JP4474544B2 - Polymer type nucleating agent and crystalline polymer composition containing the nucleating agent - Google Patents

Polymer type nucleating agent and crystalline polymer composition containing the nucleating agent Download PDF

Info

Publication number
JP4474544B2
JP4474544B2 JP2004160291A JP2004160291A JP4474544B2 JP 4474544 B2 JP4474544 B2 JP 4474544B2 JP 2004160291 A JP2004160291 A JP 2004160291A JP 2004160291 A JP2004160291 A JP 2004160291A JP 4474544 B2 JP4474544 B2 JP 4474544B2
Authority
JP
Japan
Prior art keywords
nucleating agent
crystalline polymer
polymer
polymer composition
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004160291A
Other languages
Japanese (ja)
Other versions
JP2005314622A (en
Inventor
直文 永
昭徳 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2004160291A priority Critical patent/JP4474544B2/en
Publication of JP2005314622A publication Critical patent/JP2005314622A/en
Application granted granted Critical
Publication of JP4474544B2 publication Critical patent/JP4474544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、結晶性高分子への分散性、混和性に優れ、かつブリードアウトが少なく、かつ造核剤から発生する臭気や味の移行性問題の少ないポリマー型造核剤、及び該造核剤を含有してなる結晶性高分子組成物に関する。より詳細には、特定の構造を有するポリマー型造核剤、及び該造核剤を含有してなる結晶性高分子組成物に関する。The present invention relates to a polymer nucleating agent that is excellent in dispersibility and miscibility in a crystalline polymer, has little bleed-out, and has little odor and taste transfer problems generated from the nucleating agent, and the nucleating agent The present invention relates to a crystalline polymer composition containing an agent. More specifically, the present invention relates to a polymer type nucleating agent having a specific structure and a crystalline polymer composition containing the nucleating agent.

結晶性高分子、中でもポリエチレン、ポリプロピレン、ポリ(1−ブテン)に代表されるポリオレフィン系高分子は、射出成形、フィルム加工、紡糸加工、フラットヤーン成形、及び中空成形などの加熱溶融成形において、高分子の結晶化速度が遅いという欠点がある。そのため、成形サイクル、機械的特性、透明性、寸法安定性等、改善しなければならない問題がある。Crystalline polymers, especially polyolefin polymers represented by polyethylene, polypropylene, and poly (1-butene), are high in hot melt molding such as injection molding, film processing, spinning processing, flat yarn molding, and hollow molding. There is a drawback that the crystallization speed of the molecule is slow. Therefore, there are problems that need to be improved, such as molding cycle, mechanical properties, transparency, and dimensional stability.

これらの問題は、結晶性高分子の結晶サイズを微細化し、かつ、結晶化速度を高めることにより改善できることが報告されている。一般的には、成形加工条件の最適化、及び結晶化促進剤、造核剤等の添加による結晶性高分子組成物の特性の改良が検討されている。It has been reported that these problems can be improved by reducing the crystal size of the crystalline polymer and increasing the crystallization speed. In general, optimization of molding process conditions and improvement of characteristics of crystalline polymer compositions by addition of crystallization accelerators, nucleating agents, and the like have been studied.

上記の結晶化促進剤、造核剤としては、例えば、リン酸エステル塩系、カルボン酸エステル塩系、及びソルビトール系等の低分子有機化合物や、タルク等の無機化合物が一般的に使用されており、例えば下記特許文献1〜15に報告されている。しかしながら、該造核剤は、結晶性高分子への分散性、混和性が不十分である上、ブリードアウトし易く、かつ造核剤から発生する臭気や味が移行し易いという問題点がある。
特開昭55−12460号公報 特開昭58−1736号公報 特開昭58−80392号公報 特開昭59−184252号公報 特開平6−340786号公報 特開平7−11075号公報 特開平7−48473号公報 特開平8−3364号公報 特開平9−118776号公報 特開平10−25295号公報 WO99/18108号公報 特開2001−59040号公報 特開2003−313444号公報 特開2003−335968号公報 特開2004−83852号公報 特開平3−166244号公報
As the above crystallization accelerator and nucleating agent, for example, low molecular organic compounds such as phosphate ester salts, carboxylic acid ester salts, and sorbitol, and inorganic compounds such as talc are generally used. For example, it is reported in the following Patent Documents 1 to 15. However, the nucleating agent has problems that the dispersibility and miscibility in the crystalline polymer are insufficient, bleed out easily, and the odor and taste generated from the nucleating agent are easily transferred. .
JP-A-55-12460 JP-A-58-1736 JP 58-80392 A JP 59-184252 A JP-A-6-340786 JP-A-7-11075 JP 7-48473 A JP-A-8-3364 JP-A-9-118776 Japanese Patent Laid-Open No. 10-25295 WO99 / 18108 JP 2001-59040 A JP 2003-313444 A JP 2003-335968 A JP 2004-83852 A Japanese Patent Laid-Open No. 3-166244

また、上記の低分子有機化合物や、無機化合物結晶化促進剤、造核剤の欠点を補うため、例えば、ポリ−3−メチル−1−ブテン、ポリビニルシクロヘキサン、ポリシクロブテン、ポリシクロペンテンや、ポリテトラフルオロエチレン等の高分子系化合物が検討されており、例えば下記特許文献16〜22や非特許文献1に報告されている。しかしながら、該高分子系造核剤は、結晶性高分子に添加することによる造核効果はみられるものの、その性能は未だ満足できるものではなかった。
特公昭45−32430号公報 特公平3−42298号公報 特公平3−42298号公報 特開平8−169960号公報 特開平8−290536号公報 特開平8−291236号公報 特開平9−249753号公報 J.Appl.Polym.Sci.Vol.54,1507−1511(1994)
In addition, in order to compensate for the disadvantages of the above low molecular organic compounds, inorganic compound crystallization accelerators, and nucleating agents, for example, poly-3-methyl-1-butene, polyvinylcyclohexane, polycyclobutene, polycyclopentene, High molecular compounds such as tetrafluoroethylene have been studied, and reported in, for example, the following Patent Documents 16 to 22 and Non-Patent Document 1. However, although the polymer nucleating agent shows a nucleating effect when added to a crystalline polymer, its performance has not yet been satisfactory.
Japanese Examined Patent Publication No. 45-32430 Japanese Patent Publication No. 3-42298 Japanese Patent Publication No. 3-42298 JP-A-8-169960 JP-A-8-290536 JP-A-8-291236 Japanese Patent Laid-Open No. 9-249753 J. et al. Appl. Polym. Sci. Vol. 54, 1507-1511 (1994)

本発明の目的は、結晶性高分子への分散性、混和性に優れ、かつブリードアウトが少なく、かつ造核剤から発生する臭気や味の移行性問題の少ないポリマー型造核剤、及び該造核剤を含有してなる結晶性高分子組成物を提供することにある。An object of the present invention is to provide a polymer-type nucleating agent that is excellent in dispersibility and miscibility in a crystalline polymer, has little bleed-out, and has little odor and taste transfer problems generated from the nucleating agent, and An object of the present invention is to provide a crystalline polymer composition containing a nucleating agent.

本発明者等は、上記課題に鑑み、結晶性高分子への分散性、混和性に優れ、かつブリードアウトの少ないポリマー型造核剤、及び該造核剤を含有してなる結晶性高分子組成物を得るため鋭意研究を続けてきた。その結果、特定の構造を有するポリマー型造核剤、及び該造核剤を含有してなる結晶性高分子組成物により、上記課題を解決し得ることを見出し、本発明に至った。In view of the above problems, the present inventors have developed a polymer-type nucleating agent which is excellent in dispersibility and miscibility in a crystalline polymer and has little bleeding out, and a crystalline polymer containing the nucleating agent. We have been conducting intensive research to obtain the composition. As a result, the inventors have found that the above problems can be solved by a polymer-type nucleating agent having a specific structure and a crystalline polymer composition containing the nucleating agent, and have reached the present invention.

即ち、本発明は、下記一般式(1)で表される繰り返し単位からなるポリマー型造核剤、並びに該造核剤を含有してなる結晶性高分子組成物を提供するものである。
(1)
(式中、mは1であり、R1、R1’、R2、R2’及びR3、R3’は水素である。)
That is, the present invention provides a polymer type nucleating agent comprising a repeating unit represented by the following general formula (1), and a crystalline polymer composition containing the nucleating agent.
(1)
(In the formula, m is 1, and R1, R1 ′, R2, R2 ′ and R3, R3 ′ are hydrogen.)

以下、本発明についての最良の実施形態を詳細に説明する。Hereinafter, the best embodiment of the present invention will be described in detail.

本発明のポリマー型造核剤は、上記一般式(1)で表されるように、同繰り返し単位はシクロペンタン誘導体とメチレン連鎖が交互に結合した構造を有している。上記一般式(1)において、式中、mは1であり、R1、R1’、R2、R2’及びR3、R3’は水素である。

The polymer type nucleating agent of the present invention has a structure in which cyclopentane derivatives and methylene chains are alternately bonded, as represented by the general formula (1). In the general formula (1), m is 1, and R1, R1 ′, R2, R2 ′ and R3, R3 ′ are hydrogen.

また、上記一般式(1)で表される繰り返し単位のうち、シクロペンタン構造が1,3−構造で、m=1又は2かつR,R’R,R’及びR,R’が水素である下記繰り返し単位No.1及びNo.2が特に好ましい。
Of the repeating units represented by the general formula (1), the cyclopentane structure is a 1,3-structure, m = 1 or 2, and R 1 , R 1 ′ R 2 , R 2 ′ and R 3 , The following repeating unit No. 1 wherein R 3 ′ is hydrogen: 1 and no. 2 is particularly preferred.

上記一般式(1)で表される繰り返し単位からなるポリマー型造核剤の製造方法は、特に制限されるものではないが、例えば、ノルボルネン誘導体の開環メタセシス重合体を水素化する方法、1,5−ヘキサジエン誘導体の環化付加を伴う重合、シクロオレフィンとノルボルネン誘導体の開環メタセシス共重合体を水素化する方法、エチレンと1,5−ヘキサジエン誘導体の環化付加を伴う共重合等によって製造することが可能である。The production method of the polymer-type nucleating agent comprising the repeating unit represented by the general formula (1) is not particularly limited. For example, a method of hydrogenating a ring-opening metathesis polymer of a norbornene derivative, 1 , 5-hexadiene derivative with cycloaddition, cycloolefin and norbornene derivative ring-opening metathesis copolymer hydrogenation, ethylene and 1,5-hexadiene derivative with cycloaddition Is possible.

上記一般式(1)で表される繰り返し単位からなるポリマー型造核剤の数平均分子量(Mn)、及び分子量分散度(Mw/Mn)は特に制限されるものではないが、該造核剤を含有してなる結晶性高分子組成物の加工性を考慮すると、通常Mnは500〜100万程度の範囲が好ましく、更には1000から10万程度であることが好ましい。また、通常Mw/Mnは1.5〜20の範囲が好ましい。なお、MnおよびMw/Mnについてはゲルパーミエーションクロマトグラフィーを用いて測定した値であり、検量線は標準ポリスチレンサンプルで較正されたものが用いられる。The number average molecular weight (Mn) and molecular weight dispersity (Mw / Mn) of the polymer type nucleating agent comprising the repeating unit represented by the general formula (1) are not particularly limited, but the nucleating agent In consideration of the workability of the crystalline polymer composition containing, usually, Mn is preferably in the range of about 500 to 1,000,000, more preferably about 1,000 to 100,000. Usually, Mw / Mn is preferably in the range of 1.5-20. In addition, about Mn and Mw / Mn, it is the value measured using the gel permeation chromatography, and what was calibrated with the standard polystyrene sample is used for a calibration curve.

該造核剤を含有してなる結晶性高分子組成物に用いられる結晶性高分子は、特に制限されるものではないが、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレンや、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ヘミアイソタクチックポリプロピレン、ステレオブロックポリプロピレン、ポリ(1−ブテン)、ポリ(3−メチル−1−ブテン)、ポリ(3−メチル−1−ペンテン)、ポリ(4−メチル−1−ペンテン)等のα−オレフィン重合体、エチレン/α−オレフィン、2種類以上のα−オレフィンのランダム共重合体、ブロック共重合体等のポリオレフィン系共重合体が挙げられる。The crystalline polymer used in the crystalline polymer composition containing the nucleating agent is not particularly limited, and examples thereof include low density polyethylene, linear low density polyethylene, high density polyethylene, , Isotactic polypropylene, syndiotactic polypropylene, hemiisotactic polypropylene, stereoblock polypropylene, poly (1-butene), poly (3-methyl-1-butene), poly (3-methyl-1-pentene), Polyolefin copolymers such as α-olefin polymers such as poly (4-methyl-1-pentene), ethylene / α-olefins, random copolymers of two or more α-olefins, and block copolymers. It is done.

本発明の結晶性高分子組成物に用いられる結晶性高分子としては、これらのポリオレフィン系(共)重合体の中でも、ポリプロピレン、エチレン/プロピレンランダム共重合体又はブロック共重合体、α−オレフィン/プロピレンランダム又はブロック共重合体、これらのプロピレン系(共)重合体と他のα−オレフィン重合体との混合物等のポリプロピレン系樹脂が特に好ましい。As the crystalline polymer used in the crystalline polymer composition of the present invention, among these polyolefin-based (co) polymers, polypropylene, ethylene / propylene random copolymer or block copolymer, α-olefin / Polypropylene resins such as propylene random or block copolymers and mixtures of these propylene (co) polymers with other α-olefin polymers are particularly preferred.

本発明の結晶性高分子組成物に用いられる結晶性高分子の分子量は特に制限されるものではないが、加工性を考慮すると、通常は極限粘度([η])が0.5〜3であることが好ましい。また、通常Mw/Mnは1.5〜20の範囲が好ましい。The molecular weight of the crystalline polymer used in the crystalline polymer composition of the present invention is not particularly limited, but in consideration of processability, the intrinsic viscosity ([η]) is usually 0.5 to 3. Preferably there is. Usually, Mw / Mn is preferably in the range of 1.5-20.

本発明の結晶性高分子組成物に用いられるポリマー型造核剤の含有量は、特に制限されるものではないが、結晶性高分子100重量部に対して、0.001〜10重量部が好ましく、0.01〜5重量部がより好ましい。0.001重量部未満では十分な効果が得られない場合があり、また10重量部を超えても更なる効果が得られない上に、結晶性高分子組成物から得られる成形品の物性に好ましくない影響を及ぼす場合があり、また、経済的見地からも無意味である。The content of the polymer nucleating agent used in the crystalline polymer composition of the present invention is not particularly limited, but is 0.001 to 10 parts by weight with respect to 100 parts by weight of the crystalline polymer. Preferably, 0.01-5 weight part is more preferable. If it is less than 0.001 part by weight, a sufficient effect may not be obtained, and if it exceeds 10 parts by weight, no further effect is obtained, and the physical properties of the molded product obtained from the crystalline polymer composition are not obtained. It may have undesirable effects and is also meaningless from an economic point of view.

ポリマー型造核剤の結晶性高分子組成物への含有のさせかたは特に制限されるものではなく、ブレンド法や重合法等を用いることが可能である。具体的には、あらかじめポリマー型造核剤を合成した後、適当な溶媒と結晶性高分子との溶液中で混合する方法、及び各種混練機を用いて溶融状態で混合する方法、ポリマー型造核剤を予備重合させた後、結晶性高分子を本重合することにより重合槽内で混合する方法、及びブロック共重合体とする方法等を挙げることができる。There are no particular restrictions on how the polymer type nucleating agent is incorporated into the crystalline polymer composition, and a blending method, a polymerization method, or the like can be used. Specifically, after synthesizing a polymer type nucleating agent in advance, a method of mixing in a solution of an appropriate solvent and a crystalline polymer, a method of mixing in a molten state using various kneaders, a polymer type Examples thereof include a method in which a nucleating agent is prepolymerized and then a crystalline polymer is main-polymerized to be mixed in a polymerization tank, and a block copolymer is formed.

本発明の結晶性高分子組成物には、本発明の効果が阻害されない範囲において、必要に応じて、通常結晶性高分子組成物に用いられる添加剤、例えば、酸化防止剤、分散剤、滑剤、帯電防止剤、アンチブロッキング剤、着色剤等や、ポリマー型造核剤以外の造核剤を配合してもよい。In the crystalline polymer composition of the present invention, additives that are usually used in the crystalline polymer composition, for example, an antioxidant, a dispersant, a lubricant, are used as long as the effects of the present invention are not inhibited. In addition, an antistatic agent, an antiblocking agent, a colorant and the like, or a nucleating agent other than the polymer type nucleating agent may be blended.

発明の効果The invention's effect

本発明によると、結晶性高分子への分散性、混和性に優れ、かつブリードアウトの少ないポリマー型造核剤、及び該造核剤を含有してなる透明性や機械的強度及び寸法安定性等に優れた結晶性高分子組成物を提供することができる。According to the present invention, a polymer-type nucleating agent that is excellent in dispersibility and miscibility in a crystalline polymer and has little bleeding out, and transparency, mechanical strength, and dimensional stability containing the nucleating agent. It is possible to provide a crystalline polymer composition excellent in the above.

本発明で得られる結晶性高分子組成物の用途としては、自動車用部品、家電製品用部品、家庭用品、接続用部品、雑貨品、医療器具、建材、電線被覆材、農業用資材、食品包装材等の、フィルム及びシートを含む成形品や繊維等が挙げられる。Applications of the crystalline polymer composition obtained in the present invention include automobile parts, parts for household appliances, household goods, connecting parts, miscellaneous goods, medical equipment, building materials, wire covering materials, agricultural materials, food packaging Examples thereof include molded products and fibers including films and sheets such as materials.

以下、参考例、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例によって何ら制限を受けるものではない。尚、以下の参考例、実施例及び比較例で得られたポリマー型造核剤及び結晶性高分子組成物の評価は以下の方法にて行った。Hereinafter, although a reference example, an example, and a comparative example are given and the present invention is explained in detail, the present invention is not restricted at all by these examples. The polymer type nucleating agent and the crystalline polymer composition obtained in the following Reference Examples, Examples and Comparative Examples were evaluated by the following methods.

(1)示差走査熱量測定(DSC測定)
測定装置は株式会社リガク製 DSC8230を使用した。サンプルをアルミのサンプルパンに約4mg封入し、対照物質に空のサンプルパンを使用した。まず、熱履歴を取り除くために200℃まで昇温し、5分間保持した。次に10℃/minで25℃まで冷却した。更に10℃/minで200℃まで昇温した。測定は全て窒素雰囲気下で行った。降温過程で結晶化温度(T)および結晶化エンタルピー(ΔH)を、昇温過程で融点(T)及び融解エンタルピー(ΔH)を求めた。
(1) Differential scanning calorimetry (DSC measurement)
The measuring apparatus used was DSC8230 manufactured by Rigaku Corporation. About 4 mg of the sample was sealed in an aluminum sample pan, and an empty sample pan was used as a control substance. First, in order to remove the thermal history, the temperature was raised to 200 ° C. and held for 5 minutes. Next, it was cooled to 25 ° C. at 10 ° C./min. The temperature was further increased to 200 ° C. at 10 ° C./min. All measurements were performed under a nitrogen atmosphere. The crystallization temperature (T c ) and crystallization enthalpy (ΔH c ) were determined in the temperature lowering process, and the melting point (T m ) and melting enthalpy (ΔH m ) were determined in the temperature increasing process.

(2)偏光顕微鏡による評価
METTLER TOLEDO社製のホットステージを用いて、スライドグラス上に少量の試料を載せさらにカバーグラスで覆い、昇温速度20℃/minでサンプルを200℃まで加熱し、5分間保持して熱履歴を取り除いた。次に10℃/minで室温まで冷却し、オリンパス社製偏光顕微鏡BX50を用いて倍率を200倍として球晶を観察し、オリンパス社製デジタルカメラDP11を用いて撮影した。
(2) Evaluation with a polarizing microscope Using a hot stage manufactured by METLER TOLEDO, a small amount of sample was placed on a slide glass, further covered with a cover glass, and the sample was heated to 200 ° C. at a heating rate of 20 ° C./min. The heat history was removed by holding for a minute. Next, it cooled to room temperature at 10 degreeC / min, the spherulite was observed using the polarizing microscope BX50 made from Olympus, and magnification was 200 times, and it image | photographed using digital camera DP11 made from Olympus.

(3)ゲルパーミエーションクロマトグラフィー(GPC)測定
昭和電工(株)社製カラムGPC K−805L、及びインテリジェント示差屈折計RI−2031を備えた日本分光(株)社製GPCを使用し、溶媒にクロロホルム、標準物質にポリスチレンを用いて40℃で測定した。
(3) Gel permeation chromatography (GPC) measurement Showa Denko Co., Ltd. column GPC K-805L, and GPC made by JASCO Corporation equipped with intelligent differential refractometer RI-2031 were used as the solvent. Measurement was performed at 40 ° C. using chloroform as a standard substance and polystyrene.

参考例
(プロピレンの重合)窒素置換した21の三口セパラブルフラスコにトルエン935.5mlを入れ、氷浴中で0℃に冷却した。別途用意した100ml二口フラスコを窒素置換し、50μmolの触媒ジメチルシリレンビス(2−メチル−4−フェニル インデニル)ジルコニウム ジクロリドを入れ、そこへトルエン50mlを加えて撹拌して溶解させ触媒溶液を調製した。冷却した21の三口セパラブルフラスコ内を脱気し、プロピレンガスを導入してトルエンに飽和させた。そこへトリイソブチルアルミニウムのトルエン溶液12.5ml(1.0M)、触媒溶液50ml、トリチルペンタフルオロフェニルボレートのトルエン溶液2.0ml(0.025M)を順に加え重合を開始した。重合は150分間行った。重合後、フラスコ内に2−プロパノールを加え触媒を失活させた。その後、生成ポリマーをメタノール中に入れ、更に塩酸を加えることにより触媒残渣を取り除いた。ポリマーを水とメタノールで数回洗浄した後、60℃で6時間減圧乾燥を行い、57.3gのポリプロピレンを得た。135℃デカリン中で測定した極限粘度は2.9(dl/g)、T及びΔHは、それぞれ112.4℃,91.3J/g、T及びΔHはそれぞれ157.2℃,91.0J/gであった。結果を表1に、得られたポリプロピレンの偏光顕微鏡写真を図1に示す。
Reference Example (Polypropylene Polymerization) 935.5 ml of toluene was placed in a 21-necked separable flask substituted with nitrogen and cooled to 0 ° C. in an ice bath. A separately prepared 100 ml two-necked flask was purged with nitrogen, 50 μmol of catalyst dimethylsilylenebis (2-methyl-4-phenylindenyl) zirconium dichloride was added, and 50 ml of toluene was added thereto and stirred to dissolve to prepare a catalyst solution. . The cooled 21-necked separable flask was degassed, and propylene gas was introduced to saturate with toluene. Thereto, 12.5 ml (1.0 M) of a toluene solution of triisobutylaluminum, 50 ml of a catalyst solution, and 2.0 ml (0.025 M) of a toluene solution of tritylpentafluorophenylborate were sequentially added to initiate polymerization. The polymerization was carried out for 150 minutes. After polymerization, 2-propanol was added to the flask to deactivate the catalyst. Thereafter, the produced polymer was placed in methanol, and further hydrochloric acid was added to remove the catalyst residue. The polymer was washed several times with water and methanol, and then dried under reduced pressure at 60 ° C. for 6 hours to obtain 57.3 g of polypropylene. The intrinsic viscosity measured in decalin at 135 ° C. is 2.9 (dl / g), T c and ΔH c are 112.4 ° C. and 91.3 J / g, respectively, T m and ΔH m are 157.2 ° C. and It was 91.0 J / g. The results are shown in Table 1, and a polarizing microscope photograph of the obtained polypropylene is shown in FIG.

実施例1
(ノルボルネンのメタセシス重合)窒素置換した50ml二口フラスコにノルボルネン20.3mmolとジオキサン6mlを入れた。別途用意した50ml二口フラスコを窒素置換し、WClを25.2mmolと助触媒テトラメチルスズ3.28μmolを入れ、さらにジオキサン6mlを入れ撹拌し、触媒溶液を調製した。反応容器に触媒溶液を加え、重合を開始した。室温で24時間反応後、重合溶液全体をメタノール中に注ぎ触媒を失活させた後ポリマーを濾別し、室温で6時間減圧乾燥し、1.0gのポリノルボルネンを得た。Mnは63000、Mw/Mnは2.8であった。
Example 1
(Metathesis polymerization of norbornene) 20.3 mmol of norbornene and 6 ml of dioxane were placed in a nitrogen-substituted 50 ml two-necked flask. A separately prepared 50 ml two-neck flask was purged with nitrogen, 25.2 mmol of WCl 6 and 3.28 μmol of co-catalyst tetramethyltin were added, and 6 ml of dioxane was further added and stirred to prepare a catalyst solution. The catalyst solution was added to the reaction vessel to initiate polymerization. After reacting at room temperature for 24 hours, the entire polymerization solution was poured into methanol to deactivate the catalyst, and then the polymer was filtered off and dried under reduced pressure at room temperature for 6 hours to obtain 1.0 g of polynorbornene. Mn was 63000 and Mw / Mn was 2.8.

(ポリノルボルネンの水素化;ポリ(エチレン−1,3−シクロペンタン)の合成)窒素置換した300ml三口フラスコに合成したポリノルボルネン0.5gと、p−トルエンスルホニルヒドラジド4.1gおよびキシレン30mlを入れ、135℃で4時間撹拌した。反応終了後、反応系に蒸留水を少量加え反応を停止させた。次に、反応溶液全体をメタノール中に注ぎ、ポリマーを沈殿させ濾別し室温で6時間減圧乾燥させ、ほぼ定量的に水素化ポリノルボルネン(H−PNB)を得た。(Hydrogenation of polynorbornene; synthesis of poly (ethylene-1,3-cyclopentane)) 0.5 g of synthesized polynorbornene, 4.1 g of p-toluenesulfonyl hydrazide and 30 ml of xylene were placed in a nitrogen-substituted 300 ml three-necked flask. , And stirred at 135 ° C. for 4 hours. After completion of the reaction, a small amount of distilled water was added to the reaction system to stop the reaction. Next, the entire reaction solution was poured into methanol, the polymer was precipitated, filtered, and dried under reduced pressure at room temperature for 6 hours to obtain hydrogenated polynorbornene (H-PNB) almost quantitatively.

(水素化ポリノルボルネン(H−PNB)の造核評価)参考例で合成したポリプロピレン約1gと水素化ポリノルボルネン1.0mg(0.1wt%)を、オルトジクロロベンゼンを溶媒とし、180℃で溶解させて混合した。2時間後、溶液をメタノール中に注ぎ混合物を沈殿させ、濾別し、60℃で6時間減圧乾燥した。本実施例で合成した水素化ポリノルボルネン(H−PNB)を混合したポリプロピレンのT及びΔHは、それぞれ112.8℃,132.3J/g、T及びΔHはそれぞれ153.3℃,116.5J/gであった。結果を表1に、水素化ポリノルボルネン(H−PNB)を混合したポリプロピレンの偏光顕微鏡写真を図2に示す。(Evaluation of nucleation of hydrogenated polynorbornene (H-PNB)) About 1 g of the polypropylene synthesized in Reference Example and 1.0 mg (0.1 wt%) of hydrogenated polynorbornene were dissolved at 180 ° C. using orthodichlorobenzene as a solvent. Allowed to mix. After 2 hours, the solution was poured into methanol to precipitate the mixture, filtered off and dried under reduced pressure at 60 ° C. for 6 hours. T c and [Delta] H c of polypropylene mixed with synthesized hydrogenated polynorbornene (H-PNB) in this embodiment, respectively 112.8 ℃, 132.3J / g, T m and [Delta] H m are respectively 153.3 ° C. , 116.5 J / g. The results are shown in Table 1, and a polarizing microscope photograph of polypropylene mixed with hydrogenated polynorbornene (H-PNB) is shown in FIG.

実施例2
(ノルボルネンのメタセシス重合および水素化)
実施例1においてノルボルネンのメタセシス重合時の温度を60℃にした以外は実施例1と同様の操作で重合を行った。0.97gのポリノルボルネンが得られ、Mnは75200、Mw/Mnは2.6であった。得られたポリノルボルネンは実施例1と同様の操作で水素化した。
Example 2
(Metathesis polymerization and hydrogenation of norbornene)
Polymerization was carried out in the same manner as in Example 1 except that the temperature at the time of metathesis polymerization of norbornene was changed to 60 ° C. in Example 1. 0.97 g of polynorbornene was obtained, Mn was 75200, and Mw / Mn was 2.6. The obtained polynorbornene was hydrogenated in the same manner as in Example 1.

(水素化ポリノルボルネン(H−PNB)の造核評価)
実施例1と同様の方法で行った。本実施例で合成した水素化ポリノルボルネンを混合したポリプロピレンのT及びΔHは、それぞれ114.8℃,111.4J/g、T及びΔHはそれぞれ155.3℃,103.8J/gであった。結果を表1に示す。
(Nucleation evaluation of hydrogenated polynorbornene (H-PNB))
The same method as in Example 1 was used. T c and [Delta] H c of synthetic polypropylene mixed with hydrogenated polynorbornene in this embodiment, respectively 114.8 ℃, 111.4J / g, T m and [Delta] H m are respectively 155.3 ℃, 103.8J / g. The results are shown in Table 1.

実施例3
(1,5−ヘキサジエンの環化重合;ポリ(メチレン−1,3−シクロペンタン)(PMCP)の合成)窒素置換した100ml二口フラスコに1,5−ヘキサジエン25.0mmolと、トルエン35.4mlを入れ−25℃まで冷却した。別途用意した50ml二口フラスコを窒素置換し、触媒ビス(ペンタメチルシクロペンタジエニル)ジルコニウム ジクロリド10μmolとトルエン5mlを入れ撹拌し、触媒溶液を調製した。触媒溶液を100ml二口フラスコに加え、メチルアルミノキサンのトルエン溶液6.6mL(3.01M)を加え重合を開始した。重合は8時間行った。反応後、重合溶液を多量のメタノール中に注ぎ触媒を失活させた後、ポリマーを濾別した。得られたポリマーをオルトジクロロベンゼンを溶媒としてソックスレー型抽出器で抽出し、触媒残渣を取り除いた。更にエバポレーターで溶媒を留去した。メタノールを注ぎ生成ポリマーを濾別した後、60℃で6時間減圧乾燥を行い0.12gのポリ(メチレン−1,3−シクロペンタン)(PMCP)を得た。
Example 3
(Cyclopolymerization of 1,5-hexadiene; synthesis of poly (methylene-1,3-cyclopentane) (PMCP)) 25.0 mmol of 1,5-hexadiene and 35.4 ml of toluene in a nitrogen-substituted 100 ml two-necked flask And cooled to -25 ° C. A 50 ml two-necked flask prepared separately was purged with nitrogen, and 10 μmol of catalyst bis (pentamethylcyclopentadienyl) zirconium dichloride and 5 ml of toluene were added and stirred to prepare a catalyst solution. The catalyst solution was added to a 100 ml two-necked flask, and 6.6 mL (3.01 M) of a toluene solution of methylaluminoxane was added to initiate polymerization. The polymerization was carried out for 8 hours. After the reaction, the polymerization solution was poured into a large amount of methanol to deactivate the catalyst, and then the polymer was separated by filtration. The obtained polymer was extracted with a Soxhlet type extractor using orthodichlorobenzene as a solvent to remove the catalyst residue. Further, the solvent was distilled off with an evaporator. Methanol was poured and the resulting polymer was filtered off, followed by drying under reduced pressure at 60 ° C. for 6 hours to obtain 0.12 g of poly (methylene-1,3-cyclopentane) (PMCP).

(ポリ(メチレン−1,3−シクロペンタン)(PMCP)の造核評価)
実施例1と同様の方法で行った。本実施例で合成したポリ(メチレン−1,3−シクロペンタン)(PMCP)を混合したポリプロピレンのT及びΔHは、それぞれ115.4℃,117.5J/g、T及びΔHはそれぞれ153.7℃,106.3J/gであった。結果を表1に、ポリ(メチレン−1,3−シクロペンタン)を混合したポリプロピレンの偏光顕微鏡写真を図3に示す。
(Nucleation evaluation of poly (methylene-1,3-cyclopentane) (PMCP))
The same method as in Example 1 was used. T c and [Delta] H c of the synthesized poly polypropylene mixed with (methylene-1,3-cyclopentane) (PMCP) in this embodiment, respectively 115.4 ℃, 117.5J / g, T m and [Delta] H m is They were 153.7 ° C. and 106.3 J / g, respectively. The results are shown in Table 1, and a polarizing microscope photograph of polypropylene mixed with poly (methylene-1,3-cyclopentane) is shown in FIG.

実施例4
(1,−5−ヘキサジエンの環化重合;ポリ(メチレン−1,3−シクロペンタン)(PMCP)の合成)実施例3において触媒をジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウム ジクロリド、重合温度を50℃、重合時間を2時間にした以外は実施例3と同様の操作で重合を行い、1.15gのポリ(メチレン−1,3−シクロペンタン)(PMCP)を得た。
Example 4
(Cyclopolymerization of 1, -5-hexadiene; synthesis of poly (methylene-1,3-cyclopentane) (PMCP)) In Example 3, the catalyst was diphenylmethylene (cyclopentadienyl) (9-fluorenyl) zirconium dichloride. Polymerization was carried out in the same manner as in Example 3 except that the polymerization temperature was 50 ° C. and the polymerization time was 2 hours to obtain 1.15 g of poly (methylene-1,3-cyclopentane) (PMCP).

(ポリ(メチレン−1,3−シクロペンタン)(PMCP)の造核評価)
実施例1と同様の方法で行った。本実施例で合成したポリ(メチレン−1,3−シクロペンタン)(PMCP)を混合したポリプロピレンのT及びΔHは、それぞれ113.3℃,114.1J/g、T及びΔHはそれぞれ154.0℃,104.4J/gであった。結果を表1に示す。
(Nucleation evaluation of poly (methylene-1,3-cyclopentane) (PMCP))
The same method as in Example 1 was used. T c and [Delta] H c of the synthesized poly polypropylene mixed with (methylene-1,3-cyclopentane) (PMCP) in this embodiment, respectively 113.3 ℃, 114.1J / g, T m and [Delta] H m is They were 154.0 ° C. and 104.4 J / g, respectively. The results are shown in Table 1.

比較例1
(リン酸エステルナトリウム塩(NA−11(旭電化工業(株)社製))の造核評価)参考例1で合成したポリプロピレン1gと1.0mg(0.1wt%)のNA−11をホットプレート上200℃で融解混練した。NA−11を混合したポリプロピレンのT及びΔHは、それぞれ118.8℃,104.9J/g、T及びΔHはそれぞれ153.6℃,101.3J/gであった。結果を表1に示す。
Comparative Example 1
(Nucleation Evaluation of Phosphate Ester Sodium Salt (NA-11 (Asahi Denka Kogyo Co., Ltd.))) Hot 1 g of polypropylene synthesized in Reference Example 1 and 1.0 mg (0.1 wt%) of NA-11 It was melt-kneaded at 200 ° C. on the plate. T c and [Delta] H c of polypropylene mixed with NA-11, respectively 118.8 ℃, 104.9J / g, T m and [Delta] H m are respectively 153.6 ° C., was 101.3J / g. The results are shown in Table 1.

表1に記載の結果から明らかなように、本発明のポリマー型造核剤を含有する結晶性高分子組成物(実施例1〜4)は、造核剤を含まないもの(参考例)、及び汎用の低分子有機化合物造核剤(NA−11)を含むもの(比較例1)に比べて、ΔH及びΔHの値が高く、本発明のポリマー型造核剤は優れた造核効果を示すことが明らかとなった。また、偏向顕微鏡観察においても、ポリマー型造核剤を添加した結晶性高分子組成物(実施例1及び3)において、造核効果による球晶の微細化が確認された(図2,3)。As is clear from the results shown in Table 1, the crystalline polymer compositions (Examples 1 to 4) containing the polymer type nucleating agent of the present invention do not contain a nucleating agent (reference examples), and compared to the general-purpose low-molecular organic compound nucleating agent (NA-11) to include (Comparative example 1), high values of [Delta] H c and [Delta] H m, polymeric nucleating agent of the present invention has excellent nucleating It became clear to show the effect. Also in the deflection microscope observation, in the crystalline polymer compositions (Examples 1 and 3) to which the polymer type nucleating agent was added, spherulite refinement due to the nucleating effect was confirmed (FIGS. 2 and 3). .

図1は参考例において得られたポリプロピレンの偏向顕微鏡写真である。  FIG. 1 is a deflection micrograph of polypropylene obtained in a reference example. 図2は実施例1において得られた水素化ポリノルボルネン(H−PNB)を混合したポリプロピレンの偏向顕微鏡写真である。  FIG. 2 is a deflection micrograph of polypropylene obtained by mixing hydrogenated polynorbornene (H-PNB) obtained in Example 1. 図3は実施例3において得られたポリ(メチレン−1,3−シクロペンタン)(PMCP)を混合したポリプロピレンの偏向顕微鏡写真である。  FIG. 3 is a deflection micrograph of polypropylene obtained by mixing poly (methylene-1,3-cyclopentane) (PMCP) obtained in Example 3.

Claims (4)

下記一般式(1)で表される繰り返し単位からなるポリマー型造核剤。
(1)
(式中、mは1であり、R1、R1’、R2、R2’及びR3、R3’は水素である。)
A polymer type nucleating agent comprising a repeating unit represented by the following general formula (1).
(1)
(In the formula, m is 1, and R1, R1 ′, R2, R2 ′ and R3, R3 ′ are hydrogen.)
請求項1に記載の造核剤を含有してなる結晶性高分子組成物。   A crystalline polymer composition comprising the nucleating agent according to claim 1. 結晶性高分子がポリオレフィン系高分子である請求項2記載の結晶性高分子組成物。   The crystalline polymer composition according to claim 2, wherein the crystalline polymer is a polyolefin polymer. ポリオレフィン系高分子がポリプロピレン系樹脂である請求項3記載の結晶性高分子組成物。   The crystalline polymer composition according to claim 3, wherein the polyolefin polymer is a polypropylene resin.
JP2004160291A 2004-04-28 2004-04-28 Polymer type nucleating agent and crystalline polymer composition containing the nucleating agent Expired - Lifetime JP4474544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160291A JP4474544B2 (en) 2004-04-28 2004-04-28 Polymer type nucleating agent and crystalline polymer composition containing the nucleating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160291A JP4474544B2 (en) 2004-04-28 2004-04-28 Polymer type nucleating agent and crystalline polymer composition containing the nucleating agent

Publications (2)

Publication Number Publication Date
JP2005314622A JP2005314622A (en) 2005-11-10
JP4474544B2 true JP4474544B2 (en) 2010-06-09

Family

ID=35442378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160291A Expired - Lifetime JP4474544B2 (en) 2004-04-28 2004-04-28 Polymer type nucleating agent and crystalline polymer composition containing the nucleating agent

Country Status (1)

Country Link
JP (1) JP4474544B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6565435B2 (en) * 2015-07-30 2019-08-28 日本ポリプロ株式会社 Propylene resin composition for medical kit preparation for radiation sterilization and medical kit preparation thereof

Also Published As

Publication number Publication date
JP2005314622A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
US6812292B2 (en) Propylene/ethylene block copolymer, blushing-resistant transparent polypropylene resin for molding, elastomer for molding, and molded article obtained therefrom
RU2300539C2 (en) Soft polyolefin compositions
JP3701030B2 (en) Polyolefin composition and molded article comprising the composition
RU2309169C2 (en) Shock-resistant polyolefin compositions
US5834562A (en) Thermoplastic compositions of atactic and syndiotactic polypropylene
CN109071899B (en) Soft and transparent propylene copolymers
BRPI0821018B1 (en) HYPERPHASIC POLYPROPYLENE RESIN, ITS PRODUCTION PROCESS, USE OF THE SAME, COMPOSITION AND ARTICLE
US6673869B2 (en) Transparent elastomeric thermoplastic polyolefin compositions
BRPI0620531A2 (en) impact resistant polyolefinic compositions
JP2007326961A (en) Polyolefin-based resin composition
US6639018B2 (en) Polypropylene resin composition and process for producing the same
BR112014000017B1 (en) polypropylene composition
US20010034416A1 (en) Proplylene-based copolymer composition
TW200948852A (en) Polylactic acid resin and polylactic acid resin composition and molded products thereof and production process of polylactic acid resin
WO2010112337A1 (en) Polyolefin masterbatch and composition suitable for injection molding
JP4474544B2 (en) Polymer type nucleating agent and crystalline polymer composition containing the nucleating agent
JP2000119480A (en) Polypropylene resin composition and its film
BRPI1013798B1 (en) POLYOLEFIN COMPOSITION, PROCESS FOR ITS PRODUCTION AND FILM
JP3570774B2 (en) Flexible polyolefin composition and use thereof
BRPI0908411B1 (en) polyolefin compositions
Zango et al. Sustainable grafting of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and natural rubber into a new thermoplastic elastomer film
JP7474624B2 (en) Propylene-based resin composition and injection molded product using same
JP6289007B2 (en) Resin composition and molded body
JP2010144007A (en) Inflation film
TW200837126A (en) Polyolefin compositions having low hardness and low gloss

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150