JP4474626B2 - solenoid valve - Google Patents

solenoid valve Download PDF

Info

Publication number
JP4474626B2
JP4474626B2 JP2000263229A JP2000263229A JP4474626B2 JP 4474626 B2 JP4474626 B2 JP 4474626B2 JP 2000263229 A JP2000263229 A JP 2000263229A JP 2000263229 A JP2000263229 A JP 2000263229A JP 4474626 B2 JP4474626 B2 JP 4474626B2
Authority
JP
Japan
Prior art keywords
mover
stator
cup
valve
shaped member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000263229A
Other languages
Japanese (ja)
Other versions
JP2001187979A (en
Inventor
勲 服部
義次 喜田
和俊 岩▼崎▲
昇 松坂
善之 村尾
正彦 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000263229A priority Critical patent/JP4474626B2/en
Priority to DE2000151614 priority patent/DE10051614B4/en
Publication of JP2001187979A publication Critical patent/JP2001187979A/en
Application granted granted Critical
Publication of JP4474626B2 publication Critical patent/JP4474626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可動子を往復移動自在に支持している電磁弁に関する。
【0002】
【従来の技術】
特開平10−38126号公報、DE19504185A1および特開平11−118062号公報に開示されているように、電磁駆動部の可動子とともに弁部材が往復移動することにより、流体流路を流れる流体流量を制御、つまり流路を開閉したり、可動子とともに弁部材を中間位置に保持し弁部材の位置により流体流量を増減する電磁弁が種々知られている。DE19504185A1および特開平11−118062号公報に開示されている電磁弁では、可動子に取り付けられたシャフトが支持されている。特開平10−38126号公報に開示されている電磁弁では、可動子自体が往復移動自在に支持されている。
【0003】
【発明が解決しようとする課題】
可動子とともに磁気回路を形成し可動子の外周側面を覆っている固定子の筒部と可動子との間のエアギャップに関しては、可動子と筒部とが接触しない範囲で極力小さくすることが可動子の吸引力を増加するために望ましい。しかし、DE19504185A1および特開平11−118062号公報に開示されている電磁弁では、可動子に取り付けられたシャフトが支持されている。シャフトを支持している支持部材と固定子の筒部とは別部材であるから、支持部材と筒部とが芯ずれを起こすと、可動子の外周側面を覆う筒部と可動子とが接触する恐れがある。したがって、芯ずれが生じても固定子の筒部が可動子と接触しないように筒部の内径を大きくする必要がある。
【0004】
固定子の筒部の内径が大きくなると筒部と可動子とのエアギャップが大きくなるので、可動子を吸引する力が減少するとともに、電磁駆動部の径が大きくなる。可動子を吸引する力を保つためにコイルの巻き数を増やすことが考えられるが、コイルの巻き数を増やすと電磁駆動部が大型化する。
【0005】
特開平10−38126号公報に開示されている電磁弁では、固定子の筒部と可動子との間に非磁性体金属製の保持スリーブを配設し、この保持スリーブが可動子を支持している。また、弁部材が弁部材用スリーブに支持されている。可動子と弁部材とが別体に形成されているので、弁部材が支持されていても固定子と可動子との芯ずれは生じない。したがって、芯ずれを吸収するために固定子の筒部の内径を大きくする必要がない。また、保持スリーブの厚みを薄くすることにより固定子の筒部と可動子との間に形成されるエアギャップを小さくできる。
【0006】
特開平10−38126号公報に開示されている電磁弁では、カップ状に形成された保持スリーブの端部である弾性変形部が固定子であるプレート内周部の先端に弾性力を加えて当接している。しかし、この弾性力による当接は弁部材側から可動子側に漏れてくる流体が、可動子を吸引する固定子の吸引部と筒部との間に形成されている間隙から保持スリーブの外側、例えばコイル側に漏れることを防止するためではない。したがって、弁部材側から漏れてくる流体が保持スリーブの外側に漏れる恐れがある。
本発明の目的は、吸引力を減少させることなく小型化可能であり、非磁性部材の外側に流体が漏れることを防止する電磁弁を提供することにある。
【0007】
【課題を解決するための手段
【0011】
本発明の請求項または記載の電磁弁は、内燃機関のバルブタイミング調整装置の油圧制御弁として用いられる電磁弁であって、流体流路を開閉する弁部材、および弁部材を収容するとともに、弁部材を操作可能な開口部が形成されているハウジングを有する弁部と、コイルと固定子と可動子とを有し、可動子の移動に応じて弁部材を移動させる電磁駆動部と、薄い非磁性部材により形成され、ハウジングの前記開口部を覆うカップ状部材であって、径方向に広がるフランジ部と、可動子を軸方向に移動可能に支持する筒部とを有する有底筒状のカップ状部材と、を備えている。そして、ハウジングは、前記開口部の周囲に径方向に広がるフランジ部を有している。カップ状部材のフランジ部とハウジングのフランジ部とは、間にシール部材を挟み、締結手段により軸方向に締付けられることによって液密に連結されている。固定子は、可動子の径方向外側で可動子と対向する第1固定子と、当該第1固定子の軸方向に位置し、可動子を軸方向のハウジング側へ吸引可能な吸引部を有する第2固定子とからなる。第1固定子と前記第2固定子とは、カップ状部材の外側に配置されている。
本発明によると、薄い非磁性部材で形成された有底筒状のカップ状部材は可動子を軸方向に移動可能に支持する筒部を有している。固定子の内周壁にカップ状部材の筒部を芯ずれなく組み付けることは容易であるから、固定子の内周壁と可動子との芯ずれを防止できる。可動子の外径に合わせ固定子の内径を極力小さくすることができるので、吸引力が減少することなく電磁弁を小型化できる。
また、カップ状部材はハウジングに液密に連結される連結部を有しハウジングの開口部を覆っている。したがって、ハウジング内の流体がカップ状部材の外側に漏れることを防止できる。
【0012】
また、本発明の請求項記載の電磁弁によると、ハウジングのフランジ部とカップ状部材のフランジ部との間にシール部材を挟み、両フランジ部を締結することにより、ハウジングとカップ状部材との間を容易にシールできる
【0013】
本発明の請求項記載の電磁弁によると、第1固定子のかしめ部がかしめることにより複数のフランジ部を軸方向に容易に締結できる
【0016】
本発明の請求項記載の電磁弁によると、連続した板状部材により第1固定子の内筒と外筒とを形成しているので、部品点数が減少する。したがって、組み付け工数が低減する。
本発明の請求項5記載の電磁弁によると、可動子は非磁性部材との摺動部に凹部を設けているので、可動子と非磁性部材との摺動部に進入した異物が凹部に収容される。可動子と非磁性部材との摺動部に進入した異物が可動子の往復移動を妨げないので、非磁性部材と摺動する可動子の抵抗が小さくなる。
本発明の請求項記載の電磁弁によると、可動子とカップ状部材との摺動部に進入した異物を凸部が凹部に集める。したがって、可動子とカップ状部材との摺動部に進入した異物が可動子の往復移動を妨げない。また、凹部の軸方向両側に形成された凸部がカップ状部材に支持されるので、凹部が形成されていても可動子が傾斜したりぶれることを防止する。
本発明の請求項7記載の電磁弁によると、可動子の往復移動方向両側に位置する空間を連通する逃がし通路を可動子に設けている。可動子の往復移動に伴い逃がし通路を流体が流通するので、可動子の往復移動が妨げられない。
本発明の請求項8記載の電磁弁によると、非磁性部材と摺動する可動子の摺動部にコーティングを施すことにより、非磁性部材と摺動する可動子の抵抗が小さくなる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を示す複数の実施例を図に基づいて説明する。
(第1実施例)
内燃機関のバルブタイミング調整装置の油圧制御弁に本発明の電磁弁を適用した第1実施例を図1に示す。図1は、電磁駆動部10に電流を供給していない状態を示している。図1の矢印A、Bは可動部材20の往復移動方向を示している。
【0018】
油圧制御弁1は、電流を供給することにより磁気吸引力を発生する電磁駆動部10、ならびに、可動部材20とともに弁部材としてのスプール40が往復移動することにより、遅角油圧室65および進角油圧室67に供給する作動油量と、遅角油圧室65および進角油圧室67から排出する作動油量とを調整する弁部としてのスプール制御弁30からなる。電磁駆動部10のヨーク11とスプール制御弁30のハウジングとしてのスリーブ31とはかしめ固定されている。
【0019】
電磁駆動部10は、第1固定子としてのヨーク11、第2固定子としての固定コア12、ボビン15、ボビン15に巻回されたコイル16、可動部材20および非磁性部材25を有している。ヨーク11および固定コア12は固定子を構成している。ヨーク11は一枚の連続した板状部材から形成されている。固定コア12のフランジ部12bおよび非磁性部材25のフランジ部27はヨーク11とスリーブ31との間に挟持されている。ヨーク11、固定コア12および可動部材20の可動子21は磁性材で形成されており、磁気回路を構成している。
【0020】
ヨーク11は請求項記載の筒部である内周筒部11aおよび外周筒部11bを有しており、内周筒部11aと外周筒部11bとの間にボビン15およびコイル16を収容している。内筒としての内周筒部11aは可動子21の外周側面を覆っており、可動子21の径方向外側で可動子21と対向している。外筒としての外周筒部11bはコイル16の外側を経由し、固定コア12と連結している。外周筒部11bの端部にかしめ部11cが形成されている。ヨーク11、ボビン15およびコイル16は樹脂材17により固定されている。ヨーク11の内周筒部11aと固定コア12の吸引部12aとは、可動部材20の往復移動方向に所定長さの間隙19を形成して対向している。吸引部12aの厚みは、ヨーク11の内周筒部11aに向け減少している。
【0021】
コイル16は、巻端をターミナル18に接続しており、ターミナル18から制御電流を供給される。コイル16に制御電流が供給されると、スプール40と当接しているスプリング50の付勢力に抗し、可動子21は固定コア12の吸引部12aに向け吸引される。スプリング50の付勢力は可動部材20の往復移動方向の一方である図1の矢印B方向に働き、コイル16に電流を供給することにより発生する磁力は、可動部材20の往復移動方向の他方である図1の矢印A方向に可動子21を吸引するように働く。
【0022】
可動部材20は、可動子21と、可動子21のスプール40側に突出するシャフト22とを有している。非磁性部材25の内周面と摺動する可動子21の外周面は、非磁性部材25との摺動抵抗を低減するためにテフロン等の材質でコーティングされている。図2の(A)および(B)に示すように、可動子21の外周壁または内部に、可動子21の往復移動方向両側の空間を連通する逃がし通路23、24が形成されている。これにより、可動部材20の往復移動が妨げられない。可動子21の図1の矢印Aで示す磁気吸引側の端部に、図3に示すように吸引部12a側に向け外径が細くなるテーパ部21aが形成されている。
【0023】
ステンレス鋼等の非磁性材で形成された非磁性部材25は、筒部としての有底円筒部26および連結部としてのフランジ部27を有しカップ状に形成されている。非磁性部材25はヨーク11および固定コア12の内側、つまりヨーク11および固定コア12は非磁性部材25の外側に配置されている。非磁性部材25はスリーブ31の開口部31aを覆い、有底円筒部26の底部26a側は可動部材20の往復移動方向の一方側端部を覆っている。さらに、有底円筒部26は固定コア12の吸引部12aとヨーク11の内周筒部11aとの間に形成されている間隙19を覆っている。非磁性部材25のフランジ部27は固定コア12のフランジ部12bとスリーブ31のフランジ部31bとの間に挟持されており、ヨーク11の締結手段としてのかしめ部11cがスリーブ31のフランジ部31bをかしめることにより、非磁性部材25のフランジ部27はスリーブ31のフランジ部31bと液密に連結されている。
Oリング29は、非磁性部材25のフランジ部27とスリーブ31の可動部材20側端部との間に配設され、非磁性部材25のフランジ部27とスリーブ31のフランジ部31bとの間から作動油が漏れ出すことを防止している。
【0024】
スプール制御弁30は、スリーブ31およびスプール40を有している。スリーブ31の電磁駆動部10側には、シャフト22がスプール40と当接しスプール40に駆動力を加えスプール40を操作するために開口部31aが形成されている。スリーブ31の所定の壁面位置に、作動油を通過させる流体流路として複数の開口部32、33、34、35、36が形成されている。ポンプ60は油タンク61から吸い上げた作動油を開口部34に供給している。開口部32、36はそれぞれ油路63、64を介し油タンク61に向け開放されている。開口部33は油路66を介して遅角油圧室65と連通し、開口部35は油路68を介して進角油圧室67と連通している。
【0025】
スプール40は、スリーブ31の内壁に軸方向に摺動可能に支持されている。スプール40は、スリーブ31の内径とほぼ同じ径を有するランド部である大径部41、42、43、44と、これら大径部を連結する小径部とから構成されている。スプール40の可動部材20側端面はシャフト22の端面と当接している。
【0026】
スプリング50は一方の端部をスプール40の反可動部材20側の端面に当接し、他方の端部をプレート51に当接している。スプリング50は図1の矢印B方向にスプール40を付勢している。プレート51は、円環状の薄板であり、中央に貫通孔51aが形成されている。
【0027】
次に油圧制御弁1の作動について説明する。
(1) 図1はコイル16に電流を供給していない状態を示し、可動子21には磁気吸引力が作用しておらず、スプール40および可動部材20はスプリング50の付勢力により図1に示す位置にある。このとき、スプール制御弁30の開口部34と開口部35との間が連通し、開口部33と開口部34との間および開口部35と開口部36との間が遮断されることにより、ポンプ60から開口部34、35を通り作動油が進角油圧室67に供給される。同時に、開口部32と開口部33との間が連通するので、遅角油圧室65の作動油が油タンク61へ排出される。
【0028】
(2) コイル16に制御電流が供給されると、スプリング50の付勢力に抗し可動子21が図1の矢印A方向、つまり吸引部12aに向けて吸引される。スプール40は可動部材20とともに図1の矢印A方向に移動し、プレート51に係止される。すると、スプール制御弁30の開口部33と開口部34との間が連通し、開口部34と開口部35との間および開口部33と開口部32との間が遮断されることにより、ポンプ60から開口部34、33を通り遅角油圧室65に作動油が供給される。同時に開口部35と開口部36との間が連通するので、進角油圧室67の作動油が油タンク61へ排出される。
【0029】
スプール40の位置は、可動子21に働く磁気吸引力とスプリング50の付勢力との釣り合いにより決定される。コイル16に供給する電流値と発生する磁力とは比例するので、コイル16に供給する電流値を制御することによりスプール40の位置を線形制御できる。したがって、遅角油圧室65および進角油圧室67に供給または両油圧室から排出される作動油量はスプール40の位置により調整できる。
【0030】
第1実施例では、非磁性部材25のフランジ部27とスリーブ31のフランジ部31bとがOリング29を介して液密に連結され、非磁性部材25が可動子21の反スプール40側、ならびにヨーク11と固定コア12の吸引部12aとの間に形成されている間隙19を覆っている。したがって、可動子21側に漏れてきた作動油が非磁性部材25の外側、例えばコイル16側に漏れることを防止する。また、スリーブ31と非磁性部材25との間をシールすればよいので、作動油の漏れを防止するOリング等のシール部材の点数を低減できる。
【0031】
(第2実施例)
本発明の第2実施例を図4に示す。第1実施例と実質的に同一構成部分に同一符号を付し、説明を省略する。
可動部材70は、磁性材で形成された可動子71および可動子71のスプール40側に突出するシャフト74を有している。可動子71は往復移動方向両側に非磁性部材25の有底円筒部26の内壁と摺動する大径部72を有し、両大径部72の間に、大径部72より小径で有底円筒部26と摺動しない小径部73を有している。逃がし通路75は、可動子71の往復移動方向両側の空間と、有底円筒部26の内周面と小径部73との間に形成されている空間とを連通している。
【0032】
有底円筒部26と可動子71との間に異物が進入しても、小径部73が形成する凹部に異物が収容される。したがって、有底円筒部26と可動子71との間に進入した異物が可動子71の往復移動を妨げることを防止する。
【0033】
参考例)
本発明の参考例を図5および図6に示す。第1実施例と実質的に同一構成部分に同一符号を付し、説明を省略する。
油圧制御弁2の電磁駆動部80は、第1固定子としてのヨーク81、第2固定子としての固定コア82、ボビン15、コイル16、可動子85、シャフト86およびカップ状部材90を有している。ヨーク81および固定コア82は固定子を構成している。
【0034】
ヨーク81は一枚の連続した板状部材から形成されている。ヨーク81は内筒81a、外筒81bおよびかしめ部81cを有している。内筒81aと外筒81bとの間にボビン15およびコイル16を収容している。ヨーク81はカップ状部材90の外側に配置され、可動子85の径方向外側で可動子85と対向している。外筒81bはコイル16の外側を経由し、固定コア82と連結している。外筒81bの端部にかしめ部81cが形成されている。
【0035】
固定コア82のフランジ部82bはスリーブ31のフランジ部31bとカップ状部材90のフランジ部94との間に配置されている。フランジ部31bとフランジ部82bとの間をOリング100がシールし、フランジ部82bとフランジ部94との間をOリング101がシールしている。ヨーク81の締結手段としてのかしめ部81cがスリーブ31のフランジ部31bをかしめることにより、フランジ部31bとフランジ部82bとフランジ部94とは軸方向に締め付けられている。
【0036】
固定コア82はカップ状部材90の内側に配置されている。固定コア82の吸引部82aは、可動子85の往復移動方向に所定長さの間隙を内筒81aと形成している。固定コア82は非磁性材で形成された環状の当接部材83を内側に固定している。スプール40を非磁性材で形成する場合、当接部としての当接部材83を磁性材で形成してもよいし、固定コアと一体に形成してもよい。
【0037】
可動子85の軸方向中央部に凹部としての小径部85aが形成されている。小径部85aの軸方向両端に、小径部85aよりも大径でカップ状部材90の小径部92と摺動する凸部としての大径部85bが形成されている。シャフト86は可動子85に圧入されており、スプール40と当接可能である。可動子85はカップ状部材90の小径部92の内周壁と摺動する。
【0038】
カップ状部材90は、可動子85の反スプール側から底部91、小径部92、大径部93、フランジ部94の順でステンレス鋼等の非磁性部材で一体に形成されており、スリーブ31の開口部31aを覆っている。底部91、小径部92および大径部93は筒部を構成している。小径部92は可動子85を往復移動可能に収容かつ支持し、大径部93は固定コア82の吸引部82aを収容している。時凹付記同時材に連結部としてのフランジ部94は、ヨーク81のかしめ部81cがスリーブ31のフランジ部31bをかしめることにより、Oリング101、固定コア82のフランジ部82b、Oリング100を介在してスリーブ31と液密に連結されている。
【0039】
スプール40の可動子85側への移動は、当接部材83に係止されることにより規制される。スプール40が当接部材83に係止された状態で、可動子85およびシャフト86は図5および図6に示す所定量d軸方向に移動可能である。したがって、コイル16への通電をオフした状態でスプリング50の付勢力は可動子85およびシャフト86を介しカップ状部材90の底部91に伝わらない。
また、ヨーク81のかしめ部81cがスリーブ31のフランジ部31bをかしめるときに、締付け力が可動子85に伝わらないので、かしめによる締め付け力がカップ状部材90の底部91に伝わり底部を変形させることを防止する。
【0040】
また、油圧制御弁2が振動するような部位に取り付けられると、スプール40および可動子85が軸方向に振動する。このとき、スプール40は底部91への動きを当接部材83に係止されるので、振動により可動子85が底部91に衝突するとき、スプール40の荷重が底部91に加わらない。したがって、底部91の変形を低減しカップ状部材90の製品寿命が延びる。
さらに、スプール40の変位量を当接部材83から規定できるので、スプール40の変位量を高精度に制御できる。
【0041】
可動子の軸方向中央部に小径部85aが形成されているので、カップ状部材90の小径部92と可動子85との間に異物が進入しても、可動子85の小径部85aが形成する凹部に異物が収容される。したがって、カップ状部材90の小径部92と可動子85との間に進入した異物が可動子85の往復移動を妨げることを防止する。
また、小径部85aの軸方向両端にカップ状部材90と摺動する大径部85bが形成されているので、小径部85aがカップ状部材90に支持されなくても、可動子85が傾斜したりぶれることを防止する。
【0042】
以上説明した本発明の実施の形態を示す上記複数の実施例では、非磁性材で形成されたカップ状部材がハウジングとしてのスリーブ31の開口部31aを覆い、カップ状部材のフランジ部がスリーブ31のフランジ部31bとかしめにより連結されている。したがって、可動子側に漏れてきた作動油がカップ状部材の外側、例えばコイル16側に漏れることを防止する。
【0043】
さらに、可動子が固定子の内周に配設されたカップ状の非磁性部材に直接支持されているので、固定子と可動子との芯ずれが発生しない。芯ずれを吸収するために固定子の内径を大きくする必要がないので、電磁駆動部を小型化できる。さらに、ヨークの内筒と可動子との間に形成されるエアギャップを極力小さくできるので、小型化しても磁気吸引力が低下しない。
【0044】
上記複数の実施例では、電磁駆動部を構成するコイルに供給する電流値を制御することにより、弁部材であるスプールを中間位置に保持し、スプールの位置により流体流路を流れる流体流量を制御する油圧制御弁について説明した。これ以外にも、弁部材を中間位置に保持することなく流体流路を全開または全閉し、流体流量を二種類に制御する電磁弁に本発明の構成を適用してもよい。
【図面の簡単な説明】
【図1】 本発明の第1実施例による油圧制御弁を示す断面図である。
【図2】 図1のII−II線断面図であり、(A)は可動子の外周壁に逃がし通路を形成し、(B)は可動子の内部に逃がし通路を形成したものである。
【図3】 第1実施例の可動子および非磁性部材を示す拡大断面図である。
【図4】 第2実施例の可動子および非磁性部材を示す拡大断面図である。
【図5】 本発明の参考例による油圧制御弁を示す断面図である。
【図6】 参考例による電磁駆動部を示す断面図である。
【符号の説明】
1、2 油圧制御弁(電磁弁)
10 電磁駆動部
11 ヨーク(固定子、第1固定子)
11a 内周筒部(内筒)
11b 外周筒部(外筒)
11c かしめ部(締結手段)
12 固定コア(固定子、第2固定子)
12a 吸引部
12b フランジ部
16 コイル
21 可動子
25 非磁性部材(カップ状部材)
26 有底筒部
27 フランジ部(連結部)
30 スプール制御弁(弁部)
31 スリーブ(ハウジング)
31a 開口部
31b フランジ部
40 スプール(弁部材)
71、85 可動子
73 小径部(凹部)
81 ヨーク(固定子、第1固定子)
81a 内筒
81b 外筒
81c かしめ部(締結手段)
82 固定コア(固定子、第2固定子)
82a 吸引部
82b フランジ部
85 可動子
85a 小径部(凹部)
85b 大径部(凸部)
90 カップ状部材(非磁性部材)
91 底部
92 小径部
93 大径部
94 フランジ部(連結部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic valve that supports a mover in a reciprocating manner.
[0002]
[Prior art]
As disclosed in JP-A-10-38126, DE19504185A1 and JP-A-11-118062, the flow rate of the fluid flowing in the fluid flow path is controlled by reciprocating the valve member together with the mover of the electromagnetic drive unit. That is, various electromagnetic valves are known that open and close the flow path, hold the valve member at an intermediate position together with the mover, and increase or decrease the fluid flow rate depending on the position of the valve member. In the electromagnetic valve disclosed in DE19504185A1 and Japanese Patent Application Laid-Open No. 11-118062, a shaft attached to a mover is supported. In the electromagnetic valve disclosed in Japanese Patent Laid-Open No. 10-38126, the mover itself is supported so as to be reciprocally movable.
[0003]
[Problems to be solved by the invention]
The air gap between the cylindrical part of the stator that forms a magnetic circuit with the movable element and covers the outer peripheral side surface of the movable element and the movable element can be minimized as long as the movable element and the cylindrical part do not contact each other. It is desirable to increase the suction force of the mover. However, in the electromagnetic valve disclosed in DE19504185A1 and Japanese Patent Laid-Open No. 11-118062, a shaft attached to the mover is supported. Since the support member supporting the shaft and the cylindrical portion of the stator are separate members, if the support member and the cylindrical portion are misaligned, the cylindrical portion that covers the outer peripheral side surface of the movable element and the movable element come into contact with each other. There is a fear. Therefore, it is necessary to increase the inner diameter of the cylindrical portion so that the cylindrical portion of the stator does not come into contact with the mover even if misalignment occurs.
[0004]
When the inner diameter of the cylindrical portion of the stator is increased, the air gap between the cylindrical portion and the mover is increased, so that the force for attracting the mover is reduced and the diameter of the electromagnetic drive portion is increased. Although it is conceivable to increase the number of turns of the coil in order to maintain the force for attracting the mover, increasing the number of turns of the coil increases the size of the electromagnetic drive unit.
[0005]
In the solenoid valve disclosed in Japanese Patent Laid-Open No. 10-38126, a non-magnetic metal holding sleeve is disposed between the cylindrical portion of the stator and the mover, and the hold sleeve supports the mover. ing. The valve member is supported by the valve member sleeve. Since the mover and the valve member are formed separately, the misalignment between the stator and the mover does not occur even if the valve member is supported. Therefore, it is not necessary to increase the inner diameter of the cylindrical portion of the stator in order to absorb misalignment. Further, by reducing the thickness of the holding sleeve, the air gap formed between the cylindrical portion of the stator and the mover can be reduced.
[0006]
In the solenoid valve disclosed in Japanese Patent Application Laid-Open No. 10-38126, the elastic deformation portion, which is the end portion of the holding sleeve formed in a cup shape, applies an elastic force to the tip of the inner peripheral portion of the plate, which is a stator. It touches. However, the contact by the elastic force causes the fluid leaking from the valve member side to the mover side to be outside the holding sleeve from the gap formed between the suction portion and the cylindrical portion of the stator that sucks the mover. For example, not to prevent leakage to the coil side. Therefore, the fluid leaking from the valve member side may leak to the outside of the holding sleeve.
An object of the present invention is to provide an electromagnetic valve that can be reduced in size without reducing the attractive force and prevents fluid from leaking outside the nonmagnetic member.
[0007]
[Means for Solving the Problems ]
[0011]
The electromagnetic valve according to claim 1 or 3 of the present invention is an electromagnetic valve used as a hydraulic control valve of a valve timing adjusting device of an internal combustion engine, and houses a valve member that opens and closes a fluid flow path, and a valve member. A valve portion having a housing in which an opening capable of operating the valve member is formed, an electromagnetic drive portion having a coil, a stator, and a mover, and moving the valve member in accordance with the movement of the mover; A cup-shaped member that is formed of a thin non-magnetic member and covers the opening of the housing, and has a flange portion that extends in the radial direction and a cylindrical portion that supports the movable element so as to be movable in the axial direction. And a cup-shaped member. The housing has a flange portion extending in the radial direction around the opening. The flange portion of the cup-shaped member and the flange portion of the housing are liquid-tightly connected by sandwiching a seal member therebetween and tightening in the axial direction by fastening means. The stator has a first stator that faces the mover on the radially outer side of the mover, and a suction portion that is positioned in the axial direction of the first stator and that can suck the mover toward the housing in the axial direction. It consists of a second stator. The first stator and the second stator are arranged outside the cup-shaped member.
According to the present invention , the bottomed cylindrical cup-shaped member formed of a thin nonmagnetic member has a cylindrical portion that supports the movable element so as to be movable in the axial direction. Since it is easy to assemble the cylindrical portion of the cup-shaped member on the inner peripheral wall of the stator without misalignment, misalignment between the inner peripheral wall of the stator and the mover can be prevented. Since the inner diameter of the stator can be made as small as possible in accordance with the outer diameter of the mover, the solenoid valve can be miniaturized without reducing the attractive force.
Further, the cup-shaped member has a connecting portion that is liquid-tightly connected to the housing and covers the opening of the housing. Therefore, the fluid in the housing can be prevented from leaking outside the cup-shaped member.
[0012]
Further, according to the solenoid valve according to the first aspect of the present invention, sandwiching the sealing member between the flange portion and the flange portion of the cup-shaped member of the housing, by entering into both flanges, the housing and the cup-shaped member Can be easily sealed .
[0013]
According to the electromagnetic valve according to claim 2 of the present invention, the plurality of flange portions can be easily fastened in the axial direction by caulking the caulking portion of the first stator .
[0016]
According to the electromagnetic valve according to claim 4 of the present invention, the inner cylinder and the outer cylinder of the first stator are formed by the continuous plate-like member, so that the number of parts is reduced. Therefore, the assembly man-hour is reduced.
According to the electromagnetic valve according to claim 5 of the present invention, since the mover is provided with the recess in the sliding portion with the nonmagnetic member, the foreign matter that has entered the sliding portion between the mover and the nonmagnetic member is in the recess. Be contained. Since the foreign matter that has entered the sliding portion between the mover and the nonmagnetic member does not hinder the reciprocating movement of the mover, the resistance of the mover that slides with the nonmagnetic member is reduced.
According to the electromagnetic valve of the sixth aspect of the present invention, the convex portion collects the foreign matter that has entered the sliding portion between the mover and the cup-shaped member in the concave portion. Therefore, the foreign matter that has entered the sliding portion between the mover and the cup-shaped member does not hinder the reciprocating movement of the mover. Moreover, since the convex part formed in the axial direction both sides of the recessed part is supported by the cup-shaped member, even if the concave part is formed, the movable element is prevented from being inclined or shaken.
According to the electromagnetic valve of the seventh aspect of the present invention, the mover is provided with the escape passage communicating with the spaces located on both sides in the reciprocating direction of the mover. Since the fluid flows through the escape passage along with the reciprocating movement of the mover, the reciprocating movement of the mover is not hindered.
According to the electromagnetic valve according to claim 8 of the present invention, the resistance of the movable element sliding with the non-magnetic member is reduced by coating the sliding portion of the movable element sliding with the non-magnetic member.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a plurality of examples showing embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows a first embodiment in which the electromagnetic valve of the present invention is applied to a hydraulic control valve of a valve timing adjusting device for an internal combustion engine. FIG. 1 shows a state where no current is supplied to the electromagnetic drive unit 10. Arrows A and B in FIG. 1 indicate the reciprocating direction of the movable member 20.
[0018]
The hydraulic control valve 1 is configured such that the retarding hydraulic chamber 65 and the advance angle are generated by reciprocating a spool 40 as a valve member together with the electromagnetic drive unit 10 that generates a magnetic attractive force by supplying current and the movable member 20. The spool control valve 30 is a valve unit that adjusts the amount of hydraulic oil supplied to the hydraulic chamber 67 and the amount of hydraulic oil discharged from the retard hydraulic chamber 65 and the advance hydraulic chamber 67. A yoke 11 of the electromagnetic drive unit 10 and a sleeve 31 as a housing of the spool control valve 30 are fixed by caulking.
[0019]
The electromagnetic drive unit 10 includes a yoke 11 as a first stator, a fixed core 12 as a second stator, a bobbin 15, a coil 16 wound around the bobbin 15, a movable member 20, and a nonmagnetic member 25. Yes. The yoke 11 and the fixed core 12 constitute a stator. The yoke 11 is formed from a single continuous plate-like member. The flange portion 12 b of the fixed core 12 and the flange portion 27 of the nonmagnetic member 25 are sandwiched between the yoke 11 and the sleeve 31. The yoke 11, the fixed core 12, and the movable element 21 of the movable member 20 are made of a magnetic material and constitute a magnetic circuit.
[0020]
The yoke 11 has an inner peripheral cylindrical portion 11a and an outer peripheral cylindrical portion 11b, which are cylindrical portions described in claims, and a bobbin 15 and a coil 16 are accommodated between the inner peripheral cylindrical portion 11a and the outer peripheral cylindrical portion 11b. Yes. An inner peripheral cylinder portion 11 a as an inner cylinder covers the outer peripheral side surface of the movable element 21 and faces the movable element 21 on the radially outer side of the movable element 21. The outer peripheral cylinder portion 11 b as an outer cylinder is connected to the fixed core 12 via the outside of the coil 16. A caulking portion 11c is formed at the end of the outer peripheral cylindrical portion 11b. The yoke 11, bobbin 15 and coil 16 are fixed by a resin material 17. The inner peripheral cylindrical portion 11a of the yoke 11 and the suction portion 12a of the fixed core 12 are opposed to each other by forming a gap 19 having a predetermined length in the reciprocating direction of the movable member 20. The thickness of the suction part 12a decreases toward the inner peripheral cylinder part 11a of the yoke 11.
[0021]
The coil 16 has a winding end connected to the terminal 18 and is supplied with a control current from the terminal 18. When a control current is supplied to the coil 16, the mover 21 is attracted toward the suction portion 12 a of the fixed core 12 against the biasing force of the spring 50 that is in contact with the spool 40. The urging force of the spring 50 acts in the direction of arrow B in FIG. 1 which is one of the reciprocating directions of the movable member 20, and the magnetic force generated by supplying current to the coil 16 is the other in the reciprocating direction of the movable member 20. It works to suck the mover 21 in the direction of arrow A in FIG.
[0022]
The movable member 20 includes a movable element 21 and a shaft 22 that protrudes toward the spool 40 of the movable element 21. The outer peripheral surface of the mover 21 that slides with the inner peripheral surface of the nonmagnetic member 25 is coated with a material such as Teflon in order to reduce sliding resistance with the nonmagnetic member 25. As shown in FIGS. 2A and 2B, relief passages 23 and 24 are formed in the outer peripheral wall or inside of the mover 21 so as to communicate the spaces on both sides in the reciprocating direction of the mover 21. Thereby, the reciprocating movement of the movable member 20 is not hindered. At the end of the mover 21 on the magnetic attraction side indicated by the arrow A in FIG. 1, a tapered portion 21a whose outer diameter becomes narrower toward the attraction portion 12a side is formed as shown in FIG.
[0023]
A nonmagnetic member 25 formed of a nonmagnetic material such as stainless steel has a bottomed cylindrical portion 26 as a cylindrical portion and a flange portion 27 as a connecting portion, and is formed in a cup shape. The nonmagnetic member 25 is disposed inside the yoke 11 and the fixed core 12, that is, the yoke 11 and the fixed core 12 are disposed outside the nonmagnetic member 25. The nonmagnetic member 25 covers the opening 31 a of the sleeve 31, and the bottom 26 a side of the bottomed cylindrical portion 26 covers one end of the movable member 20 in the reciprocating direction. Further, the bottomed cylindrical portion 26 covers a gap 19 formed between the suction portion 12a of the fixed core 12 and the inner peripheral cylindrical portion 11a of the yoke 11. The flange portion 27 of the nonmagnetic member 25 is sandwiched between the flange portion 12 b of the fixed core 12 and the flange portion 31 b of the sleeve 31, and the caulking portion 11 c as a fastening means of the yoke 11 urges the flange portion 31 b of the sleeve 31. By caulking, the flange portion 27 of the nonmagnetic member 25 is liquid-tightly connected to the flange portion 31 b of the sleeve 31.
The O-ring 29 is disposed between the flange portion 27 of the nonmagnetic member 25 and the end portion on the movable member 20 side of the sleeve 31, and from between the flange portion 27 of the nonmagnetic member 25 and the flange portion 31 b of the sleeve 31. It prevents the hydraulic oil from leaking out.
[0024]
The spool control valve 30 has a sleeve 31 and a spool 40. On the electromagnetic drive unit 10 side of the sleeve 31, an opening 31 a is formed so that the shaft 22 contacts the spool 40 and applies a driving force to the spool 40 to operate the spool 40. A plurality of openings 32, 33, 34, 35, and 36 are formed in a predetermined wall surface position of the sleeve 31 as a fluid flow path that allows hydraulic oil to pass therethrough. The pump 60 supplies hydraulic oil sucked up from the oil tank 61 to the opening 34. The openings 32 and 36 are opened toward the oil tank 61 through oil passages 63 and 64, respectively. The opening 33 communicates with the retard hydraulic chamber 65 via the oil passage 66, and the opening 35 communicates with the advance hydraulic chamber 67 via the oil passage 68.
[0025]
The spool 40 is supported on the inner wall of the sleeve 31 so as to be slidable in the axial direction. The spool 40 includes large-diameter portions 41, 42, 43, and 44 that are land portions having substantially the same diameter as the inner diameter of the sleeve 31, and a small-diameter portion that connects these large-diameter portions. The end surface of the spool 40 on the movable member 20 side is in contact with the end surface of the shaft 22.
[0026]
One end of the spring 50 is in contact with the end surface of the spool 40 on the side opposite to the movable member 20, and the other end is in contact with the plate 51. The spring 50 biases the spool 40 in the direction of arrow B in FIG. The plate 51 is an annular thin plate, and a through hole 51a is formed at the center.
[0027]
Next, the operation of the hydraulic control valve 1 will be described.
(1) FIG. 1 shows a state in which no current is supplied to the coil 16, no magnetic attraction is acting on the mover 21, and the spool 40 and the movable member 20 are brought into FIG. In the position shown. At this time, the opening 34 and the opening 35 of the spool control valve 30 communicate with each other, and the opening 33 and the opening 34 and the opening 35 and the opening 36 are blocked. Hydraulic fluid is supplied from the pump 60 to the advance hydraulic chamber 67 through the openings 34 and 35. At the same time, since the opening 32 and the opening 33 communicate with each other, the hydraulic oil in the retarded hydraulic chamber 65 is discharged to the oil tank 61.
[0028]
(2) When a control current is supplied to the coil 16, the mover 21 is attracted toward the direction of arrow A in FIG. 1, that is, toward the suction portion 12a against the urging force of the spring 50. The spool 40 moves together with the movable member 20 in the direction of arrow A in FIG. Then, the opening 33 and the opening 34 of the spool control valve 30 communicate with each other, and the opening 34 and the opening 35 and the opening 33 and the opening 32 are blocked. Hydraulic fluid is supplied from 60 through the openings 34 and 33 to the retarded hydraulic chamber 65. At the same time, the opening 35 and the opening 36 communicate with each other, so that the hydraulic oil in the advance hydraulic chamber 67 is discharged to the oil tank 61.
[0029]
The position of the spool 40 is determined by the balance between the magnetic attractive force acting on the movable element 21 and the biasing force of the spring 50. Since the current value supplied to the coil 16 and the generated magnetic force are proportional, the position of the spool 40 can be linearly controlled by controlling the current value supplied to the coil 16. Therefore, the amount of hydraulic oil supplied to or discharged from the retard hydraulic chamber 65 and the advance hydraulic chamber 67 can be adjusted by the position of the spool 40.
[0030]
In the first embodiment, the flange portion 27 of the nonmagnetic member 25 and the flange portion 31b of the sleeve 31 are liquid-tightly connected via the O-ring 29, and the nonmagnetic member 25 is connected to the anti-spool 40 side of the mover 21, and A gap 19 formed between the yoke 11 and the suction portion 12a of the fixed core 12 is covered. Therefore, the hydraulic oil leaking to the mover 21 side is prevented from leaking to the outside of the nonmagnetic member 25, for example, the coil 16 side. Further, since it is only necessary to seal between the sleeve 31 and the nonmagnetic member 25, the number of sealing members such as an O-ring that prevents leakage of hydraulic oil can be reduced.
[0031]
(Second embodiment)
A second embodiment of the present invention is shown in FIG. Components that are substantially the same as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
The movable member 70 includes a movable element 71 made of a magnetic material and a shaft 74 that protrudes toward the spool 40 of the movable element 71. The mover 71 has a large-diameter portion 72 that slides on the inner wall of the bottomed cylindrical portion 26 of the nonmagnetic member 25 on both sides in the reciprocating direction, and has a smaller diameter than the large-diameter portion 72 between both large-diameter portions 72. It has a small diameter portion 73 that does not slide with the bottom cylindrical portion 26. The escape passage 75 communicates the space on both sides in the reciprocating direction of the mover 71 with the space formed between the inner peripheral surface of the bottomed cylindrical portion 26 and the small diameter portion 73.
[0032]
Even if foreign matter enters between the bottomed cylindrical portion 26 and the mover 71, the foreign matter is accommodated in the recess formed by the small diameter portion 73. Therefore, the foreign matter that has entered between the bottomed cylindrical portion 26 and the mover 71 is prevented from obstructing the reciprocating movement of the mover 71.
[0033]
( Reference example)
Reference examples of the present invention are shown in FIGS. Components that are substantially the same as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
The electromagnetic drive unit 80 of the hydraulic control valve 2 includes a yoke 81 as a first stator, a fixed core 82 as a second stator, a bobbin 15, a coil 16, a mover 85, a shaft 86, and a cup-shaped member 90. ing. The yoke 81 and the fixed core 82 constitute a stator.
[0034]
The yoke 81 is formed from a single continuous plate-like member. The yoke 81 has an inner cylinder 81a, an outer cylinder 81b, and a caulking portion 81c. The bobbin 15 and the coil 16 are accommodated between the inner cylinder 81a and the outer cylinder 81b. The yoke 81 is disposed outside the cup-shaped member 90 and faces the mover 85 on the radially outer side of the mover 85. The outer cylinder 81 b is connected to the fixed core 82 via the outside of the coil 16. A caulking portion 81c is formed at the end of the outer cylinder 81b.
[0035]
The flange portion 82 b of the fixed core 82 is disposed between the flange portion 31 b of the sleeve 31 and the flange portion 94 of the cup-shaped member 90. The O-ring 100 seals between the flange portion 31b and the flange portion 82b, and the O-ring 101 seals between the flange portion 82b and the flange portion 94. The caulking portion 81c as the fastening means of the yoke 81 caulks the flange portion 31b of the sleeve 31, whereby the flange portion 31b, the flange portion 82b, and the flange portion 94 are tightened in the axial direction.
[0036]
The fixed core 82 is disposed inside the cup-shaped member 90. The suction portion 82a of the fixed core 82 forms a gap of a predetermined length with the inner cylinder 81a in the reciprocating direction of the mover 85. The fixed core 82 fixes an annular contact member 83 formed of a nonmagnetic material to the inside. When the spool 40 is formed of a nonmagnetic material, the contact member 83 as a contact portion may be formed of a magnetic material or may be formed integrally with the fixed core.
[0037]
A small-diameter portion 85 a as a concave portion is formed in the central portion in the axial direction of the mover 85. Large-diameter portions 85b are formed at both ends in the axial direction of the small-diameter portion 85a as convex portions that are larger in diameter than the small-diameter portion 85a and slide with the small-diameter portion 92 of the cup-shaped member 90. The shaft 86 is press-fitted into the mover 85 and can come into contact with the spool 40. The mover 85 slides with the inner peripheral wall of the small diameter portion 92 of the cup-shaped member 90.
[0038]
The cup-shaped member 90 is integrally formed of a nonmagnetic member such as stainless steel in the order of the bottom 91, the small diameter portion 92, the large diameter portion 93, and the flange portion 94 from the non-spool side of the mover 85. The opening 31a is covered. The bottom part 91, the small diameter part 92, and the large diameter part 93 constitute a cylindrical part. The small diameter portion 92 accommodates and supports the movable element 85 so as to be able to reciprocate, and the large diameter portion 93 accommodates the suction portion 82 a of the fixed core 82. The flange portion 94 as a connecting portion to the simultaneous concave and convex material is connected to the O ring 101, the flange portion 82b of the fixed core 82, and the O ring 100 by the caulking portion 81c of the yoke 81 caulking the flange portion 31b of the sleeve 31. The sleeve 31 is interposed and liquid-tightly connected.
[0039]
The movement of the spool 40 toward the movable element 85 is restricted by being locked by the contact member 83. In a state where the spool 40 is locked to the contact member 83, the mover 85 and the shaft 86 are movable in the predetermined d-axis direction shown in FIGS. Therefore, the urging force of the spring 50 is not transmitted to the bottom 91 of the cup-shaped member 90 via the mover 85 and the shaft 86 in a state where the power supply to the coil 16 is turned off.
Further, when the caulking portion 81 c of the yoke 81 caulks the flange portion 31 b of the sleeve 31, the tightening force is not transmitted to the mover 85. To prevent that.
[0040]
Further, when the hydraulic control valve 2 is attached to a portion where it vibrates, the spool 40 and the mover 85 vibrate in the axial direction. At this time, since the spool 40 is locked by the contact member 83 to move to the bottom 91, the load of the spool 40 is not applied to the bottom 91 when the movable element 85 collides with the bottom 91 due to vibration. Therefore, the deformation of the bottom 91 is reduced and the product life of the cup-shaped member 90 is extended.
Furthermore, since the displacement amount of the spool 40 can be defined from the contact member 83, the displacement amount of the spool 40 can be controlled with high accuracy.
[0041]
Since the small diameter portion 85a is formed at the axial center of the mover, even if a foreign object enters between the small diameter portion 92 of the cup-shaped member 90 and the mover 85, the small diameter portion 85a of the mover 85 is formed. The foreign matter is accommodated in the recessed portion. Therefore, the foreign matter that has entered between the small diameter portion 92 of the cup-shaped member 90 and the mover 85 is prevented from obstructing the reciprocating movement of the mover 85.
Further, since the large-diameter portion 85b that slides with the cup-shaped member 90 is formed at both ends in the axial direction of the small-diameter portion 85a, the mover 85 is inclined even if the small-diameter portion 85a is not supported by the cup-shaped member 90. Prevent swaying.
[0042]
In the above-described plurality of examples showing the embodiment of the present invention described above, the cup-shaped member formed of a nonmagnetic material covers the opening 31a of the sleeve 31 as a housing, and the flange portion of the cup-shaped member is the sleeve 31. The flange portion 31b is connected by caulking. Therefore, the hydraulic oil leaking to the mover side is prevented from leaking to the outside of the cup-shaped member, for example, the coil 16 side.
[0043]
Furthermore, since the mover is directly supported by a cup-shaped nonmagnetic member disposed on the inner periphery of the stator, misalignment between the stator and the mover does not occur. Since it is not necessary to increase the inner diameter of the stator in order to absorb misalignment, the electromagnetic drive unit can be reduced in size. Furthermore, since the air gap formed between the inner cylinder of the yoke and the mover can be made as small as possible, the magnetic attractive force does not decrease even if the size is reduced.
[0044]
In the above embodiments, by controlling the current value supplied to the coil constituting the electromagnetic drive unit, the spool that is the valve member is held at the intermediate position, and the flow rate of fluid flowing through the fluid flow path is controlled by the position of the spool. The hydraulic control valve to be described has been described. In addition to this, the configuration of the present invention may be applied to an electromagnetic valve that fully opens or closes a fluid flow path without holding the valve member at an intermediate position and controls the fluid flow rate to two types.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a hydraulic control valve according to a first embodiment of the present invention.
2 is a cross-sectional view taken along the line II-II in FIG. 1, in which (A) forms an escape passage on the outer peripheral wall of the mover, and (B) shows an escape passage formed inside the mover.
FIG. 3 is an enlarged cross-sectional view showing a mover and a nonmagnetic member of the first embodiment.
FIG. 4 is an enlarged cross-sectional view showing a mover and a nonmagnetic member according to a second embodiment.
FIG. 5 is a cross-sectional view showing a hydraulic control valve according to a reference example of the present invention.
FIG. 6 is a cross-sectional view showing an electromagnetic drive unit according to a reference example.
[Explanation of symbols]
1, 2 Hydraulic control valve (solenoid valve)
10 Electromagnetic drive unit 11 Yoke (stator, first stator)
11a Inner cylinder (inner cylinder)
11b Outer cylinder part (outer cylinder)
11c Caulking part (fastening means)
12 Fixed core (stator, second stator)
12a Suction part 12b Flange part 16 Coil 21 Movable element 25 Nonmagnetic member (cup-shaped member)
26 Bottomed cylinder part 27 Flange part (connection part)
30 Spool control valve (valve part)
31 Sleeve (housing)
31a Opening 31b Flange 40 Spool (valve member)
71, 85 Movable element 73 Small diameter part (recessed part)
81 Yoke (stator, first stator)
81a Inner cylinder 81b Outer cylinder 81c Caulking portion (fastening means)
82 Fixed core (stator, second stator)
82a Suction part 82b Flange part 85 Movable element 85a Small diameter part (recessed part)
85b Large diameter part (convex part)
90 Cup-shaped member (non-magnetic member)
91 Bottom 92 Small Diameter 93 Large Diameter 94 Flange (Connection)

Claims (8)

内燃機関のバルブタイミング調整装置の油圧制御弁として用いられる電磁弁であって、
流体流路を開閉する弁部材、および前記弁部材を収容するとともに、前記弁部材を操作可能な開口部が形成されているハウジングを有する弁部と、
コイルと固定子と可動子とを有し、前記可動子の移動に応じて前記弁部材を移動させる電磁駆動部と、
薄い非磁性部材により形成され、前記ハウジングの前記開口部を覆うカップ状部材であって、径方向に広がるフランジ部と、前記可動子を軸方向に移動可能に支持する筒部とを有する有底筒状のカップ状部材と、を備え
前記ハウジングは、前記開口部の周囲に径方向に広がるフランジ部を有し、
前記カップ状部材の前記フランジ部と前記ハウジングの前記フランジ部とは、間にシール部材を挟み、締結手段により軸方向に締付けられることによって液密に連結され、
前記固定子は、前記可動子の径方向外側で前記可動子と対向する第1固定子と、当該第1固定子の軸方向に位置し、前記可動子を軸方向の前記ハウジング側へ吸引可能な吸引部を有する第2固定子とからなり、
前記第1固定子と前記第2固定子とは、前記カップ状部材の外側に配置されていることを特徴とする電磁弁。
An electromagnetic valve used as a hydraulic control valve of a valve timing adjusting device for an internal combustion engine,
A valve member that opens and closes a fluid flow path, and a valve portion that houses the valve member and has a housing in which an opening capable of operating the valve member is formed;
An electromagnetic drive unit having a coil, a stator and a mover, and moving the valve member in accordance with the movement of the mover ;
A cup-shaped member that is formed of a thin nonmagnetic member and covers the opening of the housing, and has a flange portion that extends in the radial direction and a bottom portion that supports the movable element so as to be movable in the axial direction. comprising a cylindrical cup-shaped member,
The housing has a flange portion extending radially around the opening,
The flange portion of the cup-shaped member and the flange portion of the housing are liquid-tightly connected by sandwiching a seal member therebetween and being tightened in the axial direction by fastening means,
The stator is positioned in the axial direction of the first stator facing the mover on the radially outer side of the mover, and is capable of sucking the mover toward the housing side in the axial direction. A second stator having a suction part,
Wherein the first stator and the second stator, an electromagnetic valve which is characterized that you have placed outside of the cup-shaped member.
前記締結手段は、前記第1固定子に形成されたかしめ部であって、前記かしめ部により複数の前記フランジ部を軸方向に締結することを特徴とする請求項記載の電磁弁。Said fastening means is a caulking portion formed on the first stator, the electromagnetic valve of claim 1, wherein the fastening the plurality of the flange portion in the axial direction through the caulked portion. 前記第1固定子は、前記可動子の外側に位置する内筒と、前記コイルの外側を経由して前記第2固定子に連結される外筒とを有することを特徴とする請求項1または2記載の電磁弁。The said 1st stator has an inner cylinder located in the outer side of the said needle | mover, and an outer cylinder connected with the said 2nd stator via the outer side of the said coil, or characterized by the above-mentioned. 2. The solenoid valve according to 2 . 前記第1固定子の前記内筒と前記外筒とは連続した板状部材により形成されていることを特徴とする請求項記載の電磁弁。The solenoid valve according to claim 3 , wherein the inner cylinder and the outer cylinder of the first stator are formed by a continuous plate-like member. 前記可動子は前記カップ状部材との摺動部に凹部を設けていることを特徴とする請求項からのいずれか一項記載の電磁弁。The solenoid valve according to any one of claims 1 to 4 , wherein the movable element has a recess in a sliding portion with the cup-shaped member. 前記凹部は前記可動子の軸方向中央部に設けられ、前記可動子は前記凹部の軸方向両端に凸部を設けていることを特徴とする請求項記載の電磁弁。6. The electromagnetic valve according to claim 5, wherein the concave portion is provided at a central portion in the axial direction of the mover, and the movable member is provided with a convex portion at both axial ends of the concave portion. 前記可動子の往復移動方向両側に位置する空間を連通する逃がし通路を前記可動子に設けていることを特徴とする請求項からのいずれか一項記載の電磁弁。The solenoid valve according to any one of claims 1 to 6 , wherein an escape passage communicating with a space located on both sides in a reciprocating direction of the movable element is provided in the movable element. 前記カップ状部材と摺動する前記可動子の摺動部にコーティングを施していることを特徴とする請求項からのいずれか一項記載の電磁弁。The solenoid valve according to any one of claims 1 to 7 , wherein a coating is applied to a sliding portion of the mover that slides with the cup-shaped member.
JP2000263229A 1999-10-19 2000-08-31 solenoid valve Expired - Lifetime JP4474626B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000263229A JP4474626B2 (en) 1999-10-19 2000-08-31 solenoid valve
DE2000151614 DE10051614B4 (en) 1999-10-19 2000-10-18 Electromagnetic valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-296627 1999-10-19
JP29662799 1999-10-19
JP2000263229A JP4474626B2 (en) 1999-10-19 2000-08-31 solenoid valve

Publications (2)

Publication Number Publication Date
JP2001187979A JP2001187979A (en) 2001-07-10
JP4474626B2 true JP4474626B2 (en) 2010-06-09

Family

ID=26560765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263229A Expired - Lifetime JP4474626B2 (en) 1999-10-19 2000-08-31 solenoid valve

Country Status (2)

Country Link
JP (1) JP4474626B2 (en)
DE (1) DE10051614B4 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6688334B2 (en) 2001-03-29 2004-02-10 Denso Corporation Solenoid valve with improved magnetic attractive force
JP2003185051A (en) 2001-12-13 2003-07-03 Denso Corp Electromagnetic valve device and manufacturing method thereof
DE10215939C1 (en) * 2002-04-11 2003-08-21 Ina Schaeffler Kg Electromagnetic hydraulic valve, for controlling camshaft setting device, has control piston moved by magnetic armature for controlling radial openings in axial bore of valve housing
JP4214964B2 (en) * 2003-08-18 2009-01-28 株式会社デンソー solenoid valve
JP4222177B2 (en) 2003-10-16 2009-02-12 株式会社デンソー Oil flow control valve
JP4428027B2 (en) 2003-11-12 2010-03-10 株式会社デンソー Electromagnetic drive device and electromagnetic valve using the same
JP2005282754A (en) 2004-03-30 2005-10-13 Toyoda Mach Works Ltd Solenoid valve
DE102005034986A1 (en) * 2005-07-27 2007-02-01 Schaeffler Kg Electromagnetic actuator
JP4618133B2 (en) * 2006-01-06 2011-01-26 株式会社デンソー solenoid valve
DE102006027349A1 (en) * 2006-06-13 2007-12-20 Schaeffler Kg Camshaft adjuster with an electromagnetic actuator
JP2008095733A (en) * 2006-10-06 2008-04-24 Denso Corp Electromagnetic actuator
DE102008008761A1 (en) * 2008-02-12 2009-08-13 Robert Bosch Gmbh actuating magnet
DE102008061396A1 (en) 2008-12-10 2010-06-17 Schaeffler Kg Actuating element of an electromagnetic actuator of a hydraulic valve
DE102008061397A1 (en) 2008-12-10 2010-06-17 Schaeffler Kg Actuating element of an electromagnetic actuator of a hydraulic valve
DE102008061949A1 (en) 2008-12-12 2010-06-17 Schaeffler Kg Actuating element of an electromagnetic actuator of a hydraulic valve
WO2011036731A1 (en) * 2009-09-28 2011-03-31 三菱電機株式会社 Hydraulic pressure controlling solenoid valve
DE102009043320B4 (en) * 2009-09-28 2012-01-12 Hydraulik-Ring Gmbh Electrohydraulic valve
US8931758B2 (en) 2009-10-30 2015-01-13 Eagle Industry Co., Ltd. Solenoid valve
DE102010008773A1 (en) 2010-02-22 2011-08-25 Schaeffler Technologies GmbH & Co. KG, 91074 Actuating element of an electromagnetic actuator of a hydraulic valve
JP2015070194A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Electromagnet
JP2015105707A (en) * 2013-11-29 2015-06-08 アイシン精機株式会社 Electromagnetic valve
US9281114B2 (en) * 2014-03-11 2016-03-08 Buescher Developments, Llc Stator for electronic fuel injector

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062677U (en) * 1983-10-06 1985-05-01 豊田工機株式会社 solenoid control valve
JPS6288014A (en) * 1985-10-15 1987-04-22 Diesel Kiki Co Ltd Pressure controller
JPS62107173U (en) * 1985-12-25 1987-07-08
JPS63115674U (en) * 1987-01-22 1988-07-26
JPS63283106A (en) * 1987-05-15 1988-11-21 Ckd Controls Ltd Plunger of solenoid
JPH0521847Y2 (en) * 1989-01-27 1993-06-04
JPH03119680U (en) * 1990-03-22 1991-12-10
JPH07190241A (en) * 1993-12-27 1995-07-28 Tokimec Inc Electromagnetic fluid control valve
DE19504185B4 (en) * 1995-02-09 2004-07-22 Hydraulik-Ring Gmbh Electromagnetically actuated valve
JP3671524B2 (en) * 1996-07-18 2005-07-13 株式会社デンソー solenoid valve
DE19717445C2 (en) * 1997-04-25 1999-11-18 Bso Steuerungstechnik Gmbh Electromagnet, in particular for actuating valves
JPH11118062A (en) * 1997-10-13 1999-04-30 Denso Corp Solenoid control valve and method for assembling it
DE19934846A1 (en) * 1999-07-24 2001-01-25 Hydraulik Ring Gmbh Electromagnet and hydraulic valve with an electromagnet

Also Published As

Publication number Publication date
DE10051614A1 (en) 2001-04-26
JP2001187979A (en) 2001-07-10
DE10051614B4 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP4474626B2 (en) solenoid valve
JP4058749B2 (en) Electromagnetic drive device and electromagnetic valve using the same
JP5761247B2 (en) Electromagnetic actuator
JP4529134B2 (en) High pressure fuel pump
JP6115434B2 (en) solenoid valve
US6695284B2 (en) Electromagnetic valve apparatus
US6343621B1 (en) Variable force solenoid control valve
JPH11287349A (en) Solenoid control valve
JP2015102150A (en) Spool control valve
JP2016200245A (en) solenoid valve
JP2001295720A (en) Solenoid valve and fuel supply device using it
JP2008089080A (en) Electromagnetic driving device and solenoid valve using the same
JP2002181222A (en) Solenoid valve device, and method of manufacturing the same
JP2002310322A (en) Solenoid valve device
JP4058604B2 (en) Solenoid valve device
JP4492649B2 (en) Bleed valve device
JP4228379B2 (en) Fluid control valve
JP2005098310A (en) Linear solenoid and solenoid valve
US7150447B2 (en) Electromagnetic driving apparatus and electromagnetic valve
JP4022855B2 (en) Solenoid valve device
JP2019033215A (en) Solenoid device and control valve
JP2003042328A (en) Solenoid valve
JP2003318024A (en) Solenoid and solenoid valve
JP4129213B2 (en) Electromagnetic actuator
JP4228390B2 (en) Spool valve and solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R151 Written notification of patent or utility model registration

Ref document number: 4474626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term