JP4476879B2 - Spatial multiplexing transmission receiving method and apparatus - Google Patents

Spatial multiplexing transmission receiving method and apparatus Download PDF

Info

Publication number
JP4476879B2
JP4476879B2 JP2005184912A JP2005184912A JP4476879B2 JP 4476879 B2 JP4476879 B2 JP 4476879B2 JP 2005184912 A JP2005184912 A JP 2005184912A JP 2005184912 A JP2005184912 A JP 2005184912A JP 4476879 B2 JP4476879 B2 JP 4476879B2
Authority
JP
Japan
Prior art keywords
signal
phase rotation
phase
correction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005184912A
Other languages
Japanese (ja)
Other versions
JP2007006213A (en
Inventor
理一 工藤
健太郎 西森
泰司 鷹取
光一 常川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005184912A priority Critical patent/JP4476879B2/en
Publication of JP2007006213A publication Critical patent/JP2007006213A/en
Application granted granted Critical
Publication of JP4476879B2 publication Critical patent/JP4476879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Description

本発明は、複数のアンテナ素子を用い、同一時間に複数の異なる信号を受信する空間多重伝送用受信方法とその装置に関する。   The present invention relates to a spatial multiplexing transmission receiving method and apparatus for receiving a plurality of different signals at the same time using a plurality of antenna elements.

従来の直交波周波数分割多重方式を用いた受信装置は、1つのアンテナ素子で信号を受信することで、周波数領域に多重された送信信号を復号する受信装置である。
図5に従来の直交波周波数分割多重方式を用いた受信装置の構成を示す。符号900はアンテナ素子、910はAGC(Automatic Gain Control)、920はA/D(アナログ/デジタル)変換装置、930は信号取得点決定装置、940はFFT(フーリエ変換)装置、950は伝達係数推定装置、960は伝達係数等化装置、970は既知信号位相検出装置、980は位相回転量補正装置、990はサブキャリア復号装置である。
A conventional receiver using the orthogonal wave frequency division multiplexing system is a receiver that decodes a transmission signal multiplexed in the frequency domain by receiving a signal with one antenna element.
FIG. 5 shows the configuration of a receiving apparatus using a conventional orthogonal frequency division multiplexing system. Reference numeral 900 denotes an antenna element, 910 denotes an AGC (Automatic Gain Control), 920 denotes an A / D (analog / digital) converter, 930 denotes a signal acquisition point determination device, 940 denotes an FFT (Fourier transform) device, and 950 denotes a transfer coefficient estimation. 960 is a transfer coefficient equalizing device, 970 is a known signal phase detecting device, 980 is a phase rotation amount correcting device, and 990 is a subcarrier decoding device.

アンテナ素子900で受信された信号はAGC910によりA/D変換装置920においてダイナミック・レンジに入るようにゲイン設定が行われ、A/D変換装置920によりデジタル信号に変換され、信号取得点決定装置930に出力される。信号取得点決定装置930では、サンプリング同期用の既知信号から、直交波周波数分割多重(OFDM)シンボルの開始点を求め、ガードインターバルを除去してFFT装置940に出力する。FFT装置940では、フーリエ変換により時系列の信号を周波数成分の信号に変換し、伝達係数推定装置950に出力する。伝達係数推定装置950は、入力された信号のうち、伝達係数推定用既知信号から伝達係数の推定を行い、各周波数帯の伝達係数と受信信号を伝達係数等化装置960に出力する。伝達係数等化装置960は、受信信号に対応する周波数帯の伝達係数を用い、伝送路歪みの補正を行い、補正された受信信号は位相回転量補正装置980に出力され、特定の周波数帯に含まれる既知信号は、既知信号位相検出装置970に出力される。既知信号位相検出装置970は、受信装置において既知である信号を用いて、時間とともに回転する位相の追従を行うため、位相の回転量を算出し、上記位相回転量補正装置980に出力する。位相回転量補正装置980では、伝達係数等化装置960から入力された受信信号に対し、既知信号位相検出装置970より入力された位相回転量を用いて補正を行い、サブキャリア復号装置990に出力を行う。サブキャリア復号装置990では、各周波数帯で得られた信号の復号を行い送信装置において送信された信号を得ることができる。   The gain received by the AGC 910 is set by the AGC 910 so that the signal received by the antenna element 900 falls within the dynamic range, is converted to a digital signal by the A / D converter 920, and the signal acquisition point determination device 930 Is output. The signal acquisition point determination device 930 obtains the start point of the orthogonal frequency division multiplexing (OFDM) symbol from the known signal for sampling synchronization, removes the guard interval, and outputs it to the FFT device 940. The FFT device 940 converts a time-series signal into a frequency component signal by Fourier transform and outputs the signal to the transfer coefficient estimation device 950. The transfer coefficient estimation device 950 estimates the transfer coefficient from the input signal for the transfer coefficient estimation known signal, and outputs the transfer coefficient of each frequency band and the received signal to the transfer coefficient equalization device 960. The transfer coefficient equalizer 960 corrects the transmission path distortion using the transfer coefficient of the frequency band corresponding to the received signal, and the corrected received signal is output to the phase rotation amount correcting device 980, and is transmitted to a specific frequency band. The included known signal is output to the known signal phase detector 970. The known signal phase detection device 970 calculates a phase rotation amount and outputs it to the phase rotation amount correction device 980 in order to follow a phase that rotates with time using a signal that is known in the reception device. The phase rotation amount correction device 980 corrects the received signal input from the transfer coefficient equalization device 960 using the phase rotation amount input from the known signal phase detection device 970 and outputs the correction signal to the subcarrier decoding device 990. I do. Subcarrier decoding apparatus 990 can decode a signal obtained in each frequency band and obtain a signal transmitted in the transmission apparatus.

以下、上記の構成における信号処理の内容を詳細に説明する。ここでは、F個の周波数分割多重による通信を行うことを考え、送信装置と受信装置との間のi番目(1≦i≦F)の周波数帯の伝搬環境を表す伝達係数をHとする。伝達係数推定装置950では、受信信号に含まれる伝達係数推定用既知信号から伝達係数を推定する。推定された伝達係数をH’〜 H’と表すと、H’はその伝達係数取得タイミングtにおける位相回転量θ(t)だけ位相が回っており、H’はHを用いて Hereinafter, the contents of signal processing in the above configuration will be described in detail. Here, consider that performs communication by F-number of frequency division multiplexing, the i-th transmission coefficient representing the propagation environment of the band (1 ≦ i ≦ F) between the transmitter and the receiver and H i . The transfer coefficient estimation device 950 estimates the transfer coefficient from the transfer coefficient estimation known signal included in the received signal. When the estimated transfer coefficient is expressed as H 1 ′ to H F ′, the phase of H i ′ is rotated by the phase rotation amount θ (t 0 ) at the transfer coefficient acquisition timing t 0 , and H i ′ is H i ′. Using

Figure 0004476879
と表すことができる。
一方、受信装置において受信され、フーリエ変換(FFT)されたi番目のサブキャリアの受信タイミングtにおける受信信号Xは、送信信号Sおよび伝達係数Hを用いて、
Figure 0004476879
It can be expressed as.
On the other hand, the reception signal X i at the reception timing t of the i-th subcarrier received by the reception device and subjected to Fourier transform (FFT) is transmitted using the transmission signal S i and the transfer coefficient H i .

Figure 0004476879
と表すことができる。すると、伝達係数等化装置960では、伝達係数推定装置950で推定されたH’((1)式)および受信信号X((2)式)より推定送信信号S’を以下のように得ることができる。
Figure 0004476879
It can be expressed as. Then, the transmission coefficient equalizer 960 obtains the estimated transmission signal S i ′ from H i ′ (Equation (1)) and the received signal X i (Equation (2)) estimated by the transmission coefficient estimator 950 as follows. Can get to.

Figure 0004476879
この推定送信信号S’は(t−t)だけ位相が回転してしまい、伝送品質が著しく劣化している。これに対し、既知信号位相検出装置970は受信信号Xのうち、特定の周波数帯(j0)に既知信号Sj0が含まれることを利用し、推定送信信号Sj0’を既知信号Sj0で除算することで、位相変化量θ(t−t)を
Figure 0004476879
The estimated transmission signal S i ′ rotates in phase by (t−t 0 ), and the transmission quality is significantly degraded. In contrast, the known signal phase detector 970 in the received signal X i, using the fact that contains known signals S j0 to a particular frequency band (j0), the estimated transmission signal S j0 'in the known signal S j0 By dividing the phase change amount θ (t−t 0 ),

Figure 0004476879
として推定することができる。そこで、位相回転量補正装置980において、受信タイミングtの推定受信信号S〜Sに対し、exp(−jθ(t−t))を乗算することで、位相回転を補償し、送信信号S〜Sを得ることができる。
なお、従来技術として非特許文献1が知られている。
守倉正博、久保田周治、「改訂版802.11高速無線LAN教科書」、2004年、p.165−167,215−219
Figure 0004476879
Can be estimated as Therefore, the phase rotation amount correcting apparatus 980, to estimate the received signal S 1 to S F of the received timing t, by multiplying the exp (-jθ (t-t 0 )), to compensate for the phase rotation, the transmission signal it can be obtained S 1 to S F.
Note that Non-Patent Document 1 is known as a prior art.
Masahiro Morikura, Shuji Kubota, “Revised 802.11 High-Speed Wireless LAN Textbook”, 2004, p. 165-167, 215-219

上記の技術は直交波周波数分割多重における通信を可能とするが、同一時間に受信される信号系列に位相雑音のような同期誤差が含まれたり、異なる送信装置からの信号を受信する際には、信号間干渉が問題となり、また伝達係数の推定タイミングのずれや送信装置間の同期が十分でないために位相のずれが生じる。
本発明は、このような事情に鑑みてなされたもので、空間分割多重方式を用い、信号間干渉が存在し、伝達係数の推定タイミングのずれによる位相ずれが生じる場合においても位相回転を補償することを可能とする、空間多重伝送用受信方法および空間多重伝送用受信装置を提供することを目的とする。
Although the above technique enables communication in orthogonal frequency division multiplexing, a signal sequence received at the same time includes a synchronization error such as phase noise, or when receiving a signal from a different transmitter. Interference between signals becomes a problem, and a shift in estimation timing of transfer coefficients and a phase shift due to insufficient synchronization between transmitters.
The present invention has been made in view of such circumstances, and uses space division multiplexing to compensate for phase rotation even when there is inter-signal interference and a phase shift occurs due to a shift in the estimation timing of the transfer coefficient. It is an object of the present invention to provide a spatial multiplexing transmission receiving method and a spatial multiplexing transmission receiving apparatus that enable this.

