JP4478790B2 - Room temperature molten salt and electrochemical device - Google Patents

Room temperature molten salt and electrochemical device Download PDF

Info

Publication number
JP4478790B2
JP4478790B2 JP2005513940A JP2005513940A JP4478790B2 JP 4478790 B2 JP4478790 B2 JP 4478790B2 JP 2005513940 A JP2005513940 A JP 2005513940A JP 2005513940 A JP2005513940 A JP 2005513940A JP 4478790 B2 JP4478790 B2 JP 4478790B2
Authority
JP
Japan
Prior art keywords
group
room temperature
molten salt
temperature molten
tfsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005513940A
Other languages
Japanese (ja)
Other versions
JPWO2005027157A1 (en
Inventor
一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2005027157A1 publication Critical patent/JPWO2005027157A1/en
Application granted granted Critical
Publication of JP4478790B2 publication Critical patent/JP4478790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Conductive Materials (AREA)

Description

本発明は、常温容融塩(イオン性液体)及び該常温溶融塩を含む電気化学デバイスに関する。  The present invention relates to an ambient temperature molten salt (ionic liquid) and an electrochemical device containing the ambient temperature molten salt.

有機溶媒は化学合成の媒体として、また高エネルギー密度の電気化学デバイス(リチウム電池等)の電解質溶媒として用いられる。有機溶媒の多くは揮発性であり、また沸点が高く揮発性の少ないものであっても引火性や発火性を示すため安全性に留意する必要があった。
また、本発明者の近年の研究により、リチウム電池にイオン性液体を適用し、安全なリチウム電池を構築する試みが行われ、ハードルの高いリチウム金属負極の利用に対する可能性が拓かれている(特許第2981945号;特開2003−331918;S.Sakaebe,H.Matsumoto,Electrochemical Communication,巻5,509頁(2003年))。
しかしながら、現状では炭素負極等の利用が現実的であり、炭素負極を用いたリチウム電池へのイオン性液体の適用について検討されはじめているが、イオン性液体のみを電解液に用いた場合に、良好な充放電にまでは至っていない。炭素電極を用いたリチウム電池には上記化合物例のなかのラクトンやカーボネート等の溶媒が必ず用いられている。それはこれらの溶媒が炭素負極上で極少量分解され、溶媒の分解を抑制する皮膜を形成するためであるといわれている。イオン性液体にも有機溶媒を添加する試みが知られているが、揮発性、引火性の有機溶媒を加えることは、イオン性液体の特徴である難揮発性、難燃焼性を損なうことになり、また加える量によっては従来の電解質との差がなくなってしまう。
本発明は、難燃性の溶媒として安全性の高い常温溶融塩を提供することを目的とする。
Organic solvents are used as chemical synthesis media and as electrolyte solvents in high energy density electrochemical devices (such as lithium batteries). Many of the organic solvents are volatile, and even if they have a high boiling point and a low volatility, they are flammable and ignitable, so it is necessary to pay attention to safety.
In addition, recent studies by the present inventor have attempted to construct a safe lithium battery by applying an ionic liquid to the lithium battery, and have opened up the possibility of using a lithium metal negative electrode with high hurdles ( Patent No. 2981945; JP-A-2003-331918; S. Sakaebe, H. Matsumoto, Electrochemical Communication, Vol. 5, 509 (2003)).
However, at present, the use of a carbon negative electrode is practical, and the application of an ionic liquid to a lithium battery using a carbon negative electrode has begun to be studied, but it is good when only an ionic liquid is used as an electrolyte. It has not yet reached a proper charge / discharge. A lithium battery using a carbon electrode always uses a solvent such as lactone or carbonate in the above compound examples. It is said that these solvents are decomposed in a very small amount on the carbon negative electrode to form a film that suppresses the decomposition of the solvent. Attempts to add organic solvents to ionic liquids are also known, but adding volatile and flammable organic solvents impairs the low volatility and flame retardance characteristic of ionic liquids. Depending on the amount added, the difference from the conventional electrolyte is eliminated.
An object of the present invention is to provide a highly safe room temperature molten salt as a flame retardant solvent.

図1〜4:種々の溶媒及び本発明によって合成された新規イオン性液体の熱重量変化(昇温速度:10℃/分)(有機溶媒:GBL:γ−ブチロラクトン,PC:プロピレンカーボネート、ECETMA−Cl:ECETMA−TFSIは実施例2で得られた常温溶融塩である。
TMOTFA−Cl:TMOTFA−TFSIは実施例4で得られた常温溶融塩である。
TMODA−Cl:TMODA−TFSIは実施例5で得られた常温溶融塩である。)
図5〜図6:充放電特性を示す。縦軸は電圧(Voltage)であり、横軸は比容量(Specific capacity)である。
1-4: Thermogravimetric change of various solvents and the novel ionic liquid synthesized according to the present invention (heating rate: 10 ° C./min) (organic solvent: GBL: γ-butyrolactone, PC: propylene carbonate, ECETMA- Cl: ECETMA-TFSI is a room temperature molten salt obtained in Example 2.
TMOTFA-Cl: TMOTFA-TFSI is a room temperature molten salt obtained in Example 4.
TMODA-Cl: TMODA-TFSI is a room temperature molten salt obtained in Example 5. )
5 to 6: Charging / discharging characteristics are shown. The vertical axis is voltage (Voltage), and the horizontal axis is specific capacity (Specific capacity).

本発明は、以下の常温溶融塩及び電気化学デバイスを提供するものである。
項1.揮発性有機溶媒にカチオン性基を導入したカチオン成分と、
無機イオン、スルホンイミドイオン、カルボン酸イオン、1価又は多価スルホン酸イオン、(置換基を有することのあるアルキル、シクロアルキルまたはアリール)、(RSO{Rは置換基を有することのあるアルキル基、置換基を有することのあるハロゲン化アルキル基、置換基を有することのあるアリール基}、Rf−BF (式中、RfはC2n+1、nは1〜4の整数を示す)からなる群から選ばれるアニオン成分を有する常温溶融塩。
項2.項1に記載の常温溶融塩を含む電気化学デバイス。
項3.リチウム二次電池、電気二重層キャパシター、太陽電池またはエレクトロクロミックデバイスである項2に記載の電気化学デバイス。
本発明の常温溶融塩は、難燃性及び不揮発性を有することから、安全性の高い電気化学デバイスを作製することが可能である。
本発明の常温溶融塩の融点は、通常100℃以下、好ましくは80℃以下、より好ましくは60℃以下、さらに好ましくは40℃以下、特に25℃以下である。例えば燃料電池に使用する場合には100℃以下の常温溶融塩を広く使用することができる。一方、太陽電池やエレクトロクロミックデバイス、リチウム電池および電気二重層キャパシターでは常温溶融塩の融点は室温(25℃)以下が好ましく、より好ましくは0℃以下、特に−20℃以下であるのがさらに好ましい。
本発明の常温溶融塩のカチオン成分は、揮発性有機溶媒にカチオン性基を導入したものである。
(1)カチオン性基
カチオン性基としては、アンモニウム基、スルホニウム基、ホスホニウム等のオニウムカチオンが例示され、好ましくはアンモニウム基である。カチオン性基は1つの有機溶媒化合物に1個または2個以上、好ましくは1個または2個導入することができる。
本発明の好ましい実施形態において、好ましい有機溶媒化合物としては、酸素原子を1または2以上含む有機溶媒(例えばエーテル、アルコール、エステル、カーボネート、グリコール、グリコールモノエーテルなど)が挙げられる。また、4級アンモニウム基は、酸素原子に結合した炭素原子に導入されるのが好ましい。
このようなカチオン性基は有機溶媒に必要に応じてアルキレン基を介して有機溶媒に導入される。有機溶媒としては、常圧での沸点が−100℃〜300℃、好ましくは30℃〜300℃であって、常温で固体または液体の化合物が例示され、具体的には以下の化合物が例示される:
・エーテル類:ジエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジイソプロピルエーテル、ジフェニルエーテル、アニソール、フェネトール、グアイアコールなど;
・アルキレングリコール類:エチレングリコール、プロピレングリコール、ブチレングリコール、ジエチレングリコール、トリエチレングリコールなど;
・アルキレングリコールモノアルキルエーテル類:エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ブチレングリコールモノメチルエーテル、ブチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなど;
・アルキレングリコールジアルキルエーテル類:エチレングリコールジメチルエーテル(DME)、エチレングリコールジエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ブチレングリコールジメチルエーテル、ブチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなど;
・エステル類:酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチルなど;
・ラクトン類:γブチロラクトン(GBL)など
・ケトン類:アセトン(ATN)、アセチルアセトン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンなど;
・ヘテロ芳香族炭化水素:ピリジンなど
・脂環式炭化水素:シクロペンタン、シクロヘキサン、メチルシクロヘキサンなど:
・ヘテロ脂環式化合物:ジオキサン、モルホリン、ピロリジンなど;
・スルフィド類:ジメチルスルフィド、ジエチルスルフィド、ジ−n−プロピルスルフィド、ジイソプロピルスルフィドなど;
・炭酸エステル類:エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ジエチルカーボネート(DEC)、ジメチルカーボネートなど;
・アルコール類;エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール、tert−ブタノールなど;
このような有機溶媒にカチオン性基を導入する方法としては、以下の方法が挙げられる。

Figure 0004478790
(式中、Organic Solventは、上記の有機溶媒を示し、Rはアルキル基を示す。ZはNR、PR、またはSRを示す。Nは窒素原子、Pはリン原子、Sは硫黄原子を各々表す。R,Rは同一又は異なっていてもよく、アルキル基、ハロアルキル基、アルコキシ基、アルキルチオ基、ポリエーテル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基またはアルコキシアルキル基を示し、ZがNRの場合、R及びRは窒素原子と一緒になって5〜8員環の置換されていてもよい含窒素複素環基を形成してもよい。Xは脱離基を示す。)
,Rで表されるアルキル基としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、sec−ブチル、イソブチル、t−ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ヘキサデシル、オクタデシル、エイコシルなどの炭素数1〜20、好ましくは炭素数1〜6,より好ましくは炭素数1〜3の直鎖又は分枝を有するアルキル基が挙げられる。
ハロアルキル基としては、上記アルキル基の水素原子の少なくとも1つがハロゲン原子(塩素、臭素、フッ素、ヨウ素)、特にフッ素原子で置換された炭素数1〜20、好ましくは炭素数1〜6,より好ましくは炭素数1〜3の直鎖又は分枝を有するハロアルキル基が挙げられる。
アルコキシ基としては(O−上記アルキル)構造を有する炭素数1〜20、好ましくは炭素数1〜6,より好ましくは炭素数1〜3の直鎖又は分枝を有するアルコキシ基が挙げられる。
アルキルチオ基としては、(S−上記アルキル)構造を有する炭素数1〜20、好ましくは炭素数1〜6,より好ましくは炭素数1〜3の直鎖又は分枝を有するアルキルチオ基が挙げられる。
アリール基としては、フェニル基、トルイル基、キシリル基、エチルフェニル基、1,3,5−トリメチルフェニル基などの炭素数6〜10のアリール基が挙げられる。
アラルキル基としては、ベンジル、フェネチル、ナフチルメチルなどの炭素数7〜15のアラルキル基が挙げられる。
アルコキシアルキル基のアルコキシ基及びアルキル基は前記と同様であり、直鎖又は分枝を有する炭素数1〜20アルコキシ基で置換された直鎖又は分枝を有する炭素数1〜20のアルキル基が挙げられ、特にメトキシメチル基(CHOCH)、メトキシエチル基(CHCHOCH)、エトキシメチル基(CHOCHCH)、エトキシエチル基(CHCHOCHCH)が例示される。
ポリエーテル基としては、−(CHn1−O−(CHCHO)n2−(C−Cアルキル)、または、−(CHn1−O−(CHCH(CHn2−(C−Cアルキル)で表される基が挙げられ、n1は1〜4の整数、n2は1〜4の整数、C−Cアルキルとしては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチルが例示される。
また、RとRは、これらが結合している窒素原子と一緒になって、5〜8員環、好ましくは5員環または6員環の含窒素複素環基(ピロリジニウム、ピペリジニウム、ピロリニウム、ピリジニウム等)を形成してもよい。
前記アルキル基の任意の位置のC−C単結合の間に−O−、−COO−、−CO−、を1個または複数個介在させて、エーテル、エステルまたはケトン構造としてもよい。
アリール基、アラルキル基の置換基としては、ハロゲン原子(F、Cl、Br、I)、水酸基、メトキシ基、ニトロ基、アセチル基、アセチルアミノ基などが挙げられる。
Xは脱離基を表し、具体的には、塩素原子、臭素原子、ヨウ素原子、メタンスルホニル基、p−トルエンスルホニル基などが挙げられる。
好ましい1つの実施形態において、本発明は、低沸点、高揮発性の溶媒に4級アンモニウム基を導入して、常温溶融塩に導く。4級アンモニウム化は、上記のように、脱離基と第三級アミンを反応させて行っても良く、アミノ基を含む溶媒のアミノ基を四級化してもよい。
(2)アニオン成分
本発明の常温溶融塩のアニオン成分としては、以下に例示されるアニオンが使用可能である:
・無機イオン:Cl,Br,F,I、SCN、ClO 、BF 、BCl 、BBr 、PF 、AlCl ,AlCl ,AlCl 、AsF など;
・スルホンイミドイオン{(RSO、Rは置換基を有することのあるアルキル基、置換基を有することのあるハロゲン化アルキル基、置換基を有することのあるアリール基}、
・1価又は多価カルボン酸イオン;例えば酢酸イオン、ギ酸イオン、プロピオン酸イオン、酪酸イオン、吉草酸イオン、イソ吉草酸イオン、トリフルオロ酢酸イオン、ジフルオロ酢酸イオン、モノフルオロ酢酸イオン、トリクロロ酢酸イオン、ジクロロ酢酸イオン、モノクロロ酢酸イオン、乳酸イオン、グリコール酸イオン、リンゴ酸イオン、
・1価又は多価スルホン酸イオン(R−SO−;−OS−R−SO−;Rは置換されていてもよいアルキル基または置換されていてもよいアリール基、Rは置換されていてもよいアルキレン基または置換されていてもよいアリーレン基、アリール基またはアルキル基は、水酸基、シアノ基、メトキシ基、エトキシ基、メチレンジオキシ基、フッ素原子、塩素原子、臭素原子で置換されていてもよい);例えばベンゼンスルホン酸イオン、トルエンスルホン酸イオン、
2n+1−SO (Xは同一または異なってH,FまたはCl、n=1〜6)、C 2n−(SO (Xは同一または異なってH,FまたはCl、n=1〜6)が例示される;
・(置換基を有することのあるアルキル、シクロアルキルまたはアリール)
例えば(Ph),(Et)(シクロヘキシル)Bなど、
・(RSO{Rは前記に定義される通りである}:例えば(CFSOなど。
・Rf−BF (式中、RfはCnF2n+1、nは1〜4の整数を示す)、例えばCFBF、CBF、CBF、CBF等が挙げられ、CnF2n+1は直鎖であっても分岐を有していてもよい。
これらのアニオン成分は公知であるか、公知の製法により容易に製造することができる。
本発明の常温溶融塩は、上記のカチオン成分とアニオン成分を混合することにより容易に製造することができる。
上記のカチオン成分及びアニオン成分は、各々単一成分であってもよいが、2種以上の成分を組み合わせて使用しても良く、その配合比率は任意である。
常温溶融塩を得るための塩交換反応は、所望の溶融塩が抽出可能である場合には、溶媒抽出法により行うことができ、或いは、アニオン交換樹脂を通してカチオン成分のカウンターアニオンをOH−に変換した後、H−(アニオン成分)溶液を当量添加することにより得ることができる。
本発明の常温溶融塩は、リチウム二次電池、電気二重層キャパシター、燃料電池、太陽電池等の電気化学デバイス、化学反応の溶剤として適している。
例えば、本発明の常温溶融塩を、リチウム二次電池に用いる活性の高い炭素負極やリチウム負極に対して電気化学的に不安定な常温溶融塩(例えば、1−エチル−3−メチルイミダゾリウムテトラフルオロボレート等)に添加することにより、負極上への不動態皮膜形成により見掛け上電気化学安定性を大幅に向上させることができる。しかも添加剤となるものも常温溶融塩であるため、全体としての電解液の耐熱性が保たれる。The present invention provides the following room temperature molten salt and electrochemical device.
Item 1. A cationic component having a cationic group introduced into a volatile organic solvent;
Inorganic ion, sulfonimide ion, carboxylate ion, monovalent or polyvalent sulfonate ion, (alkyl, cycloalkyl or aryl which may have a substituent) 4 B , (R 1 SO 2 ) 3 C {R 1 is an alkyl group which may have a substituent, a halogenated alkyl group which may have a substituent, an aryl group which may have a substituent}, Rf-BF 3 (wherein Rf is C n F 2n + 1 , N represents an integer of 1 to 4, and a room temperature molten salt having an anionic component selected from the group consisting of:
Item 2. An electrochemical device comprising the room temperature molten salt according to Item 1.
Item 3. Item 3. The electrochemical device according to Item 2, which is a lithium secondary battery, an electric double layer capacitor, a solar cell, or an electrochromic device.
Since the room temperature molten salt of the present invention has flame retardancy and non-volatility, it is possible to produce a highly safe electrochemical device.
The melting point of the room temperature molten salt of the present invention is usually 100 ° C. or lower, preferably 80 ° C. or lower, more preferably 60 ° C. or lower, still more preferably 40 ° C. or lower, particularly 25 ° C. or lower. For example, when used in a fuel cell, a room temperature molten salt at 100 ° C. or lower can be widely used. On the other hand, in solar cells, electrochromic devices, lithium batteries and electric double layer capacitors, the melting point of the room temperature molten salt is preferably room temperature (25 ° C.) or less, more preferably 0 ° C. or less, particularly preferably −20 ° C. or less. .
The cation component of the room temperature molten salt of the present invention is obtained by introducing a cationic group into a volatile organic solvent.
(1) Cationic group Examples of the cationic group include onium cations such as an ammonium group, a sulfonium group, and phosphonium, and an ammonium group is preferable. One or more cationic groups, preferably one or two, can be introduced into one organic solvent compound.
In a preferred embodiment of the present invention, preferred organic solvent compounds include organic solvents containing one or more oxygen atoms (eg ethers, alcohols, esters, carbonates, glycols, glycol monoethers, etc.). The quaternary ammonium group is preferably introduced into a carbon atom bonded to an oxygen atom.
Such a cationic group is introduced into the organic solvent via an alkylene group as necessary. The organic solvent has a boiling point at normal pressure of −100 ° C. to 300 ° C., preferably 30 ° C. to 300 ° C., and is exemplified by a solid or liquid compound at room temperature. Specifically, the following compounds are exemplified. R:
Ethers: diethyl ether, tetrahydrofuran, tetrahydropyran, diisopropyl ether, diphenyl ether, anisole, phenetol, guaiacol, etc .;
Alkylene glycols: ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, triethylene glycol, etc .;
-Alkylene glycol monoalkyl ethers: ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, butylene glycol monomethyl ether, butylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, etc. ;
Alkylene glycol dialkyl ethers: ethylene glycol dimethyl ether (DME), ethylene glycol diethyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, butylene glycol dimethyl ether, butylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, etc .;
Esters: methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl formate, ethyl formate, propyl formate, butyl formate, methyl benzoate, benzoic acid Ethyl, propyl benzoate, butyl benzoate, etc .;
Lactones: γ-butyrolactone (GBL), etc. Ketones: acetone (ATN), acetylacetone, methyl ethyl ketone, cyclohexanone, cyclopentanone, etc.
-Heteroaromatic hydrocarbons: pyridine, etc.-Alicyclic hydrocarbons: cyclopentane, cyclohexane, methylcyclohexane, etc .:
Heteroalicyclic compounds: dioxane, morpholine, pyrrolidine, etc .;
Sulfides: dimethyl sulfide, diethyl sulfide, di-n-propyl sulfide, diisopropyl sulfide, etc .;
Carbonates: ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, diethyl carbonate (DEC), dimethyl carbonate, etc .;
Alcohols: ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol and the like;
Examples of methods for introducing a cationic group into such an organic solvent include the following methods.
Figure 0004478790
(In the formula, Organic Solvent represents the above organic solvent, Ra represents an alkyl group, Z represents NR 1 R 2 , PR 1 R 2 , or SR 1 , N represents a nitrogen atom, and P represents a phosphorus atom. , S each represents a sulfur atom, R 1 and R 2 may be the same or different, and may be an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, a polyether group, an optionally substituted aryl group, or a substituted group. An aralkyl group or an alkoxyalkyl group which may be substituted, and when Z is NR 1 R 2 , R 1 and R 2 together with the nitrogen atom may be a 5- to 8-membered optionally substituted nitrogen-containing heterocycle A ring group may be formed, and X represents a leaving group.)
Examples of the alkyl group represented by R 1 and R a include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, Examples thereof include linear or branched alkyl groups having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, such as undecyl, dodecyl, tridecyl, tetradecyl, hexadecyl, octadecyl, and eicosyl. .
As the haloalkyl group, at least one hydrogen atom of the above alkyl group is substituted with a halogen atom (chlorine, bromine, fluorine, iodine), particularly a fluorine atom, and preferably has 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms. Includes a haloalkyl group having 1 to 3 carbon atoms or a straight chain or branched chain.
Examples of the alkoxy group include straight-chain or branched alkoxy groups having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms, having an (O-alkyl) structure.
Examples of the alkylthio group include a straight chain or branched alkylthio group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, having an (S-alkyl) structure.
Examples of the aryl group include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a toluyl group, a xylyl group, an ethylphenyl group, and a 1,3,5-trimethylphenyl group.
Examples of the aralkyl group include aralkyl groups having 7 to 15 carbon atoms such as benzyl, phenethyl and naphthylmethyl.
The alkoxy group and the alkyl group of the alkoxyalkyl group are the same as described above, and a linear or branched alkyl group having 1 to 20 carbon atoms substituted with a linear or branched alkoxy group having 1 to 20 carbon atoms. In particular, methoxymethyl group (CH 2 OCH 3 ), methoxyethyl group (CH 2 CH 2 OCH 3 ), ethoxymethyl group (CH 2 OCH 2 CH 3 ), ethoxyethyl group (CH 2 CH 2 OCH 2 CH 3) ) Is exemplified.
The polyether group, - (CH 2) n1 -O- (CH 2 CH 2 O) n2 - (C 1 -C 4 alkyl), or, - (CH 2) n1 -O- (CH 2 CH (CH 3) n2 - (C 1 -C 4 alkyl) groups represented mentioned in, n1 is an integer from 1 to 4, n2 is an integer from 1 to 4, as a C 1 -C 4 alkyl are methyl, ethyl, Examples are n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl.
In addition, R 1 and R 2 together with the nitrogen atom to which they are bonded are a 5- to 8-membered, preferably 5- or 6-membered nitrogen-containing heterocyclic group (pyrrolidinium, piperidinium, pyrrolinium) , Pyridinium, etc.).
One or a plurality of —O—, —COO—, and —CO— may be interposed between C—C single bonds at any position of the alkyl group to form an ether, ester, or ketone structure.
Examples of the substituent for the aryl group and aralkyl group include a halogen atom (F, Cl, Br, I), a hydroxyl group, a methoxy group, a nitro group, an acetyl group, and an acetylamino group.
X represents a leaving group, and specific examples include a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyl group, and a p-toluenesulfonyl group.
In a preferred embodiment, the present invention introduces a quaternary ammonium group into a low boiling point, highly volatile solvent, leading to a room temperature molten salt. As described above, quaternary ammoniumation may be performed by reacting a leaving group with a tertiary amine, or the amino group of a solvent containing an amino group may be quaternized.
(2) Anion component As an anion component of the room temperature molten salt of the present invention, anions exemplified below can be used:
Inorganic ions: Cl , Br , F , I , SCN , ClO 4 , BF 4 , BCl 4 , BBr 4 , PF 6 , Al 3 Cl 8 , Al 2 Cl 7 , AlCl 4 , AsF 6 − and the like;
Sulfonimide ion {(RSO 2 ) 2 N , R is an alkyl group that may have a substituent, a halogenated alkyl group that may have a substituent, an aryl group that may have a substituent},
Monovalent or polyvalent carboxylate ions; for example, acetate ion, formate ion, propionate ion, butyrate ion, valerate ion, isovalerate ion, trifluoroacetate ion, difluoroacetate ion, monofluoroacetate ion, trichloroacetate ion , Dichloroacetate ion, monochloroacetate ion, lactate ion, glycolate ion, malate ion,
A monovalent or polyvalent sulfonate ion (R b —SO 3 —; —O 3 S—R c —SO 3 —; R b is an optionally substituted alkyl group or an optionally substituted aryl group; R c represents an optionally substituted alkylene group or an optionally substituted arylene group, aryl group or alkyl group, a hydroxyl group, a cyano group, a methoxy group, an ethoxy group, a methylenedioxy group, a fluorine atom, a chlorine atom, May be substituted with a bromine atom); for example, benzenesulfonate ion, toluenesulfonate ion,
C n X 1 2n + 1 —SO 3 (X 1 is the same or different, H, F or Cl, n = 1 to 6), C n X 1 2n — (SO 3 ) 2 (X 1 is the same or different H, F or Cl, n = 1-6) are exemplified;
- (alkyl which may have a substituent, cycloalkyl or aryl) 4 B -;
For example, (Ph) 4 B , (Et) 3 (cyclohexyl) B − and the like,
· (R b SO 2) 3 C - {R b are as defined above}: for example (CF 3 SO 2) 3 C - like.
· Rf-BF 3 - (wherein, Rf is an integer of CnF2n + 1, n is 1 to 4), for example, CF 3 BF 3, C 2 F 5 BF 3, C 3 F 7 BF 3, C 4 F 9 BF 3 and the like, and CnF2n + 1 may be linear or branched.
These anionic components are known or can be easily produced by known production methods.
The room temperature molten salt of the present invention can be easily produced by mixing the cation component and the anion component.
The cation component and the anion component may each be a single component, but may be used in combination of two or more components, and the blending ratio thereof is arbitrary.
When the desired molten salt can be extracted, the salt exchange reaction for obtaining the room temperature molten salt can be performed by a solvent extraction method, or the cation component counter anion is converted to OH- through an anion exchange resin. Then, it can be obtained by adding an equivalent amount of H- (anionic component) solution.
The room temperature molten salt of the present invention is suitable as an electrochemical device such as a lithium secondary battery, an electric double layer capacitor, a fuel cell, and a solar cell, and a solvent for chemical reaction.
For example, the room temperature molten salt of the present invention is used as a highly active carbon negative electrode or lithium negative electrode that is electrochemically unstable for a lithium secondary battery (for example, 1-ethyl-3-methylimidazolium tetra Addition to fluoroborate or the like) can significantly improve the electrochemical stability by forming a passive film on the negative electrode. Moreover, since the additive is also a room temperature molten salt, the heat resistance of the electrolyte as a whole is maintained.

以下、本発明を実施例に基づいて説明するが、本発明はこれら実施例には限定されない。
実施例1 ジメトキシエタン(DME)のイオン性液体化:1−(2−メトキシ−エトキシエチル)−1−メチル−ピペリジニウム−ビス(トリフルオロメチルスルホニル)イミド(MEEMP−TFSI)の合成
1−ブロモエトキシ−2−メトキシエタン50gをアセトン300mLに溶解し1Lのフラスコにいれ,等モル量のメチルピペリジン(MP)アセトン溶液を氷浴で冷却しながら滴下混合し,室温下で撹拌。18h後,アセトン及び水をエバポレータにて留去することにより白色粉末1−(2−メトキシ−エトキシエチル)−1−メチル−ピペリジニウム臭化物(MEEMP−Br)を得る(収率90%)。アセトン/エタノール混合溶媒にて再結晶を行い精製したものとLi−TFSI(リチウムビス(トリフルオロメシルスルホニルイミド))を超高純度水(以下milli−Q水と略す)水中で等モル量混合すると,水に不溶の目的生成物(MEEMP−TFSI)が分離析するのでこれをジクロロメタンで抽出する。抽出したジクロロメタン溶液に当体積のmilli−Q水を加え再度撹拌の後,ジクロロメタン相を分液ロートにて分取し、ロータリーエバポレータにてジクロロメタンを留去し,最終的に70℃に加熱して真空乾燥を行って目的物(MEEMP−TFSI)を得た(収率70%)。LiTFSIのかわりにLiPFを用いることにより室温で溶融するMEEMP−PFを得る事ができる。

Figure 0004478790
MEEMP−TFSIの密度(25℃):1.40g/mL
MEEMP−TFSIのNMRによる分析値は以下の通りである。
H−NMR[ppm](d−acetone,δ1.73(m),δ2.01(m),δ3.31(s),δ3.33(s),δ3.52(m),δ3.57(m),3.64(m),δ3.79,(m),δ4.06(s))
13C−NMR[ppm](d−acetone,δ20.6,δ21.6,δ49.8,δ58.7,δ62.8,δ63.4,δ64.9,δ70.8,δ72.2δ116.1,δ119.3,δ122.5,δ125.6ppm)
実施例2 ジエチルカーボネート(DEC)のイオン性液体化:(1−エトキシカルボニロキシエチル)トリメチルアンモニウム−ビス(トリフルオロメチルスルホニル)イミド(ECETMA−TFSI)の合成
実施例1の1−ブロモエトキシ−2−メトキシエタンのかわりに1−クロロエチルカーボネートを使用する以外は同じ手順で標記化合物を得た。収率77%
Figure 0004478790
ECETMA−TFSIのNMRによる分析値は以下の通りである。
H−NMR[ppm](d−methanol,δ1.34(t),δ1.71(d),δ3.18(s),δ4.31(q),5.94(q))
13C−NMR[ppm](d−methanol,δ14.3,δ14.7,δ49.6,δ67.1,δ93.3,δ116.3,δ119.5,δ122.67,δ125.8,δ153.3)
実施例3 アセトンのイオン性液体化:トリメチル(2−オキソプロピル)−アンモニウム−ビス(トリフルオロメチルスルホニル)イミド(TMOPA−TFSI)の合成
Figure 0004478790
実施例1の1−ブロモエトキシ−2−メトキシエタンのかわりにブロモアセトンを使用する以外は同じ手順で標記化合物を得た。収率30%
TMOPA−TFSIのNMRによる分析値は以下の通りである。
H−NMR[ppm](d−acetone,δ2.26(s),δ3.47(s),δ4.76(s))
13C−NMR[ppm](d−acetone,δ28.4,δ54.5,δ70.4,δ116.0,δ119.2,δ122.4,δ125.6,δ200.0)
実施例4 γ−ブチロラクトンのイオン性液体化:トリメチル(2−オキソ−テトラヒドロフラン−3−イル)アンモニウム−アンモニウム−ビス(トリフルオロメチルスルホニル)のイミド(TMOTFA−TFSI)の合成
Figure 0004478790
原料となる臭化物の合成までは実施例1の1−ブロモエトキシ−2−メトキシエタンのかわりにブロモγブチロラクトンを使用する以外は同じ手順で合成(収率80%)。再結晶溶媒は実施例1のアセトン/エタノールのかわりにエタノール/酢酸エチルを使用。生成物(TMOTFA−TFSI)が水に溶解するためTFSIへのアニオン交換は水中ではなく,メタノール中で行い,メタノールをエバポレータで留去後,ジクロロメタンで抽出(収率30%)。
TMOTFA−TFSIのNMRによる分析値は以下の通りである。
H−NMR[ppm](d−acetone)δ3.01(m),δ3.55(s),δ4.43(m),δ4.63(m),δ5.07(m))
13C−NMR[ppm](d−acetone)δ25.4,δ52.9,δ58.4,δ65.8,δ116.3,δ119.5,δ122.6,δ125.8,δ170.0)
実施例5 エチレンカーボネート(EC)のイオン性液体化:トリメチル(2−オキソ−[1,3]−ジオキソラン−4−イル)アンモニウム−ビス(トリフルオロメチルスルホニル)イミド(TMODA−TFSI)の合成
Figure 0004478790
原料となる塩化物の合成までは実施例1の1−ブロモエトキシ−2−メトキシエタンのかわりに塩化エチレンカーボネートを使用する以外は同じ手順で合成した(収率70%)。生成物は水と反応して分解するため、TFSIアニオンへの交換反応はアセトニトリル溶媒で行い、分離する副生成物(LiCl)を除去し、ジクロロメタンで抽出した(収率45%)
TMODA−TFSIのNMRによる分析値は以下の通りである。
H−NMR[ppm](d−acetone,δ3.21(s),δ4.88(m),δ5.12(m),δ5.90(m))
13C−NMR[ppm](d−acetone,δ45.5,δ65.8,δ94.0,δ116.3,δ119.5,δ122.7,δ125.9,δ152.5)EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.
Example 1 Ionic Liquefaction of Dimethoxyethane (DME): Synthesis of 1- (2-methoxy-ethoxyethyl) -1-methyl-piperidinium-bis (trifluoromethylsulfonyl) imide (MEEMP-TFSI) 1-Bromoethoxy 2-Methoxyethane (50 g) is dissolved in acetone (300 mL), placed in a 1 L flask, an equimolar amount of methylpiperidine (MP) acetone solution is added dropwise with cooling in an ice bath, and the mixture is stirred at room temperature. After 18 h, acetone and water are distilled off with an evaporator to obtain white powder 1- (2-methoxy-ethoxyethyl) -1-methyl-piperidinium bromide (MEEMP-Br) (yield 90%). When recrystallized with an acetone / ethanol mixed solvent and purified, and Li-TFSI (lithium bis (trifluoromesylsulfonylimide)) are mixed in equimolar amounts in ultrahigh-purity water (hereinafter abbreviated as milli-Q water). The target product (MEEMP-TFSI) which is insoluble in water separates out and is extracted with dichloromethane. After adding this volume of milli-Q water to the extracted dichloromethane solution and stirring again, the dichloromethane phase was separated with a separatory funnel, the dichloromethane was distilled off with a rotary evaporator, and finally heated to 70 ° C. It vacuum-dried and obtained the target object (MEEMP-TFSI) (yield 70%). By using LiPF 6 instead of LiTFSI, MEEMP-PF 6 that melts at room temperature can be obtained.
Figure 0004478790
MEEMP-TFSI density (25 ° C.): 1.40 g / mL
The analysis value by NMR of MEEMP-TFSI is as follows.
1 H-NMR [ppm] (d-acetone, δ1.73 (m), δ2.01 (m), δ3.31 (s), δ3.33 (s), δ3.52 (m), δ3.57 (M), 3.64 (m), δ 3.79, (m), δ 4.06 (s))
13 C-NMR [ppm] (d-acetone, δ20.6, δ21.6, δ49.8, δ58.7, δ62.8, δ63.4, δ64.9, δ70.8, δ72.2 δ116.1, (δ119.3, δ122.5, δ125.6 ppm)
Example 2 Ionic liquefaction of diethyl carbonate (DEC): Synthesis of (1-ethoxycarbonyloxyethyl) trimethylammonium-bis (trifluoromethylsulfonyl) imide (ECETMA-TFSI) 1-Bromoethoxy- of Example 1 The title compound was obtained in the same procedure except that 1-chloroethyl carbonate was used instead of 2-methoxyethane. Yield 77%
Figure 0004478790
The analysis values by NMR of ECETMA-TFSI are as follows.
1 H-NMR [ppm] (d-ethanol, δ 1.34 (t), δ 1.71 (d), δ 3.18 (s), δ 4.31 (q), 5.94 (q))
13 C-NMR [ppm] (d-ethanol, δ14.3, δ14.7, δ49.6, δ67.1, δ93.3, δ116.3, δ119.5, δ122.67, δ125.8, δ153. 3)
Example 3 Ionic liquefaction of acetone: Synthesis of trimethyl (2-oxopropyl) -ammonium-bis (trifluoromethylsulfonyl) imide (TMOPA-TFSI)
Figure 0004478790
The title compound was obtained in the same procedure except that bromoacetone was used in place of 1-bromoethoxy-2-methoxyethane of Example 1. Yield 30%
The analysis values by NMR of TMOPA-TFSI are as follows.
1 H-NMR [ppm] (d-acetone, δ 2.26 (s), δ 3.47 (s), δ 4.76 (s))
13 C-NMR [ppm] (d-acetone, δ28.4, δ54.5, δ70.4, δ116.0, δ119.2, δ122.4, δ125.6, δ200.0)
Example 4 Ionic Liquefaction of γ-Butyrolactone: Synthesis of Trimethyl (2-oxo-tetrahydrofuran-3-yl) ammonium-ammonium-bis (trifluoromethylsulfonyl) imide (TMOTFA-TFSI)
Figure 0004478790
Until the synthesis of the bromide used as a raw material, the synthesis was performed in the same procedure except that bromoγ-butyrolactone was used instead of 1-bromoethoxy-2-methoxyethane of Example 1 (yield 80%). As the recrystallization solvent, ethanol / ethyl acetate was used in place of acetone / ethanol of Example 1. Since the product (TMOTFA-TFSI) is dissolved in water, the anion exchange to TFSI is carried out in methanol, not in water, methanol is distilled off with an evaporator and extracted with dichloromethane (yield 30%).
The analysis values by NMR of TMOTFA-TFSI are as follows.
1 H-NMR [ppm] (d-acetone) δ 3.01 (m), δ 3.55 (s), δ 4.43 (m), δ 4.63 (m), δ 5.07 (m))
13 C-NMR [ppm] (d-acetone) δ25.4, δ52.9, δ58.4, δ65.8, δ116.3, δ119.5, δ122.6, δ125.8, δ170.0)
Example 5 Ionic liquefaction of ethylene carbonate (EC): Synthesis of trimethyl (2-oxo- [1,3] -dioxolan-4-yl) ammonium-bis (trifluoromethylsulfonyl) imide (TMODA-TFSI)
Figure 0004478790
The synthesis was performed in the same procedure until the synthesis of the starting chloride, except that ethylene carbonate was used instead of 1-bromoethoxy-2-methoxyethane in Example 1 (yield 70%). Since the product decomposes by reacting with water, the exchange reaction to TFSI anion is carried out with acetonitrile solvent, the by-product (LiCl) to be separated is removed and extracted with dichloromethane (yield 45%).
The analysis values by NMR of TMODA-TFSI are as follows.
1 H-NMR [ppm] (d-acetone, δ 3.21 (s), δ 4.88 (m), δ 5.12 (m), δ 5.90 (m))
13 C-NMR [ppm] (d-acetone, δ45.5, δ65.8, δ94.0, δ116.3, δ119.5, δ122.7, δ125.9, δ152.5)

原料の溶媒としてプロピレンカーボネート(PC)を使用し、常法に従いメチル基に塩素原子を導入し、さらにトリエチルアミンを反応させ、さらにアニオン交換を行うことにより、以下のプロピレンカーボネート(PC)のイオン性液体を得ることができる。

Figure 0004478790
試験例1
γ−ブチロラクトン(GBL)、プロピレンカーボネート(PC),実施例3で得られたECETMA−Cl(カウンターアニオンがClである実施例2の常温溶融塩の製造中間体)及びECETMA−TFSI(実施例2で得られた常温溶融塩)を加熱し、重量変化を調べることで、耐熱性を評価した。
結果を図1に示す。
図1は、物質に熱をかけた場合の重量変化をあらわしたものであり,耐熱性の指針となる。GBLやPCなどの電池電解液として用いられる有機溶媒は沸点が200℃以上であるが,揮発性があるために,100℃より前から揮発して重量が減少している。DECもGBLやPCのような有機溶媒である。DECを塩に変換したものECETMA−Clは常温で固体の塩であるが,150℃付近まで安定であること,さらに対アニオンをClからTFSIにアニオン交換したもの(ECETMA−TFSI,室温で液体)ではさらに耐熱性が向上していることが、図1から明らかである。本発明の常温溶融塩を電池電解液として用いた場合,安全性が向上することが、図1の結果から明らかにされた。
試験例2
リチウム電池で良く使われる溶媒分子は揮発性が高く、発火性を有する(DEC:ジエチルカーボネート,GBL:γ−ブチロラクトン,EC:エチレンカーボネート)。先ず、これらの溶媒を加熱し、重量変化を調べることで、耐熱性を評価した。結果を図2に示す。
次に、上記の3つの溶媒分子にトリメチルアンモニウム基を修飾してカチオン化し、且つ、アニオンをハロゲンとすると固体の塩となり、200℃でも揮発しない。該固体の塩についての熱分析測定結果を図3に示す。
さらに、アニオンをハロゲンからTFSIに交換するとさらに耐熱性が向上する。対応するTFSI塩の熱分析測定結果を図4に示す。なお、該TFSI塩は、室温でも溶融するイオン性液体を形成する。
試険例3
以下の条件で、リチウム電池を作製し、充放電特性を調べた。結果を図5及び図6に示す。
充電・放電レート0.1C(300mAh/gを理論値として)
充電はCCCVモード5mV,10時間
放電は1.2Vカットオフ
電極:95wt%MCMB2800+5wt%PVdF、集電体は銅箔、対極はLi箔を用いた2極セル(ラミネート)
電解質組成:EMI−TFSI+LiTFSI(10wt%,およそ0.4M)
EMI−TFSI+ECETMA−TFSI(体積比5:1)+10wt%LiTFSI
EMI−TFSIは電気化学安定性がアンモニウム系よりも劣っているが、粘性が比較的低いという長所がある。電気化学安定性が悪い点は、炭素を負極に用いた場合に如実に現れる。すなわち、図5において、充電時(点線)に500mAh/gもの大きな容量を示すが、これはEMIカチオンの不可逆的な還元反応が起こっていること、あるいは炭素負極へのEMIカチオンの挿入反応が起こっていること、その両方が起きていることを示唆する。また、放電時(実線)にはまったく容量が無く、EMI−TFSIのような電気化学安定性に劣る系は、全く炭素負極を用いる事が不可能である。
ところが、今回開発した溶媒構造を有するイオン性液体(ECETMA−TFSI)を少量添加することにより、図6に示すように、EMI−TFSIにおいても良好な充放電特性を示しうることがわかった。これはECETMA−TFSIの分解により炭素負極上にいわゆるSEI皮膜を形成し、EMIの分解や炭素材料への挿入を抑制したためである。このような効果は従来、DECやGBL,ECのようなカルボニル構造を有する有機溶媒で知られていた。GBL,ECのような有機溶媒は、耐熱性や引火性に問題があるが今回合成した有機溶媒構造を有するイオン性液体では、難粘性でありかつ耐熱性が大幅に向上し、安全性に大きく寄与するものである。
電気化学安定性に優れるアンモニウム系イオン液体においても同様の効果が期待される。Using propylene carbonate (PC) as a raw material solvent, introducing a chlorine atom into a methyl group according to a conventional method, further reacting with triethylamine, and further performing anion exchange, the following ionic liquid of propylene carbonate (PC) Can be obtained.
Figure 0004478790
Test example 1
γ-butyrolactone (GBL), propylene carbonate (PC), ECETMA-Cl obtained in Example 3 (production intermediate of room temperature molten salt of Example 2 in which counter anion is Cl) and ECETMA-TFSI (Example 2) The heat resistance was evaluated by heating the room temperature molten salt obtained in step 1 and examining the change in weight.
The results are shown in FIG.
FIG. 1 shows a change in weight when a substance is heated, and serves as a guideline for heat resistance. Although organic solvents used as battery electrolytes such as GBL and PC have a boiling point of 200 ° C. or higher, they are volatile and thus volatilize from before 100 ° C. to reduce their weight. DEC is also an organic solvent such as GBL and PC. DEC converted to salt ECETMA-Cl is a solid salt at room temperature, but is stable up to around 150 ° C, and the anion exchanged from Cl to TFSI (ECETMA-TFSI, liquid at room temperature) Then, it is clear from FIG. 1 that the heat resistance is further improved. From the results of FIG. 1, it was clarified that the safety is improved when the room temperature molten salt of the present invention is used as a battery electrolyte.
Test example 2
Solvent molecules often used in lithium batteries are highly volatile and ignitable (DEC: diethyl carbonate, GBL: γ-butyrolactone, EC: ethylene carbonate). First, the heat resistance was evaluated by heating these solvents and examining the change in weight. The results are shown in FIG.
Next, if the trimethylammonium group is modified to cationize the above three solvent molecules and the anion is halogenated, it becomes a solid salt and does not volatilize even at 200 ° C. The result of thermal analysis measurement for the solid salt is shown in FIG.
Furthermore, when the anion is exchanged from halogen to TFSI, the heat resistance is further improved. The thermal analysis measurement results of the corresponding TFSI salt are shown in FIG. The TFSI salt forms an ionic liquid that melts even at room temperature.
Trial example 3
A lithium battery was fabricated under the following conditions and the charge / discharge characteristics were examined. The results are shown in FIGS.
Charging / discharging rate 0.1C (300mAh / g as theoretical value)
Charging is CCCV mode 5 mV, 10-hour discharging is 1.2 V cutoff electrode: 95 wt% MCMB2800 + 5 wt% PVdF, current collector is copper foil, counter electrode is a bipolar cell using Li foil (laminate)
Electrolyte composition: EMI-TFSI + LiTFSI (10 wt%, approximately 0.4 M)
EMI-TFSI + ECETMA-TFSI (volume ratio 5: 1) +10 wt% LiTFSI
Although EMI-TFSI is inferior in electrochemical stability to ammonium, it has the advantage of relatively low viscosity. The point of poor electrochemical stability is apparent when carbon is used for the negative electrode. That is, in FIG. 5, a large capacity of 500 mAh / g is shown at the time of charging (dotted line). This indicates that an irreversible reduction reaction of the EMI cation occurs, or an insertion reaction of the EMI cation into the carbon anode occurs. Suggest that both are happening. Further, a system having no capacity at the time of discharge (solid line) and inferior in electrochemical stability such as EMI-TFSI cannot use a carbon negative electrode at all.
However, it was found that by adding a small amount of the ionic liquid (ECETMA-TFSI) having a solvent structure developed this time, good charge / discharge characteristics can be exhibited even in EMI-TFSI as shown in FIG. This is because the so-called SEI film was formed on the carbon negative electrode by the decomposition of ECETMA-TFSI, and the decomposition of EMI and the insertion into the carbon material were suppressed. Such an effect has been conventionally known for organic solvents having a carbonyl structure such as DEC, GBL, and EC. Organic solvents such as GBL and EC have problems with heat resistance and flammability, but the ionic liquids having the organic solvent structure synthesized this time are hard to be viscous and have significantly improved heat resistance. It contributes.
The same effect is expected even in an ammonium-based ionic liquid having excellent electrochemical stability.

Claims (4)

下記の化学式(1)で表される常温溶融塩Room temperature molten salt represented by the following chemical formula (1)
Figure 0004478790
Figure 0004478790
(式中、Rはγ-ブチロラクトンまたは下記の化学式(2)で表される炭酸エステルであ(In the formula, R is γ-butyrolactone or a carbonate represented by the following chemical formula (2).
る。The
TFSITFSI はビス(トリフルオロメチルスルホニル)イミドを表す。)Represents bis (trifluoromethylsulfonyl) imide. )
Figure 0004478790
Figure 0004478790
(式中、R(Wherein R 1 、R, R 2 はメチル、エチルまたはRIs methyl, ethyl or R 1 とRAnd R 2 が一緒になって、炭素数2〜4の2価の炭化水素基を示す。)Together represent a divalent hydrocarbon group having 2 to 4 carbon atoms. )
Rが、γブチロラクトン、ジエチルカーボネートまたはエチレンカーボネートである、請求項1に記載の常温溶融塩。The room temperature molten salt according to claim 1, wherein R is γ-butyrolactone, diethyl carbonate or ethylene carbonate. 請求項に記載の常温溶融塩を含む電気化学デバイスAn electrochemical device comprising the room temperature molten salt according to claim 2 リチウム二次電池、電気二重層キャパシター、太陽電池またはエレクトロミックデバイスである請求項に記載の電気化学デバイス。The electrochemical device according to claim 3 , which is a lithium secondary battery, an electric double layer capacitor, a solar cell, or an electromic device.
JP2005513940A 2003-09-09 2004-09-08 Room temperature molten salt and electrochemical device Expired - Fee Related JP4478790B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003316471 2003-09-09
JP2003316471 2003-09-09
PCT/JP2004/013393 WO2005027157A2 (en) 2003-09-09 2004-09-08 Salt fusible at ordinary temperature and electrochemical device

Publications (2)

Publication Number Publication Date
JPWO2005027157A1 JPWO2005027157A1 (en) 2006-11-24
JP4478790B2 true JP4478790B2 (en) 2010-06-09

Family

ID=34308455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005513940A Expired - Fee Related JP4478790B2 (en) 2003-09-09 2004-09-08 Room temperature molten salt and electrochemical device

Country Status (2)

Country Link
JP (1) JP4478790B2 (en)
WO (1) WO2005027157A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002086A1 (en) * 2013-02-13 2014-08-15 Commissariat Energie Atomique PROCESS FOR THE SYNTHESIS OF IONIC LIQUIDS WITH CARBONATE FUNCTIONAL GROUP AND IONIC LIQUIDS THUS OBTAINED

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021271A1 (en) * 2008-04-29 2010-01-28 Merck Patent Gmbh Reactive ionic liquids
JP2012116802A (en) * 2010-12-02 2012-06-21 Nitto Boseki Co Ltd Ionic liquid and production method of the same
CN103130777A (en) * 2011-12-01 2013-06-05 海洋王照明科技股份有限公司 Pyridines ionic liquid containing carbonic ester group and preparation method and application thereof
CN103130764A (en) * 2011-12-01 2013-06-05 海洋王照明科技股份有限公司 Quaternary ammonium salt ionic liquid containing carbonic ester group and preparation method and application thereof
CN103130778B (en) * 2011-12-01 2016-02-10 海洋王照明科技股份有限公司 Pyrazine ionic liquid of carbonate-containing group and its preparation method and application
CN103130776A (en) * 2011-12-01 2013-06-05 海洋王照明科技股份有限公司 Imidazoles ionic liquid containing carbonic ester perssad and preparation method and application thereof
CN103130779B (en) * 2011-12-01 2015-08-05 海洋王照明科技股份有限公司 Maleimide ionic liquid of carbonate-containing group and its preparation method and application
CN103130783B (en) * 2011-12-01 2016-04-13 海洋王照明科技股份有限公司 Tetramethylene sulfide class ionic liquid of carbonate-containing group and its preparation method and application

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035253A (en) * 1999-07-19 2001-02-09 Fuji Photo Film Co Ltd Electrolyte composition, photoelectric transfer element and photo-electrochemical battery
JP5081345B2 (en) * 2000-06-13 2012-11-28 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP4637334B2 (en) * 2000-08-29 2011-02-23 富士フイルム株式会社 Electrolyte composition and electrochemical cell
JP4240263B2 (en) * 2000-12-22 2009-03-18 富士フイルム株式会社 Electrolyte composition and non-aqueous electrolyte secondary battery
JP2003201272A (en) * 2001-07-31 2003-07-18 Tokuyama Corp Onium salt
EP1595863B1 (en) * 2003-02-13 2010-12-29 Koei Chemical Co., Ltd. Quaternary ammonium salts
JP2004262897A (en) * 2003-03-04 2004-09-24 Tosoh Corp Quaternary ammonium room temperature molten salt and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002086A1 (en) * 2013-02-13 2014-08-15 Commissariat Energie Atomique PROCESS FOR THE SYNTHESIS OF IONIC LIQUIDS WITH CARBONATE FUNCTIONAL GROUP AND IONIC LIQUIDS THUS OBTAINED
WO2014124892A1 (en) * 2013-02-13 2014-08-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for synthesising ionic liquids having a carbonate functional group and resulting ionic liquids.
US10026993B2 (en) 2013-02-13 2018-07-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for synthesizing ionic liquids having a carbonate functional group and ionic liquids thus obtained

Also Published As

Publication number Publication date
JPWO2005027157A1 (en) 2006-11-24
WO2005027157A3 (en) 2005-05-06
WO2005027157A2 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US9991559B2 (en) Functionalized ionic liquid electrolytes for lithium ion batteries
JP5725510B2 (en) Solvent for electrolytic solution, electrolytic solution, and gel electrolyte
KR102669779B1 (en) Ionic liquids with silane functional groups
AU2017252565B2 (en) Heterocyclic ionic liquids
US8247117B2 (en) Ionic liquid
JP2010044883A (en) Nonaqueous electrolyte and lithium secondary battery
KR20090048464A (en) Lithium salt
US20140199585A1 (en) Low Symmetry Molecules And Phosphonium Salts, Methods Of Making And Devices Formed There From
JP4478790B2 (en) Room temperature molten salt and electrochemical device
Mei et al. Synthesis of new fluorine-containing room temperature ionic liquids and their physical and electrochemical properties
JP4045252B2 (en) Lithium ionic liquid and non-aqueous electrolyte using the same
EP3942094A1 (en) Modified ionic liquids containing cyclic phosphorus moiety
JP5875954B2 (en) Cyanoborate compound and electrolyte using the same
KR102139216B1 (en) Organic ionic plastic crystals comprising bis-piperidinium salt compound, method of manufacturing same, electrolyte for secondary battery comprising same and device comprising electrolyte for secondary battery
KR101614017B1 (en) Method for Preparation of Ionic Liquids Containing Ether Substituted Anion and Liquid or Ionogel Electrolytes Prepared Using the Same
US8765296B2 (en) Ionic liquid
김형태 Application and Characterization of Pyrrolinium-based Ionic liquids as Electrolytes for Lithium Ion Batteries

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4478790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees