoxide, 1 to 20 moles, preferably 5 to 10 moles of a base such as a tertiary amine and 0.1 to 1 mole times, preferably 0.4 to 1 mole, of the obtained compound (5) are used. In the presence of a palladium-phosphine catalyst of up to 0.6 mole times, a diarylphosphine oxide of 1 to 10 mole times, preferably 2 to 4 mole times is allowed to act at -20 to 100 ° C, preferably 0 ° C to 50 ° C for 1 to 20 hours. Thereby, 3-diarylphosphinyl-3′-trifluoromethanesulfonyloxy-4,4′-biphenanthryl (6) can be obtained.
[0012]
To the compound (6) thus obtained, 1 to 20 moles, preferably 5 to 10 moles of a base such as alkali hydroxide in water, alcohols, ethers or a mixed solvent thereof is added. , -20 to 100 ° C, preferably 0 to 80 ° C for 1 to 20 hours, followed by acid precipitation after the reaction to give 3-diarylphosphinyl-3′-hydroxy-4,4′-biphenanthryl ( 7) can be obtained.
[0013]
The compound (7) is preferably 1 to 20 mole times in a polar solvent such as alcohols, ethers and ketones in the presence of 1 to 20 mole times, preferably 5 to 15 mole times of a base such as alkali carbonate. Is reacted with an alkylating agent such as an alkyl halide in an amount of 5 to 15 mol times at -20 to 120 ° C, preferably 40 to 100 ° C for 1 to 10 hours, to give 3-diarylphosphinyl-3'-alkoxy-4, 4′-biphenanthryl (8) can be obtained.
[0014]
Compound (8) obtained in the presence of a base such as a tertiary amine in an amount of 1 to 100 moles, preferably 40 to 60 moles, in a solvent such as a hydrocarbon, a halogenated hydrocarbon, or an ether, in the presence of a base. The compound (1a) can be obtained by reacting at 50 to 20 times, preferably 10 to 20 times, the amount of a reducing agent such as trichlorosilane at −20 to 150 ° C. for 1 to 5 hours.
[0015]
On the other hand, among the tertiary phosphine compounds of the present invention, R1Is a hydrogen atom (1b) can be produced, for example, according to the following reaction route.
Figure 0003590980
(Where R2Represents an alkyl group, an alkoxy group or a phenyl group optionally substituted with a halogen atom)
[0016]
That is, 3-diarylphosphinyl-3′-hydroxy-4,4′-biphenanthryl (7) is obtained in the same manner as in the above-mentioned method, and the solvent such as hydrocarbons, halogenated hydrocarbons and ethers is obtained. In the presence of a base such as a tertiary amine or the like in an amount of 1 to 100 mole times, preferably 40 to 60 mole times, a reducing agent such as trichlorosilane is applied in an amount of 1 to 50 mole times, preferably 10 to 20 mole times, and The compound (1b) is synthesized by reacting at 150 ° C. for 1 to 5 hours.
[0017]
In the production of the compound (1) of the present invention, the reaction in each step proceeds while maintaining the axially asymmetric environment of the substrate, and thus the optically active 3,3′-dihydroxy-4,4′-biphenanthryl is used as a starting material. When (4) is used, an optically active compound (1) is obtained as a final product. When racemic 3,3'-dihydroxy-4,4'-biphenanthryl (4) is used, racemic compound (1) can be obtained. Therefore, an optically active substance and a racemic form can be separately formed depending on the purpose of use.
[0018]
The tertiary phosphine compound (1) obtained by the present invention coordinates with a transition metal as a ligand to form a complex. Examples of the transition metal forming this complex include palladium, rhodium, ruthenium and the like. Among the transition metal complexes according to the present invention, examples of a method for producing a palladium complex include, for example, “The 4th Edition Experimental Chemistry Course” edited by The Chemical Society of Japan, Vol. 18, Organometallic Complex, 1991, Maruzen P. According to the method described in 393, it can be produced by reacting dibenzonitrile palladium dichloride with the tertiary phosphine compound (1) of the present invention.
[0019]
When a transition metal complex having an optically active form of the tertiary phosphine compound (1) obtained by the present invention as a ligand is used as a catalyst for an asymmetric synthesis reaction, for example, an asymmetric reduction reaction, a high yield and a high yield can be obtained. The desired product can be obtained selectively with an asymmetric yield. That is, using a transition metal complex having an optically active substance of the tertiary phosphine compound (1) as a ligand as a catalyst, the general formula (2)
Figure 0003590980
(Wherein, n represents 1 or 0;3Represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an optionally substituted phenyl group;4Represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or a silicon atom optionally substituted with an alkyl group or a silicon atom substituted with an optionally substituted phenyl group;5Represents an optionally substituted alkyl group or an optionally substituted phenyl group when n is 1, and when n is 0, represents an optionally substituted alkyl group or an optionally substituted phenyl group. Represents a group or a hydrogen atom. )
Is reduced by the action of a reducing agent in the presence of a transition metal complex having an optically active tertiary phosphine compound represented by the general formula (1) as a ligand to reduce the compound represented by the general formula (1). General formula (3) selectively at rate
Figure 0003590980
(Where R3, R4Represents the same meaning as described above, and * represents an asymmetric carbon atom. )
Can be produced.
[0020]
In the compounds represented by the general formulas (2) and (3), R3Include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a t-butyl group, a cyclopentyl group, a cyclohexyl group, a 3-pentenyl group, a 4-methyl-3-pentenyl group, and a 2-cyclohexenyl group , 3-cyclohexenyl group, phenyl group, p-tolyl group and the like, and R4 is methyl group, ethyl group, propyl group, butyl group, isopropyl group, t-butyl group, cyclopentyl group, cyclohexyl group , 3-pentenyl, 4-methyl-3-pentenyl, 2-cyclohexenyl, 3-cyclohexenyl, trimethylsilyl, triethylsilyl, phenyldimethylsilyl and the like.
Also, R5When n is 1, methyl, ethyl, propyl, butyl, isopropyl, t-butyl, benzyl, phenyl and p-tolyl groups are mentioned. When n is 0, And a hydrogen atom.
[0021]
The compound represented by the general formula (3) can be produced from the compound represented by the general formula (2), for example, by the following method. That is, using a hydrocarbon, a halogenated hydrocarbon, an ether or the like as a solvent, an optically active tertiary compound having a molar ratio of 0.00001 to 0.1 mol, preferably 0.001 to 0.05 mol, per mol of the compound (2). A phosphine compound (1), a palladium complex such as tris (dibenzylideneacetone) (chloroform) dipalladium (0) such as 0.000001 to 0.05 mole times, preferably 0.0001 to 0.02 mole times; In the presence of an organic base such as 1,2-bis (dimethylamino) naphthalene in a molar amount of preferably 1-2 molar times, formic acid in an amount of 1-20 molar times, preferably 1-5 molar times, is used at -20-100 ° C, preferably- An optically active compound (3) is synthesized by acting at 10 to 50 ° C. for 1 to 24 hours.
Examples of the reducing agent include formic acid, ammonium formate, trimethylammonium formate, and triethylammonium formate.
[0022]
In addition, in this asymmetric reduction reaction, when deuterium-substituted formic acid (DCOOD) is used instead of formic acid, the tertiary carbon is selectively deuterated in high yield and high asymmetric yield. Equation (9)
Figure 0003590980
(Where R3, R4And * mark have the same meaning as described above. )
Can be produced.
[0023]
【The invention's effect】
When a transition metal complex having an optically active form of the tertiary phosphine compound (1) obtained by the present invention as a ligand is used as a catalyst for an asymmetric synthesis reaction, for example, an asymmetric reduction reaction, a high yield and a high yield can be obtained. The desired product can be obtained selectively with an asymmetric yield. Further, among the optically active isomers of the tertiary phosphine compound (1) according to the present invention, one of the (+)-form and the (-)-form is selected, and a transition metal complex having this as a ligand is used as a catalyst. By using the compound, a product having a desired absolute configuration can be selectively obtained in an asymmetric synthesis reaction.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
In addition, the analysis in an Example was performed using the following analyzer.
Polarimeter: DIP-370 type (manufactured by JASCO Corporation)
1H-NMR spectrum: JNM-EX270 type (270 MHz, manufactured by JEOL Ltd.) Internal standard: tetramethylsilane
31P-NMR spectrum: JNM-EX270 type (109 MHz, manufactured by JEOL Ltd.) External standard: phosphoric acid
[0025]
Raw material synthesis
Racemic 3,3'-dihydroxy-4,4'-biphenanthryl was prepared according to J. Am. Chem. Soc. Chem. Commun. , 1065 (1985). 6.1 g of this racemic mixture was subjected to HPLC (column: Sumichiral OA-2000 (manufactured by Sumitomo Chemical), mobile phase: n-hexane / 1,2-dichloroethane / ethanol = 80/15/5, ultraviolet detector: wavelength 254 nm). After optical resolution, (R)-(−)-3,3′-dihydroxy-4,4′-biphenanthryl and (S)-(+)-3,3′-dihydroxy-4,4′-biphenanthryl were each added in 2 parts. 0.9 g was obtained. The optical purities were 99.9% ee and 99.5% ee, respectively.
[0026]
Example 1- (1)
In a dichloromethane solution of 1.91 g (4.89 mmol) of (R)-(−)-3,3′-dihydroxy-4,4′-biphenanthryl and 1.97 ml (24.4 mmol) of pyridine, anhydrous under ice-cooling. 5.50 g (19.5 mmol) of trifluoromethanesulfonic acid were added dropwise. After stirring at 0 ° C. for 1 hour, the solvent was distilled off. The residue was diluted with 50 ml of ethyl acetate and washed with 5% aqueous hydrochloric acid, saturated aqueous sodium bicarbonate and saturated saline. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off to obtain a crude product. This was purified by silica gel column chromatography (mobile phase: dichloromethane) to obtain 3.15 g of (R)-(-)-3,3'-bis (trifluoromethanesulfonyloxy) -4,4'-biphenanthryl. Yield 100%.
Melting point: 162.5-163.0 ° C
Optical rotation [α]D 22-18.2 (C = 0.4, CHCl3)
Figure 0003590980
[0027]
Example 1- (2)
Under a nitrogen atmosphere, (R)-(−)-3,3′-bis (trifluoromethanesulfonyloxy) -4,4′-biphenanthryl 3.15 g (4.84 mmol), diphenylphosphine oxide 2.93 g (14.5 mmol) ), 433 mg (1.93 mmol) of palladium acetate, and 796 mg (1.93 mmol) of 1,4-bis (diphenylphosphino) propane were added to a solution of 5.2 g (40.1 mmol) of diisopropylethylamine in 35 ml of dimethyl sulfoxide. And stirred at 150 ° C. for 10 hours. After cooling, the reaction mixture was concentrated under reduced pressure, the residue was diluted with ethyl acetate, and washed with dilute hydrochloric acid and saturated aqueous sodium hydrogen carbonate. After drying the organic layer over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product.
This was purified by silica gel column chromatography (mobile phase: n-hexane / ethyl acetate = 1/1) to give (R)-(+)-3-diphenylphosphinyl-3′-trifluoromethanesulfonyloxy-4, 2.41 g of 4'-biphenanthryl was obtained. Yield 70%.
Melting point: 254.0-255.0 ° C
Optical rotation [α]D 20+15.0 (C = 0.82, CHCl3)
31 P NMR (CDCl 3) δ ppm: 29.6 (s)
Figure 0003590980
[0028]
Example 1- (3)
Mixed solvent of 985 mg (1.40 mmol) of (R)-(+)-3-diphenylphosphinyl-3′-trifluoromethanesulfonyloxy-4,4′-biphenanthryl in 2.5 ml of methanol and 5 ml of 1,4-dioxane And 3 ml of a 3N aqueous sodium hydroxide solution was added thereto, followed by stirring at room temperature for 9 hours. The reaction solution was acidified (about pH 1) by adding concentrated hydrochloric acid under ice-cooling, and then extracted twice with ethyl acetate. After drying the organic layer over anhydrous magnesium sulfate, the solvent was distilled off to obtain a crude product.
This was purified by silica gel column chromatography (mobile phase: ethyl acetate) to obtain 794 mg of (R)-(-)-3-diphenylphosphinyl-3'-hydroxy-4,4'-biphenanthryl. Yield 99%.
Optical rotation [α]D 20−63.4 (C = 0.55, CH2Cl2)
1H NMR (CDCl3) Δ ppm: 6.26 to 8.07 (m, 26H), 8.55 (brs, 1H)
31P NMR (CDCl3) Δ ppm: 32.6 (s)
[0029]
Example 1- (4)
(R)-(-)-3-diphenylphosphinyl-3'-hydroxy-4,4'-biphenanthryl 792 mg (1.38 mmol), anhydrous potassium carbonate 1.79 g (13.02 mmol) suspension in acetone 30 ml 1.85 g (13.02 mmol) of methyl iodide was added thereto, and the mixture was refluxed for 5 hours. After cooling, the reaction solution was filtered through celite, washed with diethyl ether, combined with the filtrate, and the solvent in the filtrate was distilled off to obtain a crude product.
This was purified by silica gel chromatography (mobile phase: n-hexane / ethyl acetate = 1/3) to give (R)-(+)-3-diphenylphosphinyl-3′-methoxy-4,4′-biphenanthryl. 781 mg were obtained. 97% yield.
Melting point: 218.0-219.5 ° C
Optical rotation [α]D 20+85.8 (C = 0.50, CHCl3)
1H NMR (CDCl3) Δ ppm: 3.43 (s, 3H), 6.63 to 7.90 (m, 26H)
31P NMR (CDCl3) Δ ppm: 29.2 (s)
Figure 0003590980
[0030]
Example 1- (5)
Under a nitrogen atmosphere, a solution of 185 mg (0.31 mmol) of (R)-(+)-3-diphenylphosphinyl-3′-methoxy-4,4′-biphenanthryl and 1.23 g (12.1 mmol) of triethylamine in 5 ml of toluene After adding 617 mg (4.55 mmol) of trichlorosilane at 0 ° C, the mixture was heated and stirred at 110 ° C for 10 hours. After cooling to room temperature, the reaction solution was diluted with diethyl ether, and a small amount of saturated aqueous sodium hydrogen carbonate was added to stop the reaction. This was filtered through celite, washed with diethyl ether, combined with the filtrate, and the filtrate was dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain a crude product.
This was purified by column chromatography (mobile phase: n-hexane / dichloromethane = 1/1), and 161 mg of (R)-(+)-3-diphenylphosphino-3′-methoxy-4,4′-biphenanthryl was obtained. Obtained. Yield 91%.
Melting point: 209.5-210.0 ° C
Optical rotation [α]D 20+271.6 (C = 1.29, CHCl3)
1H NMR (CDCl3) Δ ppm: 3.07 (s, 3H), 6.58 to 8.12 (m, 26H)
31P NMR (CDCl3) Δ ppm: -12.3 (s)
Figure 0003590980
[0031]
Example 2
(R)-(+)-3-diphenylphosphino-3′-methoxy-4,4′-biphenanthryl (6.24 mg, 0.011 mmol) obtained in Example 1 and tris (dibenzylideneacetone) (chloroform ) Dipalladium (0) (2.6 mg, 0.0025 mmol) was placed in a glass Schlenk, and dioxane was added and dissolved under a nitrogen atmosphere. To this, 1,8-bis (dimethylamino) naphthalene (128.6 mg, 0.60 mmol) and formic acid (52.5 mg, 1.14 mmol) were sequentially added under an ice bath. Further, geranylmethyl carbonate (104.5 mg, 0.49 mmol) was added at the same temperature, followed by stirring at 20 ° C. for 17 hours. The reaction solution was diluted with pentane and washed with water, and the organic layer was dried over anhydrous magnesium sulfate and then filtered through silica gel. The solvent was distilled off under reduced pressure to obtain 68.0 mg of (S) -3,7-dimethyl-1,6-octadiene as a colorless oil. The yield is 99% or more. Optical purity 85% ee.
Optical rotation [α]D 20+8.1 (C = 1.6, CHCl3)
1H NMR (CDCl3) Δ ppm: 0.98 (d, J = 7.0 Hz, 3H), 1.27 to 1.36 (m, 2H), 1.60 (s, 3H), 1.67 (s, 3H), 1 .96 (q, J = 7.0 Hz, 2H), 2.12 (heptet, J = 7 Hz, 1H), 4.88 to 4.99 (m, 2H), 5.05 to 5.15 (m, 1H), 5.70 (ddd, J = 17.1, 10.1, 7.0 Hz, 1H)
[0032]
Comparative example
In Example 2, instead of (R)-(+)-3-diphenylphosphino-3′-methoxy-4,4′-biphenanthryl, (R)-(+)-2-diphenylphosphino-2′- This was carried out according to Example 2 using methoxy-1,1'-binaphthyl. As a result, (S) -3,7-dimethyl-1,6-octadiene was obtained at a yield of 99%, but the optical purity was 76% ee.
[0033]
Reference Example 1
(S) -3,7-Dimethyl-1,6-octadiene (85% ee) (61 mg, 0.44 mmol) was dissolved in 20 ml of water and 10 ml of t-butyl alcohol, and potassium permanganate (185 mg) was added under ice-cooling. , 1.17 mmol), sodium metaperiodate (1.46 g, 6.86 mmol), and potassium carbonate (366 mg, 2.64 mmol). The reaction solution was adjusted to pH 8 by adding a 3N aqueous sodium hydroxide solution, and stirred at room temperature for 2 hours. Under ice-cooling, concentrated hydrochloric acid was added to the reaction solution to adjust the pH to 1, sodium nitrite was added until the color of the reaction solution changed from reddish brown to yellow, and the reaction solution was extracted with diethyl ether. After extracting the organic layer twice with a 3N aqueous sodium hydroxide solution, the aqueous layer was washed once with diethyl ether. The aqueous layer was adjusted to pH 1 by adding concentrated hydrochloric acid, and then extracted three times with diethyl ether. After drying the organic layer over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure to obtain 38 mg of (S) -2-methylpentanedicarboxylic acid as a pale yellow oil. Yield 58%. Optical purity 85% ee.
Optical rotation [α]D 20+17.4 (C = 1.63, CHCl3)
1H NMR (CDCl3) Δ ppm: 1.23 (d, J = 7.0 Hz, 3H), 1.8 to 2.1 (m, 2H), 2.4 to 2.7 (m, 3H), 9.0 to 10. 5 (br, 2H)
[0034]
Reference Example 2
(S) -2-Methylpentanedicarboxylic acid (85% ee) (10 mg, 0.68 mmol) was dissolved in THF 0.5 ml, 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide 30 μl, aniline (15 mg, 0.16 mmol) and stirred at 40 ° C. for 1 hour. Concentrated hydrochloric acid was added to the reaction solution, and the mixture was extracted with ethyl acetate. The solvent was distilled off under reduced pressure to obtain a crude product.
This was purified by column chromatography (mobile phase: n-hexane / ethyl acetate = 1/1) to obtain (S) -2-methylpentanedicarboxylic dianilide as a white solid.
The enantiomeric excess of this diamide was determined by HPLC (column: Sumichiral OA-4100 (manufactured by Sumitomo Chemical), mobile phase: n-hexane / 1,2-dichloroethane / ethanol = 50/15/1, ultraviolet detector: wavelength) 254 nm) and found to be 85% ee.
Optical rotation [α]D 20+10.0 (C = 0.32, CHCl3)
1H NMR (CDCl3) Δ ppm: 1.26 (d, J = 7.0 Hz, 3H), 1.89 to 2.10 (m, 2H), 2.43 to 2.49 (m, 2H), 2.61-2. 69 (m, 2H), 7.06 to 7.14 (m, 2H), 7.13 to 7.35 (m, 4H), 7.49 to 7.57 (m, 4H), 8.05 ( brs, 2H)
[0035]
Example 3
In Example 2, it carried out according to Example 2 using neryl methyl carbonate instead of geranyl methyl carbonate. As a result, (R) -3,7-dimethyl-1,6-octadiene was obtained at a yield of 99% or more. The optical purity was 82% ee.
[0036]
Example 4
Example 2 was carried out in accordance with Example 2, using trans-3-cyclohexyl-2-butenylmethyl carbonate instead of geranylmethyl carbonate. As a result, (R) -3-cyclohexyl-1-butene was obtained with a yield of 96%. The optical purity was 85% ee.
Optical rotation [α]D 24+4.2 (C = 1.9, CHCl3)
1H NMR (CDCl3) Δ ppm: 0.98 (d, J = 6.9 Hz, 3H), 0.92 to 1.78 (m, 11H), 1.91 to 2.04 (m, 1H), 4.88 to 4. 94 (m, 2H), 5.68 (m, 1H)
[0037]
Example 5
Example 2 was carried out in the same manner as in Example 2 except that trans-3-phenyl-2-butenylmethyl carbonate was used instead of geranylmethyl carbonate. As a result, (R) -3-phenyl-1-butene was obtained with a yield of 91%. The optical purity was 64% ee.
Optical rotation [α]D 25-2.2 (C = 0.7, CHCl3)
1H NMR (CDCl3) Δ ppm: 1.39 (d, J = 6.8 Hz, 3H), 2.48 (quintet, J = 6.8 Hz, 1H), 5.04 (dd, J = 10.5, 16.0 Hz, 2H) ), 6.02 (ddd, J = 6.8, 10.5, 16.0 Hz, 1H), 7.19-7.34 (m, 5H)
[0038]
Example 6
In Example 2, it carried out based on Example 2 using the deuterated formic acid (DCOOD) instead of formic acid (HCOOH). As a result, (S) -3,7-dimethyl-3-2H-1,6-octadiene was obtained with a yield of 93% and an optical purity of 84% ee.
Optical rotation [α]D 20+ 10.4 ° (C = 2.0, CHCl3)
1H NMR (CDCl3) Δ ppm: 0.98 (s, 3H), 1.25 to 1.34 (t, J = 6.8 Hz, 2H), 1.60 (s, 3H), 1.68 (s, 3H), 1 .96 (q, J = 6.8 Hz, 2H), 4.90 (ddd, J = 17.1, 9.9, 2.0 Hz, 2H), 5.05 to 5.15 (m, 1H), 5.70 (dd, J = 17.1, 9.9 Hz, 1H)
[0039]
Example 7
In Example 4, it carried out based on Example 4 using the deuterated formic acid (DCOOD) instead of formic acid (HCOOH). As a result, (R) -3-cyclohexyl-3-2H-1-butene was obtained with a yield of 94% and an optical purity of 85% ee.
Optical rotation [α]D 24+6.0 (C = 1.0, CHCl3)
1H NMR (CDCl3) Δ ppm: 0.95 (s, 3H), 0.88 to 1.78 (m, 11H), 1.91 to 2.04 (m, 1H), 4.88 to 4.94 (m, 2H) , 5.65 to 5.76 (m, 1H)
[0040]
Example 8- (1)
(R)-(+)-3-diphenylphosphino-3′-methoxy-4,4′-biphenanthryl (10.2 mg, 0.018 mmol) obtained in Example 1 and tris (dibenzylideneacetone) (chloroform ) Dipalladium (0) (4.7 mg, 0.0045 mmol) was placed in a glass Schlenk, and 1 ml of dioxane was added and dissolved under a nitrogen atmosphere. To this, 1,8-bis (dimethylamino) naphthalene (77.1 mg, 0.36 mmol) and formic acid (30.1 mg, 0.65 mmol) were sequentially added under an ice bath. Further, cis-3-phenyl-3-triethylsilyl-2-propenylmethyl carbonate (90.3 mg, 0.29 mmol) was added at the same temperature, followed by stirring at 20 ° C. for 33 hours. The reaction solution was diluted with pentane, washed with water, and the organic layer was dried over anhydrous magnesium sulfate and filtered through silica gel. The solvent was distilled off under reduced pressure to obtain 66.3 mg of (R) -3-phenyl-3-triethylsilyl-1-propene as a colorless oil. Yield 95% (optical purity 88% ee). The optical purity was determined according to Example 8- (2) by deriving a substance known in the literature and determining its specific rotation and LC analysis.
Optical rotation [α]D 20-55.2 (C = 1.0, PhH)
1H NMR (CDCl33.) δ ppm: 0.53 (q, J = 7.5 Hz, 6H), 0.89 (t, J = 7.5 Hz, 9H), 3.17 (d, J = 9.9 Hz, 1H), 49 to 5.04 (m, 2H), 6.26 (ddd, J = 9.9, 10.5, 16.8 Hz, 1H), 7.12 to 7.19 (m, 2H), 7.26 Up to 7.35 (m, 3H)
Figure 0003590980
[0041]
Example 8- (2)
In a methylene chloride solution (2 ml) of (R) -3-phenyl-3-triethylsilyl-1-propene (16.8 mg, 0.072 mmol) obtained in Example 8- (1), pivalaldehyde (6. (4 mg, 0.074 mmol), a 1 M titanium tetrachloride methylene chloride solution (75 μl, 0.075 mmol) was added at −78 ° C., and the mixture was stirred for 5 minutes. Water was added to the reaction solution, extracted with methylene chloride, and dried over anhydrous magnesium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography (mobile phase: methylene chloride) to obtain (R) -trans-2,2-dimethyl-6-phenyl-5-hexen-3-ol. 3 mg were obtained. Yield 72%. The specific rotation of this compound is [α]D 20+39.5 (C = 0.6, CCl4). Org. Chem. 48, 281 (1983). Specific rotation [α] of (R)-(+)-trans-2,2-dimethyl-6-phenyl-5-hexen-3-ol with 91% ee described inD 20+44.7 (C = 0.5, CCl4) Indicates that it is the (R) form. Judging from the stereochemistry of the reaction of an aldehyde with an optically active allylsilane having an asymmetric carbon at the α-position such as (R) -3-phenyl-3-triethylsilyl-1-propene, which has already been reported, The absolute configuration of R) -3-phenyl-3-triethylsilyl-1-propene was determined as (R).
Further, the (R) -trans-2,2-dimethyl-6-phenyl-5-hexen-3-ol thus obtained is derived into 3,5-dinitrophenylcarbamate according to a conventional method, and the optical isomer is obtained. The optical purity was determined to be 88% ee by performing HPLC analysis using a column for body separation.
[0042]
Example 9
Example 8- (1) was obtained by using cis-3-triethylsilyl-2-butenylmethyl carbonate instead of cis-3-phenyl-3-triethylsilyl-2-propenylmethyl carbonate. Performed according to 1). As a result, (S) -3-triethylsilyl-1-butene was obtained at a yield of 90% and an optical purity of 72% ee.
The configuration of (S) -3-triethylsilyl-1-butene is described in J. Am. Org. Chem. 51, 3773 (1986). The same compound {(S)-(-) (49% ee): [α]D 20-27.2 (C = 3.5, PhH)} was determined to be the (S) form, and the optical purity was derived to 3,5-dinitrophenylcarbamate in the same manner as in Example 8- (2). It was determined to be 72% ee by performing HPLC analysis using a column for separating optical isomers.
Optical rotation [α]D 20-38.1 (C = 0.65, PhH)
1H NMR (CDCl3) Δ ppm: 0.55 (q, J = 7.9 Hz, 6H), 0.96 (t, J = 7.9 Hz, 9H), 1.09 (d, J = 6.9 Hz, 3H), 1. 77 (quintet, J = 6.9 Hz, 1H), 4.85 (m, 2H), 5.93 (m, 1H)
[0043]
Example 10- (1)
Oxidation of 2-hydroxy-7-methylnaphthalene by conventional methods gives racemic 2,2'-dihydroxy-7,7'-dimethyl-1,1'-binaphthyl. (J. Chem. Soc., Chem. Commun., 1065 (1985)) 6 g of this racemic mixture was subjected to HPLC (column: Sumichiral OA-2000 (manufactured by Sumitomo Chemical), mobile phase: n-hexane / 1,2-dichloroethane / (R)-(+)-2,2'-dihydroxy-7,7'-dimethyl-1,1'-binaphthyl (Ethanol = 80/15/5, UV detector: wavelength 254 nm) )-(-)-2,2'-Dihydroxy-7,7'-dimethyl-1,1'-binaphthyl is obtained.
[0044]
Example 10- (2)
In a dichloromethane solution of 1.54 g (4.89 mmol) of (R)-(+)-2,2′-dihydroxy-7,7′-dimethyl-1,1′-binaphthyl and 1.97 ml (24.4 mmol) of pyridine, Under ice-cooling, 5.50 g (19.5 mmol) of trifluoromethanesulfonic anhydride was added dropwise. After stirring at 0 ° C. for 1 hour, the solvent is distilled off. The residue is diluted with 50 ml of ethyl acetate and washed with 5% aqueous hydrochloric acid, saturated aqueous sodium bicarbonate and saturated saline. After drying the organic layer with anhydrous sodium sulfate, the solvent is distilled off to obtain a crude product.
This was purified by silica gel column chromatography (mobile phase: dichloromethane) to give (R)-(+)-2,2′-bis (trifluoromethanesulfonyloxy) -7,7′-dimethyl-1,1′-binaphthyl 2 .49 g are obtained. Yield 99%.
Figure 0003590980
[0045]
Example 10- (3)
Under a nitrogen atmosphere, 2.49 g (4.84 mmol) of (R)-(+)-2,2′-bis (trifluoromethanesulfonyloxy) -7,7′-dimethyl-1,1′-binaphthyl, diphenylphosphine oxide 93 g (14.5 mmol) of palladium acetate, 433 mg (1.93 mmol) of palladium acetate, and 796 mg (1.93 mmol) of 1,4-bis (diphenylphosphino) propane in 35 ml of dimethyl sulfoxide in 5.2 g (40.1 mmol) of diisopropylethylamine Then, the mixture is stirred at 150 ° C. for 10 hours. After cooling, the reaction mixture is concentrated under reduced pressure, the residue is diluted with ethyl acetate, and washed with dilute hydrochloric acid and saturated aqueous sodium hydrogen carbonate. After drying the organic layer over anhydrous magnesium sulfate, the solvent is distilled off to obtain a crude product.
This was purified by silica gel column chromatography (mobile phase: n-hexane / ethyl acetate = 1/1) to give (R)-(+)-2-diphenylphosphinyl-2′-trifluoromethanesulfonyloxy-7, 7'-dimethyl-1,1'-Binaphthyl2.20 g are obtained. Yield 72%.
Figure 0003590980
[0046]
Example 10- (4)
883 mg (1.40 mmol) of (R)-(+)-2-diphenylphosphinyl-2′-trifluoromethanesulfonyloxy-7,7′-dimethyl-1,1′-binaphthyl in 2.5 ml of methanol, 1,4 Dissolve in a mixed solvent of 5 ml of dioxane, add 5 ml of 3N aqueous sodium hydroxide solution, and stir at room temperature for 9 hours. Under ice-cooling, concentrated hydrochloric acid was added to the reaction solution to make it acidic (about pH 1), and the mixture was extracted twice with ethyl acetate. After drying the organic layer over anhydrous magnesium sulfate, the solvent is distilled off to obtain a crude product.
This was purified by silica gel column chromatography (mobile phase: ethyl acetate) to give (R)-(+)-2-diphenylphosphinyl-2'-hydroxy-7,7'-dimethyl-1,1'-Binaphthyl691 mg were obtained. Yield 99%.
1  H NMR (CDCl3  ) Δ ppm: (m, 26H), (brs, 1H)
31P NMR (CDCl3  ) Δ ppm:
Figure 0003590980
[0047]
Example 10- (5)
(R)-(+)-2-diphenylphosphinyl-2'-hydroxy-7,7'-dimethyl-1,1'-Binaphthyl1.85 g (13.02 mmol) of methyl iodide is added to a suspension of 688 mg (1.38 mmol) and 1.79 g (13.02 mmol) of anhydrous potassium carbonate in 30 ml of acetone, and the mixture is refluxed for 5 hours. After cooling, the reaction solution was filtered through celite, washed with diethyl ether and combined with the filtrate, and the solvent in the filtrate was distilled off to obtain a crude product.
This was purified by silica gel chromatography (mobile phase: n-hexane / ethyl acetate = 1/3) to give (R)-(+)-2-diphenylphosphinyl-2′-methoxy-7,7′-dimethyl- 1,1'-Binaphthyl781 mg are obtained. Yield 98%.
1  H NMR (CDCl3  ) Δ ppm: (s, 3H), (m, 26H)
31P NMR (CDCl3  ) Δ ppm: (s)
Figure 0003590980
[0048]
Example 10- (6)
Under a nitrogen atmosphere, (R)-(+)-2-diphenylphosphinyl-2'-methoxy-7,7'-dimethyl-1,1'-BinaphthylA solution of 159 mg (0.31 mmol) and 1.23 g (12.1 mmol) of triethylamine in 5 ml of toluene was added with 617 mg (4.55 mmol) of trichlorosilane at 0 ° C., then the temperature was raised, and the mixture was heated and stirred at 110 ° C. for 10 hours. . After cooling to room temperature and diluting the reaction solution with diethyl ether, the reaction is stopped by adding a small amount of saturated aqueous sodium hydrogen carbonate. This is filtered through celite, washed with diethyl ether, combined with the filtrate, and the filtrate is dried over anhydrous magnesium sulfate, and the solvent is distilled off to give a crude product.
This was purified by column chromatography (mobile phase: n-hexane / dichloromethane = 1/1) to give (R)-(+)-2-diphenylphosphino-2′-methoxy-7,7′-dimethyl-1, 1'-Binaphthyl142 mg are obtained. Yield 92%.
1  H NMR (CDCl3  ) Δ ppm: (s, 3H), (m, 26H)
31P NMR (CDCl3  ) Δ ppm: (s)
Figure 0003590980
[0049]
Example 11
Example 2 was changed to (R)-(+)-3-diphenylphosphino-3'-methoxy-4,4'-biphenanthryl in Example 2.10Was carried out according to Example 2 using (R)-(+)-2-diphenylphosphino-2'-methoxy-7,7'-dimethyl-1,1'-binaphthyl. As a result, (S) -3,7-dimethyl-1,6-octadiene is obtained.

Claims (5)

一般式(1)
Figure 0003590980
(式中、R1 は、水素原子、炭素数5〜7のシクロアルキル基または低級アルキル基を示す。ここで低級アルキル基は、ハロゲン原子、低級アルコキシ基、低級アルコキシアルコキシ基もしくはフェニル基で置換されていてもよい。R2 はフェニル基を示す。ここでフェニル基は、アルキル基、アルコキシ基もしくはハロゲン原子で置換されていてもよい。R7 およびR8 は、それぞれ水素原子またはメチル基を示すが、同時に水素原子であることはない。あるいはR7 およびR8 全体で基−CH=CH−CH=CH−を示す。)
で示される3級ホスフィン化合物。
General formula (1)
Figure 0003590980
(In the formula, R 1 represents a hydrogen atom, a cycloalkyl group having 5 to 7 carbon atoms or a lower alkyl group. Here, the lower alkyl group is substituted with a halogen atom, a lower alkoxy group, a lower alkoxyalkoxy group or a phenyl group. R 2 represents a phenyl group, wherein the phenyl group may be substituted with an alkyl group, an alkoxy group, or a halogen atom, and R 7 and R 8 are each a hydrogen atom or a methyl group. But not simultaneously a hydrogen atom, or R 7 and R 8 together represent the group —CH = CH—CH = CH—
A tertiary phosphine compound represented by the formula:
一般式(1)で示される光学活性な3級ホスフィン化合物。An optically active tertiary phosphine compound represented by the general formula (1). 一般式(2)
Figure 0003590980
(式中、nは1または0を示し、R3 は水素原子、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、または置換されていてもよいフェニル基を示し、R4 は水素原子、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、あるいはアルキル基で置換されていてもよいケイ素原子または置換されていてもよいフェニル基で置換されたケイ素原子を示し、R5 はnが1の場合、置換されていてもよいアルキル基、または置換されていてもよいフェニル基を示し、nが0の場合、置換されていてもよいアルキル基、置換されていてもよいフェニル基、または水素原子を示す。)
で示される化合物を、一般式(1)で示される光学活性な3級ホスフィン化合物を配位子とするパラジウム錯体の存在下還元剤を作用させ還元することを特徴とする一般式(3)
Figure 0003590980
(式中、R3 、R4 は前記と同じ意味を表わし、*印は不斉炭素原子であることを示す。)
で示される光学活性な末端オレフィン化合物の製造法。
General formula (2)
Figure 0003590980
(Wherein, n represents 1 or 0, R 3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an optionally substituted phenyl group, R 4 represents a hydrogen atom, R 5 represents a silicon atom optionally substituted with an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group or an alkyl group or a phenyl group optionally substituted; Represents an optionally substituted alkyl group or an optionally substituted phenyl group, and when n is 0, an optionally substituted alkyl group, an optionally substituted phenyl group, or hydrogen Represents an atom.)
Wherein the compound represented by the general formula (3) is reduced by the action of a reducing agent in the presence of a palladium complex having the optically active tertiary phosphine compound represented by the general formula (1) as a ligand.
Figure 0003590980
(In the formula, R 3 and R 4 have the same meanings as described above, and the asterisk indicates an asymmetric carbon atom.)
A method for producing an optically active terminal olefin compound represented by the formula:
還元剤がギ酸またはその塩である請求項4に記載の製造法。The method according to claim 4, wherein the reducing agent is formic acid or a salt thereof. 還元剤が重水素化されたギ酸またはその塩である請求項4に記載の製造法。(但し、R3 、R4 は同時に水素原子ではない。)The method according to claim 4, wherein the reducing agent is deuterated formic acid or a salt thereof. (However, R 3 and R 4 are not hydrogen atoms at the same time.)
JP01534194A 1993-10-07 1994-02-09 Optically active tertiary phosphine compound, transition metal complex having the same as ligand, and use thereof Expired - Fee Related JP3590980B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP01534194A JP3590980B2 (en) 1993-10-07 1994-02-09 Optically active tertiary phosphine compound, transition metal complex having the same as ligand, and use thereof
US08/280,814 US5523437A (en) 1993-10-07 1994-07-26 Tertiary phosphine compound and transition metal complex comprising the same as ligand
EP94111780A EP0647647B1 (en) 1993-10-07 1994-07-28 Tertiary phosphine compound and transition metal complex comprising the same as ligand
DE69428755T DE69428755T2 (en) 1993-10-07 1994-07-28 Tertiary phosphine compound and transition metal complex containing it as a ligand

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-251635 1993-10-07
JP25163593 1993-10-07
JP01534194A JP3590980B2 (en) 1993-10-07 1994-02-09 Optically active tertiary phosphine compound, transition metal complex having the same as ligand, and use thereof

Publications (2)

Publication Number Publication Date
JPH07149776A JPH07149776A (en) 1995-06-13
JP3590980B2 true JP3590980B2 (en) 2004-11-17

Family

ID=26351459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01534194A Expired - Fee Related JP3590980B2 (en) 1993-10-07 1994-02-09 Optically active tertiary phosphine compound, transition metal complex having the same as ligand, and use thereof

Country Status (1)

Country Link
JP (1) JP3590980B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101504A1 (en) * 2010-02-17 2011-08-25 Dow Global Technologies Llc Novel phosphine-based catalysts suitable for butadiene telomerisation

Also Published As

Publication number Publication date
JPH07149776A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
JP4264418B2 (en) Ruthenium complexes as (preliminary) catalysts for metathesis reactions
JPH0517491A (en) Optically active tertiary phosphine compound and transition metal complex comprising the same compound as ligand
EP0647647B1 (en) Tertiary phosphine compound and transition metal complex comprising the same as ligand
US5621129A (en) Optically active tertiary phosphine compound, transition metal complex comprising the same as ligand and process for preparing optically active organic silicon compound using said transition metal complex
JP3590980B2 (en) Optically active tertiary phosphine compound, transition metal complex having the same as ligand, and use thereof
US5648548A (en) Optically active asymmetric diphosphine and process for producing optically active substance in its presence
US5780692A (en) Process for producing optically active benzhydrol compounds
US6476250B1 (en) Optically active fluorinated binaphthol derivative
JP5599664B2 (en) Process for producing optically active 1,2-bis (dialkylphosphino) benzene derivative
JPH07330786A (en) Optically active tertiary phosphine compound, transition metal complex with the same as ligand and production method using the complex
JP5544596B2 (en) Process for producing optically active cyclic ether compound and catalyst used therefor
JP3430775B2 (en) Tertiary phosphine compound, transition metal complex having the same as a ligand, and use thereof
WO1996029295A1 (en) Process for preparing asymmetric compound by using metal complex
JP3489176B2 (en) Method for producing optically active organosilicon compound
JP3463450B2 (en) Method for producing optically active organosilicon compound
JP4605321B2 (en) Optically active oxazoline compound and method for producing optically active allyl alcohol derivative using the compound
JPH07223976A (en) Production of optically active olefin compound
JP3489152B2 (en) Phosphine compounds and transition metal complexes using them as ligands
JP2008069104A (en) Helicene derivative, triyne derivative and method for producing the helicene derivative
US6407290B2 (en) Process for the production of substituted 10-chloro-phenoxaphosphines or 10-bromo-phenoxaphosphines
US5994556A (en) Bis(ortho-diarylphosphinophenyl)-tetrahydro-bi(1,3-oxazole) and a preparation method thereof
JP2002069026A (en) Method for manufacturing (e)-3-methyl-2- cyclopentadecenone
JPH08245646A (en) Production of optically active organosilicon compound
JP2000136194A (en) Production of phosphinobinaphthyl
KR20220140556A (en) Method for the synthesis of S-beflubutamide using asymmetric hydrogenation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees