JP4481552B2 - Heat resistance type air flow measuring device - Google Patents

Heat resistance type air flow measuring device Download PDF

Info

Publication number
JP4481552B2
JP4481552B2 JP2002142495A JP2002142495A JP4481552B2 JP 4481552 B2 JP4481552 B2 JP 4481552B2 JP 2002142495 A JP2002142495 A JP 2002142495A JP 2002142495 A JP2002142495 A JP 2002142495A JP 4481552 B2 JP4481552 B2 JP 4481552B2
Authority
JP
Japan
Prior art keywords
temperature
heating resistor
measuring device
heating
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002142495A
Other languages
Japanese (ja)
Other versions
JP2003337056A (en
Inventor
林太郎 南谷
信弥 五十嵐
渡辺  泉
彰夫 保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Automotive Systems Engineering Co Ltd
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2002142495A priority Critical patent/JP4481552B2/en
Publication of JP2003337056A publication Critical patent/JP2003337056A/en
Application granted granted Critical
Publication of JP4481552B2 publication Critical patent/JP4481552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の吸入空気通路を流れる空気流量を測定する空気流量測定装置に関するものである。
【0002】
【従来の技術】
従来例を示す公知例として特開2000−169795記載のエンジン制御装置がある。特開2000−169795は、自動車の吸気管内で使用されるセンサまたはアクチュエータ素子における汚れの付着防止についての発明であり、センサまたはアクチュエータ素子に撥水性または撥油性の付着防止コーティング、例えばフッ素コーティングを設ける旨の記載がある。発明の効果は、吸気管内で存在する汚水、石油、飛沫、シリコン油、煤、塩、炭化水素、ダスト粒子の付着を防止できる。
【0003】
【発明が解決しようとする課題】
本発明は、吸気管内で存在する汚水、石油、飛沫、シリコン油、煤、塩、炭化水素、ダスト粒子のうち、特に塩が発熱抵抗式空気流量測定装置に付着することを防止するものである。海岸地域の海塩または寒冷地の融雪塩を含んだ雨雪を吸気した場合、発熱抵抗体に集中して塩が堆積して固着するという課題がある。発熱抵抗体への塩の堆積固着は、空気流量測定装置の計測精度劣化や、発熱抵抗体の腐食の原因となる。
【0004】
そこで上記従来技術で述べたように撥水性または撥油性の付着防止コーティングを設けることで、発熱抵抗体に塩を含んだ水滴が接触し蒸発消滅したときに塩が堆積固着するのを防止することが試みられた。しかしながら、撥水性または撥油性の付着防止コーティングを使用した場合でも、発熱抵抗体の表面温度が低いと、発熱抵抗体の表面に塩が堆積し固着する不具合がでてきた。
【0005】
本発明は、発熱抵抗体の表面に塩が堆積し固着する不具合をなくすることのできる発熱抵抗式空気流量測定装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、発熱抵抗体の表面に接触した水滴が膜沸騰で蒸発消滅する温度かそれ以上の温度に、発熱抵抗体の温度を設定した。また、発熱抵抗式空気流量測定装置の起動時または停止時に、発熱抵抗体の表面に接触した液滴が膜沸騰で蒸発消滅する温度かそれ以上の温度に、発熱抵抗体の温度を設定してもよい。また、発熱抵抗体の表面に撥水性かつ撥油性の保護コーティングを設けてもよい。
【0007】
材料表面の水滴が加熱されて消滅する現象としては、以下の4つの状態が存在する。
1. 対流:沸騰開始温度以下では対流で加熱されて蒸発する。
2. 核沸騰:伝熱面場のくぼみ、突起などで沸騰する。その他の部分では対流。
3. 遷移沸騰:核沸騰から膜沸騰への遷移領域。
4. 膜沸騰:伝熱面全面が蒸気で覆われる。
【0008】
核沸騰(遷移沸騰)の温度条件では、伝熱面は部分的に沸騰している箇所と、沸騰していない箇所が存在する。沸騰していない箇所では、水滴と伝熱面が接触している。水が蒸発するに伴い、水滴中の塩濃度が上昇する。塩が飽和濃度を超えた段階で、塩の析出が始まる。水滴は伝熱面と接触しているため、塩は伝熱面に析出するため、塩と伝熱面の密着性は高い。
【0009】
膜沸騰の温度条件では、伝熱面は全面が蒸気で覆われているため、熱伝達は核沸騰に比べて小さい。すなわち蒸気膜内の熱伝導による膜を隔てた静かな安定な沸騰形態である。水滴中の塩濃度が上昇して塩が飽和濃度を超えた場合、塩の析出が始まる。水滴は伝熱面と接触しておらず、蒸気膜とのみ接触している。そのため、塩は宙に浮いた状態で析出するため、塩と伝熱面の密着性は著しく低い。
【0010】
ここで、発熱抵抗体の設定温度は出来得る限り高温に設定するものではない。高温に設定した場合、発熱抵抗式空気流量測定装置の発熱抵抗体の寿命が著しく短くなる、あるいは、その電子回路に搭載された電子部品や接続部も高温に維持されるため、劣化や故障が懸念されるためである。このため、最大温度を460℃に、望ましくは350℃以下に設定する。
【0011】
エアークリーナを通過した塩を含んだ水滴は発熱抵抗体に接触する。液体は発熱抵抗体表面から加熱の程度により、上述のように対流、核沸騰、遷移沸騰、膜沸騰状態で消滅する。このように発熱抵抗体の温度が膜沸騰で蒸発消滅する温度またはそれ以上の温度である場合、発熱抵抗体の表面が撥水性または撥油性である場合と同等以上に、水は発熱抵抗体に水膜として付着しない。また水滴が発熱抵抗体の凹部に停留しても、発熱抵抗体の表面と水滴の間は完全に蒸気で隔てられているため、水滴中の塩は発熱抵抗体の表面に堆積固着することなく塊状に析出する。この塊状の塩は、発熱抵抗体の表面から浮いた状態で析出しているため、吸入空気の流れがあれば吹き飛ばされる。膜沸騰現象による撥水性または撥油性の効果は、表面温度のみに依存するため、長期使用後も同様の効果が得られる。
【0012】
発熱抵抗体の表面温度が膜沸騰で蒸発する温度以下では水滴が発熱抵抗体表面に濡れて所定の接触角でもって水膜として付着した状態で対流または核沸騰または遷移沸騰により水膜が蒸発消滅する。この場合、水膜が蒸発消滅する過程で塩と発熱抵抗体は接触しているため、水滴中の塩は発熱抵抗体の表面に堆積固着する。
【0013】
したがって、本発明により、発熱抵抗体の表面に接触した水滴が膜沸騰で蒸発消滅する温度かそれ以上の温度に、前記発熱抵抗体の温度を設定すれば、塩を含んだ水滴を発熱抵抗体の表面に付着しないで、吹き飛ばされる。たとえ凹部に停留しても、発熱抵抗体の表面と水滴の間は完全に蒸気で隔てられているため、水滴中の塩は発熱抵抗体の表面に堆積固着することなく塊状に析出して吹き飛ばされる。上記のメカニズムで、発熱抵抗体の表面に塩が堆積固着するとは防止できる。なお、発熱抵抗体の表面に汚れが付着した場合でも効果はある。
さらに、発熱抵抗式空気流量測定装置の停止時に結露などによる水滴による塩の堆積固着は、撥水性かつ撥油性の付着防止表面コーティングを発熱抵抗体の表面に設けることで防止できる。また、発熱抵抗式空気流量測定装置の起動時または停止時にのみ、発熱抵抗体の表面に接触した水滴が膜沸騰で蒸発する温度かそれ以上の温度に、発熱抵抗体の温度を設定しても防止できる。
【0014】
【発明の実施の形態】
図1は、本発明の一実施例である発熱抵抗式空気流量測定装置の構成図である。
発熱抵抗式空気流量測定装置3は、発熱抵抗体1及び感温抵抗体2を内燃機関の吸気管路11の内部に配置し、発熱抵抗体1及び感温抵抗体2は、電源管理回路4、発熱抵抗体加熱制御回路(以下制御回路と記す)5、出力調整回路6等からなる電子回路と電気的に接続されている。発熱抵抗体1の加熱温度は、制御回路5により感温抵抗体2が検出する吸気温度とほぼ一定温度差になるよう制御されており、従って、発熱抵抗体1から吸入空気12への放熱量により、吸入空気流量を検出可能なものである。発熱抵抗式空気流量測定装置3の流量検出方式は、加熱ヒータとそれにより加熱された温度検出抵抗により検出するものなど他の方式もあるが、本発明はどの方式も同様であるため個々の方式での説明は割愛する。この発熱抵抗式空気流量測定装置には、電源と接続する電源端子7a、流量信号を出力する流量出力端子8c、吸気温度信号を出力する温度出力端子9c及びグランド端子10を有し、外部機器と電気的に接続されている。
【0015】
発熱抵抗式空気流量測定装置3の発熱抵抗体1は、流量計測中、すなわちエンジン駆動中は加熱制御されている。発熱抵抗体の加熱温度と吸気温度は一定温度差であるため、吸気温度(外気温度)が低い場合(例えば寒冷地)は発熱抵抗体の表面温度は相対的に低くなる。エンジン流量計測用の発熱抵抗式空気流量測定装置3は、発熱抵抗体1の加熱温度を機種により異なるものの、通常、制御回路5により感温抵抗体2が検出する吸気温度より200℃高くなるように制御される。吸気温度は−40〜120℃を対象としていることから、従来製品の発熱抵抗体の表面温度は160〜320℃に設定されていることになる。
【0016】
本実施例は、発熱抵抗体1の表面温度を発熱抵抗体の表面に接触した水が膜沸騰で蒸発する温度かそれ以上の温度に維持されるように制御回路5を設定した発熱抵抗式空気流量測定装置3である。すなわち、吸気温度(外気温度)が低い場合でも発熱抵抗体1の表面に接触した水滴が膜沸騰で消滅する温度かそれ以上の温度に維持する構成としている。全ての使用環境において発熱抵抗体の温度が300℃以上に維持される構成とすれば、発熱抵抗体に液滴に含まれる塩が堆積固着することはない。
前記電子回路に、発熱抵抗体1の表面温度を複数個記憶を持たせて上述したいずれかの表面温度を選択し、設定する手段を付加するようにしてもよい。
【0017】
図2に、高温面上に3%NaClの水滴10μl滴下したときの水滴が消滅するまでの寿命と表面温度の関係を示す。液滴は、表面温度が高くなるに従い対流、核沸騰、遷移沸騰で蒸発消滅し、300℃以上で膜沸騰により蒸発消滅する。300℃以上では、表面と水滴の間は完全に蒸気で隔てられているため、水滴は回転楕円体状のまま静止した。発熱抵抗体の表面に汚れが付着した場合、これらの付着物が発泡点となるため核沸騰は平滑面に比べて低温で発生する。ただし、いかに核沸騰を起こしやすい表面であっても、表面温度が300℃以上と高ければ水滴は膜沸騰になる。
【0018】
このように発熱抵抗体の温度が膜沸騰の温度以上である場合、発熱抵抗体の表面が撥水性または撥油性である場合と同等以上に、水滴は付着せず水膜は形成されない。また水滴が発熱抵抗体の凹部に停留しても、発熱抵抗体の表面と水滴の間は完全に蒸気で隔てられているため、図3aに示すように水滴18中が蒸発消滅しても、塩20が発熱抵抗体1の表面に堆積固着することなく塊状に析出する。この塊状の塩20は、発熱抵抗体1の表面から浮いた状態で析出しているため、吸入空気の流れで吹き飛ばされる。撥水性または撥油性の付着防止表面コーティング15は長期使用によりその性能が劣化する場合があるが、遷移沸騰または膜沸騰現象による撥水性または撥油性の効果は表面温度のみに依存するため、長期使用後も同様の効果が得られる。
【0019】
一方、発熱抵抗体1の温度が膜沸騰以下の温度の場合は、水滴が発熱抵抗体表面に濡れて所定の接触角でもって付着した状態、水膜19の状態で対流または核沸騰または遷移沸騰により水分が蒸発消滅する。この場合、図3bに示すように水膜19は蒸発する過程で塩20と発熱抵抗体は接触しているため、発熱抵抗体1に塩20は堆積固着する。この場合、吸入空気の流れで吹き飛ばすことは難しい。
【0020】
本発明の別の実施例を以下に示す。本発明の発熱抵抗式空気流量測定装置では、全使用環境で発熱抵抗体の温度を300℃以上にするために、吸気温度に対する温度差340℃を設定して発熱抵抗体の温度は300〜460℃となる。従来製品は吸気温度−40〜120℃、吸気温度に対する温度差200℃を設定しているため、発熱抵抗体の温度は160〜320℃となる。このように発熱抵抗体を最高460℃で使用した場合、抵抗体の寿命が低下するため、常時460℃でセンサを使用するのが困難な場合がある。そこで、発熱抵抗式空気流量測定装置の起動時に、発熱抵抗体1の表面温度を発熱抵抗体の表面に接触した水滴が膜沸騰で蒸発する温度300℃かそれ以上の温度に維持されるように制御回路5を設定し、一定時間後に従来と同様の発熱抵抗体の温度160〜320℃に設定する。吸気温度が120℃と高温の場合は常時300℃を超えているため塩が堆積固着することはない。しかし、吸気温度が−40℃と低温の場合は発熱抵抗体の温度は160℃であり、発熱抵抗式空気流量測定装置の稼動時に塩が残留する場合がある。発熱抵抗式空気流量測定装置が停止時に結露すると塩が潮解して水膜を形成する。この水膜は、発熱抵抗式空気流量測定装置起動時の300℃以上の加熱で膜沸騰状態にして吹き飛ばすことができる。したがって、発熱抵抗体の表面に塩が堆積固着することはない。
上記の例では、発熱抵抗体の温度を300〜460℃に設定したが、300〜350℃内に設定することが発熱抵抗体の寿命を長くする点で望ましい。
【0021】
また、発熱抵抗式空気流量測定装置の停止時に、発熱抵抗体1の表面温度を発熱抵抗体の表面に接触した水滴が膜沸騰で蒸発する温度300℃かそれ以上の温度に維持されるように制御回路5を設定し、一定時間後に従来と同様の発熱抵抗体の温度160〜320℃に設定することによっても、起動時に膜沸騰で蒸発する温度300℃かそれ以上の温度に維持するのと同様の効果がある。
【0022】
エンジン停止時には発熱抵抗体の温度は低下するため、この期間に発熱抵抗体の表面に汚れや結露水が付着することがある。また、岩塩を含んだ水滴がセンサに付着すると、一部が潮解性のある塩基性物質に変化して、センサ停止時にこの物質が吸水することがある。そこで、本発明の別の実施例を示す。センサ停止時には撥水性かつ撥油性の保護コーティングにより汚れや結露水の付着を防止して、センサ稼動時は発熱抵抗体の表面に接触した水滴が膜沸騰で蒸発する温度かそれ以上の温度に発熱抵抗体の温度を設定して塩の付着を防止することができる。図4に本発明の発熱抵抗体1を示す。発熱抵抗体としては構造化されたシリコンからなる小片の形で構成されているもの(図4a)でも、電気絶縁基体上に金属線が巻回された形で構成されているもの(図4b)でもよい。図4aでは、シリコン基板13をベースに半導体製造工程で製作したSiO2やSiNなどからなるダイアフラム14上に白金またはポリシリコンなどの発熱抵抗体1や感温抵抗体2を形成している。図4bでは円筒状のアルミナ絶縁基板上16に白金細線17を形成している。これらの発熱抵抗体の表面には、前記発熱抵抗体に撥水性かつ撥油性の保護コーティング15を設けている。保護コーティングは発熱抵抗体を全面覆う必要がある。すなわち、部分的に保護コーティングが欠落していると、その欠落箇所を起点として塩の堆積固着が生じるためである。
【0023】
図5(a)は、熱式空気流量計の測定素子21の概略平面図である。基板である矩形状の多結晶シリコン基板22の中央部には、下面に空洞部23を有する薄膜ダイアフラムが形成されている。この薄膜ダイアフラムには、発熱抵抗体226、発熱抵抗体26の温度を計測するための側温抵抗体24、25、空気温度を計測するための空気温度側温抵抗体27が設けられている。マイクロヒータとして機能する発熱抵抗体26および測温抵抗体24、25、27は同様の膜構造を採用して形成したものである。
図5(b)は、図5(a)に示した薄膜ダイアフラムの部分をA−A線に沿って切断した断面を示すもので、発熱抵抗体26や測温抵抗体24、25、27は、下部薄膜28および上部薄膜29とにより挟まれている。
【0024】
上記構成の熱式空気流量計は、図6に示すように、測定素子21を支持する支持体40、そして外部回路41などを備えている。測定素子21と外部回路41とは、測定素子21の各端子電極36(図5参照)と外部回路41との間の、支持体40により保護された図示していない配線により電気的に接続されている。測定素子21は、電子制御燃料噴射装置の吸気通路42内部にある副通路43内に配置され、外部回路41は、吸気通路42の外壁面に設置されている。
【0025】
吸気流量を検出する原理としては、白抜きの矢印44で示す方向から空気が流れてくると、その空気の温度Tを空気温度測温抵抗体により検出し、発熱抵抗体に対して検出した空気の温度Tよりも一定温度ΔTだけ高い状態を保持するように通電する。このとき、発熱抵抗体24、25の表面流通する空気の流量に応じて表面から奪われる熱量が異なるので、発熱抵抗体へ供給する電流も空気の流量に応じて変化することになる。そこで、このとき発熱抵抗体26へ供給している電流から吸気流量を検出することができるようになる。また、上流側の側温抵抗体の温度が低くなる特性を利用して、空気流の方向が検知できる。
【0026】
ここで、発熱抵抗体の温度は160〜320℃が設定されている従来製品の発熱抵抗式空気流量測定装置に対して、発熱抵抗体に撥水性かつ撥油性の保護コーティングを設けた場合について述べる。この場合、発熱抵抗体の表面に接触した水滴は対流、核沸騰、遷移沸騰で蒸発消滅する。撥水性かつ撥油性の保護コーティングは水かつ油の接触角が90〜170度程度と大きい。撥水性かつ撥油性の付着防止表面コーティングに水滴や油滴を滴下すると球状を保っている。しかし接触角が180度でない限り、水滴の一部は、ある意味水膜として、撥水性かつ撥油性の保護コーティングと接触している。発明者等は、この状態で表面を160℃に加熱すると、撥水性かつ撥油性ではない通常の表面と同様に、図3cに示すように水膜19が接触面で核沸騰を生じた後に塩20が表面に堆積固着することを見出した。したがって、撥水性かつ撥油性の保護コーティング15を単独で使用した場合には、塩20の堆積固着を防止するには不充分である。以上より、撥水性かつ撥油性の保護コーティングを設ける場合、発熱抵抗体の表面に接触した水滴が膜沸騰で蒸発する温度かそれ以上の温度に発熱抵抗体の温度を設定すれば、塩の堆積固着を防止することができる。
【0027】
以上、説明したところによれば、次の発熱抵抗式流量測定装置が構成される。
内燃機関に吸入される空気の流量を検出のために表面温度が設定される発熱抵抗体と、発熱抵抗体と電気的に接続され、前記発熱抵抗体からの放熱量あるいは検出温度により吸入空気の流量に応じた信号を出力する電子回路を有する発熱抵抗式流量測定装置において、発熱抵抗体の表面温度を300℃〜350℃内のいずれかの温度に設定した発熱抵抗式流量測定装置。
【0028】
内燃機関に吸入される空気の流量を検出するため、表面に撥水性かつ撥油性の保護コーティングが設けられ、表面温度が設定される発熱抵抗体と、発熱抵抗体と電気的に接続され、前記発熱抵抗体からの放熱量あるいは検出温度により吸入空気の流量に応じた信号を出力する電子回路を有する発熱抵抗式流量測定装置において、発熱抵抗体の表面温度を300℃〜350℃内のいずれかの温度に設定したことを特徴とする発熱抵抗式流量測定装置。
【0029】
内燃機関に吸入される空気の流量を検出するために表面温度が設定される発熱抵抗体と、発熱抵抗体と電気的に接続され、前記発熱抵抗体からの放熱量あるいは検出温度により吸入空気の流量に応じた信号を出力する電子回路を有する発熱抵抗式流量測定装置において、前記電子回路は、発熱抵抗体の表面温度を複数個記憶する手段を有し、300℃〜350℃内のいずれかの表面温度を選択して設定することを特徴とする発熱抵抗式流量測定装置。
【0030】
【発明の効果】
発熱抵抗体の表面に接触した水滴が膜沸騰で蒸発消滅する温度かそれ以上の温度に発熱抵抗体の温度を設定して水滴に含まれる塩の堆積固着を防止することにより、発熱抵抗体の汚損や腐食を低減し、発熱抵抗式空気流量測定装置の計測精度の劣化を低減できる。
【図面の簡単な説明】
【図1】本発明の一実施例である発熱抵抗式空気流量測定装置の構成図。
【図2】高温面上の水滴が蒸発消滅するまでの寿命と表面温度の関係図。
【図3】発熱抵抗体の表面での塩の形態を表す図。
【図4】本発明の一実施例である発熱抵抗体の断面図。
【図5】本発明を適用してなる熱式空気流量計に設けられた測定素子の一実施形態を示す図で、図5(a)はその概略平面図、図5(b)は、図5(a)のA−Aでの拡大断面図。
【図6】本発明を適用してなる熱式空気流量計の一実施形態の概略構成を示す図。
【符号の説明】
1…発熱抵抗体、2…感温抵抗体、3…発熱抵抗式空気流量測定装置、4…電源管理回路、5…制御回路、6…出力調整回路、7…電源ライン、8…流量信号、9…温度信号、10…グランドライン、11…吸気管路、12…吸入空気、13…シリコン基板、14‥ダイアフラム、15…付着防止表面コーティング、16…電気絶縁基板、17…白金細線、18…水滴、19…水膜、20…塩
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air flow rate measuring device that measures the flow rate of air flowing through an intake air passage of an internal combustion engine.
[0002]
[Prior art]
As a known example showing a conventional example, there is an engine control device described in JP-A-2000-169795. Japanese Patent Application Laid-Open No. 2000-169795 is an invention for preventing the adhesion of dirt on a sensor or actuator element used in an intake pipe of an automobile. The sensor or actuator element is provided with a water-repellent or oil-repellent anti-adhesion coating such as a fluorine coating. There is a statement to that effect. The effect of the invention can prevent the adhesion of sewage, petroleum, splashes, silicon oil, soot, salt, hydrocarbons, and dust particles present in the intake pipe.
[0003]
[Problems to be solved by the invention]
The present invention prevents salt from adhering to a heating resistance type air flow measuring device among sewage, petroleum, splash, silicon oil, soot, salt, hydrocarbon, dust particles present in the intake pipe. . When rain and snow containing sea salt in the coastal region or snowmelt salt in cold regions is inhaled, there is a problem that the salt accumulates and adheres to the heating resistor. The deposition and fixation of salt on the heating resistor causes deterioration in measurement accuracy of the air flow measuring device and corrosion of the heating resistor.
[0004]
Therefore, by providing a water-repellent or oil-repellent anti-adhesion coating as described in the above-mentioned prior art, it is possible to prevent the salt from depositing and sticking when water droplets containing salt come into contact with the heating resistor and evaporate. Was attempted. However, even when a water-repellent or oil-repellent anti-adhesion coating is used, when the surface temperature of the heating resistor is low, there is a problem that salt is deposited and fixed on the surface of the heating resistor.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a heating resistance type air flow rate measuring device that can eliminate the problem that salt is deposited and fixed on the surface of a heating resistor.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the temperature of the heating resistor is set to a temperature at which water droplets contacting the surface of the heating resistor evaporate or disappear due to film boiling. Also, when starting or stopping the heating resistance air flow rate measuring device, set the temperature of the heating resistor to a temperature at which droplets that contact the surface of the heating resistor evaporate or disappear due to film boiling. Also good. Further, a water-repellent and oil-repellent protective coating may be provided on the surface of the heating resistor.
[0007]
There are the following four states as a phenomenon that water droplets on the surface of the material disappear when heated.
1. Convection: Evaporates by being heated by convection below the boiling start temperature.
2. Nucleate boiling: Boiling in a dent or protrusion on the heat transfer surface. Convection in other parts.
3. Transition boiling: Transition region from nucleate boiling to film boiling.
4). Film boiling: The entire heat transfer surface is covered with steam.
[0008]
Under the temperature condition of nucleate boiling (transition boiling), the heat transfer surface has a part that is partially boiling and a part that is not boiling. The water droplets and the heat transfer surface are in contact with each other at the boiling point. As water evaporates, the salt concentration in the water drops increases. Precipitation of the salt begins when the salt exceeds the saturation concentration. Since the water droplets are in contact with the heat transfer surface, the salt is deposited on the heat transfer surface, so the adhesion between the salt and the heat transfer surface is high.
[0009]
Under the temperature condition of film boiling, the heat transfer surface is covered with steam, so that the heat transfer is smaller than that of nucleate boiling. That is, it is a quiet and stable boiling form with the film separated by heat conduction in the vapor film. When the salt concentration in the water drops increases and the salt exceeds the saturation concentration, salt precipitation begins. The water droplets are not in contact with the heat transfer surface, but only in contact with the vapor film. Therefore, since salt precipitates in a state of floating in the air, the adhesion between the salt and the heat transfer surface is extremely low.
[0010]
Here, the set temperature of the heating resistor is not set as high as possible. When set to high temperature, the life of the heating resistor of the heating resistance type air flow measuring device is remarkably shortened, or the electronic parts and connections mounted in the electronic circuit are also maintained at a high temperature. This is because of concern. For this reason, the maximum temperature is set to 460 ° C., preferably 350 ° C. or lower.
[0011]
Water droplets containing salt that have passed through the air cleaner come into contact with the heating resistor. The liquid disappears in the convection, nucleate boiling, transition boiling, or film boiling state as described above depending on the degree of heating from the surface of the heating resistor. When the temperature of the heating resistor is such that it evaporates or disappears due to film boiling, or higher, the surface of the heating resistor has the same or higher water repellency or oil repellency than water. Does not adhere as a water film. Even if water droplets remain in the recesses of the heating resistor, the surface of the heating resistor and the water droplets are completely separated by steam, so the salt in the water droplets does not accumulate and adhere to the surface of the heating resistor. Precipitate in a lump. Since this massive salt is precipitated in a state of floating from the surface of the heating resistor, if there is a flow of intake air, it is blown away. Since the effect of water repellency or oil repellency due to the film boiling phenomenon depends only on the surface temperature, the same effect can be obtained even after long-term use.
[0012]
When the surface temperature of the heating resistor is less than the temperature at which film boiling evaporates, the water film evaporates and disappears by convection, nucleate boiling, or transition boiling while water droplets get wet with the surface of the heating resistor and adhere as a water film with a predetermined contact angle. To do. In this case, since the salt and the heating resistor are in contact with each other in the process of evaporating the water film, the salt in the water droplet is deposited and fixed on the surface of the heating resistor.
[0013]
Therefore, according to the present invention, if the temperature of the heating resistor is set to a temperature at which water droplets contacting the surface of the heating resistor evaporate or disappear due to film boiling or higher, the salt-containing water droplets are removed from the heating resistor. It is blown away without adhering to the surface. Even if it stays in the recess, the surface of the heating resistor and the water droplets are completely separated by steam, so the salt in the water droplets is deposited and blown away in a lump without sticking to the surface of the heating resistor. It is. With the above mechanism, it is possible to prevent salt from being deposited and fixed on the surface of the heating resistor. In addition, even if dirt adheres to the surface of the heating resistor, there is an effect.
Further, when the heating resistance type air flow rate measuring device is stopped, salt deposition due to water droplets due to condensation can be prevented by providing a water-repellent and oil-repellent adhesion preventing surface coating on the surface of the heating resistor. In addition, even when the heating resistance air flow rate measuring device is started or stopped, the temperature of the heating resistor is set to a temperature at which water droplets that contact the surface of the heating resistor evaporate due to film boiling or higher. Can be prevented.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a configuration diagram of a heating resistance type air flow rate measuring apparatus according to an embodiment of the present invention.
The heating resistor type air flow rate measuring device 3 has a heating resistor 1 and a temperature sensitive resistor 2 arranged inside an intake pipe 11 of the internal combustion engine, and the heating resistor 1 and the temperature sensitive resistor 2 are connected to a power management circuit 4. The electronic circuit is composed of a heating resistor heating control circuit (hereinafter referred to as a control circuit) 5, an output adjustment circuit 6, and the like. The heating temperature of the heating resistor 1 is controlled by the control circuit 5 so as to have a substantially constant temperature difference from the intake air temperature detected by the temperature-sensitive resistor 2, and accordingly, the amount of heat released from the heating resistor 1 to the intake air 12. Thus, the intake air flow rate can be detected. The flow rate detection method of the heating resistance type air flow rate measuring device 3 includes other methods such as a detection method using a heater and a temperature detection resistor heated by the heater. I will omit the explanation. This heating resistance type air flow rate measuring device has a power source terminal 7a connected to a power source, a flow rate output terminal 8c that outputs a flow rate signal, a temperature output terminal 9c that outputs an intake air temperature signal, and a ground terminal 10, and Electrically connected.
[0015]
The heating resistor 1 of the heating resistance type air flow rate measuring device 3 is heated and controlled during flow rate measurement, that is, during engine driving. Since the heating temperature of the heat generating resistor and the intake air temperature are a constant temperature difference, the surface temperature of the heat generating resistor is relatively low when the intake air temperature (outside air temperature) is low (for example, in a cold region). Although the heating resistance type air flow rate measuring device 3 for measuring the engine flow rate varies depending on the model, the heating temperature of the heating resistor 1 is usually 200 ° C. higher than the intake air temperature detected by the temperature sensing resistor 2 by the control circuit 5. Controlled. Since the intake air temperature is targeted at -40 to 120 ° C, the surface temperature of the heating resistor of the conventional product is set to 160 to 320 ° C.
[0016]
In the present embodiment, the heating resistor type air in which the control circuit 5 is set so that the surface temperature of the heating resistor 1 is maintained at a temperature at which water contacting the surface of the heating resistor evaporates by film boiling or higher is maintained. This is a flow rate measuring device 3. In other words, even when the intake air temperature (outside air temperature) is low, the temperature is maintained at a temperature at which water droplets contacting the surface of the heat generating resistor 1 disappear due to film boiling or higher. If the temperature of the heating resistor is maintained at 300 ° C. or higher in all use environments, the salt contained in the droplets does not deposit and adhere to the heating resistor.
A means for selecting and setting one of the surface temperatures described above by storing a plurality of surface temperatures of the heating resistor 1 in the electronic circuit may be added.
[0017]
FIG. 2 shows the relationship between the lifetime until the water droplets disappear and the surface temperature when 10 μl of 3% NaCl water droplets are dropped on the high temperature surface. As the surface temperature increases, the droplets evaporate and disappear due to convection, nucleate boiling, and transition boiling, and evaporate and disappear due to film boiling above 300 ° C. Above 300 ° C., the surface and water droplets were completely separated from each other by steam, so that the water droplets remained stationary with a spheroid shape. When dirt adheres to the surface of the heating resistor, these deposits become foaming points, and nucleate boiling occurs at a lower temperature than a smooth surface. However, even if the surface is prone to nucleate boiling, water droplets become film boiling if the surface temperature is as high as 300 ° C. or higher.
[0018]
In this way, when the temperature of the heating resistor is equal to or higher than the temperature of film boiling, water droplets do not adhere and a water film is not formed as much as or more than when the surface of the heating resistor is water-repellent or oil-repellent. Even if the water droplet stays in the recess of the heating resistor, the surface of the heating resistor and the water droplet are completely separated from each other by vapor, so even if the water droplet 18 evaporates and disappears as shown in FIG. The salt 20 is deposited in a lump without being deposited and fixed on the surface of the heating resistor 1. Since the massive salt 20 is precipitated in a state of floating from the surface of the heating resistor 1, it is blown away by the flow of intake air. Although the performance of the water-repellent or oil-repellent anti-adhesion surface coating 15 may deteriorate due to long-term use, the effect of water-repellency or oil-repellency due to the transition boiling or film boiling phenomenon depends only on the surface temperature, so that it can be used for a long time. The same effect can be obtained later.
[0019]
On the other hand, when the temperature of the heating resistor 1 is equal to or lower than the film boiling, water droplets are wetted on the surface of the heating resistor and attached with a predetermined contact angle, and convection, nucleate boiling, or transition boiling in the water film 19 state. As a result, water evaporates and disappears. In this case, as shown in FIG. 3b, since the salt 20 and the heating resistor are in contact with each other in the process of evaporating the water film 19, the salt 20 is deposited and fixed on the heating resistor 1. In this case, it is difficult to blow off with the flow of intake air.
[0020]
Another embodiment of the present invention is shown below. In the heating resistance type air flow measuring device of the present invention, in order to make the temperature of the heating resistor 300 ° C. or higher in all use environments, a temperature difference of 340 ° C. with respect to the intake air temperature is set and the temperature of the heating resistor is 300 to 460. It becomes ℃. Since the conventional product sets an intake air temperature of −40 to 120 ° C. and a temperature difference of 200 ° C. with respect to the intake air temperature, the temperature of the heating resistor is 160 to 320 ° C. Thus, when the heating resistor is used at a maximum of 460 ° C., the life of the resistor is reduced, so that it may be difficult to always use the sensor at 460 ° C. Therefore, at the start-up of the heating resistance type air flow measuring device, the surface temperature of the heating resistor 1 is maintained at a temperature at which the water droplets contacting the surface of the heating resistor evaporate by film boiling is 300 ° C. or higher. The control circuit 5 is set, and after a predetermined time, the temperature of the heating resistor is set to 160 to 320 ° C. as in the conventional case. When the intake air temperature is as high as 120 ° C., the salt does not deposit and adhere because it is always above 300 ° C. However, when the intake air temperature is as low as −40 ° C., the temperature of the heating resistor is 160 ° C., and salt may remain during operation of the heating resistance type air flow measuring device. If dew condensation occurs when the heating resistance type air flow measuring device stops, salt will deliquesce and form a water film. This water film can be blown off in a film boiling state by heating at 300 ° C. or higher when the heating resistance type air flow measuring device is activated. Therefore, salt does not deposit and adhere to the surface of the heating resistor.
In the above example, the temperature of the heating resistor is set to 300 to 460 ° C., but it is desirable to set the temperature within 300 to 350 ° C. from the viewpoint of extending the life of the heating resistor.
[0021]
Further, when the heating resistance type air flow measuring device is stopped, the surface temperature of the heating resistor 1 is maintained at a temperature at which the water droplets contacting the surface of the heating resistor evaporate due to film boiling is 300 ° C. or higher. By setting the control circuit 5 and setting the temperature of the heating resistor to 160 to 320 ° C. as in the conventional case after a certain time, the temperature evaporating by film boiling at the time of startup is maintained at a temperature of 300 ° C. or higher. There is a similar effect.
[0022]
Since the temperature of the heating resistor decreases when the engine is stopped, dirt or condensed water may adhere to the surface of the heating resistor during this period. In addition, when water droplets containing rock salt adhere to the sensor, some of them change to a deliquescent basic substance, and this substance may absorb water when the sensor is stopped. Therefore, another embodiment of the present invention will be shown. When the sensor is stopped, water and oil repellent protective coatings prevent dirt and condensed water from adhering, and when the sensor is in operation, heat is generated at the temperature at which water droplets that contact the surface of the heating resistor evaporate due to film boiling or above. The temperature of the resistor can be set to prevent salt adhesion. FIG. 4 shows the heating resistor 1 of the present invention. The heating resistor is structured in the form of a small piece made of structured silicon (FIG. 4a), but is composed of a metal wire wound around an electrically insulating substrate (FIG. 4b). But you can. In FIG. 4a, a heating resistor 1 and a temperature sensitive resistor 2 such as platinum or polysilicon are formed on a diaphragm 14 made of SiO2 or SiN manufactured in the semiconductor manufacturing process based on the silicon substrate 13. In FIG. 4 b, platinum thin wires 17 are formed on a cylindrical alumina insulating substrate 16. A water-repellent and oil-repellent protective coating 15 is provided on the surface of these heat generating resistors. The protective coating needs to cover the entire heating resistor. That is, if the protective coating is partially missing, salt deposition and sticking occurs starting from the missing portion.
[0023]
FIG. 5A is a schematic plan view of the measuring element 21 of the thermal air flow meter. A thin film diaphragm having a cavity 23 on the lower surface is formed at the center of a rectangular polycrystalline silicon substrate 22 that is a substrate. The thin film diaphragm is provided with a heating resistor 226, side temperature resistors 24 and 25 for measuring the temperature of the heating resistor 26, and an air temperature side temperature resistor 27 for measuring the air temperature. The heating resistor 26 and the temperature measuring resistors 24, 25, and 27 functioning as a micro heater are formed by adopting the same film structure.
FIG. 5B shows a cross section of the thin film diaphragm shown in FIG. 5A cut along the line AA. The heating resistor 26 and the resistance temperature detectors 24, 25, 27 are shown in FIG. The lower thin film 28 and the upper thin film 29 are sandwiched.
[0024]
As shown in FIG. 6, the thermal air flow meter having the above configuration includes a support body 40 that supports the measuring element 21, an external circuit 41, and the like. The measuring element 21 and the external circuit 41 are electrically connected by a wiring (not shown) protected by the support 40 between each terminal electrode 36 (see FIG. 5) of the measuring element 21 and the external circuit 41. ing. The measuring element 21 is disposed in a sub-passage 43 inside the intake passage 42 of the electronically controlled fuel injection device, and the external circuit 41 is installed on the outer wall surface of the intake passage 42.
[0025]
As a principle of detecting the intake flow rate, when air flows from the direction indicated by the white arrow 44, the temperature T of the air is detected by the air temperature measuring resistor, and the air detected by the heating resistor is detected. Energization is performed so as to maintain a state higher than the temperature T by a constant temperature ΔT. At this time, since the amount of heat taken from the surface varies depending on the flow rate of air flowing through the surfaces of the heating resistors 24 and 25, the current supplied to the heating resistor also varies depending on the flow rate of air. Therefore, at this time, the intake flow rate can be detected from the current supplied to the heating resistor 26. Further, the direction of the air flow can be detected by utilizing the characteristic that the temperature of the upstream temperature resistor is lowered.
[0026]
Here, a case where a water-repellent and oil-repellent protective coating is provided on the heat generating resistor will be described with respect to a conventional heat generating resistance air flow measuring device in which the temperature of the heat generating resistor is set to 160 to 320 ° C. . In this case, the water droplet contacting the surface of the heating resistor evaporates and disappears by convection, nucleate boiling, and transition boiling. The water and oil repellent protective coating has a large water and oil contact angle of about 90 to 170 degrees. When water droplets or oil droplets are dropped on the water-repellent and oil-repellent anti-adhesion surface coating, the spherical shape is maintained. However, as long as the contact angle is not 180 degrees, a part of the water droplet is in contact with the water-repellent and oil-repellent protective coating as a water film in a sense. When the surface is heated to 160 ° C. in this state, the water film 19 undergoes nucleate boiling at the contact surface as shown in FIG. It was found that 20 deposited and adhered to the surface. Accordingly, when the water-repellent and oil-repellent protective coating 15 is used alone, it is insufficient to prevent the salt 20 from being deposited and fixed. From the above, when providing a water-repellent and oil-repellent protective coating, if the temperature of the heating resistor is set to a temperature at which water droplets contacting the surface of the heating resistor evaporate due to film boiling or higher, salt deposition will occur. Sticking can be prevented.
[0027]
As described above, the following heating resistance type flow rate measuring device is configured.
A heating resistor whose surface temperature is set to detect the flow rate of the air sucked into the internal combustion engine, and the heating resistor are electrically connected, and the amount of the intake air is determined by the amount of heat released from the heating resistor or the detected temperature. A heating resistance type flow rate measuring device having an electronic circuit that outputs a signal corresponding to a flow rate, wherein the surface temperature of the heating resistor is set to any temperature within 300 ° C to 350 ° C.
[0028]
In order to detect the flow rate of air sucked into the internal combustion engine, a water-repellent and oil-repellent protective coating is provided on the surface, the heating resistor whose surface temperature is set, and the heating resistor are electrically connected, In a heating resistance type flow measuring device having an electronic circuit that outputs a signal corresponding to the flow rate of the intake air depending on the amount of heat released from the heating resistor or the detected temperature, the surface temperature of the heating resistor is any of 300 ° C. to 350 ° C. A heating resistance type flow rate measuring device characterized in that it is set to a temperature of.
[0029]
A heating resistor whose surface temperature is set in order to detect the flow rate of air sucked into the internal combustion engine, and the heating resistor are electrically connected to each other. In the heating resistance type flow rate measuring apparatus having an electronic circuit for outputting a signal corresponding to the flow rate, the electronic circuit has means for storing a plurality of surface temperatures of the heating resistor, and any one of 300 ° C. to 350 ° C. A heating resistance type flow rate measuring device characterized by selecting and setting the surface temperature.
[0030]
【The invention's effect】
By setting the temperature of the heating resistor to a temperature at which the water droplets contacting the surface of the heating resistor evaporate or disappear due to film boiling or higher, the deposition of the salt contained in the water droplets is prevented, thereby preventing the heating resistor. It is possible to reduce fouling and corrosion, and to reduce the measurement accuracy of the heating resistance type air flow measuring device.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heating resistance type air flow rate measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between the life until the water droplets on the high temperature surface evaporate and the surface temperature.
FIG. 3 is a diagram showing the form of salt on the surface of a heating resistor.
FIG. 4 is a cross-sectional view of a heating resistor according to an embodiment of the present invention.
5A and 5B are views showing an embodiment of a measuring element provided in a thermal air flow meter to which the present invention is applied, in which FIG. 5A is a schematic plan view, and FIG. The expanded sectional view in AA of 5 (a).
FIG. 6 is a diagram showing a schematic configuration of an embodiment of a thermal air flow meter to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heat generating resistor, 2 ... Temperature sensitive resistor, 3 ... Heat generating resistance type air flow measuring device, 4 ... Power supply management circuit, 5 ... Control circuit, 6 ... Output adjustment circuit, 7 ... Power supply line, 8 ... Flow rate signal, DESCRIPTION OF SYMBOLS 9 ... Temperature signal, 10 ... Ground line, 11 ... Intake pipe, 12 ... Intake air, 13 ... Silicon substrate, 14 ... Diaphragm, 15 ... Anti-adhesion surface coating, 16 ... Electrical insulation board, 17 ... Platinum wire, 18 ... Water drops, 19 ... Water film, 20 ... Salt

Claims (4)

内燃機関に吸入される空気の流量を検出するための発熱抵抗体と、発熱抵抗体と電気的に接続され、前記発熱抵抗体からの放熱量あるいは検出温度により吸入空気の流量に応じた信号を出力する電子回路を有する発熱抵抗式流量測定装置において、
表面に撥水性かつ撥油性を有するコーティングで全面覆われた発熱抵抗体であって、該発熱抵抗体は、発熱抵抗式空気流量測定装置の停止時から起動する時に、表面に接触した水滴が膜沸騰で蒸発消滅する温度以上の温度(当該温度を含む)で300℃〜460℃の温度になるように温度が設定され、発熱抵抗式空気流量測定装置の停止時から起動した時に、該温度範囲で使用されて表面に接触した水滴を膜沸騰で蒸発消滅させることを特徴とする発熱抵抗式空気流量測定装置。
A heating resistor for detecting the flow rate of air sucked into the internal combustion engine, and a signal corresponding to the flow rate of the intake air according to the amount of heat released from the heating resistor or the detected temperature are electrically connected to the heating resistor. In the heating resistance type flow measuring device having an electronic circuit to output,
A heating resistor whose entire surface is covered with a coating having water repellency and oil repellency, and when the heating resistor starts up from the time when the heating resistance type air flow measuring device is stopped, a water droplet contacting the surface is formed into a film. so that the temperature of 300 ℃ ~460 ℃ boiling evaporation vanishing temperature or higher (including the temperature), when the temperature is set, launched from the stop of the heating resistor type air flow rate measuring device, the temperature A heating resistance type air flow rate measuring device characterized by evaporating and extinguishing a water droplet used in a range and contacting the surface by film boiling.
請求項1において、発熱抵抗式空気流量測定装置の起動時にのみ、発熱抵抗体の表面に接触した水滴が膜沸騰で蒸発消滅する温度以上の温度(当該温度を含む)に、発熱抵抗体の温度を設定したことを特徴とする発熱抵抗式空気流量測定装置。  2. The temperature of the heating resistor according to claim 1, wherein the temperature of the heating resistor exceeds the temperature (including the temperature) at which water droplets contacting the surface of the heating resistor evaporate and disappear due to film boiling only when the heating resistance type air flow rate measuring device is activated. A heating resistance type air flow rate measuring device characterized in that is set. 請求項1において、発熱抵抗式空気流量測定装置の停止時にのみ、発熱抵抗体の表面に接触した水滴が膜沸騰で蒸発消滅する温度以上の温度(当該温度を含む)に、発熱抵抗体の温度を設定したことを特徴とする発熱抵抗式空気流量測定装置。  The temperature of the heating resistor according to claim 1, wherein the temperature of the heating resistor is higher than the temperature (including the temperature) at which water droplets contacting the surface of the heating resistor evaporate and disappear due to film boiling only when the heating resistance type air flow measuring device is stopped. A heating resistance type air flow rate measuring device characterized in that is set. 内燃機関に吸入される空気の流量を検出のために表面温度が設定される発熱抵抗体と、発熱抵抗体と電気的に接続され、前記発熱抵抗体からの放熱量あるいは検出温度により吸入空気の流量に応じた信号を出力する電子回路を有する発熱抵抗式流量測定装置において、
表面に撥水性かつ撥油性を有するコーティングで全面覆われた発熱抵抗体であって、該発熱抵抗体は、発熱抵抗式空気流量測定装置の停止時から起動する時に、表面温度が300℃〜350℃内のいずれかの温度に設定され、発熱抵抗式空気流量測定装置の停止時から起動した時に、該温度範囲で使用されて表面に接触した水滴を膜沸騰で蒸発消滅させることを特徴とする発熱抵抗式流量測定装置。
A heating resistor whose surface temperature is set to detect the flow rate of the air sucked into the internal combustion engine, and the heating resistor are electrically connected, and the amount of the intake air is determined by the amount of heat released from the heating resistor or the detected temperature. In the heating resistance type flow rate measuring device having an electronic circuit that outputs a signal corresponding to the flow rate,
A heating resistor whose surface is entirely covered with a coating having water repellency and oil repellency, and the heating resistor has a surface temperature of 300 ° C. to 350 ° C. when the heating resistance air flow measuring device is started from a stop. When the temperature of the heating resistance type air flow measuring device is started from the time when the heating resistance type air flow measuring device is stopped , water droplets used in the temperature range and contacting the surface are evaporated and extinguished by film boiling. Heating resistance type flow measuring device.
JP2002142495A 2002-05-17 2002-05-17 Heat resistance type air flow measuring device Expired - Lifetime JP4481552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002142495A JP4481552B2 (en) 2002-05-17 2002-05-17 Heat resistance type air flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142495A JP4481552B2 (en) 2002-05-17 2002-05-17 Heat resistance type air flow measuring device

Publications (2)

Publication Number Publication Date
JP2003337056A JP2003337056A (en) 2003-11-28
JP4481552B2 true JP4481552B2 (en) 2010-06-16

Family

ID=29702764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142495A Expired - Lifetime JP4481552B2 (en) 2002-05-17 2002-05-17 Heat resistance type air flow measuring device

Country Status (1)

Country Link
JP (1) JP4481552B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248136A (en) * 2006-03-14 2007-09-27 Hitachi Ltd Thermal gas flow rate measuring device
JP4497165B2 (en) * 2007-02-05 2010-07-07 株式会社デンソー Manufacturing method of semiconductor device
JP2009236792A (en) * 2008-03-28 2009-10-15 Hitachi Ltd Thermal gas flowmeter
JP5114463B2 (en) * 2009-09-25 2013-01-09 日立オートモティブシステムズ株式会社 Heat resistance type air flow measuring device

Also Published As

Publication number Publication date
JP2003337056A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
US7587938B2 (en) Thermal type flow meter including a secondary heating device to suppress heat transfer
JP5094212B2 (en) Thermal flow meter and control method
KR100263497B1 (en) Flow rate detecting element and flow rate sensor using same
JP2000180232A (en) Thermal air flow sensor
JP2010085137A (en) Air flow meter
WO2004106863A1 (en) Thermal flow sensor
JP5114463B2 (en) Heat resistance type air flow measuring device
JP4481552B2 (en) Heat resistance type air flow measuring device
JPH0560530B2 (en)
JP2002188947A (en) Flow measuring instrument
JPH0476415B2 (en)
JP4253969B2 (en) Micro heater, manufacturing method thereof, and flow sensor
JP6126417B2 (en) Thermal flow meter
JP3878198B2 (en) Thermal flow meter
JP2007101426A (en) Thermal type flowmeter
JP3638786B2 (en) Flow rate detecting element and flow rate sensor
JP7163247B2 (en) Thermal sensor and humidity detector for internal combustion engine
JPWO2003102974A1 (en) Platinum thin film and thermal sensor
JP2008145241A (en) Heating resistor type gas flow-rate measuring device
JP5315196B2 (en) Air flow meter
JPH11295126A (en) Flow detecting element and flow sensor
JP2002131106A (en) Microheater and thermal air flowmeter
JPH11295127A (en) Flow detecting element and flow sensor, and manufacture of flow detecting element
JPH09304140A (en) Measuring apparatus for air flow rate
JPH11201792A (en) Flow detecting element and flow sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080331

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080507

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4481552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4