本発明は上記の課題を解決するためになされたもので、請求項1に記載の発明は、受信装置に複数のアンテナ素子を備え、直交波周波数分割多重方式を用い、同一時間、同一周波数で複数の送信装置から送信される信号系列を受信し復号を行う際の信号点の位相回転を補償する方法であって、送信装置から複数の送信タイミングにおいて送信された既知信号を受信し、送信装置と受信装置との間の位相のずれを含む伝達係数行列を推定する一次推定伝達係数行列を算出し、前記一次推定伝達係数行列を用いて受信信号の復号を行い、前記復号された信号に含まれる同一時間もしくは複数の時間で受信された直交波周波数多重方式の特定の周波数帯に用いられる既知信号から全信号系列の瞬時位相補正量を算出し、前記瞬時位相補正量を用いて全信号系列の位相回転の時間変動の補正を行う過程を有することを特徴とする空間多重伝送用受信方法である。   The present invention has been made to solve the above problems, and the invention according to claim 1 is provided with a plurality of antenna elements in a receiving apparatus, using an orthogonal wave frequency division multiplexing system, at the same time and at the same frequency. A method for compensating for phase rotation of signal points at the time of receiving and decoding signal sequences transmitted from a plurality of transmitters, receiving known signals transmitted from a transmitter at a plurality of transmission timings, and transmitting devices Calculating a first-order estimated transfer coefficient matrix that estimates a transfer coefficient matrix including a phase shift between the receiver and the reception device, decoding the received signal using the first-order estimated transfer coefficient matrix, and including in the decoded signal Calculating the instantaneous phase correction amount of all signal sequences from known signals used in a specific frequency band of the orthogonal frequency division multiplexing received at the same time or a plurality of times, and using the instantaneous phase correction amount It is a spatial multiplexing transmission reception method characterized by comprising the step of correcting the time variation of the phase rotation of the signal sequence.

請求項2に記載の発明は、請求項1に記載の空間多重伝送用受信方法において、同時に受信された信号系列の同期が完全にとれていない場合に、複数の受信タイミングの受信信号に含まれる既知信号から各信号系列の位相回転量を算出し、前記各信号系列の位相回転量の前記瞬時位相補正量からの差を位相回転補正量として算出し、前記位相回転補正量を用いて各信号系列の位相回転補正を行う過程を有することを特徴とする。   The invention according to claim 2 is included in the reception signals of a plurality of reception timings in the spatial multiplexing transmission reception method according to claim 1 when the simultaneously received signal sequences are not completely synchronized. A phase rotation amount of each signal series is calculated from a known signal, a difference from the instantaneous phase correction amount of the phase rotation amount of each signal series is calculated as a phase rotation correction amount, and each signal is calculated using the phase rotation correction amount. It has the process of performing the phase rotation correction of the series.

請求項3に記載の発明は、直交波周波数分割多重方式を用い同一時間に送信されたN個の信号系列の送信信号を、M個のアンテナ素子から同一時間に得られるM個の受信信号によって復号を行う空間多重伝送用受信装置において、前記各アンテナ素子に接続され、アナログ/デジタル変換を行うA/D変換装置と、前記A/D変換装置に接続され、得られたデータのサンプリング同期のための既知信号から直交波周波数分割多重方式のOFDM信号の取得点を決定する信号取得点決定装置と、前記OFDM信号にフーリエ変換を行い、各周波数帯の信号を算出するFFT装置と、前記FFT装置に接続され、前記OFDM信号に含まれる伝達係数行列推定のためのOFDM既知信号から一次推定伝達係数行列を算出する伝達係数行列一次推定装置と、前記伝達係数行列一次推定装置に接続され、前記一次推定伝達係数行列を用いて、同一時間に受信されたM個のOFDM信号について復号を行い、各信号系列に含まれる既知信号の復号結果を出力するとともに、所望データ信号の復号結果を出力する空間分割多重復号装置と、各信号系列に対応して設けられ、前記空間分割多重復号装置から入力された各信号系列の既知信号の復号結果から、各信号系列の所定の時間における位相回転量を算出し、その結果を出力する既知信号位相検出装置と、前記既知信号位相検出装置に接続され、入力された各信号系列の所定の時間における位相回転量から、全信号系列の位相回転量を算出して出力するとともに、入力された各信号系列の複数のシンボルタイミングにおける位相回転量を平均することにより各信号系列の位相回転量を算出し、前記算出した各信号系列の位相回転量の前記全信号系列の位相回転量からの差を出力する位相回転補正量算出装置と、前記空間分割多重復号装置から入力された所望データ信号の復号結果に対し、前記位相回転補正量算出装置から入力された、前記所望データ信号の復号結果に対応する時間での全信号系列の位相回転量を元に信号点の補正を行い、一次補正復号結果を出力する共通位相回転量補正装置と、前記共通位相回転量補正装置から入力された一次補正復号結果に対し、前記位相回転補正量算出装置から入力された、前記各信号系列の位相回転量の前記全信号系列の位相回転量からの差を元に信号点の補正を行い、二次補正復号結果を出力する信号系列間位相差補正装置と、前記信号系列間位相差補正装置に接続され、入力された二次補正復号結果の信号点から、所望ビットデータを算出するサブキャリア復号装置と、を備えたことを特徴とする空間多重伝送用受信装置である。   According to the third aspect of the present invention, transmission signals of N signal sequences transmitted at the same time using an orthogonal wave frequency division multiplexing system are transmitted by M received signals obtained from M antenna elements at the same time. In a receiving apparatus for spatial multiplexing transmission that performs decoding, an A / D conversion apparatus that performs analog / digital conversion connected to each antenna element, and a sampling synchronization of the obtained data that is connected to the A / D conversion apparatus A signal acquisition point determination device that determines an acquisition point of an orthogonal frequency division multiplexing OFDM signal from a known signal, an FFT device that performs Fourier transform on the OFDM signal and calculates a signal in each frequency band, and the FFT A transmission coefficient matrix primary estimation unit that is connected to a device and calculates a primary estimation transmission coefficient matrix from an OFDM known signal for estimating a transmission coefficient matrix included in the OFDM signal Connected to the transmission coefficient matrix primary estimation device, and using the primary estimation transmission coefficient matrix, decodes M OFDM signals received at the same time, and decodes known signals included in each signal sequence A spatial division multiplex decoding apparatus that outputs a result and a decoding result of a desired data signal; and a decoding of a known signal of each signal series provided corresponding to each signal sequence and input from the spatial division multiplex decoding apparatus From the result, a phase rotation amount at a predetermined time of each signal sequence is calculated, and a known signal phase detection device that outputs the result, and a predetermined time of each input signal sequence connected to the known signal phase detection device The phase rotation amount of all signal sequences is calculated and output from the phase rotation amount at, and the phase rotation amounts at multiple symbol timings of each input signal sequence are averaged. A phase rotation correction amount calculating device for calculating a phase rotation amount of each signal sequence and outputting a difference between the calculated phase rotation amount of each signal sequence from the phase rotation amount of all the signal sequences; and the space division multiplexing The decoding result of the desired data signal input from the decoding device is based on the phase rotation amount of the entire signal sequence at the time corresponding to the decoding result of the desired data signal input from the phase rotation correction amount calculation device. A common phase rotation amount correction device that performs signal point correction and outputs a primary correction decoding result, and a primary correction decoding result input from the common phase rotation amount correction device is input from the phase rotation correction amount calculation device. Further, signal phase correction is performed based on the difference of the phase rotation amount of each signal sequence from the phase rotation amount of all the signal sequences, and a secondary correction decoding result is output; and Signal series And a subcarrier decoding device for calculating desired bit data from a signal point of an input secondary correction decoding result, connected to the interphase difference correction device, and a spatial multiplexing transmission receiving device .

請求項4に記載の発明は、請求項3に記載の空間多重伝送用受信装置において、前記既知信号位相検出装置は、入力された複数のシンボルタイミングの位相回転量から決定された全信号系列の位相回転量から、位相の時間変化量の推定値を算出し、時間的に位相回転量の変化が生じないように所定のシンボルタイミングにおける全信号系列の位相回転量を決定し、前記共通位相回転量補正装置に出力することを特徴とする。   According to a fourth aspect of the present invention, in the spatial multiplexing transmission receiver according to the third aspect, the known signal phase detection device is configured to output all signal sequences determined from the phase rotation amounts of a plurality of input symbol timings. From the phase rotation amount, an estimated value of the phase change amount of time is calculated, and the phase rotation amount of all signal sequences at a predetermined symbol timing is determined so as not to cause a change in phase rotation amount over time, and the common phase rotation is performed. It outputs to a quantity correction apparatus, It is characterized by the above-mentioned.

請求項5に記載の発明は、請求項3に記載の空間多重伝送用受信装置において、前記既知信号位相検出装置は、入力された複数のシンボルタイミングの位相回転量から決定された全信号系列の位相回転量から、与えられた関数にフィッティングを行い、位相の時間変化量を算出し、位相回転が生じないように所定のシンボルタイミングにおける全信号系列の位相回転量を決定し、前記共通位相回転量補正装置に出力することを特徴とする。   According to a fifth aspect of the present invention, in the spatial multiplexing transmission receiver according to the third aspect, the known signal phase detection device is configured to receive all signal sequences determined from the phase rotation amounts of a plurality of input symbol timings. Fitting a given function from the amount of phase rotation, calculating the amount of phase change over time, determining the amount of phase rotation of all signal sequences at a predetermined symbol timing so as not to cause phase rotation, and the common phase rotation It outputs to a quantity correction apparatus, It is characterized by the above-mentioned.

請求項6に記載の発明は、請求項3または4に記載の空間多重伝送用受信装置において、前記空間分割多重復号装置は、前記一次推定伝達係数行列を用いて、同一時間に受信されたM個のOFDM信号について復号を行い、各信号系列に含まれる既知信号の復号結果および前記一次推定伝達係数行列に対して推定値として与えられる既知信号の確からしさを前記既知信号位相検出装置に出力するとともに、所望データ信号の復号結果を前記共通位相回転量補正装置に出力し、前記既知信号位相検出装置は、入力された既知信号の復号結果とその確からしさから既知信号の復号結果について重み付けもしくは選択を行い、各信号系列の位相回転量を決定し、前記位相回転補正量算出装置にその結果と確からしさを出力し、前記位相回転補正量算出装置は、前記既知信号位相検出装置から入力された各信号系列の位相回転量とその確からしさをもとに、重み付けもしくは選択を行い、全信号系列の位相回転量を算出し、前記共通位相回転量補正装置に出力し、入力された各信号系列の複数のシンボルタイミングにおける位相回転量について、入力された確からしさをもとに重み付けもしくは選択を行い、前記全信号系列の位相回転量からの差を算出し、前記信号系列間位相差補正装置に出力することを特徴とする。   According to a sixth aspect of the present invention, in the spatial multiplexing transmission receiving apparatus according to the third or fourth aspect, the spatial division multiplexing decoding apparatus uses the primary estimated transmission coefficient matrix to receive M received at the same time. Decode the OFDM signals, and output the decoding result of the known signal included in each signal sequence and the probability of the known signal given as an estimated value to the primary estimated transfer coefficient matrix to the known signal phase detection device In addition, the decoding result of the desired data signal is output to the common phase rotation amount correction device, and the known signal phase detection device weights or selects the decoding result of the known signal based on the decoding result of the input known signal and its probability. The phase rotation amount of each signal series is determined, the result and the probability are output to the phase rotation correction amount calculation device, and the phase rotation correction amount calculation is performed. The apparatus performs weighting or selection based on the phase rotation amount of each signal sequence input from the known signal phase detection device and its certainty, calculates the phase rotation amount of all signal sequences, and calculates the common phase rotation. The amount of phase rotation at each of a plurality of symbol timings of each signal sequence output to the amount correction device is weighted or selected based on the input probability, and the difference from the phase rotation amount of all the signal sequences Is calculated and output to the inter-signal sequence phase difference correction apparatus.

請求項7に記載の発明は、請求項3から5のいずれかの項に記載の空間多重伝送用受信装置において、伝搬環境に最適となる送信ウェイトを求める場合を含む実際の伝搬環境を表す伝達係数行列を用いる場合に、前記一次推定伝達係数行列に対し、前記位相回転補正量算出装置で得られた各信号系列の位相回転量と全信号系列の位相回転量の差を用いて補正を行うことで得られる伝達係数行列を用いることを特徴とする。   A seventh aspect of the present invention is the spatial multiplexing transmission receiver according to any one of the third to fifth aspects, wherein the transmission represents an actual propagation environment including a case where a transmission weight that is optimum for the propagation environment is obtained. When a coefficient matrix is used, the primary estimated transfer coefficient matrix is corrected using the difference between the phase rotation amount of each signal sequence and the phase rotation amount of all signal sequences obtained by the phase rotation correction amount calculation device. The transfer coefficient matrix obtained by this is used.

請求項8に記載の発明は、請求項3から5のいずれかの項に記載の空間多重伝送用受信装置において、伝搬環境に最適となる送信ウェイトを求める場合を含む実際の伝搬環境を表す伝達係数行列を用いる場合に、前記一次推定伝達係数行列に対し、前記位相回転補正量算出装置で得られた全信号系列の位相回転量から得られる時間的位相変化量と前記一次推定伝達係数行列の算出を行ったシンボルタイミングから得られる位相変化量を用いて補正を行うことで得られる伝達係数行列を用いることを特徴とする。   The invention according to claim 8 is the spatial multiplex transmission receiver according to any one of claims 3 to 5, wherein the transmission represents an actual propagation environment including a case where a transmission weight optimum for the propagation environment is obtained. When a coefficient matrix is used, a temporal phase change amount obtained from the phase rotation amount of all signal sequences obtained by the phase rotation correction amount calculation device and the primary estimated transfer coefficient matrix with respect to the primary estimated transfer coefficient matrix. A transfer coefficient matrix obtained by performing correction using the phase change amount obtained from the calculated symbol timing is used.

本発明によれば、受信装置において、同一時間に複数の送信装置から送信される信号系列の信号に対し、位相回転の追従を正確に行い、伝送品質の劣化を防ぐことができる。   According to the present invention, in a receiving apparatus, it is possible to accurately follow phase rotation with respect to signals of a signal sequence transmitted from a plurality of transmitting apparatuses at the same time, thereby preventing deterioration in transmission quality.

以下、図1を参照しながら本発明の実施形態について説明する。図1は本発明の実施形態による空間多重伝送用受信装置の構成を示すブロック図である。これは同一時間に複数の送信装置から送信される信号系列を受信し、受信タイミングの異なる複数の既知信号から初期位相ずれを含む伝達係数行列を推定し、信号間干渉を含む複数の受信信号から、位相回転の追従を行い、伝送品質の補償を行う構成を示している。符号100−1、100−2〜100−M はアンテナ素子、110−1、110−2〜110−MはAGC、120−1、120−2〜120−M はA/D変換装置、130は信号取得点決定装置、140はFFT装置、150は伝達係数行列一次推定装置、160は空間分割多重復号装置、170−1〜170−Nは既知信号位相検出装置、171は位相回転補正量算出装置、180は共通位相回転量補正装置、181−1〜181−Nは信号系列間位相差補正装置、190はサブキャリア復号装置である。すなわち、アンテナ素子、AGC、A/D変換装置はそれぞれM個づつ設けられ、既知信号位相検出装置、信号系列間位相差補正装置は送信される信号系列の数に対応してそれぞれN個づつ設けられている。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration of a spatial multiplexing transmission receiver according to an embodiment of the present invention. This receives signal sequences transmitted from a plurality of transmitters at the same time, estimates a transfer coefficient matrix including an initial phase shift from a plurality of known signals having different reception timings, and uses a plurality of received signals including inter-signal interference. 2 shows a configuration in which phase rotation is followed and transmission quality is compensated. Reference numerals 100-1 and 100-2 to 100-M denote antenna elements, 110-1 and 110-2 to 110-M denote AGCs, 120-1 and 120-2 to 120-M denote A / D converters, and 130 denotes Signal acquisition point determination device, 140 is an FFT device, 150 is a transfer coefficient matrix primary estimation device, 160 is a spatial division multiplexing decoding device, 170-1 to 170-N are known signal phase detection devices, and 171 is a phase rotation correction amount calculation device. , 180 is a common phase rotation amount correction device, 181-1 to 181-N are signal sequence phase difference correction devices, and 190 is a subcarrier decoding device. That is, M antenna elements, AGCs, and A / D converters are provided, and N known signal phase detectors and inter-sequence difference correction units are provided corresponding to the number of signal sequences to be transmitted. It has been.

アンテナ素子100−1で受信された信号はAGC110−1によりA/D変換装置120−1においてダイナミック・レンジに入るようにゲイン設定が行われ、A/D変換装置120−1によりデジタル信号に変換され、信号取得点決定装置130の対応するポートに出力される。アンテナ素子100−2〜100−M で受信された信号についても同様に、それぞれAG110−2〜110−Mにおいてゲイン設定が行われ、それぞれA/D変換装置120−2〜120−Mによりデジタル信号に変換され、信号取得点決定装置130の対応するポートに出力される。   The gain received by the AGC 110-1 is set in the A / D converter 120-1 so that the signal received by the antenna element 100-1 enters the dynamic range, and is converted into a digital signal by the A / D converter 120-1. And output to the corresponding port of the signal acquisition point determination device 130. Similarly, for the signals received by the antenna elements 100-2 to 100-M, gain settings are performed in the AGs 110-2 to 110-M, respectively, and digital signals are respectively obtained by the A / D conversion devices 120-2 to 120-M. And output to the corresponding port of the signal acquisition point determination device 130.

信号取得点決定装置130は、M個の入力用ポートとM個の出力用ポートを有し、サンプリング同期用の既知信号から、OFDMシンボルの開始点を求め、ガードインターバルを除去してFFT装置140の対応するポートに出力する。FFT装置140は、フーリエ変換により各アンテナ素子で受信された時系列の信号を周波数成分の信号に変換し、伝達係数行列一次推定装置150に出力する。伝達係数行列一次推定装置150は、入力された信号のうち、複数の受信タイミングで得られる伝達係数行列推定用既知信号から、初期位相回転を含む一次推定伝達係数行列を求め、この一次推定伝達係数行列および所望データを含む受信信号を空間分割多重復号装置160に出力する。空間分割多重復号装置160は、入力された一次推定伝達係数行列を用い、例えばZF(Zero Forcing)やMMSE(Minimum Mean Square Error)、SUC(SUccessive Cancellation)などの復号方法により、同一受信タイミングの受信信号から、位相回転復号信号を算出し、特定の周波数帯に含まれる既知信号の位相回転復号信号を既知信号位相検出装置170−1〜170−Nに出力し、それ以外を共通位相回転量補正装置180に出力する。   The signal acquisition point determination device 130 has M input ports and M output ports, obtains an OFDM symbol start point from a known signal for sampling synchronization, removes the guard interval, and removes the FFT device 140. Output to the corresponding port. The FFT device 140 converts a time-series signal received by each antenna element by Fourier transform into a frequency component signal, and outputs it to the transfer coefficient matrix primary estimation device 150. The transfer coefficient matrix primary estimation device 150 obtains a primary estimated transfer coefficient matrix including an initial phase rotation from known signals for transfer coefficient matrix estimation obtained at a plurality of reception timings among input signals, and this primary estimated transfer coefficient A received signal including a matrix and desired data is output to space division multiplex decoding apparatus 160. The spatial division multiplexing decoding apparatus 160 uses the input primary estimated transfer coefficient matrix and receives the same reception timing by a decoding method such as ZF (Zero Forcing), MMSE (Minimum Mean Square Error), or SUC (Successive Cancellation). The phase rotation decoded signal is calculated from the signal, the phase rotation decoded signal of the known signal included in the specific frequency band is output to the known signal phase detection devices 170-1 to 170-N, and the rest is corrected for the common phase rotation amount Output to device 180.

既知信号位相検出装置170−1〜170−Nでは、受信装置で保持している既知信号と既知信号の位相回転復号結果から、各信号系列における位相回転量を算出し、位相回転補正量算出装置171に出力する。位相回転補正量算出装置171は、信号系列全体での瞬時位相補正量と、各信号系列での瞬時位相補正量からのずれの算出を行い、それぞれ共通位相回転量補正装置180と信号系列間位相差補正装置181−1〜181−Nに出力する。   The known signal phase detection devices 170-1 to 170-N calculate the phase rotation amount in each signal series from the known signal held by the receiving device and the phase rotation decoding result of the known signal, and the phase rotation correction amount calculation device It outputs to 171. The phase rotation correction amount calculation device 171 calculates the instantaneous phase correction amount for the entire signal sequence and the deviation from the instantaneous phase correction amount for each signal sequence. Output to the phase difference correction devices 181-1 to 181-N.

共通位相回転量補正装置180では、位相回転補正量算出装置171より入力された信号系列全体での瞬時位相補正量を用い、空間分割多重復号装置160より入力された復号信号の位相回転の時間変動の補正を行い、一次補正復号信号として信号系列間位相差補正装置181−1〜181−Nに出力する。信号系列間位相差補正装置181−1〜181−Nでは、位相回転補正量算出装置171から入力された各信号系列での瞬時位相補正量からのずれを位相回転補正量として用いて、各信号系列の一次補正復号信号に対し、位相回転の補正を行い、二次補正復号信号をサブキャリア復号装置190に出力する。サブキャリア復号装置190では、各周波数帯、各信号系列で得られた二次補正復号信号から、送信装置において送信された信号を得ることができる。   The common phase rotation amount correction apparatus 180 uses the instantaneous phase correction amount in the entire signal sequence input from the phase rotation correction amount calculation apparatus 171 and uses the temporal variation of the phase rotation of the decoded signal input from the spatial division multiplexing decoding apparatus 160. And is output to the signal sequence phase difference correction devices 181-1 to 181-N as primary correction decoded signals. In the inter-signal-sequence phase difference correction devices 181-1 to 181-N, each signal sequence input from the phase rotation correction amount calculation device 171 is used as a phase rotation correction amount by using a deviation from the instantaneous phase correction amount in each signal sequence. Phase rotation correction is performed on the primary correction decoding signal of the series, and the secondary correction decoding signal is output to subcarrier decoding apparatus 190. In subcarrier decoding apparatus 190, the signal transmitted in the transmission apparatus can be obtained from the secondary correction decoded signal obtained in each frequency band and each signal series.

以下、上記の構成における信号処理の内容を詳細に説明する。同一時間に送信されたN個の信号系列の送信信号にF個の周波数分割多重を用いた通信を行うことを考え、送信装置と受信装置との間のi番目(1≦i≦F)の周波数帯における各送信信号系列の伝搬環境を表す伝達係数行列を、以下、Hとし、次のように表す。 Hereinafter, the contents of signal processing in the above configuration will be described in detail. Considering communication using F frequency division multiplexes for transmission signals of N signal sequences transmitted at the same time, the i-th (1 ≦ i ≦ F) between the transmission device and the reception device. Hereinafter, the transmission coefficient matrix representing the propagation environment of each transmission signal sequence in the frequency band is denoted as H i and is expressed as follows.

Figure 0004476879
このとき、Hi,jkはi番目の周波数帯におけるk番目の信号系列のj番目の受信アンテナ素子における伝達係数を表す。
Figure 0004476879
At this time, H i, jk represents a transfer coefficient in the j-th receiving antenna element of the k-th signal sequence in the i-th frequency band.

この伝達係数行列を推定するためには、全ての送信装置において伝達係数行列推定のための既知信号Sを送信する必要がある。Sは(送信信号系列数)×(送信信号系列数)の行列、もしくはこれより多くの配列を持つ行列で表される。以下、簡単のためSをN×Nの対角行列と仮定する。これは各送信装置において既知信号をお互いに独立のタイミングで送信することに対応する。 In order to estimate this transfer coefficient matrix, it is necessary to transmit the known signal S 0 for estimating the transfer coefficient matrix in all the transmission apparatuses. S 0 is represented by a matrix of (number of transmission signal sequences) × (number of transmission signal sequences) or a matrix having more arrays. Hereinafter, for the sake of simplicity, S 0 is assumed to be an N × N diagonal matrix. This corresponds to transmitting known signals at timings independent of each other in each transmitting apparatus.

各アンテナ素子で受信された受信信号はAGC110−1、110−2〜110−M、A/D変換装置120−1、120−2〜120−Mを経て、最適な信号取得点から選択された時系列の信号をフーリエ変換することでi番目の周波数帯における受信タイミングtの受信信号x(t)が得られる(M×1ベクトル)。伝達係数行列一次推定装置150では、受信信号に含まれる伝達係数推定用既知信号の受信信号x(T)〜x(T)から一次推定伝達係数行列H’を求める。ここで、伝搬環境推定用受信信号をX’=(x(T),x(T),・・・,x(T))とすると、伝達係数行列Hと既知信号Sを用いて以下のように表すことができる。 The received signal received by each antenna element is selected from the optimum signal acquisition point via AGC 110-1, 110-2 to 110-M, A / D converter 120-1, 120-2 to 120-M. A received signal x i (t) at a reception timing t in the i-th frequency band is obtained by performing Fourier transform on the time-series signal (M × 1 vector). The transfer coefficient matrix primary estimation device 150 obtains a primary estimated transfer coefficient matrix H i ′ from received signals x i (T 1 ) to x i (T N ) of known signals for transfer coefficient estimation included in the received signal. Here, if the reception signal for propagation environment estimation is X i ′ = (x i (T 1 ), x i (T 2 ),..., X i (T N )), the transfer coefficient matrix H i is known. It can be expressed as follows using the signal S 0 .

Figure 0004476879
上記のNはM×Nの行列であり、熱雑音から構成される。Φはチャネル行列(伝達係数行列)の推定が複数の受信タイミングにおける信号から行われるために生じる初期位相回転により表せるN×Nの対角行列であり、
Figure 0004476879
The above N i is an M × N matrix and is composed of thermal noise. Φ is an N × N diagonal matrix that can be expressed by the initial phase rotation that occurs because the estimation of the channel matrix (transfer coefficient matrix) is performed from signals at a plurality of reception timings,

Figure 0004476879
と表すことができる。N’は上記の熱雑音から構成される行列NにΦが乗算されたものであるが、Φは位相を回転させる演算子なので、本質的にNと変わらない。
ここで受信信号X’から既知信号を用いて伝達係数行列の推定を行うと、(6)式を用いて一次推定伝達係数行列は
Figure 0004476879
It can be expressed as. N i 'are those [Phi is multiplied by a matrix N i consists above thermal noise but, [Phi is because operator for rotating the phase unchanged essentially N i.
Here, when the transfer coefficient matrix is estimated using the known signal from the received signal X i ′, the first-order estimated transfer coefficient matrix is calculated using Equation (6).

Figure 0004476879
と求めることができる。よって得られたチャネル行列はΦが乗算されていることにより、列成分に位相回転が生じている。
Figure 0004476879
It can be asked. Thus, the obtained channel matrix is multiplied by Φ so that phase rotation occurs in the column component.

この位相回転項は、例えばOFDM取得点決定のための既知信号の繰り返し部分や、OFDM信号のガードインターバルとして実際の送信信号を繰り返していることなどを利用し、位相回転量の粗推定を行い、軽減することができるが、完全に除去することはできない。以下、熱雑音N’’は簡単のため、無視できるほど小さいものとし、一次推定伝達係数行列H’を用い、復号方法としてZFを用いた場合について所望データ信号の復号方法を示す。 This phase rotation term uses, for example, the repetition portion of a known signal for determining the OFDM acquisition point, the fact that the actual transmission signal is repeated as a guard interval of the OFDM signal, etc., and rough estimation of the phase rotation amount, It can be reduced, but it cannot be completely removed. In the following, the thermal noise N i ″ is assumed to be negligibly small for simplicity, and the decoding method of the desired data signal is shown for the case where the primary estimated transfer coefficient matrix H i ′ is used and ZF is used as the decoding method.

i番目の周波数帯のある受信タイミングtの受信信号x(t)に対応する、送信装置によって送信された信号(N×1ベクトル)をs(t)とする。受信装置ではこのs(t)を正確に復元することで伝送品質の高い通信を実現できる。受信信号x(t)は、送信信号s(t)、伝達係数行列Hを用いて A signal (N × 1 vector) transmitted by the transmission apparatus corresponding to the reception signal x i (t) at the reception timing t in the i-th frequency band is defined as s i (t). In the receiving apparatus, communication with high transmission quality can be realized by accurately restoring s i (t). The received signal x i (t) is obtained by using the transmission signal s i (t) and the transfer coefficient matrix H i.

Figure 0004476879
と表すことができる。ここで、n(t)はM×1の熱雑音ベクトルである。一次推定伝達係数行列H’の逆行列もしくは擬似逆行列(N≠Mの場合)をH−1と表現することとすると、受信信号に一次推定伝達係数行列H’から前述のZFによる復号を行うと、得られる復号信号s’(t)は、(8)式(ただし、N’’は無視できるほど小さいものとする)、(9)式を用いて、
Figure 0004476879
It can be expressed as. Here, n i (t) is an M × 1 thermal noise vector. The primary estimated transfer coefficient matrix H i if 'of the inverse matrix or the pseudo inverse matrix (N ≠ case of M) H i' and be expressed as -1, described above from the primary estimated transfer coefficient matrix H i 'in the received signal ZF When the decoding by s is performed, the obtained decoded signal s i ′ (t) is obtained by using equation (8) (where N i ″ is negligibly small) and equation (9):

Figure 0004476879
と表すことができる。上式でexp(jθ(t))Φ−1をΨ(t)とおいた。上式から分かるように、復号信号s’ (t)は位相回転の時変動exp(jθ(t))と、初期位相回転による演算行列Φ−1により表せる位相回転演算行列Ψ(t)(N×Nの対角行列)により信号位置が回転してしまっている。ここで、Ψ(t)の対角要素を(ψ(t),ψ(t),・・・,ψ(t))とすると、k番目の信号系列の位相回転量を示す演算子ψ
Figure 0004476879
It can be expressed as. In the above equation, exp (jθ (t)) Φ −1 is set as Ψ (t). As can be seen from the above equation, the decoded signal s i '(t) is time variation of phase rotation exp (jθ (t)) and the initial phase rotation due expressed by calculating the matrix [Phi -1 phase rotation operation matrix Ψ (t) ( The signal position is rotated by (N × N diagonal matrix). Here, if the diagonal elements of ψ (t) are (ψ 1 (t), ψ 2 (t),..., Ψ N (t)), the calculation indicating the phase rotation amount of the k-th signal sequence. The child ψ k is

Figure 0004476879
と表すことができる。
Figure 0004476879
It can be expressed as.

そこで、この位相回転の補正を行うために、既知信号位相検出装置170−1〜170−Nは、特定の周波数帯で送信された既知信号とその復号信号を用いて位相回転補正を行う。ここで、既知信号が送信されている周波数帯をu番目とし、送信された既知信号を
=(su,1 , su,2 , ・・・ , su,Nとする。このときu番目のサブキャリアについて(10)式より得られる復号信号s’(t)=(su,1’(t) , su,2’(t) , ・・・ , su,N’(t))は、
Therefore, in order to correct this phase rotation, the known signal phase detection devices 170-1 to 170-N perform phase rotation correction using the known signal transmitted in a specific frequency band and its decoded signal. Here, the frequency band in which the known signal is transmitted is u-th, and the transmitted known signal is represented by s u = ( su 1 , su 2 ,..., Su u, N ) T. At this time, the decoded signal s u ′ (t) = (s u, 1 ′ (t), su, 2 ′ (t),..., Su, obtained from the equation (10) for the u-th subcarrier . N ′ (t)) T is

Figure 0004476879
と表せる。ここで、(12)式のψu,k(t)(1≦k≦N)は(11)式のψk(t)に対応する。また、(g(t) , g(t) , ・・・ , g(t))はH −1’(t)による熱雑音を表すが、重みH −1が乗算されているため、それぞれ異なる大きさを持つ。既知信号sの対応する要素で、s’ベクトルの各要素を割り算することで、各信号系列の位相回転量の推定値ψ’u,1(t)〜ψ’u,N(t)(N×1ベクトル)は以下のように表せる。
Figure 0004476879
It can be expressed. Here, ψ u, k (t) (1 ≦ k ≦ N) in the equation (12) corresponds to ψ k (t) in the equation (11). Also, (g 1 (t), g 2 (t),..., G N (t)) T represents thermal noise due to H u −1 n u ′ (t), but the weight H u −1 is Since they are multiplied, they have different sizes. By dividing each element of the s u ′ vector by the corresponding element of the known signal s u , an estimated value ψ ′ u, 1 (t) to ψ ′ u, N (t) of the phase rotation amount of each signal series (N × 1 vector) can be expressed as follows.

Figure 0004476879
またさらに既知信号su,1〜su,Nの大きさをそれぞれ1と仮定すれば上式は、
Figure 0004476879
Furthermore, assuming that the magnitudes of the known signals su , 1 to su , N are 1 respectively,

Figure 0004476879
と各信号系列での位相回転量を推定することができる。なお、既知信号が送信される周波数帯は一つである必要はなく、複数のサブキャリアから得られる既知信号から各信号系列の位相回転量を推定することができる。
Figure 0004476879
And the amount of phase rotation in each signal series can be estimated. Note that the frequency band in which the known signal is transmitted need not be one, and the phase rotation amount of each signal series can be estimated from the known signal obtained from a plurality of subcarriers.

以上によって得られた位相回転の推定量推定値ψ’u,1(t)〜ψ’u,N(t)を各信号系列に用いることで、位相回転補償を実現する(請求項1)。一般に既知信号を送信することができる周波数帯は少なく、フェージング、信号間干渉の影響などによりこれらに含まれる雑音g〜gは無視できない大きさとなることが考えられ、また、各信号系列の同期がとれていない場合これらを除去できず、十分に位相回転を補償することができない。ここで、一つもしくは複数の周波数帯の既知信号の受信信号を用い、推定されたk番目の信号系列に対する位相回転量をΘとすると、 The phase rotation compensation is realized by using the estimated value ψ ′ u, 1 (t) to ψ ′ u, N (t) of the phase rotation obtained as described above for each signal series (claim 1). In general, there are few frequency bands in which known signals can be transmitted, and the noises g 1 to g N included therein are considered to be non-negligible due to the effects of fading, inter-signal interference, and the like. If they are not synchronized, they cannot be removed and the phase rotation cannot be fully compensated. Here, using a received signal of a known signal in one or a plurality of frequency bands, and assuming that the phase rotation amount for the estimated k-th signal sequence is Θ k ,

Figure 0004476879
と表すことができる。ここで、θn,1(t)〜θn,N(t)は位相回転量の推定誤差を表し、熱雑音g〜gに対応する大きさを持つため信号系列においてその大きさは異なる。また、時間変動による位相変動θ(t) は全信号系列で共通して用いることができ、伝達係数行列推定時の受信タイミングの違いにより生じる初期位相誤差θ(T)〜θ(T)は各信号系列で推定する必要がある。
Figure 0004476879
It can be expressed as. Here, θ n, 1 (t) to θ n, N (t) represents an estimation error of the phase rotation amount, and has a magnitude corresponding to the thermal noise g 1 to g N. Different. Further, the phase variation θ (t) due to the time variation can be commonly used in all signal sequences, and the initial phase errors θ (T 1 ) to θ (T N ) caused by the difference in reception timing at the time of estimating the transfer coefficient matrix. Must be estimated for each signal sequence.

よって位相回転補正量算出装置171においては、θ(t)による位相の時変動を除去するために時間変動補正位相Γ(t)を以下のように算出する。   Therefore, the phase rotation correction amount calculation device 171 calculates the time fluctuation correction phase Γ (t) as follows in order to remove the time fluctuation of the phase due to θ (t).

Figure 0004476879
ここで、Wは各信号系列の位相回転量推定値の確からしさに対応する重みづけであって、ΣWは1であり、(15)式の推定誤差θn,1(t)〜θn,N(t)の影響を軽減するように設定される。(16)式に(15)式を代入してΓ(t)を書き直すと
Figure 0004476879
Here, W k is a weight corresponding to the certainty of the phase rotation amount estimation value of each signal series, ΣW k is 1, and the estimation error θ n, 1 (t) to θ in equation (15) It is set so as to reduce the influence of n, N (t). Substituting equation (15) into equation (16) and rewriting Γ (t)

Figure 0004476879
と表すことができる。θn,k(t)は雑音成分であるため、足しあわされることでその大きさは小さくなっており、位相回転の時間変動について精度よく補正を行うことができる。復号信号s (t)は共通位相回転量補正装置180において、まずこの時間変動補正位相Γ(t)により補正を受ける。
Figure 0004476879
It can be expressed as. Since θ n, k (t) is a noise component, its magnitude is reduced by adding it, and it is possible to accurately correct the temporal variation of the phase rotation. The decoded signal s i (t) is first corrected in the common phase rotation amount correction device 180 by this time variation correction phase Γ (t).

次に、位相回転補正量算出装置171は、各信号系列で生じる位相のずれを補償するための信号系列間位相補正量γ1〜γNを以下のように算出する。 Next, the phase rotation correction amount calculation device 171 calculates the inter-signal sequence phase correction amounts γ 1 to γ N for compensating for the phase shift occurring in each signal sequence as follows.

Figure 0004476879
st(t)は積分を開始する受信タイミング、Tfin(t)は積分を終了する受信タイミングであり、w(t,k)はt番目の受信タイミングの信号系列間位相補正量γを求めるために用いるk番目の受信タイミングの位相変化量に乗算する重みであり、kについて積分すると1になるように決定され、(15)式の推定誤差θn,1(t)〜θn,N(t)の影響を軽減するように設定される。(18)式に(15)式を代入してγ1〜γNを書き直すと、
Figure 0004476879
T st (t) is a reception timing at which integration is started, T fin (t) is a reception timing at which integration is completed, and w (t, k) is a phase correction amount γ between signal sequences at the t-th reception timing. Is a weight for multiplying the phase change amount of the k-th reception timing used for the purpose, and is determined to be 1 when integrated with respect to k, and the estimation errors θ n, 1 (t) to θ n, N of equation (15) are determined. It is set to reduce the effect of (t). Substituting equation (15) into equation (18) and rewriting γ 1 to γ N ,

Figure 0004476879
と表すことができ、Γ(t)に対する各信号系列の位相補正値が示されている。このように複数の受信タイミングのデータを利用することで、推定誤差の影響はより低減される。ここで得られたγ1〜γNを信号系列間位相差補正装置180−1〜180−Nにおいて各信号系列の復号信号に補正を行うことで位相回転による伝送品質劣化を低減することができる。
Figure 0004476879
The phase correction value of each signal series with respect to Γ (t) is shown. In this way, the influence of the estimation error is further reduced by using data at a plurality of reception timings. By correcting the obtained γ 1 to γ N to the decoded signal of each signal sequence in the signal sequence phase difference correction devices 180-1 to 180-N, it is possible to reduce the transmission quality deterioration due to the phase rotation. .

以上から、共通位相回転量補正装置180、信号系列間位相差補正装置180−1〜180−Nにおける位相回転の補正は次のように行う。(10)式で得られる復号信号s’(t)は、(12)式に(11)式を代入することにより、 From the above, the phase rotation correction in the common phase rotation amount correction device 180 and the signal sequence phase difference correction devices 180-1 to 180-N is performed as follows. The decoded signal s i ′ (t) obtained by the equation (10) is obtained by substituting the equation (11) into the equation (12).

Figure 0004476879
と書き直すことができる。以下、位相回転の補正に着目するため、熱雑音の項を省略し、
Figure 0004476879
Can be rewritten. In the following, in order to focus on correction of phase rotation, the thermal noise term is omitted,

Figure 0004476879
と表すことにする。共通位相回転量補正装置180では、まずexp(−jΓ(t))により時間変動成分を補正する。すなわち、(21)式にexp(−jΓ(t))を乗算し(17)式を代入して得られる一次補正復号信号をs ’’とすると、
Figure 0004476879
It will be expressed as In the common phase rotation amount correction apparatus 180, first, the time variation component is corrected by exp (−jΓ (t)). That is, if the primary corrected decoded signal obtained by multiplying exp (−jΓ (t)) by equation (21) and substituting equation (17) is s i ,

Figure 0004476879
と表すことができ、各信号系列において時間変動による位相変化はなくなり、一定した位相のずれが得られるようになる。さらに、信号系列間位相差補正装置180−1〜180−Nでは、各信号系列にexp(jγ1(t))〜exp(jγN(t))を乗算し、これら位相のオフセットを除去する。すなわち、(22)式の各成分にそれぞれexp(jγ1(t))、・・・、exp(jγN(t))を乗算して得られる二次補正復号信号をs ’’’とすると、
Figure 0004476879
In each signal series, there is no phase change due to time variation, and a constant phase shift can be obtained. Further, inter-signal sequence phase difference correction apparatuses 180-1 to 180-N multiply each signal sequence by exp (jγ 1 (t)) to exp (jγ N (t)) to remove the offset of these phases. . That is, the secondary correction decoded signal obtained by multiplying each component of the expression (22) by exp (jγ 1 (t)),..., Exp (jγ N (t)) is expressed as s i ″ ″. Then

Figure 0004476879
と表すことができ、位相回転は位相雑音θn,k(t)のみから構成されるものとなっている。また、多数の位相雑音を足し合わせていることから、位相誤差の著しい軽減が期待できる。(請求項2、3、6)
Figure 0004476879
The phase rotation is composed only of the phase noise θ n, k (t). In addition, since a large number of phase noises are added, a significant reduction in phase error can be expected. (Claims 2, 3, 6)

また、位相回転補正量算出装置171において、θ(t)による位相の時変動を除去するため時間変動補正位相Γ(t)を以下のように算出することもできる。   Further, in the phase rotation correction amount calculation device 171, the time fluctuation correction phase Γ (t) can be calculated as follows in order to remove the time fluctuation of the phase due to θ (t).

Figure 0004476879
ここで、ωl,tは受信タイミングtの復号信号に用いる、l番目の受信タイミングの位相回転量推定値に乗算する重みづけであり、ωl,tをlについて受信タイミングTst(t)からTfin(t)まで積分すると1となるように決定される。このように制御することで、位相雑音の加算回数を増やすことができ、より位相回転量の推定誤差を低減することができる。(請求項2、4)
Figure 0004476879
Here, ω l, t is a weight used to multiply the estimated value of the phase rotation amount at the l-th reception timing used for the decoded signal at the reception timing t, and ω l, t is the reception timing T st (t) for l. Is integrated to T fin (t) to be 1. By controlling in this way, the number of additions of phase noise can be increased, and the estimation error of the phase rotation amount can be further reduced. (Claims 2 and 4)

また、位相回転補正量算出装置171において、θ(t)による位相の時変動を除去するため時間変動補正位相Γ(t)をなんらかの関数で仮定し、その関数にフィッティングを行うことで、決定することができる。例えば、以下のような一次関数を仮定する。   Further, in the phase rotation correction amount calculation device 171, the time fluctuation correction phase Γ (t) is assumed by some function in order to remove the time fluctuation of the phase due to θ (t), and is determined by fitting to that function. be able to. For example, the following linear function is assumed.

Figure 0004476879
得られる位相回転量Θk(t)とその信頼度を考慮し、上式との誤差が最小となるようなaとbを算出し、ここで得られたΓ(t)を共通位相回転量補正装置180において用いることができる。(請求項5)
Figure 0004476879
Considering the obtained phase rotation amount Θ k (t) and its reliability, a and b are calculated so that the error from the above equation is minimized, and Γ (t) obtained here is used as the common phase rotation amount. It can be used in the correction device 180. (Claim 5)

また、伝達係数行列Hを、例えば送信ウェイト決定のために求める必要がある場合には、γ1(t)〜γN(t)、もしくはΣγ1(t)〜ΣγN(t)を対角成分にもつN×Nの対角行列を一次推定伝達係数行列H に乗算することで得ることができる。(請求項7) Further, when it is necessary to obtain the transfer coefficient matrix H i for determining transmission weight, for example, γ 1 (t) to γ N (t) or Σγ 1 (t) to Σγ N (t) It can be obtained by multiplying the primary estimated transfer coefficient matrix H i by an N × N diagonal matrix having angular components. (Claim 7)

また、伝達係数行列Hを、例えば送信ウェイト決定のために求める必要がある場合には、時間変動補正位相の時間変動量Γ(t)と伝達係数行列推定タイミングT1〜TNから Further, when it is necessary to determine the transfer coefficient matrix H i , for example, for determining the transmission weight, the time fluctuation correction phase Γ (t) of the time fluctuation correction phase and the transfer coefficient matrix estimation timings T 1 to T N are used.

Figure 0004476879
と表すことができるN×Nの対角行列を一次推定伝達係数行列H に乗算することで得ることができる。(請求項8)
Figure 0004476879
Can be obtained by multiplying the primary estimated transfer coefficient matrix H i by an N × N diagonal matrix. (Claim 8)

また、上記の制御方法は位相の時間変動をθ(t)とし、全ての信号系列で同じと仮定したが、実際には同期の微小なずれなどにより、各信号系列で異なる値となることがありうる。ただし、k番目の信号系列の時間変動成分をθk(t)と仮定すると、 In the above control method, it is assumed that the time variation of the phase is θ (t) and is the same for all signal sequences. However, in actuality, the value may be different for each signal sequence due to a slight shift in synchronization. It is possible. However, assuming that the time-varying component of the k-th signal sequence is θ k (t),

Figure 0004476879
が成り立てば、この変化はγ1(t)〜γN(t)によって補償することができ、同様に用いることができる。
Figure 0004476879
If this holds, this change can be compensated by γ 1 (t) to γ N (t) and can be used similarly.

また、上記の制御方法は伝達係数行列の推定のための既知信号Sを対角行列であると仮定したが、Sが対角行列ではない各列ベクトルが互いに直交する行列を用いた場合には、一次推定伝達係数行列の位相ずれを例えばOFDM取得点決定のための既知信号の繰り返し部分や、OFDM信号のガードインターバルとして実際の送信信号を繰り返していることなどを利用し、位相回転量の粗推定による結果から補正しておくことで、同様に上記の制御方法で位相の回転を精度よく補正することができる。
また、(16)式以下、位相回転量の推定を信号点の位相θを用いて説明したが、重みを用いた平均化などの処理は、exp(−jφ)等で表せる位相回転に対応する演算子を同様に用いることができる。
また、複数の送信装置がそれぞれ複数の送信素子を持っている場合において、それぞれのアンテナから独立の信号系列を送信したり、指向性制御による送信を行ったりした場合においても、それぞれの信号系列から既知信号が予め送信され、伝達係数が既知であれば、同様の処理を行うことができる。
In the above control method, it is assumed that the known signal S 0 for estimating the transfer coefficient matrix is a diagonal matrix. However, when S 0 is not a diagonal matrix, matrixes in which column vectors are orthogonal to each other are used. Is based on the phase shift of the primary estimated transfer coefficient matrix, for example, by using the repetitive part of the known signal for determining the OFDM acquisition point or repeating the actual transmission signal as the guard interval of the OFDM signal. By correcting from the result of the rough estimation of the phase, similarly, the rotation of the phase can be accurately corrected by the above control method.
In addition, the estimation of the amount of phase rotation has been described below using equation (16) using the phase θ of the signal point, but the processing such as averaging using the weight corresponds to the phase rotation represented by exp (−jφ) or the like. Operators can be used as well.
In addition, when each of a plurality of transmission devices has a plurality of transmission elements, even when an independent signal sequence is transmitted from each antenna or transmission by directivity control is performed, from each signal sequence If a known signal is transmitted in advance and the transfer coefficient is known, the same processing can be performed.

以下、図2〜4を参照して本発明の実験結果を示す。この実験では、それぞれ1本のアンテナを具備する送信装置4つと、4本のアンテナを具備する受信装置との間で、IEEE 802.11a(IEEE、“Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications : High-speed Physical Layer in the 5 GHz Band"、IEEE 802.11a-1999、Dec. 1999.)で定められた規格に基づき送信装置において、伝搬環境に最適となる指向性制御を用い、4つの独立する信号系列を、空間多重分割方式および直交波周波数多重分割方式により伝送した。   Hereinafter, experimental results of the present invention will be described with reference to FIGS. In this experiment, IEEE 802.11a (IEEE, “Part 11: Wireless LAN Medium Access Control (MAC) and IEEE 802.11a) between four transmitting devices each having one antenna and a receiving device having four antennas. Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band ", IEEE 802.11a-1999, Dec. 1999.) The four independent signal sequences were transmitted by the spatial multiplexing division method and the orthogonal frequency division multiplexing method.

送信に用いた4つの信号系列のブロック図を図2に示す。送信信号はサンプリング同期用既知信号、4つの伝達係数行列推定用既知信号、50のデータ信号から構成され、それぞれ図のようなタイミングで送信を行った。各受信アンテナにおける平均受信レベルは約30dBであった。4つの信号系列それぞれにおいて得られる64の周波数帯のうち中央の53の周波数帯を用いることとし、中心となる26番目の周波数帯は使用しないこととした。そして、位相同期のための既知信号を6、20、34、48番目の周波数帯に入れるものとし、これらの情報を基に4つの信号系列の位相回転補償を行う。   A block diagram of the four signal sequences used for transmission is shown in FIG. The transmission signal is composed of a sampling synchronization known signal, four transmission coefficient matrix estimation known signals, and 50 data signals, each of which was transmitted at the timing shown in the figure. The average reception level at each receiving antenna was about 30 dB. Of the 64 frequency bands obtained in each of the four signal sequences, the central 53 frequency band is used, and the 26th frequency band as the center is not used. Then, it is assumed that known signals for phase synchronization are put in the sixth, twentieth, thirty-fourth, and forty-eighth frequency bands, and phase rotation compensation of four signal sequences is performed based on these pieces of information.

図3は、従来の方法により位相回転量を推定した結果を示すグラフである。すなわち、各信号系列において、各周波数帯の既知信号に受信レベルに応じて重みづけを行い、位相回転量を推定した結果である。横軸に受信シンボルタイミングをとり、縦軸に位相回転量をとった。図3はシンボルタイミングにより推定された位相回転量がばらついており、位相回転補償が精度よく行われないことを示している。   FIG. 3 is a graph showing the result of estimating the phase rotation amount by the conventional method. That is, in each signal series, the known signal in each frequency band is weighted according to the reception level, and the phase rotation amount is estimated. The horizontal axis represents the received symbol timing, and the vertical axis represents the amount of phase rotation. FIG. 3 shows that the phase rotation amount estimated by the symbol timing varies and the phase rotation compensation is not performed with high accuracy.

これに対し、図4は、請求項2および4の方法および装置により位相回転量を推定した結果である。(18)式におけるTfin(t)をt+2、Tst(t)をt-2、w(t,k)を1/5と設定し、t=1,2におけるγi(t)として、γi(3)を用い、t=49,50におけるγi(t)として、γi(47)を用いることとした。また、(24)式におけるTfin(t)をt+1, Tst(t)をt-1、ωt-1,t=1/3、ωt,t=2/3、ωt+1,t=2/3とし、Wkをk番目の信号系列に対応する、伝達係数行列の逆行列の行成分のノルム値の逆数と設定した。図4は請求項2および4の方法および装置により、雑音による誤差を軽減し、位相回転量を精度よく求められることを示している。 On the other hand, FIG. 4 shows the result of estimating the amount of phase rotation by the method and apparatus of claims 2 and 4. In equation (18), T fin (t) is set to t + 2, T st (t) is set to t−2, w (t, k) is set to 1/5, and γ i (t) at t = 1, 2 Γ i (3) is used, and γ i (47) is used as γ i (t) at t = 49,50. Further, T fin (t) in equation (24) is t + 1, T st (t) is t−1, ω t−1, t = 1/3, ω t, t = 2/3, ω t + 1, t = 2/3, and W k is set as the reciprocal of the norm value of the row component of the inverse matrix of the transfer coefficient matrix corresponding to the k-th signal sequence. FIG. 4 shows that the method and apparatus of claims 2 and 4 can reduce an error due to noise and accurately obtain the phase rotation amount.

本発明によれば、空間分割多重を用いた通信において、位相回転による伝送品質の劣化を軽減することができる。   According to the present invention, it is possible to reduce deterioration in transmission quality due to phase rotation in communication using space division multiplexing.

本発明の実施形態における空間多重伝送用受信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver for spatial multiplexing transmission in embodiment of this invention. 実験において送信に用いた4つの信号系列のブロック図である。It is a block diagram of four signal series used for transmission in experiment. 実験装置を用い、従来の方法により位相回転量を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the amount of phase rotation by the conventional method using an experimental device. 実験装置を用い、本発明により位相回転量を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the amount of phase rotation by this invention using an experimental device. 従来の直交波周波数分割多重を用いた受信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver using the conventional orthogonal wave frequency division multiplexing.

符号の説明Explanation of symbols

100−1、100−2〜100−M…アンテナ素子
110−1、110−2〜110−M…AGC
120−1、120−2〜120−M…A/D変換装置
130…信号取得点決定装置
140…FFT装置
150…伝達係数行列一次推定装置
160…空間分割多重復号装置
170−1〜170−N…既知信号位相検出装置
171…位相回転補正量算出装置
180…共通位相回転量補正装置
181−1〜181−M…信号系列間位相差補正装置
190…サブキャリア復号装置
900…アンテナ素子
910…AGC
920…A/D変換装置
930…信号取得点決定装置
940…FFT装置
950…伝達係数推定装置
960…伝達係数等価装置
970…既知信号位相検出装置
980…位相回転量補正装置
990…サブキャリア復号装置

100-1, 100-2 to 100-M ... Antenna element 110-1, 110-2 to 110-M ... AGC
120-1, 120-2 to 120-M ... A / D conversion device 130 ... Signal acquisition point determination device 140 ... FFT device 150 ... Transfer coefficient matrix primary estimation device 160 ... Spatial division multiplexing decoding device 170-1 to 170-N ... known signal phase detector 171 ... phase rotation correction amount calculation device 180 ... common phase rotation amount correction device 181-1 to 181-M ... phase difference correction device between signal sequences 190 ... subcarrier decoding device 900 ... antenna element 910 ... AGC
920 ... A / D conversion device 930 ... Signal acquisition point determination device 940 ... FFT device 950 ... Transfer coefficient estimation device 960 ... Transfer coefficient equivalent device 970 ... Known signal phase detection device 980 ... Phase rotation amount correction device 990 ... Subcarrier decoding device

Claims (8)

受信装置に複数のアンテナ素子を備え、直交波周波数分割多重方式を用い、同一時間、同一周波数で複数の送信装置から送信される信号系列を受信し復号を行う際の信号点の位相回転を補償する方法であって、
送信装置から複数の送信タイミングにおいて送信された既知信号を受信し、送信装置と受信装置との間の位相のずれを含む伝達係数行列を推定する一次推定伝達係数行列を算出し、前記一次推定伝達係数行列を用いて受信信号の復号を行い、前記復号された信号に含まれる同一時間もしくは複数の時間で受信された直交波周波数多重方式の特定の周波数帯に用いられる既知信号から全信号系列の瞬時位相補正量を算出し、前記瞬時位相補正量を用いて全信号系列の位相回転の時間変動の補正を行う過程を有することを特徴とする空間多重伝送用受信方法。
The receiver has multiple antenna elements and uses orthogonal frequency division multiplexing to compensate for phase rotation of signal points when receiving and decoding signal sequences transmitted from multiple transmitters at the same time and frequency. A way to
Receiving a known signal transmitted at a plurality of transmission timings from a transmission device, calculating a primary estimated transmission coefficient matrix for estimating a transmission coefficient matrix including a phase shift between the transmission device and the reception device, and transmitting the primary estimation transmission The received signal is decoded using a coefficient matrix, and all signal sequences are obtained from known signals used in a specific frequency band of the orthogonal frequency division multiplexing received at the same time or a plurality of times included in the decoded signal. A receiving method for spatial multiplexing transmission, comprising a step of calculating an instantaneous phase correction amount and correcting a time variation of phase rotation of all signal sequences using the instantaneous phase correction amount.
請求項1に記載の空間多重伝送用受信方法において、
同時に受信された信号系列の同期が完全にとれていない場合に、複数の受信タイミングの受信信号に含まれる既知信号から各信号系列の位相回転量を算出し、前記各信号系列の位相回転量の前記瞬時位相補正量からの差を位相回転補正量として算出し、前記位相回転補正量を用いて各信号系列の位相回転補正を行う過程を有することを特徴とする空間多重伝送用受信方法。
The reception method for spatial multiplexing transmission according to claim 1,
When the simultaneously received signal sequences are not completely synchronized, the phase rotation amount of each signal sequence is calculated from known signals included in the reception signals at a plurality of reception timings, and the phase rotation amount of each signal sequence is calculated. A receiving method for spatial multiplexing transmission, comprising: calculating a difference from the instantaneous phase correction amount as a phase rotation correction amount and performing phase rotation correction of each signal series using the phase rotation correction amount.
直交波周波数分割多重方式を用い同一時間に送信されたN個の信号系列の送信信号を、M個のアンテナ素子から同一時間に得られるM個の受信信号によって復号を行う空間多重伝送用受信装置において、
前記各アンテナ素子に接続され、アナログ/デジタル変換を行うA/D変換装置と、
前記A/D変換装置に接続され、得られたデータのサンプリング同期のための既知信号から直交波周波数分割多重方式のOFDM信号の取得点を決定する信号取得点決定装置と、
前記OFDM信号にフーリエ変換を行い、各周波数帯の信号を算出するFFT装置と、
前記FFT装置に接続され、前記OFDM信号に含まれる伝達係数行列推定のためのOFDM既知信号から一次推定伝達係数行列を算出する伝達係数行列一次推定装置と、
前記伝達係数行列一次推定装置に接続され、前記一次推定伝達係数行列を用いて、同一時間に受信されたM個のOFDM信号について復号を行い、各信号系列に含まれる既知信号の復号結果を出力するとともに、所望データ信号の復号結果を出力する空間分割多重復号装置と、
各信号系列に対応して設けられ、前記空間分割多重復号装置から入力された各信号系列の既知信号の復号結果から、各信号系列の所定の時間における位相回転量を算出し、その結果を出力する既知信号位相検出装置と、
前記既知信号位相検出装置に接続され、入力された各信号系列の所定の時間における位相回転量から、全信号系列の位相回転量を算出して出力するとともに、入力された各信号系列の複数のシンボルタイミングにおける位相回転量を平均することにより各信号系列の位相回転量を算出し、前記算出した各信号系列の位相回転量の前記全信号系列の位相回転量からの差を出力する位相回転補正量算出装置と、
前記空間分割多重復号装置から入力された所望データ信号の復号結果に対し、前記位相回転補正量算出装置から入力された、前記所望データ信号の復号結果に対応する時間での全信号系列の位相回転量を元に信号点の補正を行い、一次補正復号結果を出力する共通位相回転量補正装置と、
前記共通位相回転量補正装置から入力された一次補正復号結果に対し、前記位相回転補正量算出装置から入力された、前記各信号系列の位相回転量の前記全信号系列の位相回転量からの差を元に信号点の補正を行い、二次補正復号結果を出力する信号系列間位相差補正装置と、
前記信号系列間位相差補正装置に接続され、入力された二次補正復号結果の信号点から、所望ビットデータを算出するサブキャリア復号装置と、
を備えたことを特徴とする空間多重伝送用受信装置。
Spatial multiplex transmission receiver for decoding transmission signals of N signal sequences transmitted at the same time using orthogonal wave frequency division multiplexing with M received signals obtained at the same time from M antenna elements In
An A / D converter connected to each of the antenna elements for analog / digital conversion;
A signal acquisition point determination device that is connected to the A / D conversion device and determines an acquisition point of an OFDM signal of an orthogonal wave frequency division multiplexing system from a known signal for sampling synchronization of the obtained data;
An FFT device that performs Fourier transform on the OFDM signal and calculates a signal in each frequency band;
A transfer coefficient matrix primary estimation device that is connected to the FFT device and calculates a primary estimation transfer coefficient matrix from an OFDM known signal for estimating a transfer coefficient matrix included in the OFDM signal;
Connected to the transmission coefficient matrix primary estimation device, decodes M OFDM signals received at the same time using the primary estimation transmission coefficient matrix, and outputs a decoding result of a known signal included in each signal sequence And a space division multiplex decoding device that outputs a decoding result of the desired data signal;
Calculates the amount of phase rotation of each signal sequence at a predetermined time from the decoding result of the known signal of each signal sequence provided for each signal sequence and input from the spatial division multiplexing decoder, and outputs the result A known signal phase detection device,
It is connected to the known signal phase detection device and calculates and outputs the phase rotation amount of the entire signal sequence from the phase rotation amount at a predetermined time of each input signal sequence. Phase rotation correction that calculates the phase rotation amount of each signal sequence by averaging the phase rotation amount at the symbol timing and outputs the difference of the calculated phase rotation amount of each signal sequence from the phase rotation amount of all the signal sequences A quantity calculation device;
The phase rotation of the entire signal sequence at a time corresponding to the decoding result of the desired data signal input from the phase rotation correction amount calculating device, with respect to the decoding result of the desired data signal input from the spatial division multiplexing decoding device A common phase rotation amount correction device that performs signal point correction based on the amount and outputs a primary correction decoding result;
The difference between the phase rotation amount of each signal sequence and the phase rotation amount of all the signal sequences input from the phase rotation correction amount calculation device with respect to the primary correction decoding result input from the common phase rotation amount correction device. A signal point phase difference correction device that performs signal point correction based on the above and outputs a secondary correction decoding result;
A subcarrier decoding apparatus that is connected to the inter-signal-sequence phase difference correction apparatus and calculates desired bit data from signal points of the input secondary correction decoding result;
A receiver for spatial multiplexing transmission, comprising:
前記既知信号位相検出装置は、入力された複数のシンボルタイミングの位相回転量から決定された全信号系列の位相回転量から、位相の時間変化量の推定値を算出し、時間的に位相回転量の変化が生じないように所定のシンボルタイミングにおける全信号系列の位相回転量を決定し、前記共通位相回転量補正装置に出力することを特徴とする請求項3に記載の空間多重伝送用受信装置。   The known signal phase detection device calculates an estimated value of a temporal change in phase from the phase rotation amounts of all signal sequences determined from the phase rotation amounts of a plurality of input symbol timings, and temporally rotates the phase rotation amount. 4. The spatial multiplexing transmission receiver according to claim 3, wherein the phase rotation amount of all signal sequences at a predetermined symbol timing is determined so as not to change, and is output to the common phase rotation amount correction device. . 前記既知信号位相検出装置は、入力された複数のシンボルタイミングの位相回転量から決定された全信号系列の位相回転量から、与えられた関数にフィッティングを行い、位相の時間変化量を算出し、位相回転が生じないように所定のシンボルタイミングにおける全信号系列の位相回転量を決定し、前記共通位相回転量補正装置に出力することを特徴とする請求項3に記載の空間多重伝送用受信装置。   The known signal phase detection device performs fitting to a given function from the phase rotation amounts of all signal sequences determined from the phase rotation amounts of a plurality of input symbol timings, and calculates a time change amount of the phase, 4. The spatial multiplexing transmission receiver according to claim 3, wherein the phase rotation amount of all signal sequences at a predetermined symbol timing is determined so as not to cause phase rotation, and is output to the common phase rotation amount correction device. . 前記空間分割多重復号装置は、前記一次推定伝達係数行列を用いて、同一時間に受信されたM個のOFDM信号について復号を行い、各信号系列に含まれる既知信号の復号結果および前記一次推定伝達係数行列に対して推定値として与えられる既知信号の確からしさを前記既知信号位相検出装置に出力するとともに、所望データ信号の復号結果を前記共通位相回転量補正装置に出力し、
前記既知信号位相検出装置は、入力された既知信号の復号結果とその確からしさから既知信号の復号結果について重み付けもしくは選択を行い、各信号系列の位相回転量を決定し、前記位相回転補正量算出装置にその結果と確からしさを出力し、
前記位相回転補正量算出装置は、前記既知信号位相検出装置から入力された各信号系列の位相回転量とその確からしさをもとに、重み付けもしくは選択を行い、全信号系列の位相回転量を算出し、前記共通位相回転量補正装置に出力し、入力された各信号系列の複数のシンボルタイミングにおける位相回転量について、入力された確からしさをもとに重み付けもしくは選択を行い、前記全信号系列の位相回転量からの差を算出し、前記信号系列間位相差補正装置に出力することを特徴とする請求項3または4に記載の空間多重伝送用受信装置。
The space division multiplex decoding apparatus performs decoding on M OFDM signals received at the same time using the primary estimated transfer coefficient matrix, decodes a known signal included in each signal sequence, and the primary estimated transfer Output the probability of the known signal given as an estimated value to the coefficient matrix to the known signal phase detection device, and output the decoding result of the desired data signal to the common phase rotation amount correction device,
The known signal phase detection device weights or selects the decoding result of the known signal based on the decoding result of the input known signal and its certainty, determines the phase rotation amount of each signal series, and calculates the phase rotation correction amount Output the results and certainty to the device,
The phase rotation correction amount calculation device performs weighting or selection based on the phase rotation amount of each signal sequence input from the known signal phase detection device and its certainty, and calculates the phase rotation amount of all signal sequences. Output to the common phase rotation amount correction device, and weight or select the phase rotation amount at a plurality of symbol timings of each input signal sequence on the basis of the input probability. 5. The spatial multiplexing transmission receiver according to claim 3, wherein a difference from the phase rotation amount is calculated and output to the inter-signal sequence phase difference correction apparatus.
伝搬環境に最適となる送信ウェイトを求める場合を含む実際の伝搬環境を表す伝達係数行列を用いる場合に、前記一次推定伝達係数行列に対し、前記位相回転補正量算出装置で得られた各信号系列の位相回転量と全信号系列の位相回転量の差を用いて補正を行うことで得られる伝達係数行列を用いることを特徴とする請求項3から5のいずれかの項に記載の空間多重伝送用受信装置。   When using a transfer coefficient matrix representing an actual propagation environment including the case of obtaining a transmission weight that is optimal for the propagation environment, each signal sequence obtained by the phase rotation correction amount calculation device for the primary estimated transfer coefficient matrix 6. The spatial multiplexing transmission according to claim 3, wherein a transmission coefficient matrix obtained by performing correction using a difference between the phase rotation amount of the signal sequence and the phase rotation amount of the entire signal sequence is used. Receiving device. 伝搬環境に最適となる送信ウェイトを求める場合を含む実際の伝搬環境を表す伝達係数行列を用いる場合に、前記一次推定伝達係数行列に対し、前記位相回転補正量算出装置で得られた全信号系列の位相回転量から得られる時間的位相変化量と前記一次推定伝達係数行列の算出を行ったシンボルタイミングから得られる位相変化量を用いて補正を行うことで得られる伝達係数行列を用いることを特徴とする請求項3から5のいずれかの項に記載の空間多重伝送用受信装置。

When using a transfer coefficient matrix representing an actual propagation environment including the case of obtaining a transmission weight that is optimal for the propagation environment, all signal sequences obtained by the phase rotation correction amount calculation device for the primary estimated transfer coefficient matrix Using a transfer coefficient matrix obtained by performing correction using a temporal phase change amount obtained from the phase rotation amount of the signal and a phase change amount obtained from the symbol timing obtained by calculating the primary estimated transfer coefficient matrix. The receiving device for spatial multiplexing transmission according to any one of claims 3 to 5.

JP2005184912A 2005-06-24 2005-06-24 Spatial multiplexing transmission receiving method and apparatus Expired - Fee Related JP4476879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184912A JP4476879B2 (en) 2005-06-24 2005-06-24 Spatial multiplexing transmission receiving method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184912A JP4476879B2 (en) 2005-06-24 2005-06-24 Spatial multiplexing transmission receiving method and apparatus

Publications (2)

Publication Number Publication Date
JP2007006213A JP2007006213A (en) 2007-01-11
JP4476879B2 true JP4476879B2 (en) 2010-06-09

Family

ID=37691371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184912A Expired - Fee Related JP4476879B2 (en) 2005-06-24 2005-06-24 Spatial multiplexing transmission receiving method and apparatus

Country Status (1)

Country Link
JP (1) JP4476879B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734080B2 (en) * 2005-10-12 2011-07-27 日本放送協会 OFDM receiver for performing channel estimation correction
JP5315676B2 (en) * 2007-11-26 2013-10-16 住友電気工業株式会社 MIMO communication apparatus and MIMO communication method

Also Published As

Publication number Publication date
JP2007006213A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US7072693B2 (en) Wireless communications structures and methods utilizing frequency domain spatial processing
JP4958565B2 (en) Wireless communication device
JP4582354B2 (en) Equalizer and equalization method
US20060294170A1 (en) Diversity receiver device
US20080159442A1 (en) Wireless communication apparatus and receiving method
US20060193392A1 (en) Apparatus for and method of compensation for frequency offset and channel variation in MIMO-OFDM receiver
US8320851B2 (en) Wireless communication device, wireless communication method, and computer program
US8705492B2 (en) MIMO receiving apparatus and receiving method
US8446993B2 (en) Receiving apparatus and method for receiving signals in a wireless communication system with improved equalization performance
JP3910956B2 (en) Propagation path estimator and receiving apparatus using the same for OFDM wireless communication system
JP2008072221A (en) Receiving method and receiver for ofdm signal
JP4789678B2 (en) OFDM receiving method and OFDM receiving apparatus
JP2006186421A (en) Ofdm diversity receiver
JP3691709B2 (en) Diversity receiver circuit
JP3919159B2 (en) OFDM digital signal relay device
JP4476879B2 (en) Spatial multiplexing transmission receiving method and apparatus
JP4572601B2 (en) Wireless communication apparatus, wireless communication method, and computer program
WO2007142091A1 (en) Ofdm reception device and ofdm receiver using the same
JP4367527B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, COMMUNICATION SYSTEM, AND PROGRAM
JP2007135002A (en) Receiver
US8654905B2 (en) Method and apparatus for canceling interference
JP4287308B2 (en) Frequency offset estimation method and apparatus, and receiving apparatus using the same
US8750440B1 (en) Noise estimation in communication receivers
JP2006054675A (en) Ofdm receiver and ofdm signal repeater system
JP4223179B2 (en) Antenna beam combining method and antenna beam combining apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees