JP4475524B2 - Granular silicon manufacturing method and manufacturing apparatus - Google Patents

Granular silicon manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP4475524B2
JP4475524B2 JP2005023067A JP2005023067A JP4475524B2 JP 4475524 B2 JP4475524 B2 JP 4475524B2 JP 2005023067 A JP2005023067 A JP 2005023067A JP 2005023067 A JP2005023067 A JP 2005023067A JP 4475524 B2 JP4475524 B2 JP 4475524B2
Authority
JP
Japan
Prior art keywords
pressure
downcomer
melting crucible
crucible
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005023067A
Other languages
Japanese (ja)
Other versions
JP2006206409A (en
Inventor
鎬一 浅井
一俊 酒井
和也 鈴木
尋信 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2005023067A priority Critical patent/JP4475524B2/en
Publication of JP2006206409A publication Critical patent/JP2006206409A/en
Application granted granted Critical
Publication of JP4475524B2 publication Critical patent/JP4475524B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、溶融ルツボ内で加熱溶融したシリコン融液を、該溶融ルツボの底部に設られたノズルより吐出させ、粒状化したシリコン融液滴を降下管内で落下させ、その落下中に該シリコン融液滴を放熱により冷却することで結晶成長させて粒状シリコンを製造する粒状シリコンの製造方法及び製造装置に関する発明である。   In the present invention, a silicon melt heated and melted in a melting crucible is discharged from a nozzle provided at the bottom of the melting crucible, and granulated silicon melt droplets are dropped in a downcomer, and the silicon melt is dropped during the dropping. The present invention relates to a granular silicon manufacturing method and a manufacturing apparatus for manufacturing granular silicon by crystal growth by cooling molten droplets by heat radiation.

近年、高効率発電が可能な太陽電池素子等として用いる粒状シリコンの新たな量産技術の開発が期待されている。従来の粒状シリコンの製造装置は、例えば特許文献1(特開2004−881号公報)に記載されているように、高温加熱炉内に溶融ルツボを設置すると共に、前記高温加熱炉の下部に降下管を鉛直下向きに連結して、前記高温加熱炉内の溶融ルツボ直下の空間を前記降下管に連通させ、前記溶融ルツボ内に収容したシリコン原料を加熱して溶融してシリコン融液を作り、該シリコン融液を、前記溶融ルツボの底部に設られたノズルより前記降下管内に吐出させることで、該降下管内で粒状化したシリコン融液滴を落下させ、その落下中に該シリコン融液滴を放熱により冷却することで結晶成長させて粒状シリコンを製造するようにしたものがある。このものでは、粒状シリコンの製造工程中に、溶融ルツボ内に押し出しガスを導入して溶融ルツボ内の圧力を降下管内の圧力よりも高くすることで、溶融ルツボ内のシリコン融液をその底部のノズルから押し出すようにしている。
特開2004−881号公報
In recent years, development of new mass production technology of granular silicon used as a solar cell element capable of high-efficiency power generation is expected. A conventional apparatus for producing granular silicon, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2004-881), installs a melting crucible in a high-temperature heating furnace and descends to the lower part of the high-temperature heating furnace. Connecting the pipe vertically downward, communicating the space directly below the melting crucible in the high-temperature heating furnace to the downcomer, heating and melting the silicon raw material accommodated in the melting crucible to make a silicon melt, The silicon melt is discharged into the downcomer from the nozzle provided at the bottom of the melt crucible to drop the silicon melt droplet granulated in the downcomer, and the silicon melt droplet is dropped during the fall. There is one in which granular silicon is produced by growing crystals by cooling with heat radiation. In this method, during the production process of granular silicon, an extruded gas is introduced into the melting crucible so that the pressure in the melting crucible is higher than the pressure in the downcomer, so that the silicon melt in the molten crucible is at the bottom. It pushes out from the nozzle.
JP 2004-881 A

この方法で製造する粒状シリコンは、結晶粒が大きくなるほど、品質が良くなるため、結晶粒を大きくする量産技術を開発することが最近の重要な研究課題となっている。   Since the quality of the granular silicon produced by this method increases as the crystal grains become larger, the recent important research subject is to develop a mass production technique for enlarging the crystal grains.

そこで、特許文献1では、大きな結晶粒の粒状シリコンを製造するために、降下管にアフターヒータを設けて、降下管内の雰囲気ガスを加熱することで、シリコン融液滴の凝固点付近の冷却温度勾配を緩やかにしてシリコン融液滴の内部の核形成割合を抑える方法が採用されている。しかし、この方法では、アフターヒータが必要になるため、製造工程中の電力消費量が増加して粒状シリコンの製造コストが高くなるという欠点がある。   Therefore, in Patent Document 1, in order to manufacture granular silicon having large crystal grains, an after heater is provided in the downcomer, and the atmospheric gas in the downcomer is heated, so that a cooling temperature gradient near the freezing point of the silicon melt droplet is obtained. A method is adopted in which the nucleation rate inside the silicon melt droplet is suppressed by slowing down. However, since this method requires an after heater, there is a drawback in that the power consumption during the manufacturing process increases and the manufacturing cost of granular silicon increases.

更に、特許文献1では、降下管内に熱伝導率の低い不活性ガスを充填することで、降下管内を落下するシリコン融液滴の放熱性を低下させて、シリコン融液滴の放熱による冷却速度を遅くする方法も採用されている。この場合、降下管内の雰囲気ガスの圧力(ガス密度)が低くなるほど、雰囲気ガスの熱伝達率が小さくなるため、降下管内の雰囲気ガスの圧力を大気圧よりも低い圧力(負圧)に減圧すれば、降下管内を落下するシリコン融液滴の放熱による冷却速度を十分に遅くして、シリコン結晶粒を十分に大きくできるものと予想される。   Further, in Patent Document 1, by filling the downcomer with an inert gas having a low thermal conductivity, the heat dissipation property of the silicon melt droplet falling in the downcomer is lowered, and the cooling rate by the heat dissipation of the silicon melt droplet is reduced. The method of slowing down is also adopted. In this case, the lower the atmospheric gas pressure (gas density) in the downcomer, the smaller the atmospheric gas heat transfer coefficient. Therefore, the atmospheric gas pressure in the downcomer is reduced to a pressure (negative pressure) lower than atmospheric pressure. For example, it is expected that the silicon crystal grains can be made sufficiently large by sufficiently slowing the cooling rate due to heat radiation of the silicon melt droplets falling in the downcomer.

しかし、上記従来の製造装置は、粒状シリコンの製造工程中に、降下管内の雰囲気ガスの圧力を大気圧以上に維持することを前提にした構成であり、降下管内の雰囲気ガスの圧力を大気圧よりも低い圧力(負圧)に減圧することは想定されていない。従って、大きな結晶粒の粒状シリコンを製造するために、降下管内の雰囲気ガスの圧力を大気圧よりも低い圧力(負圧)に減圧し、且つ、溶融ルツボ内の圧力を降下管内の圧力(負圧)よりも高く調整する技術の開発が期待されている。   However, the above-described conventional manufacturing apparatus is configured to maintain the pressure of the atmospheric gas in the downcomer at atmospheric pressure or higher during the granular silicon manufacturing process. It is not assumed that the pressure is reduced to a lower pressure (negative pressure). Therefore, in order to produce large-grain granular silicon, the pressure of the atmospheric gas in the downcomer is reduced to a pressure lower than the atmospheric pressure (negative pressure), and the pressure in the melting crucible is reduced to the pressure in the downcomer (negative). Development of technology that adjusts higher than pressure) is expected.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、降下管内と溶融ルツボ内の圧力を適正化して大きな結晶粒の粒状シリコンを低コストで製造することができる粒状シリコンの製造方法及び製造装置を提供することにある。   The present invention has been made in consideration of such circumstances, and therefore the object thereof is to optimize the pressure in the downcomer and the melting crucible to produce granular silicon having large crystal grains at low cost. The object is to provide a silicon manufacturing method and manufacturing apparatus.

上記目的を達成するために、本発明は、高温加熱炉内に溶融ルツボを設置すると共に、前記高温加熱炉の下部に降下管を鉛直下向きに連結して、前記高温加熱炉内の前記溶融ルツボ直下の空間を前記降下管に連通させ、前記溶融ルツボ内に収容したシリコン原料を加熱して溶融してシリコン融液を作り、該シリコン融液を、前記溶融ルツボの底部に設られたノズルより前記降下管内に吐出させることで、該降下管内で粒状化したシリコン融液滴を落下させ、その落下中に該シリコン融液滴を放熱により冷却することで結晶成長させて粒状シリコンを製造するものにおいて、降下管内に雰囲気ガスを導入して該降下管内の圧力を所定負圧に調整すると共に、前記溶融ルツボ内にも雰囲気ガスを導入して該溶融ルツボ内の圧力を該降下管内の圧力よりも所定圧力だけ高い圧力に調整し、該溶融ルツボ内外の圧力差によって該溶融ルツボ内のシリコン融液を前記ノズルから押し出して粒状シリコンを製造するところに第1の特徴を有し、更に、雰囲気ガス供給源から供給される雰囲気ガスを前記溶融ルツボの目標圧力と同じ圧力で貯蔵する圧力容器と、この圧力容器と前記溶融ルツボとを連通させる配管中に設けられたバルブとを備え、前記溶融ルツボ内を減圧した状態で前記バルブを開放して前記圧力容器と前記溶融ルツボとを連通させることで、前記圧力容器内の雰囲気ガスの一部を前記溶融ルツボ内に導入して、該溶融ルツボ内の圧力を前記目標圧力まで上昇させるところに第2の特徴を有する。このようにすれば、降下管内の圧力を負圧にして、降下管内を落下するシリコン融液滴の放熱性を低下させながら、溶融ルツボ内で加熱溶融したシリコン融液を溶融ルツボ内外の圧力差によってノズルより押し出して降下管内に落下させることができ、降下管内を落下するシリコン融液滴の放熱による冷却速度を効果的に遅くすることができて、大きな結晶粒の粒状シリコンを低コストで製造することができる。しかも、雰囲気ガス供給源から供給される雰囲気ガスを前記溶融ルツボの目標圧力と同じ圧力で貯蔵する圧力容器と、この圧力容器と前記溶融ルツボとを連通させる配管中に設けられたバルブとを備え、前記溶融ルツボ内を減圧した状態で前記バルブを開放して前記圧力容器と前記溶融ルツボとを連通させることで、前記圧力容器内の雰囲気ガスの一部を前記溶融ルツボ内に導入して、該溶融ルツボ内の圧力を前記目標圧力まで上昇させるようにしたので、溶融ルツボ内の空間容積や配管容積に対して圧力容器の容積を十分に大きくすれば、圧力容器を用いた簡単な構成で、溶融ルツボ内の圧力を安定して目標圧力に維持することができる。 In order to achieve the above object, the present invention provides a melting crucible in a high-temperature heating furnace, and a downcomer is connected vertically downward to the lower part of the high-temperature heating furnace so as to connect the melting crucible in the high-temperature heating furnace. The space immediately below is communicated with the downcomer, and the silicon raw material accommodated in the melting crucible is heated and melted to form a silicon melt, and the silicon melt is supplied from a nozzle provided at the bottom of the melting crucible. By discharging into the downcomer, the silicon melt droplet granulated in the downcomer is dropped, and the silicon melt droplet is cooled by heat dissipation during the fall to produce crystal silicon to produce granular silicon The atmospheric gas is introduced into the downcomer to adjust the pressure in the downcomer to a predetermined negative pressure, and the atmospheric gas is also introduced into the molten crucible to reduce the pressure in the molten crucible to the pressure in the downcomer. Remote adjusted to a predetermined pressure by a high pressure, it has a first feature in that the production of granular silicon extruding the molten silicon in the molten crucible from the nozzle by a pressure difference of the melting crucible and out, furthermore, A pressure vessel for storing the atmospheric gas supplied from the atmospheric gas supply source at the same pressure as the target pressure of the melting crucible, and a valve provided in a pipe communicating the pressure vessel and the melting crucible, In a state where the pressure in the melting crucible is reduced, the valve is opened to allow the pressure vessel and the melting crucible to communicate, thereby introducing a part of the atmospheric gas in the pressure vessel into the melting crucible and A second feature is that the pressure in the crucible is increased to the target pressure. In this way, the pressure difference between the inside and outside of the melting crucible is reduced by making the pressure in the downcomer pipe negative and reducing the heat dissipation of the silicon melt droplets falling in the downcomer pipe. Can be pushed out of the nozzle and dropped into the downcomer, and the cooling rate by the heat radiation of the silicon melt droplets falling through the downcomer can be effectively slowed down, producing large-grain granular silicon at low cost can do. In addition , a pressure vessel for storing the atmospheric gas supplied from the atmospheric gas supply source at the same pressure as the target pressure of the molten crucible, and a valve provided in a pipe for communicating the pressure vessel and the molten crucible are provided. Then, by opening the valve in a state where the inside of the melting crucible is decompressed and communicating the pressure vessel and the melting crucible, a part of the atmospheric gas in the pressure vessel is introduced into the melting crucible, since the pressure of the molten crucible was set to be increased to the target pressure, if a sufficiently large volume of the pressure vessel with respect to the space volume and the piping volume of the melt in the crucible, with a simple structure using the pressure vessel The pressure in the melting crucible can be stably maintained at the target pressure.

以下、本発明を実施するための最良の形態を具体化した3つの実施例1〜3を説明する。   Hereinafter, three Examples 1 to 3 embodying the best mode for carrying out the present invention will be described.

本発明の実施例1を図1及び図2に基づいて説明する。
まず、粒状シリコン製造装置の構成を説明する。
高温加熱炉11の炉心部には、黒鉛等で円筒状に形成された炉心管12が鉛直方向に設けられ、この炉心管12の外周囲に、例えば抵抗加熱ヒータ、高周波誘導加熱コイル等のヒータ14が設けられている。炉心管12内には、その上方から円筒容器状の溶融ルツボ13が挿入され、該溶融ルツボ13の底部が炉心管12の中央部付近に位置した状態で固定されている。この溶融ルツボ13は、その内部で溶融したシリコン融液17に不純物が混入するのを防ぐために高純度の石英で形成され、この溶融ルツボ13と炉心管12の内周面(炉心内周壁)との間に円筒状の隙間が形成されている。そして、溶融ルツボ13の底部には、シリコン融液17を線状に連続的に吐出するためのノズル15が下向きに設けられている。例えば、直径約1mmの粒状シリコンを作製する場合は、ノズル15の直径は0.3〜0.5mmに設定すると良い。
A first embodiment of the present invention will be described with reference to FIGS.
First, the configuration of the granular silicon manufacturing apparatus will be described.
A core tube 12 formed in a cylindrical shape with graphite or the like is provided in the core portion of the high-temperature heating furnace 11 in a vertical direction, and a heater such as a resistance heater or a high-frequency induction heating coil is provided around the core tube 12. 14 is provided. A cylindrical crucible-shaped melting crucible 13 is inserted into the core tube 12 from above, and the bottom of the melting crucible 13 is fixed in a state of being located near the center of the core tube 12. The molten crucible 13 is formed of high-purity quartz to prevent impurities from being mixed into the silicon melt 17 melted therein, and the molten crucible 13 and the inner peripheral surface (core inner peripheral wall) of the core tube 12 and A cylindrical gap is formed between the two. A nozzle 15 is provided at the bottom of the melting crucible 13 downward to continuously discharge the silicon melt 17 in a linear shape. For example, when producing granular silicon having a diameter of about 1 mm, the diameter of the nozzle 15 is preferably set to 0.3 to 0.5 mm.

高温加熱炉11の下部には、降下管16が鉛直下向きに連結されている。この降下管16内には、雰囲気ガスとしてアルゴン、ヘリウム等の不活性ガスが充填されている。この場合、アルゴンとヘリウムでは、熱伝達係数が相違するので、落下中のシリコン融液滴の放熱による冷却速度に違いが生じる。従って、降下管16内の雰囲気ガスとしてアルゴンとヘリウムを使い分けたり、両者の混合割合を調整することにより、シリコン融液滴の冷却速度を調整することができる。   A downcomer 16 is connected to the lower part of the high-temperature heating furnace 11 vertically downward. The downcomer 16 is filled with an inert gas such as argon or helium as an atmospheric gas. In this case, since the heat transfer coefficients are different between argon and helium, there is a difference in the cooling rate due to heat radiation of the falling silicon melt droplet. Therefore, the cooling rate of the silicon melt droplets can be adjusted by properly using argon and helium as the atmospheric gas in the downcomer 16 or adjusting the mixing ratio of the two.

尚、降下管16の下端には、落下してくる粒状シリコンを回収する回収容器18(図2参照)が設けられ、この回収容器18内にも降下管16と同じ雰囲気ガスが充填されている。この回収容器18内には、粒状シリコンを冷却するための冷却油(シリコンオイル、焼き入れ油等)を貯溜するようにしても良いが、冷却油を貯溜しなくても良い。   Note that a lower end of the downcomer 16 is provided with a recovery container 18 (see FIG. 2) for recovering falling granular silicon, and the same atmospheric gas as the downcomer 16 is also filled in the recovery container 18. . Cooling oil (silicon oil, quenching oil, etc.) for cooling the granular silicon may be stored in the collection container 18, but the cooling oil need not be stored.

次に、雰囲気ガスの導入・排出システムの構成を図2を用いて説明する。
高温加熱炉11の下部(又は降下管16の上部)には、高温加熱炉11の炉心管12内及び降下管16内を真空引きするための主排気口21が設けられ、この主排気口21に接続された主排気管22には、主排気弁23を介して真空ポンプ24が接続されている。また、高温加熱炉11の下部(又は降下管16)には、雰囲気ガスを導入するガス導入口25が設けられ、高温加熱炉11の上部にガス排出口26が設けられている。
Next, the configuration of the atmospheric gas introduction / discharge system will be described with reference to FIG.
A main exhaust port 21 for evacuating the inside of the core tube 12 and the downcomer tube 16 of the high temperature heating furnace 11 is provided in the lower part of the high temperature heating furnace 11 (or the upper part of the downcomer pipe 16). A vacuum pump 24 is connected via a main exhaust valve 23 to the main exhaust pipe 22 connected to. Further, a gas introduction port 25 for introducing atmospheric gas is provided in the lower part (or downcomer 16) of the high temperature heating furnace 11, and a gas discharge port 26 is provided in the upper part of the high temperature heating furnace 11.

雰囲気ガス供給源であるガスボンベ27からレギュレータR1→ガス導入流量調整弁29→電磁バルブV6→ガス導入口25の経路で、雰囲気ガスが高温加熱炉11内及び降下管16内に導入される。この場合、溶融ルツボ13底部のノズル15から吐出された高温のシリコン融液滴が雰囲気ガスと反応することを避けるために、雰囲気ガスとして、アルゴン又はヘリウム等の不活性ガスが用いられている。   An atmosphere gas is introduced into the high-temperature heating furnace 11 and the downcomer pipe 16 from a gas cylinder 27 serving as an atmosphere gas supply source through a path of regulator R 1 → gas introduction flow rate adjustment valve 29 → electromagnetic valve V 6 → gas introduction port 25. In this case, an inert gas such as argon or helium is used as the atmospheric gas in order to prevent the hot silicon melt droplets discharged from the nozzle 15 at the bottom of the melting crucible 13 from reacting with the atmospheric gas.

また、ガス導入流量調整弁29と電磁バルブV6との直列回路には、電磁バルブV5が並列に設けられ、ガス導入口25の近傍には、降下管16内の雰囲気ガスの圧力を計測する圧力計32が設けられている。一方、ガス排出口26は、電磁バルブV7を介して外気(大気)に連通されている。   In addition, an electromagnetic valve V5 is provided in parallel in the series circuit of the gas introduction flow rate adjustment valve 29 and the electromagnetic valve V6, and in the vicinity of the gas introduction port 25, a pressure for measuring the pressure of the atmospheric gas in the downcomer 16 is measured. A total of 32 is provided. On the other hand, the gas discharge port 26 communicates with the outside air (atmosphere) through the electromagnetic valve V7.

本実施例1では、ガスボンベ27から吐出する雰囲気ガスの一部を、レギュレータR1→レギュレータR2→電磁バルブV1→電磁バルブV2の経路で、溶融ルツボ13内に導入するようになっている。   In the first embodiment, a part of the atmospheric gas discharged from the gas cylinder 27 is introduced into the melting crucible 13 through the path of regulator R1, regulator R2, electromagnetic valve V1, and electromagnetic valve V2.

また、溶融ルツボ13内は、電磁バルブV3を介して圧力容器39に接続され、この圧力容器39には、その内圧を計測する圧力計40が設けられている。更に、2つの電磁バルブV1,V2の間が電磁バルブV4を介してガス導入口25側に接続され、降下管16内を真空ポンプ24により減圧・真空引きする際に、電磁バルブV1,V5,V6,V7を閉鎖して他の電磁バルブV2,V3,V4と主排気弁23を開放すると、真空ポンプ24によって溶融ルツボ13内と圧力容器39内を同時に減圧・真空引きできるようになっている。   The inside of the melting crucible 13 is connected to a pressure vessel 39 via an electromagnetic valve V3, and the pressure vessel 39 is provided with a pressure gauge 40 for measuring the internal pressure. Further, the two electromagnetic valves V1 and V2 are connected to the gas inlet 25 side via the electromagnetic valve V4. When the inside of the downcomer 16 is depressurized and evacuated by the vacuum pump 24, the electromagnetic valves V1, V5, When V6 and V7 are closed and the other electromagnetic valves V2, V3 and V4 and the main exhaust valve 23 are opened, the inside of the melting crucible 13 and the inside of the pressure vessel 39 can be simultaneously decompressed and evacuated by the vacuum pump 24. .

次に、上記構成の粒状シリコン製造装置を用いて粒状シリコンを製造する方法を説明する。まず、準備作業として、電磁バルブV1,V5,V6,V7を閉鎖して他の電磁バルブV2,V3,V4と主排気弁23を開放した状態で、真空ポンプ24を作動させることで、降下管16内を真空引きすると同時に、シリコン原料が収容された溶融ルツボ13内と圧力容器39内を真空引きする。そして、これらを十分に真空引きした時点で、主排気弁23を閉鎖して真空ポンプ24による真空引きを停止した後、電磁バルブV1,V5を開放して(電磁バルブV6も開放しても良い)、ガスボンベ27から吐出される雰囲気ガスを降下管16内に充填すると同時に、溶融ルツボ13内と圧力容器39内にも雰囲気ガスを充填する。これにより、降下管16内と溶融ルツボ13内と圧力容器39内を大気圧相当の雰囲気ガスで満たしておく。   Next, a method of manufacturing granular silicon using the granular silicon manufacturing apparatus having the above configuration will be described. First, as a preparatory work, the downcomer pipe is operated by operating the vacuum pump 24 with the electromagnetic valves V1, V5, V6, V7 closed and the other electromagnetic valves V2, V3, V4 and the main exhaust valve 23 opened. At the same time that the inside of 16 is evacuated, the inside of the melting crucible 13 containing the silicon raw material and the inside of the pressure vessel 39 are evacuated. When these are sufficiently evacuated, the main exhaust valve 23 is closed and evacuation by the vacuum pump 24 is stopped, and then the electromagnetic valves V1 and V5 are opened (the electromagnetic valve V6 may also be opened). ), The atmospheric gas discharged from the gas cylinder 27 is filled into the downcomer 16, and at the same time, the atmospheric gas is filled into the melting crucible 13 and the pressure vessel 39. Thereby, the inside of the downcomer 16, the melting crucible 13, and the pressure vessel 39 are filled with the atmospheric gas corresponding to the atmospheric pressure.

この後、電磁バルブV1,V5,V6,V7を閉鎖して、他の電磁バルブV2,V3,V4と主排気弁23を開放した状態で、真空ポンプ24を作動させることで、降下管16内を減圧すると同時に溶融ルツボ13内と圧力容器39内を減圧する。これにより、圧力容器39内の圧力が目標負圧P1(=シリコン融液吐出時の降下管16内の目標負圧P3+差圧ΔP±補正値α)まで減圧されたことが圧力計40により検出された時点で、圧力容器39側の電磁バルブV3を閉鎖して圧力容器39内の圧力を目標負圧P1に保持する。この後も、引き続き真空ポンプ24を作動させて降下管16内を減圧する。この場合、シリコン融液吐出時の降下管16内の目標負圧P3は、大気圧よりかなり低い圧力に設定され、差圧ΔPは、溶融ルツボ13内のシリコン融液17をノズル15から押し出すための溶融ルツボ13内外の目標差圧に設定され、補正値αは、圧力容器39の内容積、溶融ルツボ13の内容積及び管路の内容積に応じて設定される。   Thereafter, the electromagnetic valves V1, V5, V6, V7 are closed, and the vacuum pump 24 is operated in a state where the other electromagnetic valves V2, V3, V4 and the main exhaust valve 23 are opened. At the same time, the inside of the melting crucible 13 and the inside of the pressure vessel 39 are decompressed. As a result, the pressure gauge 40 detects that the pressure in the pressure vessel 39 has been reduced to the target negative pressure P1 (= target negative pressure P3 in the downcomer 16 when discharging the silicon melt + differential pressure ΔP ± correction value α). At that time, the electromagnetic valve V3 on the pressure vessel 39 side is closed to maintain the pressure in the pressure vessel 39 at the target negative pressure P1. Thereafter, the vacuum pump 24 is continuously operated to depressurize the downcomer 16. In this case, the target negative pressure P3 in the downcomer 16 when discharging the silicon melt is set to a pressure considerably lower than the atmospheric pressure, and the differential pressure ΔP pushes the silicon melt 17 in the melting crucible 13 from the nozzle 15. The correction pressure α is set according to the internal volume of the pressure vessel 39, the internal volume of the molten crucible 13, and the internal volume of the pipe line.

その後、降下管16内の圧力がシリコン融液吐出時の目標負圧P3まで減圧されたことが圧力計32により検出された時点で、電磁バルブV2,V4と主排気弁23を閉鎖して、真空ポンプ2による降下管16内の減圧を終了し、降下管16内の圧力をシリコン融液吐出時の目標負圧P3に保持する(この機能が特許請求の範囲でいう降下管圧力調整手段に相当する)。   Thereafter, when the pressure gauge 32 detects that the pressure in the downcomer 16 has been reduced to the target negative pressure P3 when discharging the silicon melt, the electromagnetic valves V2, V4 and the main exhaust valve 23 are closed, The pressure reduction in the downcomer 16 by the vacuum pump 2 is finished, and the pressure in the downcomer 16 is maintained at the target negative pressure P3 when discharging the silicon melt (this function is used as the downcomer pressure adjusting means in the claims). Equivalent to).

この後、高温加熱炉11のヒータ14を発熱させて溶融ルツボ13内のシリコン原料を加熱溶融してシリコン融液17を作る。これにより、溶融ルツボ13内のシリコン融液17の温度が融点より十分高くなった時点で、圧力容器39側の電磁バルブV3を開放して圧力容器39内の雰囲気ガスを溶融ルツボ13内に導入して、溶融ルツボ13内の圧力を目標負圧P1(=シリコン融液吐出時の降下管16内の目標負圧P3+差圧ΔP)まで上昇させて、溶融ルツボ13内の圧力を降下管16内の負圧P3よりも所定の差圧ΔP分だけ高くする(この機能が特許請求の範囲でいう溶融ルツボ圧力調整手段に相当する)。これにより、溶融ルツボ13内のシリコン融液17を該溶融ルツボ13内外の差圧ΔPによって溶融ルツボ13の底部のノズル15から線状に連続的に流れるように吐出させる。   Thereafter, the heater 14 of the high temperature heating furnace 11 is heated to heat and melt the silicon raw material in the melting crucible 13 to make a silicon melt 17. As a result, when the temperature of the silicon melt 17 in the melting crucible 13 becomes sufficiently higher than the melting point, the electromagnetic valve V3 on the pressure vessel 39 side is opened and the atmospheric gas in the pressure vessel 39 is introduced into the melting crucible 13. Then, the pressure in the melting crucible 13 is increased to the target negative pressure P1 (= target negative pressure P3 in the descending pipe 16 when discharging the silicon melt + differential pressure ΔP), and the pressure in the melting crucible 13 is lowered. It is made higher than the negative pressure P3 by a predetermined differential pressure ΔP (this function corresponds to the melting crucible pressure adjusting means in the claims). Accordingly, the silicon melt 17 in the melting crucible 13 is discharged so as to continuously flow linearly from the nozzle 15 at the bottom of the melting crucible 13 by the pressure difference ΔP inside and outside the melting crucible 13.

このようにして、ノズル15から吐出した線状のシリコン融液17は、降下管16内を自由落下するが、その際に、重力加速度によって径が細くなり、最終的には、シリコン融液17の表面張力と重力加速度とによって生じるシリコン融液17の揺らぎによって細断されて粒状化され、小径のシリコン融液滴となって降下管16内を自由落下する。このシリコン融液滴が落下しながら放熱することで、シリコン結晶が成長して粒状シリコンが作られ、回収容器18内に回収される。この粒状シリコンの製造工程中は、全ての電磁バルブV1〜V7と主排気弁23を閉鎖した状態に維持し、溶融ルツボ13内の圧力を目標負圧P1(=シリコン融液吐出時の降下管16内の目標負圧P3+差圧ΔP)に保持し、且つ、降下管16内の圧力をシリコン融液吐出時の目標負圧P3に保持する。   In this way, the linear silicon melt 17 discharged from the nozzle 15 freely falls in the downcomer 16, but at that time, the diameter is reduced by the gravitational acceleration, and finally the silicon melt 17. The silicon melt 17 is crushed and granulated by the fluctuation of the silicon melt 17 caused by the surface tension and the gravitational acceleration, and the silicon melt droplets of small diameter are freely dropped in the downcomer 16. The silicon melt droplets dissipate heat while dropping, so that silicon crystals grow to form granular silicon, which is collected in the collection container 18. During the manufacturing process of the granular silicon, all the electromagnetic valves V1 to V7 and the main exhaust valve 23 are kept closed, and the pressure in the melting crucible 13 is set to the target negative pressure P1 (= the downcomer when discharging the silicon melt). 16 is maintained at the target negative pressure P3 + differential pressure ΔP), and the pressure in the downcomer 16 is maintained at the target negative pressure P3 when the silicon melt is discharged.

以上説明した本実施例1によれば、降下管16内に雰囲気ガスを導入して該降下管16内の圧力を所定負圧P3に調整すると共に、溶融ルツボ13内にも雰囲気ガスを導入して該溶融ルツボ13内の圧力を該降下管16内の負圧P3よりも所定圧力ΔP高い負圧P1に調整し、該溶融ルツボ13内外の圧力差ΔPによって該溶融ルツボ13内のシリコン融液17をノズル15から押し出して粒状シリコンを製造するようにしたので、降下管16内の圧力を負圧にして、降下管16内を落下するシリコン融液滴の放熱性を低下させながら、溶融ルツボ13内で加熱溶融したシリコン融液17を溶融ルツボ13内外の圧力差によってノズル15より押し出して降下管16内に落下させることができ、降下管16内を落下するシリコン融液滴の放熱による冷却速度を効果的に遅くすることができて、大きな結晶粒の粒状シリコンを低コストで製造することができる。   According to the first embodiment described above, the atmospheric gas is introduced into the downcomer 16 to adjust the pressure in the downcomer 16 to the predetermined negative pressure P3, and the atmospheric gas is also introduced into the melting crucible 13. Then, the pressure in the melting crucible 13 is adjusted to a negative pressure P1 higher than the negative pressure P3 in the downcomer pipe 16 by a predetermined pressure ΔP, and the silicon melt in the melting crucible 13 is adjusted by the pressure difference ΔP inside and outside the melting crucible 13. Since the granular silicon is produced by extruding the nozzle 17 from the nozzle 15, the pressure in the downcomer pipe 16 is set to a negative pressure, and the heat dissipation of the silicon melt droplets falling in the downcomer pipe 16 is reduced, while the melting crucible is The silicon melt 17 heated and melted in 13 can be pushed out of the nozzle 15 by the pressure difference between the inside and outside of the melting crucible 13 and dropped into the downcomer 16 to dissipate the silicon melt droplet falling in the downcomer 16. Accordingly, the cooling rate can be effectively reduced, and granular silicon with large crystal grains can be produced at low cost.

しかも、本実施例1では、ガスボンベ27から供給される雰囲気ガスを溶融ルツボ13の目標負圧P1と同じ圧力で貯蔵する圧力容器39と、この圧力容器39と溶融ルツボ13とを連通させる配管中に設けられた電磁バルブV3とを設け、溶融ルツボ13内を減圧した状態で電磁バルブV3を開放して圧力容器39と溶融ルツボ13とを連通させることで、圧力容器39内の雰囲気ガスの一部を溶融ルツボ13内に導入して、該溶融ルツボ13内の圧力を前記目標負圧P1まで上昇させるように構成したので、溶融ルツボ13内の空間容積や配管容積に対して圧力容器39の容積を十分に大きくすれば、圧力容器39を用いた簡単な構成で、溶融ルツボ13内の圧力を安定して目標負圧P1に維持することができる。   Moreover, in the first embodiment, the pressure vessel 39 that stores the atmospheric gas supplied from the gas cylinder 27 at the same pressure as the target negative pressure P1 of the melting crucible 13 and the piping that connects the pressure vessel 39 and the melting crucible 13 are connected. And the electromagnetic valve V3 is opened in a state where the inside of the melting crucible 13 is depressurized to allow the pressure vessel 39 and the melting crucible 13 to communicate with each other. Is introduced into the melting crucible 13 and the pressure in the melting crucible 13 is increased to the target negative pressure P1. If the volume is sufficiently large, the pressure in the melting crucible 13 can be stably maintained at the target negative pressure P1 with a simple configuration using the pressure vessel 39.

上記実施例1では、高温加熱炉11上部のガス排出口26を電磁バルブV7を介して外気(大気)に連通させるようにしたが、図3に示す本発明の実施例2では、ガス排出口26を電磁バルブV7→ガス排出流量調整弁41→電磁バルブV8の経路で真空ポンプ42に接続し、ガス排出口26からの雰囲気ガス排出流量をガス排出流量調整弁41で調整できるようにしている。   In the first embodiment, the gas discharge port 26 at the top of the high-temperature heating furnace 11 is communicated with the outside air (atmosphere) via the electromagnetic valve V7. However, in the second embodiment of the present invention shown in FIG. 26 is connected to the vacuum pump 42 through the path of the electromagnetic valve V7 → the gas discharge flow rate adjustment valve 41 → the electromagnetic valve V8 so that the atmospheric gas discharge flow rate from the gas discharge port 26 can be adjusted by the gas discharge flow rate adjustment valve 41. .

更に、本実施例2では、圧力容器39内の圧力を電磁バルブV9を介して2つの流量調整弁43,44で調整できるようにしている。この場合、一方の流量調整弁43は、レギュレータR1を介してガスボンベ27に接続され、他方の流量調整弁44は、真空ポンプ42に接続されている。   Furthermore, in the second embodiment, the pressure in the pressure vessel 39 can be adjusted by the two flow rate adjusting valves 43 and 44 via the electromagnetic valve V9. In this case, one flow rate adjustment valve 43 is connected to the gas cylinder 27 via the regulator R 1, and the other flow rate adjustment valve 44 is connected to the vacuum pump 42.

例えば、粒状シリコンの製造工程中に圧力容器39内の圧力が目標圧力よりも低下したときには、真空ポンプ42側の流量調整弁44を閉鎖して電磁バルブV9を開放し、ガスボンベ27から雰囲気ガスを流量調整弁43で流量調整しながら圧力容器39内に流入させる。これにより、圧力容器39内の圧力が目標圧力まで上昇したことが圧力計40により検出された時点で、電磁バルブV9を閉鎖する。また、圧力容器39内の圧力が目標圧力を越えて高くなり過ぎた場合は、ガスボンベ27側の流量調整弁43を閉鎖して電磁バルブV9を開放し、真空ポンプ42によって圧力容器39内の雰囲気ガスを流量調整弁44で流量調整しながら吸引する。これにより、圧力容器39内の圧力が目標圧力P1まで低下したことが圧力計40により検出された時点で、電磁バルブV9を閉鎖して、真空ポンプ42を停止させる。その他の構成は、前記実施例1と同じである。   For example, when the pressure in the pressure vessel 39 falls below the target pressure during the manufacturing process of granular silicon, the flow rate adjustment valve 44 on the vacuum pump 42 side is closed and the electromagnetic valve V9 is opened, and the atmospheric gas is discharged from the gas cylinder 27. The flow rate is adjusted by the flow rate adjusting valve 43 to flow into the pressure vessel 39. Thus, when the pressure gauge 40 detects that the pressure in the pressure vessel 39 has increased to the target pressure, the electromagnetic valve V9 is closed. When the pressure in the pressure vessel 39 exceeds the target pressure and becomes too high, the flow rate adjustment valve 43 on the gas cylinder 27 side is closed and the electromagnetic valve V9 is opened, and the atmosphere in the pressure vessel 39 is opened by the vacuum pump 42. Gas is sucked while the flow rate is adjusted by the flow rate adjusting valve 44. Thereby, when the pressure gauge 40 detects that the pressure in the pressure vessel 39 has decreased to the target pressure P1, the electromagnetic valve V9 is closed and the vacuum pump 42 is stopped. Other configurations are the same as those of the first embodiment.

以上説明した本実施例2では、粒状シリコンの製造工程中に、圧力容器39内の圧力(溶融ルツボ13内の圧力)が目標圧力からずれたときに、圧力容器39内の圧力(溶融ルツボ13内の圧力)を電磁バルブV9を介して2つの流量調整弁43,44で調整できる利点がある。   In the second embodiment described above, when the pressure in the pressure vessel 39 (pressure in the melting crucible 13) deviates from the target pressure during the production process of granular silicon, the pressure in the pressure vessel 39 (melting crucible 13). The internal pressure) can be adjusted by the two flow rate adjusting valves 43 and 44 via the electromagnetic valve V9.

図3に示す本発明に関連する参考例としての実施例3では、上記実施例2(図3)で用いた圧力容器39と電磁バルブV9を省略し、圧力計40で溶融ルツボ13内の圧力を検出する構成としている。その他の構成は、上記実施例2(図3)と同じである。 In the third embodiment as a reference example related to the present invention shown in FIG. 3, the pressure vessel 39 and the electromagnetic valve V9 used in the second embodiment (FIG. 3) are omitted, and the pressure in the melting crucible 13 is measured by the pressure gauge 40. It is set as the structure which detects. Other configurations are the same as those of the second embodiment (FIG. 3).

本実施例3では、前記実施例1と同様の方法で、降下管16内と溶融ルツボ13内と圧力容器39内を大気圧相当の雰囲気ガスで満たした後、電磁バルブV1,V3,V5,V6,V7を閉鎖して、電磁バルブV2,V4と主排気弁23を開放した状態で、真空ポンプ24を作動させることで、降下管16内を減圧すると同時に溶融ルツボ13内を減圧する。これにより、降下管16内の圧力がシリコン融液吐出時の目標負圧P3まで減圧されたことが圧力計32により検出された時点で、電磁バルブV2,V4と主排気弁23を閉鎖して、真空ポンプ2による降下管16内と溶融ルツボ13内の減圧を終了し、降下管16内と溶融ルツボ13内の圧力をシリコン融液吐出時の目標負圧P3に保持する。   In the third embodiment, the inside of the downcomer 16, the melting crucible 13, and the pressure vessel 39 are filled with atmospheric gas corresponding to atmospheric pressure in the same manner as in the first embodiment, and then the electromagnetic valves V 1, V 3, V 5 are filled. By operating the vacuum pump 24 with the electromagnetic valves V2 and V4 and the main exhaust valve 23 opened while the V6 and V7 are closed, the inside of the downcomer 16 is decompressed and at the same time the interior of the melting crucible 13 is decompressed. As a result, when the pressure gauge 32 detects that the pressure in the downcomer 16 has been reduced to the target negative pressure P3 when discharging the silicon melt, the electromagnetic valves V2, V4 and the main exhaust valve 23 are closed. Then, the pressure reduction in the downcomer 16 and the melting crucible 13 by the vacuum pump 2 is finished, and the pressure in the downcomer 16 and the melting crucible 13 is maintained at the target negative pressure P3 when discharging the silicon melt.

この後、高温加熱炉11のヒータ14を発熱させて溶融ルツボ13内のシリコン原料を加熱溶融してシリコン融液17を作る。これにより、溶融ルツボ13内のシリコン融液17の温度が融点より十分高くなった時点で、電磁バルブV3を開放し、ガスボンベ27から供給される雰囲気ガスを流量調整弁43で流量調整しながら溶融ルツボ13内に導入して、溶融ルツボ13内の圧力を上昇させ、溶融ルツボ13内の圧力が目標負圧P1(=シリコン融液吐出時の降下管16内の目標負圧P3+差圧ΔP)まで上昇したことが圧力計40により検出された時点で、電磁バルブV3を閉鎖して溶融ルツボ13を密閉した状態にする。これにより、溶融ルツボ13内のシリコン融液17を該溶融ルツボ13内外の差圧ΔPによって溶融ルツボ13の底部のノズル15から線状に連続的に流れるように吐出させて、粒状シリコンを製造する。   Thereafter, the heater 14 of the high temperature heating furnace 11 is heated to heat and melt the silicon raw material in the melting crucible 13 to make a silicon melt 17. Thereby, when the temperature of the silicon melt 17 in the melting crucible 13 becomes sufficiently higher than the melting point, the electromagnetic valve V3 is opened, and the atmospheric gas supplied from the gas cylinder 27 is melted while adjusting the flow rate by the flow rate adjusting valve 43. The pressure in the melting crucible 13 is introduced into the crucible 13 and the pressure in the melting crucible 13 is increased so that the pressure in the melting crucible 13 is the target negative pressure P1 (= target negative pressure P3 in the downcomer 16 when discharging the silicon melt + differential pressure ΔP). When the pressure gauge 40 detects that the pressure has risen, the electromagnetic valve V3 is closed and the melting crucible 13 is sealed. Thereby, the silicon melt 17 in the melting crucible 13 is discharged so as to continuously flow linearly from the nozzle 15 at the bottom of the melting crucible 13 by the pressure difference ΔP inside and outside the melting crucible 13 to produce granular silicon. .

以上説明した本実施例3では、大型の圧力容器39が不要になるため、製造装置を小型化できる利点がある。
尚、上記各実施例1〜3において、ガス排出口26とそれに接続されたバルブ類(電磁バルブV7等)を省略しても良い。
The third embodiment described above has an advantage that the manufacturing apparatus can be downsized because the large pressure vessel 39 is not required.
In each of the first to third embodiments, the gas discharge port 26 and the valves connected thereto (such as the electromagnetic valve V7) may be omitted.

本発明の実施例1の高温加熱炉と降下管上部を示す縦断断面図である。It is a longitudinal cross-sectional view which shows the high temperature heating furnace and downcomer upper part of Example 1 of this invention. 本発明の実施例1の粒状シリコン製造全体のシステム構成を説明する図である。It is a figure explaining the system configuration | structure of the whole granular silicon manufacture of Example 1 of this invention. 本発明の実施例2の粒状シリコン製造全体のシステム構成を説明する図である。It is a figure explaining the system configuration | structure of the whole granular silicon manufacture of Example 2 of this invention. 本発明に関連する参考例としての実施例3の粒状シリコン製造全体のシステム構成を説明する図である。It is a figure explaining the system configuration | structure of the whole granular silicon manufacture of Example 3 as a reference example relevant to this invention.

符号の説明Explanation of symbols

11…高温加熱炉、12…炉心管、13…溶融ルツボ、14…ヒータ、15…ノズル、16…降下管、17…シリコン融液、21…主排気口、23…主排気弁、24…真空ポンプ、25…ガス導入口、26…ガス排出口、27…ガスボンベ(雰囲気ガス供給源)、29…ガス導入流量調整弁、32…圧力計、33…逆止弁、39…圧力容器、40…圧力計、41…ガス排出流量調整弁、42…真空ポンプ、43,44…流量調整弁、V1〜V9…電磁バルブ、R1,R2…レギュレータ   DESCRIPTION OF SYMBOLS 11 ... High temperature heating furnace, 12 ... Core tube, 13 ... Molten crucible, 14 ... Heater, 15 ... Nozzle, 16 ... Downcomer, 17 ... Silicon melt, 21 ... Main exhaust port, 23 ... Main exhaust valve, 24 ... Vacuum Pump, 25 ... Gas inlet, 26 ... Gas outlet, 27 ... Gas cylinder (atmosphere gas supply source), 29 ... Gas introduction flow rate adjustment valve, 32 ... Pressure gauge, 33 ... Check valve, 39 ... Pressure vessel, 40 ... Pressure gauge, 41 ... Gas discharge flow rate adjustment valve, 42 ... Vacuum pump, 43, 44 ... Flow rate adjustment valve, V1 to V9 ... Solenoid valve, R1, R2 ... Regulator

Claims (1)

高温加熱炉内に溶融ルツボを設置すると共に、前記高温加熱炉の下部に降下管を鉛直下向きに連結して、前記高温加熱炉内の前記溶融ルツボ直下の空間を前記降下管に連通させ、前記溶融ルツボ内に収容したシリコン原料を加熱して溶融してシリコン融液を作り、該シリコン融液を、前記溶融ルツボの底部に設られたノズルより前記降下管内に吐出させることで、該降下管内で粒状化したシリコン融液滴を落下させ、その落下中に該シリコン融液滴を放熱により冷却することで結晶成長させて粒状シリコンを製造する粒状シリコンの製造装置において、
前記降下管内に雰囲気ガスを導入して該降下管内の圧力を所定負圧に調整する降下管圧力調整手段と、
前記溶融ルツボ内に雰囲気ガスを導入して該溶融ルツボ内の圧力を前記降下管内の圧力よりも所定圧力だけ高い圧力(以下「目標圧力」という)に調整する溶融ルツボ圧力調整手段と
を備え
前記溶融ルツボ圧力調整手段は、雰囲気ガス供給源から供給される雰囲気ガスを前記溶融ルツボの目標圧力と同じ圧力で貯蔵する圧力容器と、この圧力容器と前記溶融ルツボとを連通させる配管中に設けられたバルブとを備え、前記溶融ルツボ内を減圧した状態で前記バルブを開放して前記圧力容器と前記溶融ルツボとを連通させることで、前記圧力容器内の雰囲気ガスの一部を前記溶融ルツボ内に導入して、該溶融ルツボ内の圧力を前記目標圧力まで上昇させることを特徴とする粒状シリコンの製造装置。
A melting crucible is installed in the high temperature heating furnace, a downcomer pipe is connected vertically downward to the lower part of the high temperature heating furnace, and a space directly below the melting crucible in the high temperature heating furnace is communicated with the downcomer pipe, A silicon raw material contained in the melting crucible is heated and melted to form a silicon melt, and the silicon melt is discharged into the downcomer pipe from a nozzle provided at the bottom of the molten crucible. In the granular silicon production apparatus for producing granular silicon by dropping the silicon melt droplet granulated in step, and crystal growth by cooling the silicon melt droplet by heat radiation during the fall,
Downcomer pressure adjusting means for introducing atmospheric gas into the downcomer and adjusting the pressure in the downcomer to a predetermined negative pressure;
A melting crucible pressure adjusting means for introducing atmospheric gas into the melting crucible and adjusting the pressure in the melting crucible to a pressure higher than the pressure in the downcomer by a predetermined pressure (hereinafter referred to as “target pressure”) ;
The molten crucible pressure adjusting means is provided in a pressure vessel for storing the atmospheric gas supplied from an atmospheric gas supply source at the same pressure as the target pressure of the molten crucible, and in a pipe that communicates the pressure vessel and the molten crucible. And opening the valve in a state where the inside of the melting crucible is decompressed to allow the pressure vessel and the melting crucible to communicate with each other, so that a part of the atmospheric gas in the pressure vessel is allowed to pass through the melting crucible. An apparatus for producing granular silicon, which is introduced into the molten crucible and raises the pressure in the molten crucible to the target pressure .
JP2005023067A 2005-01-31 2005-01-31 Granular silicon manufacturing method and manufacturing apparatus Expired - Fee Related JP4475524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023067A JP4475524B2 (en) 2005-01-31 2005-01-31 Granular silicon manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023067A JP4475524B2 (en) 2005-01-31 2005-01-31 Granular silicon manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2006206409A JP2006206409A (en) 2006-08-10
JP4475524B2 true JP4475524B2 (en) 2010-06-09

Family

ID=36963654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023067A Expired - Fee Related JP4475524B2 (en) 2005-01-31 2005-01-31 Granular silicon manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4475524B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008047881A1 (en) * 2006-10-19 2010-02-25 京セラ株式会社 Crystal silicon particle manufacturing method and crystal silicon particle manufacturing apparatus
JPWO2010073413A1 (en) * 2008-12-25 2012-05-31 学校法人 芝浦工業大学 Spherical semiconductor manufacturing equipment
CN115406234A (en) * 2022-08-30 2022-11-29 江苏江南铁合金有限公司 Water-cooling suction casting smelting equipment

Also Published As

Publication number Publication date
JP2006206409A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
CN105189834B (en) Cooldown rate control device and the ingot casting grower for including it
KR100861412B1 (en) Manufacturing equipment for poly silicon ingot
US5242531A (en) Continuous liquid silicon recharging process in czochralski crucible pulling
US20070283882A1 (en) Manufacturing equipment for polysilicon ingot
WO2016041242A1 (en) Quartz crucible used for repeatedly pulling monocrystalline silicon for multiple times and manufacturing method therefor
CN105603520B (en) A kind of high speed single-crystal growing apparatus and method
US20070051296A1 (en) Silica glass crucible with bubble-free and reduced bubble growth wall
CN101440518A (en) Apparatus for manufacturing poly crystaline silicon ingot for solar battery having door open/close device using hinge
KR101216521B1 (en) Silicon ingot growing apparatus including feed unit
KR20140096993A (en) Growth of a uniformly doped silicon ingot by doping only the initial charge
TW201500602A (en) Czochralski crucible for controlling oxygen and related methods
US8721787B2 (en) Method for manufacturing silicon single crystal
US8555674B2 (en) Quartz glass crucible for silicon single crystal pulling operation and process for manufacturing the same
EP2302109B1 (en) Crystal growing method
EP1571240B1 (en) Method for producing compound semiconductor single crystal
JP4781020B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing quartz glass crucible for pulling silicon single crystal
JP4475524B2 (en) Granular silicon manufacturing method and manufacturing apparatus
JP2009227520A (en) Single crystal manufacturing apparatus and method for the same
US7587912B2 (en) Method for producing quartz glass crucible for use in pulling silicon single crystal and quartz glass crucible produced by said method
CN113818074A (en) Device and method for preparing monocrystalline silicon by directly using granular silicon in CCZ Czochralski method
US9250014B2 (en) Vacuum storage method and device for crystalline material
JP2006206408A (en) Method of and device for producing granular silicon
KR101420840B1 (en) Method for growing sapphier single crystal
KR20140082638A (en) Cartridge reactor for production of materials via the chemical vapor deposition process
JP2006199511A (en) Crystal production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees