JP4478279B2 - Manufacturing method of fiber reinforced resin molded product - Google Patents

Manufacturing method of fiber reinforced resin molded product Download PDF

Info

Publication number
JP4478279B2
JP4478279B2 JP2000057409A JP2000057409A JP4478279B2 JP 4478279 B2 JP4478279 B2 JP 4478279B2 JP 2000057409 A JP2000057409 A JP 2000057409A JP 2000057409 A JP2000057409 A JP 2000057409A JP 4478279 B2 JP4478279 B2 JP 4478279B2
Authority
JP
Japan
Prior art keywords
fiber
glass
long
urethane resin
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000057409A
Other languages
Japanese (ja)
Other versions
JP2001246632A (en
Inventor
康宏 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000057409A priority Critical patent/JP4478279B2/en
Publication of JP2001246632A publication Critical patent/JP2001246632A/en
Application granted granted Critical
Publication of JP4478279B2 publication Critical patent/JP4478279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はガラス長繊維強化ウレタン樹脂発泡成形品の製造方法に関するものである。
【0002】
【従来の技術】
繊維強化樹脂発泡成形品、特にガラス繊維強化ウレタン樹脂発泡成形品は、低吸水性、軽量性、優れた機械的強度及び低温衝撃強度、優れた耐食性及び耐久性を備え、更には加工容易性、低コスト等の利点を有し、軌道の枕木や水処理用構造材等、天然木材に代わり多方面で使用されている。更に、この成形品の表面強度等を向上させるために、例えば特公昭55−15290号公報には、ガラス長繊維束に付着させた発泡性ウレタン樹脂液が発泡を開始せず流動性を保有している間に、この繊維束を表面から冷却し成形用通路に導いて、前記樹脂液を発泡硬化させることにより、低発泡で表面強度の向上した表皮層を有する長繊維強化発泡成形品を製造する方法が提案されている。
【0003】
また、特公昭59−35768号公報には、発泡硬化性樹脂液を含浸した長繊維束の表面に更に紫外線硬化性液状物を付着させて成形用通路を進行せしめ、発泡硬化した成形体に紫外線を照射して前記液状物を硬化せしめることにより、成形体表面に皮膜を形成して強度や所望により耐候性を向上させる方法が提案されている。
【0004】
しかし、特公昭55−15290号公報記載の方法では、表面の冷却により、本来進行する筈の反応熱による樹脂の硬化が遅れてキュア時間が長くなるという生産上の問題点があり、また、表面樹脂の不十分な硬化に起因して外観が劣悪になるという成形品の品質上の問題点が予想されるところであった。一方、特公昭59−35768号公報記載の方法によると、比較的高価な紫外線硬化性材料を用いることと、成形用通路を出た後に、発泡硬化した成形体に紫外線を照射するという煩瑣な工程を経る関係上、結局成形品のコストが増加してしまうという問題点があった。
【0005】
【発明が解決しようとする課題】
本発明は、上記従来の繊維強化樹脂発泡成形品及びその製造方法の問題点に鑑みて、表面の強度を向上させることにより優れた圧縮強度及び曲げ強度を有するガラス長繊維強化ウレタン樹脂発泡成形品をコストの大幅な増加を招かずに提供し得るガラス長繊維強化ウレタン樹脂発泡成形品の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、ガラス長繊維束を所定間隔に引き揃えながら一方向に進行させつつ、ガラス長繊維束に発泡性ウレタン樹脂液を振りかけ、その発泡性ウレタン樹脂液が振りかけられたガラス長繊維束を移送させながら揉んで含浸させ、次いで、発泡性ウレタン樹脂液が含浸されたガラス長繊維束を移送させながら上方から固形充填材を散布し、その固形充填材が散布されたガラス長繊維束を揉むことなく移送させて成形用通路に導いて、前記発泡性ウレタン樹脂液を発泡硬化させることを特徴とする繊維強化樹脂成形品の製造方法を提供する。
【0007】
また、請求項2記載の発明は、散布する固形充填材の比重が1.5〜5.4であることを特徴とする請求項1記載の繊維強化樹脂成形品の製造方法を提供する。
【0008】
また、請求項3記載の発明は、請求項1記載の繊維強化樹脂成形品の製造方法にて得られる、長手方向がガラス長繊維で強化されたウレタン樹脂発泡成形品であって、その表面から上下方向で15mm以内に位置する内部に、固形充填材が混入されていることを特徴とする繊維強化樹脂成形品を提供する。
また、請求項4記載の発明は、成形品の表面1cm2 当たり0.03〜0.3cm3 の固形充填材が混入されていることを特徴とする請求項3記載の繊維強化樹脂成形品を提供する。
【0009】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の繊維強化樹脂成形品の製造方法にて得られる繊維強化樹脂成形品の一形態を示す模式的断面図である。
1は、断面矩形の長尺形状の繊維強化樹脂成形品で、ウレタン樹脂発泡体2が断面の全体に渡って略均等に分散配置された多数のガラス長繊維3によって補強されており、更に、成形品の片側の表面層4、即ち図面上の上部の表面層に固形充填材5が混入分散された構造とされている。
【0010】
ウレタン樹脂発泡体2はウレタン成形に一般的に用いられる、ポリイソシアネート化合物(例えば、ジフェニルメタンジイソシアネート、以下MDIと記述する場合がある)とポリオールから得られるものであれば、特に限定されない。但し、原料として用いるMDIは、粘度が50〜1500mPa・s/25℃であるのが望ましく、ポリオールは、その粘度が1500〜6000mPa・s/25℃であるのが望ましい。MDIの粘度が低すぎると樹脂の剛性が低くなりすぎ、高すぎるとウレタン樹脂液のガラス長繊維への含浸性が低下するためである。
【0011】
また、ポリオールは、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリマーポリオール等が用いられる。ポリオールの粘度が低すぎると、やはり樹脂の剛性が低くなりすぎ、高すぎるとウレタン樹脂液のガラス長繊維への含浸性が低下するためである。ウレタン樹脂発泡体2の発泡倍率は、特に限定されないが、ウレタン樹脂のみの比重(成形品からガラス繊維や固形充填材等を除いたもの)において、上面層の比重がそれ以外の部分の比重の1.1倍以上となっていることが好ましい。1.1倍より小さいと、所望の圧縮強度や曲げ強度が得られないことがある。
【0012】
固形充填材5は、珪砂、焼却灰、ガラスビーズ、ガラスパウダー、金属粉などの無機材の他、熱硬化性樹脂成形品の破砕品や研削屑、本発明成形品や他の繊維強化プラスチック成形品の破砕品や切削屑、無機充填材の表面を有機材料でコーティングしたものなどでも構わない。充填材と樹脂との相溶性を向上させるために充填材の表面を処理したものでもよい。
【0013】
表面層4における固形充填材5の混入割合は、表面層の厚さ15mm以内に成形品の表面1cm2 当たり0.03〜0.3cm3 とするのが好ましい。0.03cm3 未満の場合、固形充填材の量が少なすぎて、所定の効果が発現しにくく、0.3cm3 を越える場合、樹脂がガラス繊維や固形充填材のバインダーとしての役割を果たせなくなり、吸水量が増加して耐水性が低下したり、繰り返しの耐久強度が低下したりする。
【0014】
固形充填材が混入される範囲は、厚さ15mm以上に渡って配置させると多量の充填材量が必要となり、成形品の外観が悪化することと、図1における成形品の上面から曲げ荷重をかけた場合、上面に近いほど圧縮応力が発生するため、充填材が上面に近い位置にあるほど曲げ強度を向上させる効果が発現するので、上面から15mm以内とするのが好ましく、また、本成形品は、一般的に上下面を研削して用いることが多いため、より好ましくは、上面から0.5〜15mmである。
【0015】
固形充填材の比重は、1.5〜5.4であることが望ましい。1.5未満の場合、充填材の強度が小さく成形品を補強する効果が少ない。
【0016】
固形充填材の粒径は、平均で2〜10μmが望ましい。小さすぎると、製造の際に製品の最表面にのみ充填材が位置してしまい、製品の表面を研削した際に、充填材全てがなくなってしまう。大きすぎると、後述する成形品の製造時にガラス繊維の間に入りにくくなり、充填材の位置とガラス繊維の位置が分離してしまって、強度が低下してしまう。
【0017】
ガラス長繊維3は、長尺形状の繊維強化樹脂成形品1の長手方向の全域に渡って分散配置されているのが好ましい。ガラス長繊維3のモノフィラメントとしての径は、5〜100μmのものが好ましく用いられる。径が小さすぎると、樹脂と含浸する際に多くの樹脂が必要となり、強化材としてのガラス長繊維の割合が少なくて曲げ弾性率等が弱くなり、又、径が大きすぎると、ガラス繊維に接触する作業の際に痛みを感じる等、作業性が悪くなる。繊維強化樹脂成形品1中におけるガラス繊維の重量比率は、ウレタン樹脂発泡体100重量部に対して、ガラス繊維50〜300重量部が好ましい。繊維強化樹脂成形品1の比重は、0.2〜2.0が望ましい。低すぎると、曲げ弾性率等の物性が低くなり、高すぎると、軽量性が一つの特徴である本発明成形品の効果がなくなる。
【0018】
以下に、本発明の繊維強化樹脂成形品の一般的な製造方法を、図面を参照しながら説明する。
図2は請求項記載の発明に係る製造方法の実施に用いて好適な、繊維強化樹脂成形品の製造装置の概要の一例を示す模式的斜視図である。
【0019】
7は、ポリオール、発泡剤である水、及び、整泡剤であるシリコーン化合物からなるポリオール混合液で、ポンプ8により散布装置9に移送される。10はMDIで、ポンプ11により散布装置9に供給され、前記ポリオール混合液7と混合されて、散布装置9によりガラス長繊維束12上へ散布される。13は、揉み板であり、ガラス長繊維束12の進行方向と直角方向に往復運動をして、含浸板14と揉み板13との間に挟まれた長繊維束12を揉むようになされてる。16は、成形用通路であり、この中でガラス長繊維束12に含浸された発泡性ウレタン樹脂液が発泡するとともに硬化して、該成形用通路の断面形状に対応した形状に成形される。尚、18は引取機であり、一定速度で駆動することにより、ガラス長繊維束12に一定速度の前進運動(図中の右方向)を与えている。また、17は、固形充填材散布機で、含浸部と成型用通路の間に位置することが必要である。
【0020】
ガラス長繊維束12は、モノフィラメントが集められてロービングとされたものを用いることが望ましく、フィラメント径は、5〜100μmのものが好ましく用いられる。径が小さすぎると、樹脂と含浸する際に多くの樹脂が必要となり、強化材としてのガラス長繊維の割合が少なくて曲げ弾性率等が弱くなり、又、径が大きすぎると、ガラス繊維に接触する作業の際に痛みを感じる等、作業性が悪くなる。また、ロービングの大きさは、一般的に長さ1kmのg数を番手として表すが、1000〜50000番手のものが望ましい。番手が小さ過ぎると、ガラス繊維の巻物の置場が多くなりすぎて、番手が大き過ぎると、ロービングを構成しているフィラメントに樹脂を含浸することが困難となる。
【0021】
本発明の方法により、例えば、上記装置を用いて上記の繊維強化樹脂成形品1を得るには、ガラス長繊維束12を、多数のモノフィラメントが略並行になる様に所定間隔で引き揃えながら図2において右方向に進行させつつ、ガラス長繊維束12に、ポリオール混合液7とMDI10とからなる発泡性ウレタン樹脂液を散布装置9によって振りかけて含浸させ、次いで、上方から固形充填材散布機17によって散布し、その後に成形用通路16に導いて、前記発泡性ウレタン樹脂液を加熱して発泡硬化させるのである。固形充填材散布機17による固形充填材の散布の仕方は、特には問わないが、まんべんなく散布することが望ましい。
【0022】
発泡性ウレタン樹脂液をガラス長繊維束12に散布した後、更に固形充填材を長繊維束に散布してから成形用通路16に導いて長繊維束に散布された発泡性ウレタン樹脂液が固化するまでの時間は、30秒以上10分以下が望ましい。短かすぎると、散布した固形充填材が成形品の最表面に位置してしまい、成形品の表面を研削した際に、充填材がなくなってしまう。一方、長すぎると、製品の生産性が悪くなる。
【0023】
成型用通路16は、固定式の金型でも構わないし、ベルト式であって製造中の繊維強化樹脂成形品1と連動して動く構成でも構わない。また、成型用通路の断面形状は、四角形を始め何でも構わないが、通路を通して同じ形状で同じ大きさであることが好ましい。図中のMDI10は、ウレタン成形に一般的に用いられるMDIであれば、特に限定されないが、粘度は50〜1500mPa・s/25℃であるのが望ましい。また、ポリオール混合液7に用いられるポリオールも上記したようにウレタン成形に一般的に用いられるものなら特に限定されない。
【0024】
ポリオールの混合液7には、通常、発泡剤や整泡剤が含まれており、その他、難燃剤、可塑剤、着色剤、架橋剤、安定剤、ガラス短繊維等が含まれても良い。
ポリオール混合液7とMDI10とからなる発泡性ウレタン樹脂液とガラス繊維との比率は、ウレタン樹脂液100重量部に対して、ガラス繊維50〜300重量部が望ましい。50重量部未満では、曲げ弾性率等の物性が低くなることと、製造過程で、ガラス繊維が樹脂液を保持できないなどの不具合が発生する場合がある。また、300重量部を越えると、ガラス繊維に樹脂を十分含浸出来ない不具合が発生する場合がある。
【0025】
<作用>
通常、長繊維強化樹脂発泡体を長繊維方向を軸とした方向で曲げ荷重をかけた場合、成形体の破壊モードは、一般的に載荷側が圧縮荷重を受けて破断する。これは、載荷側の圧縮強度と載荷側と反対側の引っ張り強度では、圧縮強度の方が弱いため起きる。
本発明にて得られる繊維強化樹脂成形品は、長手方向がガラス長繊維で強化されたウレタン樹脂発泡成形品であって、その表面層(又は裏面層)が、ウレタン樹脂発泡体に固形充填材が混入されてなるので、成形品の少なくとも片側の表面層の圧縮強度が高められていおり、上面から、重量物等を載荷した際に高い曲げ強度が発現される。
【0026】
本発明の繊維強化樹脂成形品の製造方法は、ガラス長繊維束を所定間隔に引き揃えながら一方向に進行させつつ、ガラス長繊維束に発泡性ウレタン樹脂液を振りかけ、その発泡性ウレタン樹脂液が振りかけられたガラス長繊維束を移送させながら揉んで含浸させ、次いで、発泡性ウレタン樹脂液が含浸されたガラス長繊維束を移送させながら上方から固形充填材を散布し、その固形充填材が散布されたガラス長繊維束を揉むことなく移送させて成形用通路に導いて、前記発泡性ウレタン樹脂液を発泡硬化させるので、本発明によれば、表面の強度を向上させることにより優れた圧縮強度及び曲げ強度を有する上記樹脂発泡成形品を、大がかりな設備・装置を導入せずコストの大幅な増加を招かずに、提供することができる。
【0027】
<実施例1>
(使用原材料)
ポリオール混合液;粘度3800mPa・s/25℃の平均官能基数3のポリエーテルポリオール100重量部に対し水1重量部、シリコンオイル1重量部、ジブチル錫ジラウレート1重量部の混合物
ポリメリックMDI;粘度200mPa・s/25℃
ガラス長繊維;繊維直径17ミクロンのモノフィラメントを多数引き揃えてガラスロービングとしたもので、13800番手を使用した。
ウレタン樹脂とガラス長繊維の重量混合比率;1:1
固形充填材;7号珪砂(比重2.5)
【0028】
(製造方法)
上記原材料を用い、図2に示した装置によって、13800番手のガラス長繊維束12を引き揃えながら図2において右方向に進行させつつ、ガラス長繊維束12に、ポリオール混合液7とMDI10とからなる発泡性ウレタン樹脂液を散布装置9によって振りかけて含浸させ、次いで、固形充填材散布機17により7号珪砂を散布し、成形用通路16に導いて、前記発泡性ウレタン樹脂液を加熱して発泡硬化させて、所望のガラス繊維強化ウレタン樹脂発泡成形品を得た。
固形充填材としての7号珪砂の充填量は、サンプルとした成形品表面1cm2当たりの体積(cm3 )として、また、その充填位置は、成形品表面からの深さ(厚さ)の範囲として表1に示した。
【0029】
(製造結果)
成形品の断面サイズ;高さ50mm、幅200mm
成形品の比重;0.74
成形品の上下面に対して研削を施して以下の評価を行った。
(評価)
〔曲げ強度試験〕
製品大の成形品サンプルで曲げ試験を行った。その際、製品上面から載荷した。
〔圧縮強度試験〕
得られた成形品の上面から載荷した部分圧縮強度試験を行い、比例限度の値をその強度として、表1に示した。
【0030】
<実施例2〜4>
7号珪砂の充填量及び充填位置を、表1記載の通りとしたこと以外は、実施例1と同様にして、ガラス繊維強化ウレタン樹脂発泡成形品を得て、評価した。
【0031】
<実施例5>
固形充填材として、実施例1で得た成形品の研削屑(ウレタン樹脂発泡体とガラス繊維が重量比で約1:1のもので、粒径は平均で20μm、比重1.7)を用い、その充填量及び充填位置を、表1記載の通りとしたこと以外は、実施例1と同様にして、ガラス繊維強化ウレタン樹脂発泡成形品を得て、評価した。
【0032】
<比較例1>
固形充填材を全く用いず、それに伴う操作の変更以外は、実施例1と同様にして、ガラス繊維強化ウレタン樹脂発泡成形品を得て、評価した。
【0033】
【表1】
【0034】
【発明の効果】
本発明のガラス長繊維強化ウレタン樹脂発泡成形品の製造方法は、上述の通り構成されており、ガラス長繊維束に発泡性ウレタン樹脂液を振りかけ、その発泡性ウレタン樹脂液が振りかけられたガラス長繊維束を移送させながら揉んで含浸させ、次いで、発泡性ウレタン樹脂液が含浸されたガラス長繊維束を移送させながら上方から固形充填材を散布し、その固形充填材が散布されたガラス長繊維束を揉むことなく移送させて成形用通路に導いて、樹脂液を発泡硬化させるので、本発明によれば、表面の強度が向上し優れた圧縮強度及び曲げ強度を有する上記樹脂発泡成形品を、大がかりな設備・装置を導入せずコストの大幅な増加を招かずに、製造することができる。
本発明の方法で得られるガラス長繊維強化ウレタン樹脂発泡成形品は、上述の通り構成されており、その表面から上下方向で15mm以内に位置する内部には固形充填材が混入されているので、表面の強度が向上しているため、優れた圧縮強度及び曲げ強度を有する。
従って、一般的機械的強度が要求される建材等の構造材として好適に使用し得る。また、優れた圧縮強度を要求される鉄道用枕木に好適に使用され、更に、鉄道用枕木は、通常、タイプレートによってレールと締結されており、この場合にも、タイプレートから受ける圧縮荷重に対して本発明の成形品は耐性があるので、用いると特に好適である。
【図面の簡単な説明】
【図1】本発明にて得られる繊維強化樹脂成形品の一形態を示す模式的断面図である。
【図2】請求項記載の発明に係る製造方法の実施に用いて好適な、繊維強化樹脂成形品の製造装置の概要の一例を示す模式的斜視図である。
【符号の説明】
1・・繊維強化樹脂成形品
2・・ウレタン樹脂発泡体
3・・ガラス長繊維
4・・表面層
5・・固形充填材
12・・ガラス長繊維束
16・・成形用通路
17・・固形充填材散布機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a long glass fiber reinforced urethane resin foam molded article .
[0002]
[Prior art]
Fiber reinforced resin foam molded products, especially glass fiber reinforced urethane resin foam molded products, have low water absorption, light weight, excellent mechanical strength and low-temperature impact strength, excellent corrosion resistance and durability, and further processability, It has advantages such as low cost, and is used in many fields in place of natural wood, such as track sleepers and water treatment structural materials. Furthermore, in order to improve the surface strength and the like of this molded product, for example, Japanese Patent Publication No. 55-15290 discloses that a foamable urethane resin liquid adhered to a glass long fiber bundle does not start foaming and has fluidity. In the meantime, this fiber bundle is cooled from the surface and guided to the molding passage, and the resin liquid is foamed and cured to produce a long fiber reinforced foam molded article having a skin layer with low foaming and improved surface strength. A method has been proposed.
[0003]
In Japanese Patent Publication No. 59-35768, an ultraviolet curable liquid is further adhered to the surface of the long fiber bundle impregnated with the foam curable resin liquid to advance the molding passage, and the foam cured product is subjected to ultraviolet light. Has been proposed in which the liquid material is cured to form a film on the surface of the molded body to improve strength and weather resistance as desired.
[0004]
However, in the method described in Japanese Patent Publication No. 55-15290, there is a problem in production in that the curing of the resin is delayed due to the reaction heat of the soot that is originally progressed due to the cooling of the surface, and the curing time becomes long. A problem with the quality of the molded product that the appearance deteriorates due to insufficient curing of the resin was expected. On the other hand, according to the method described in JP-B-59-35768, a complicated process of using a relatively expensive ultraviolet curable material and irradiating the foam-cured molded body with ultraviolet rays after exiting the molding passage. As a result, there was a problem that the cost of the molded product eventually increased.
[0005]
[Problems to be solved by the invention]
In view of the problems of the above-mentioned conventional fiber reinforced resin foam molded article and its production method, the present invention is a glass long fiber reinforced urethane resin foam molded article having excellent compressive strength and bending strength by improving surface strength. An object of the present invention is to provide a method for producing a long glass fiber reinforced urethane resin foam-molded product that can be provided without causing a significant increase in cost.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is directed to sprinkling a foamable urethane resin liquid on a glass long fiber bundle while making the glass long fiber bundle advance in one direction while aligning the glass long fiber bundle at a predetermined interval . The glass long fiber bundle sprinkled with the urethane resin liquid is impregnated while being transferred , and then the solid filler is sprayed from above while the long fiber bundle impregnated with the foamable urethane resin liquid is transferred , and the solid Provided is a method for producing a fiber-reinforced resin molded product, characterized in that a long glass fiber bundle with dispersed filler is transported without rubbing and guided to a molding passage to foam and cure the foamable urethane resin liquid. .
[0007]
The invention according to claim 2 provides the method for producing a fiber-reinforced resin molded article according to claim 1, wherein the specific gravity of the solid filler to be dispersed is 1.5 to 5.4.
[0008]
The invention described in claim 3 is a urethane resin foam molded product whose longitudinal direction is reinforced with long glass fibers, obtained by the method for producing a fiber-reinforced resin molded product according to claim 1. Provided is a fiber reinforced resin molded product in which a solid filler is mixed in an interior located within 15 mm in the vertical direction.
According to a fourth aspect of the present invention, there is provided the fiber-reinforced resin molded article according to the third aspect, wherein 0.03-0.3 cm 3 of a solid filler is mixed per 1 cm 2 of the surface of the molded article. provide.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing one embodiment of a fiber reinforced resin molded product obtained by the method for producing a fiber reinforced resin molded product of the present invention.
1 is a long fiber-reinforced resin molded product having a rectangular cross section, in which a urethane resin foam 2 is reinforced by a large number of long glass fibers 3 distributed substantially uniformly throughout the cross section; A solid filler 5 is mixed and dispersed in the surface layer 4 on one side of the molded product, that is, the upper surface layer in the drawing.
[0010]
The urethane resin foam 2 is not particularly limited as long as it is obtained from a polyisocyanate compound (for example, diphenylmethane diisocyanate, hereinafter sometimes referred to as MDI) and a polyol, which are generally used for urethane molding. However, the MDI used as a raw material preferably has a viscosity of 50 to 1500 mPa · s / 25 ° C., and the polyol preferably has a viscosity of 1500 to 6000 mPa · s / 25 ° C. This is because if the viscosity of MDI is too low, the rigidity of the resin becomes too low, and if it is too high, the impregnation property of the urethane resin liquid into the glass long fiber is lowered.
[0011]
Moreover, polyether polyol, polyester polyol, polymer polyol etc. are used for a polyol, for example. If the viscosity of the polyol is too low, the rigidity of the resin is too low, and if it is too high, the impregnation property of the urethane resin liquid into the glass long fiber is lowered. The expansion ratio of the urethane resin foam 2 is not particularly limited, but in the specific gravity of the urethane resin only (excluding glass fiber, solid filler, etc. from the molded product), the specific gravity of the upper surface layer is the specific gravity of the other portion. It is preferably 1.1 times or more. If it is less than 1.1 times, the desired compressive strength and bending strength may not be obtained.
[0012]
Solid filler 5 includes inorganic materials such as silica sand, incinerated ash, glass beads, glass powder, and metal powder, as well as crushed and ground scraps of thermosetting resin molded products, molded products of the present invention, and other fiber-reinforced plastic moldings. The product may be a crushed product, cutting waste, or an inorganic filler whose surface is coated with an organic material. The surface of the filler may be treated to improve the compatibility between the filler and the resin.
[0013]
Mixture ratio of solid filler 5 in the surface layer 4 is preferably set to the surface 1 cm 2 per 0.03~0.3Cm 3 of the molded article within the thickness 15mm of the front surface layer. If the amount is less than 0.03 cm 3, the amount of the solid filler is too small to exhibit a predetermined effect, and if it exceeds 0.3 cm 3 , the resin cannot play a role as a binder for glass fiber or solid filler. In addition, the water absorption increases, the water resistance decreases, and the repeated durability strength decreases.
[0014]
When the solid filler is mixed over a thickness of 15 mm or more, a large amount of filler is required, the appearance of the molded product is deteriorated, and the bending load is applied from the upper surface of the molded product in FIG. When applied, compressive stress is generated closer to the upper surface, so that the effect of improving the bending strength appears as the filler is closer to the upper surface. Therefore, it is preferably within 15 mm from the upper surface. Since the product is often used by grinding the upper and lower surfaces in general, it is more preferably 0.5 to 15 mm from the upper surface.
[0015]
The specific gravity of the solid filler is 1 . It is desirable to be 5 to 5.4. If it is less than 1.5, the strength of the filler is small and the effect of reinforcing the molded product is small.
[0016]
The average particle size of the solid filler is desirably 2 to 10 μm. If it is too small, the filler is located only on the outermost surface of the product during production, and all the filler is lost when the surface of the product is ground. When too large, it will become difficult to enter between glass fibers at the time of manufacture of the molded article mentioned later, the position of a filler and the position of glass fiber will separate, and intensity will fall.
[0017]
It is preferable that the long glass fibers 3 are dispersedly arranged over the entire lengthwise direction of the long fiber-reinforced resin molded product 1. The diameter of the long glass fiber 3 as a monofilament is preferably 5 to 100 μm. If the diameter is too small, a large amount of resin is required when impregnating with the resin, the ratio of the long glass fiber as the reinforcing material is small and the flexural modulus is weak, and if the diameter is too large, the glass fiber Workability deteriorates, for example, the user feels pain when working in contact. The weight ratio of the glass fiber in the fiber reinforced resin molded product 1 is preferably 50 to 300 parts by weight of the glass fiber with respect to 100 parts by weight of the urethane resin foam. The specific gravity of the fiber reinforced resin molded product 1 is preferably 0.2 to 2.0. If it is too low, physical properties such as flexural modulus will be low, and if it is too high, the effect of the molded product of the present invention, which is one of the characteristics of lightness, will be lost.
[0018]
Below, the general manufacturing method of the fiber reinforced resin molded product of this invention is demonstrated, referring drawings.
FIG. 2 is a schematic perspective view showing an example of an outline of an apparatus for producing a fiber-reinforced resin molded article, which is suitable for carrying out the production method according to the first aspect of the invention.
[0019]
7 is a polyol liquid mixture composed of a polyol, water as a foaming agent, and a silicone compound as a foam stabilizer, and is transferred to a spraying device 9 by a pump 8. Reference numeral 10 denotes an MDI, which is supplied to the spraying device 9 by the pump 11, mixed with the polyol mixed solution 7, and sprayed onto the long glass fiber bundle 12 by the spraying device 9. Reference numeral 13 denotes a stagnation plate which reciprocates in the direction perpendicular to the traveling direction of the long glass fiber bundle 12 so as to squeeze the long fiber bundle 12 sandwiched between the impregnation plate 14 and the stagnation plate 13. Reference numeral 16 denotes a molding passage, in which the foamable urethane resin liquid impregnated in the long glass fiber bundle 12 foams and hardens, and is molded into a shape corresponding to the cross-sectional shape of the molding passage. A take-up machine 18 is driven at a constant speed to give the glass long fiber bundle 12 forward movement (right direction in the figure) at a constant speed. Reference numeral 17 denotes a solid filler spreader, which needs to be positioned between the impregnation portion and the molding passage.
[0020]
As the long glass fiber bundle 12, it is desirable to use a monofilament collected and roving, and the filament diameter is preferably 5 to 100 μm. If the diameter is too small, a large amount of resin is required when impregnating with the resin, the ratio of the long glass fiber as the reinforcing material is small and the flexural modulus is weak, and if the diameter is too large, the glass fiber Workability deteriorates, for example, the user feels pain when working in contact. The roving size is generally expressed by the number of grams of 1 km in length, but preferably 1000 to 50000. If the count is too small, there are too many places for the glass fiber scroll, and if the count is too large, it will be difficult to impregnate the filament constituting the roving with resin.
[0021]
For example, in order to obtain the above fiber reinforced resin molded article 1 using the above apparatus by the method of the present invention, the glass long fiber bundle 12 is drawn while being aligned at a predetermined interval so that a large number of monofilaments are substantially parallel. 2, the glass long fiber bundle 12 is impregnated with a foaming urethane resin solution composed of the polyol mixed solution 7 and MDI 10 with a spraying device 9 and then impregnated from above with a solid filler sprayer 17. After that, it is guided to the molding passage 16 and the foamable urethane resin liquid is heated and foamed and cured. The manner in which the solid filler is sprayed by the solid filler spreader 17 is not particularly limited, but it is desirable to spray evenly.
[0022]
After the foamable urethane resin liquid is sprayed on the long glass fiber bundle 12, the foamable urethane resin liquid sprayed on the long fiber bundle is further solidified by spraying the solid filler on the long fiber bundle and then leading to the molding passage 16. The time to do is preferably 30 seconds or more and 10 minutes or less. If it is too short, the spread solid filler is positioned on the outermost surface of the molded product, and the filler disappears when the surface of the molded product is ground. On the other hand, if the length is too long, the productivity of the product becomes worse.
[0023]
The molding passage 16 may be a fixed mold or may be a belt type that moves in conjunction with the fiber-reinforced resin molded product 1 being manufactured. The cross-sectional shape of the molding passage may be anything including a quadrangle, but preferably has the same shape and the same size through the passage. The MDI 10 in the figure is not particularly limited as long as it is an MDI generally used for urethane molding, but the viscosity is preferably 50 to 1500 mPa · s / 25 ° C. Moreover, the polyol used for the polyol liquid mixture 7 is not particularly limited as long as it is generally used for urethane molding as described above.
[0024]
The polyol mixed solution 7 usually contains a foaming agent and a foam stabilizer, and may further contain a flame retardant, a plasticizer, a colorant, a crosslinking agent, a stabilizer, a short glass fiber, and the like.
As for the ratio of the foamable urethane resin liquid which consists of the polyol liquid mixture 7 and MDI10, and glass fiber, 50-300 weight part of glass fiber is desirable with respect to 100 weight part of urethane resin liquid. If it is less than 50 parts by weight, there are cases where the physical properties such as the flexural modulus are lowered and the glass fiber cannot hold the resin liquid during the production process. On the other hand, if it exceeds 300 parts by weight, there may be a problem that the glass fiber cannot be sufficiently impregnated with the resin.
[0025]
<Action>
Normally, when a bending load is applied to the long fiber reinforced resin foam in a direction with the long fiber direction as an axis, the fracture mode of the molded body generally breaks when the loading side receives a compressive load. This occurs because the compressive strength is weaker between the compressive strength on the loading side and the tensile strength on the opposite side of the loading side.
The fiber reinforced resin molded product obtained in the present invention is a urethane resin foam molded product whose longitudinal direction is reinforced with long glass fibers, and the surface layer (or back layer) is a solid filler in the urethane resin foam. Therefore, the compressive strength of the surface layer on at least one side of the molded product is increased, and a high bending strength is exhibited when a heavy object or the like is loaded from the upper surface.
[0026]
The method for producing a fiber-reinforced resin molded product of the present invention is to sprinkle a foamable urethane resin liquid on a glass long fiber bundle while advancing the glass long fiber bundle in one direction while aligning the long glass fiber bundle at a predetermined interval. impregnated massaged while transferring the long glass fiber bundles which are sprinkled is then foamed urethane resin liquid was sprayed solid filler from above while transferring the long glass fiber bundles impregnated, the solid filler material Since the dispersed long glass fiber bundles are transported without rubbing and guided to the molding passage, the foamable urethane resin liquid is foam-cured, and according to the present invention, the compression is improved by improving the strength of the surface. It is possible to provide the resin foam molded article having strength and bending strength without introducing a large-scale facility / apparatus and without causing a significant increase in cost.
[0027]
<Example 1>
(Raw materials used)
Polyol mixed solution: a mixture of 1 part by weight of water, 1 part by weight of silicon oil and 1 part by weight of dibutyltin dilaurate with respect to 100 parts by weight of a polyether polyol having an average functional group number of 3 having a viscosity of 3800 mPa · s / 25 ° C. Polymeric MDI; s / 25 ° C
Long glass fiber: A glass roving made by arranging a large number of monofilaments having a fiber diameter of 17 microns, and 13800 count was used.
Weight mixing ratio of urethane resin and long glass fiber; 1: 1
Solid filler: No. 7 silica sand (specific gravity 2.5)
[0028]
(Production method)
The above-described raw materials are used to move the glass long fiber bundle 12 in the direction of the right in FIG. 2 while aligning the 13800-th glass long fiber bundle 12 with the apparatus shown in FIG. The foaming urethane resin solution is sprinkled and impregnated by the spraying device 9, then No. 7 silica sand is sprayed by the solid filler spraying device 17, led to the molding passage 16, and the foaming urethane resin solution is heated. By foaming and curing, a desired glass fiber reinforced urethane resin foam molded article was obtained.
The filling amount of No. 7 silica sand as a solid filler is expressed as a volume (cm 3) per 1 cm 2 of the molded article surface as a sample, and the filling position is expressed as a range of depth (thickness) from the molded article surface. It was shown in 1.
[0029]
(Production results)
Cross-sectional size of molded product: height 50mm, width 200mm
Specific gravity of molded product; 0.74
The upper and lower surfaces of the molded product were ground and the following evaluation was performed.
(Evaluation)
(Bending strength test)
Bending tests were conducted on product-size molded product samples. At that time, it was loaded from the upper surface of the product.
[Compressive strength test]
The partial compression strength test loaded from the upper surface of the obtained molded product was conducted, and the value of the proportional limit is shown in Table 1 as the strength.
[0030]
<Examples 2 to 4>
A glass fiber reinforced urethane resin foam molded article was obtained and evaluated in the same manner as in Example 1 except that the filling amount and filling position of No. 7 silica sand were as shown in Table 1.
[0031]
<Example 5>
As the solid filler, the grinding waste of the molded product obtained in Example 1 (urethane resin foam and glass fiber is about 1: 1 in weight ratio, particle size is 20 μm on average, specific gravity 1.7) is used. A glass fiber reinforced urethane resin foam molded article was obtained and evaluated in the same manner as in Example 1 except that the filling amount and filling position were as shown in Table 1.
[0032]
<Comparative Example 1>
A glass fiber reinforced urethane resin foam-molded article was obtained and evaluated in the same manner as in Example 1 except that no solid filler was used and the operation was changed accordingly.
[0033]
[Table 1]
[0034]
【The invention's effect】
The method for producing a long glass fiber reinforced urethane resin foam molded article of the present invention is configured as described above, sprinkling a foamable urethane resin liquid on a glass long fiber bundle, and the glass length on which the foamable urethane resin liquid has been sprinkled . The glass long fiber in which the solid filler is dispersed from above while the fiber long fiber bundle impregnated with the foamable urethane resin liquid is dispersed and then the solid filler is dispersed from above while the fiber bundle is kneaded and impregnated. Since the bundle is transported without rubbing and guided to the molding passage to foam and cure the resin liquid, according to the present invention, the resin foam molded article having improved compressive strength and bending strength is obtained. Therefore, it is possible to manufacture without introducing a large-scale facility / equipment and without causing a significant increase in cost.
The long glass fiber reinforced urethane resin foam molded article obtained by the method of the present invention is configured as described above, and the solid filler is mixed in the interior located within 15 mm in the vertical direction from the surface. Since the surface strength is improved, it has excellent compressive strength and bending strength.
Therefore, it can be suitably used as a structural material such as a building material that requires general mechanical strength. Moreover, it is suitably used for railroad sleepers that require excellent compressive strength, and railroad sleepers are usually fastened to the rails by tie plates, and in this case as well, the compressive load received from the tie plates is reduced. On the other hand, the molded product of the present invention is particularly suitable when used because it is resistant.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing one embodiment of a fiber-reinforced resin molded article obtained by the present invention.
FIG. 2 is a schematic perspective view showing an example of an outline of an apparatus for producing a fiber-reinforced resin molded article suitable for use in the implementation of the production method according to the first aspect of the present invention.
[Explanation of symbols]
1. ・ Fiber-reinforced resin molded product 2. ・ Urethane resin foam 3. ・ Glass long fiber 4 ・ ・ Surface layer 5 ・ ・ Solid filler 12 ・ ・ Glass long fiber bundle 16 ・ ・ Molding passage 17 ・ ・ Solid filling Material spreader

Claims (4)

ガラス長繊維束を所定間隔に引き揃えながら一方向に進行させつつ、ガラス長繊維束に発泡性ウレタン樹脂液を振りかけ、その発泡性ウレタン樹脂液が振りかけられたガラス長繊維束を移送させながら揉んで含浸させ、次いで、発泡性ウレタン樹脂液が含浸されたガラス長繊維束を移送させながら上方から固形充填材を散布し、その固形充填材が散布されたガラス長繊維束を揉むことなく移送させて成形用通路に導いて、前記発泡性ウレタン樹脂液を発泡硬化させることを特徴とする繊維強化樹脂成形品の製造方法。Sprinkle the foamable urethane resin liquid on the glass long fiber bundle while moving the glass long fiber bundle sprinkled over the glass long fiber bundle while moving the glass long fiber bundle sprinkled with the foamable urethane resin liquid. in impregnated, then, while transferring the long glass fiber bundles foamable urethane resin solution is impregnated sprayed solid filler from above, is transferred without massaging a long glass fiber bundle having a solid filler is sprayed A method for producing a fiber-reinforced resin molded article, wherein the foamed urethane resin liquid is foamed and cured by guiding to a molding passage. 散布する固形充填材の比重が1.5〜5.4であることを特徴とする請求項1記載の繊維強化樹脂成形品の製造方法。  2. The method for producing a fiber-reinforced resin molded article according to claim 1, wherein the specific gravity of the solid filler to be dispersed is 1.5 to 5.4. 請求項1記載の繊維強化樹脂成形品の製造方法にて得られる、長手方向がガラス長繊維で強化されたウレタン樹脂発泡成形品であって、その表面から上下方向で15mm以内に位置する内部に、固形充填材が混入されていることを特徴とする繊維強化樹脂成形品。  A urethane resin foam molded product whose longitudinal direction is reinforced with long glass fibers, obtained by the method for producing a fiber reinforced resin molded product according to claim 1, which is located within 15 mm in the vertical direction from the surface. A fiber-reinforced resin molded product characterized in that a solid filler is mixed. 成形品の表面1cm2 当たり0.03〜0.3cm3 の固形充填材が混入されていることを特徴とする請求項3記載の繊維強化樹脂成形品。The fiber-reinforced resin molded article according to claim 3 , wherein 0.03-0.3 cm 3 of a solid filler is mixed per 1 cm 2 of the surface of the molded article.
JP2000057409A 2000-03-02 2000-03-02 Manufacturing method of fiber reinforced resin molded product Expired - Fee Related JP4478279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057409A JP4478279B2 (en) 2000-03-02 2000-03-02 Manufacturing method of fiber reinforced resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000057409A JP4478279B2 (en) 2000-03-02 2000-03-02 Manufacturing method of fiber reinforced resin molded product

Publications (2)

Publication Number Publication Date
JP2001246632A JP2001246632A (en) 2001-09-11
JP4478279B2 true JP4478279B2 (en) 2010-06-09

Family

ID=18578206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057409A Expired - Fee Related JP4478279B2 (en) 2000-03-02 2000-03-02 Manufacturing method of fiber reinforced resin molded product

Country Status (1)

Country Link
JP (1) JP4478279B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338226A (en) * 2003-05-15 2004-12-02 Sekisui Chem Co Ltd Method for molding fiber-reinforced resin crushed material
JP6626601B1 (en) 2018-09-14 2019-12-25 積水化学工業株式会社 Curable resin composition, resin molded article, and method for producing resin molded article

Also Published As

Publication number Publication date
JP2001246632A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
EP3502349B1 (en) High-fiber-content fiber-reinforced rigid polyurethane foam composite railway sleeper and method for manufacturing same
JP4904073B2 (en) Synthetic resin molded body and method for producing the synthetic resin molded body
US20090071593A1 (en) Pultrusion Apparatus and Method
JP2007169326A (en) Resin-molded article for laying rail and method for producing the resin-molded article for laying the rail
JP4478279B2 (en) Manufacturing method of fiber reinforced resin molded product
KR20060043689A (en) Method for manufacturing a fiber reinforced resin molded article, and a fiber reinforced resin molded article and a synthetic resin corssite obtained thereby
US20110052904A1 (en) Pultrusion process and related article
JP2000296572A (en) Composite material and continuous production thereof
CN209274003U (en) Fibre reinforced composites dipping systems and its crankshaft Rotary vibration devices
CN108568979A (en) A kind of fibre reinforced composites composite sleeper and its forming method
CN109501321B (en) Fiber reinforced composite material impregnation system, crankshaft rotary vibration equipment and application thereof
JP3670906B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced resin molded product
JP2001252938A (en) Method for manufacturing fiber reinforced resin molded article
JP2004148796A (en) Production method for recycled forming material, forming material, recycled structural material, synthetic railroad tie and lightweight synthetic wood
JP2000204267A (en) Composite material, production thereof, and synthetic railroad tie
JPH11348159A (en) Production of fiber reinforced thermosetting resin foamed laminate
JP2000309062A (en) Composite material, synthetic tie using the same and production of composite material
JP2000167966A (en) Composite material and crosstie
JP2007262863A (en) Synthetic sleeper and method of manufacturing synthetic sleeper
JPH11277662A (en) Method and device for manufacture of thermosetting foamed resin molded body
JP2000343552A (en) Prism-like fiber-reinforced thermosetting foamed resin molded article and preparation of the molded article and synthetic tie consisting of the molded article
US20120326349A1 (en) Method for producing a particle-based element
JP3670721B2 (en) Method for producing long fiber reinforced foamed molded product
JP2002059438A (en) Long fiber-reinforced resin foamed molded body, method and device for producing long fiber-reinforced resin expanded laminate
JP2000190341A (en) Production of fiber-reinforced resin laminated body, and fiber-reinforced resin laminated body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees