JP4473396B2 - Manufacturing method of battery electrode plate - Google Patents

Manufacturing method of battery electrode plate Download PDF

Info

Publication number
JP4473396B2
JP4473396B2 JP2000044103A JP2000044103A JP4473396B2 JP 4473396 B2 JP4473396 B2 JP 4473396B2 JP 2000044103 A JP2000044103 A JP 2000044103A JP 2000044103 A JP2000044103 A JP 2000044103A JP 4473396 B2 JP4473396 B2 JP 4473396B2
Authority
JP
Japan
Prior art keywords
electrode plate
substrate
plate
shaped
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000044103A
Other languages
Japanese (ja)
Other versions
JP2001236951A (en
Inventor
潤 松村
浩 井上
貢 高木
徳之 藤岡
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000044103A priority Critical patent/JP4473396B2/en
Priority to EP01301500A priority patent/EP1128455A1/en
Priority to US09/788,538 priority patent/US6666899B2/en
Publication of JP2001236951A publication Critical patent/JP2001236951A/en
Application granted granted Critical
Publication of JP4473396B2 publication Critical patent/JP4473396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は電池用極板の製造方法に関するものである。
【0002】
【従来の技術】
例えば、ニッケル水素二次電池として、幅の狭い短側面と幅の広い長側面とを有する上面開口の直方体状の電槽内に極板群を電解液とともに収容し、その電槽の上面開口を蓋体にて一体的に閉鎖したものが提案されており、その極板群はNiの発泡メタルから成る複数枚の正極板とNiのパンチングメタルに水素吸蔵合金粉末をペースト状にした活物質を塗着した複数枚の負極板とを交互に配置するとともに、各正極板に横方向に開口部を有するポリプロピレン不織布から成る袋状のセパレータを被せることにより正極板と負極板の間にセパレータを介装した状態で積層して構成されている。
【0003】
また、正極板と負極板は互いに反対側の側縁部が外側に突出されてリード部が設けられ、正極板のリード部は発泡メタルを加圧して圧縮しかつその一面にリード板をシーム溶接や超音波溶接で接合して構成され、負極板のリード部は活物質の非塗着部にて構成されている。そして、この極板群の両側において、各リード部の側縁に対して垂直にニッケル板又はニッケルメッキ鋼板製の正極と負極の集電板が溶接接合されている。
【0004】
上記極板群を構成する正極板は、図9に示すように、帯状の幅広のNiの発泡メタル11に対してその幅方向の1又は複数箇所に適当間隔あけて帯状のリード板12を接合し、この帯状の発泡メタル11を適当長さ毎に切断線13で切断し、図10に示すような所定の大きさの極板用基板14を製造し、この極板用基板14の状態で発泡メタル11に活物質を充填・乾燥し、その後極板用基板14を分割切断して製造されている。
【0005】
【発明が解決しようとする課題】
ところが、上記極板用基板14は発泡メタル11にリード板12を接合した後切断して製造しているために、図10に示すように、切断後に反りδが大きく発生する。その理由はリード板12を接合した部分で発泡メタル11が圧縮されることによってその接合部に向けて周辺部が引っ張られることによる。このように極板用基板14に反りδが発生すると、極板用基板14に対して活物質が不均一に充填され、充填量ばらつき不良の発生率が高くなり、また極板用基板14に対して活物質を充填する際の供給、充填、乾燥、集積等の各工程への搬送系でトラブルの発生率が高くなる等の問題がある。
【0006】
本発明は、上記従来の問題点に鑑み、帯状三次元金属多孔体に1本以上の帯状のリード板を接合し、その後切断して形成される極板用基板の反りを無くし、活物質の充填量のばらつきやそりによる搬送系のトラブルの発生を防止した電池用極板の製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の電池用極板の製造方法は、帯状三次元金属多孔体に1本以上の帯状のリード板を接合した後適当長さで切断して極板用基板を形成し、極板用基板に活物質を充填し、その後適当に切断して一側にリード部を有する極板を製造する電池用極板の製造方法であって、帯状のリード板を接合した後リード板近傍を圧延し、その後切断して極板用基板を形成するものであり、接合したリード板の近傍を圧延することによってリード板の接合によってリード板に向けて引っ張られて生じていた応力や歪みが矯正され、したがってその後切断して形成した極板用基板に反りを発生することはなく、極板用基板の反りによる活物質の充填量のばらつきや搬送系のトラブルの発生を防止することができる。
【0008】
また、帯状のリード板を接合した後帯状三次元金属多孔体を圧延し、その後切断して極板用基板を形成しても、帯状三次元金属多孔体の全体の圧延によって上記と同様にリード板の接合によって生じていた応力や歪みが矯正され、その後切断して形成した極板用基板に反りを発生することはなく、同様の効果を奏することができる。
【0009】
また、切断して形成した極板用基板のリード板近傍を圧延しても、リード板の接合によって生じていた応力や歪みが矯正されて基板のそりが無くなり、同様の効果を奏する。
【0010】
また、切断して形成した極板用基板を圧延しても、同様に基板のそりが無くなり、同様の効果を奏する。
【0011】
【発明の実施の形態】
以下、本発明の電池用極板の製造方法の各実施形態について、図1〜図8を参照して説明する。
【0012】
(第1の実施形態)
本発明の第1の実施形態を示す図1において、1は、ニッケル水素二次電池の正極板の原材料であるNiの発泡メタルなどの三次元金属多孔体を幅広の帯状に形成した帯状三次元金属多孔体であり、コイル2の状態で供給される。この帯状三次元金属多孔体1をコイル2から引き出し、その幅方向に適当な空間をあけて1又は複数列(図示例では2列)の帯状のリード板3が接合される。リード板3の接合にあたっては、帯状のリード板3を帯状三次元金属多孔体1上に連続供給し、ロール電極4にて加圧しながら通電し、三次元金属多孔体を圧縮しながらリード板3をシーム溶接している。シーム溶接に代えて又はそれと併用して超音波溶接を行ってもよい。
【0013】
次に、リード板3を接合された帯状三次元金属多孔体1は圧延ロール5にて圧延される。このロール圧延によって帯状三次元金属多孔体1が所定の厚さに厚さ調整されるとともに、リード板3の接合によってその近傍に生じた局部応力や歪みが解消される。
【0014】
その後、帯状三次元金属多孔体1が適当長さ間隔で設定された切断線6で切断されて正極板等を製造するための極板用基板7とされる。この極板用基板7は、上記のようにリード板3の接合部に局部応力や歪みが存在しないので、切断後に反りを生じるようなことはない。
【0015】
この極板用基板7は、その後活物質を充填するために、活物質の充填工程に向けて供給されて活物質を充填され、その後乾燥された後集積され、さらに適当に分割切断されて一側にリード部を有する所定の形状の正極板などの極板が形成され、その後の極板群の組み付け工程に供給される。
【0016】
上記極板用基板7に活物質を充填する際に、極板用基板7に反りがないために、活物質の充填量に大きなばらつきが生じる恐れはなく、またその間の搬送系でトラブルが発生して設備の稼働率を低下させるというようなこともない。
【0017】
(第2の実施形態)
次に、本発明の第2の実施形態を、図2を参照して説明する。なお、以下の実施形態の説明では、上記第1の実施形態と同一の構成要素については同一参照符号を付して説明を省略し、相違点のみを説明する。
【0018】
本実施形態では、帯状三次元金属多孔体1にリード板3を接合した後、リード板3の近傍のみを圧延ロール8にてロール圧延している。この圧延ロール8は、図2(b)に詳細に示すように、リード板3の幅よりも広幅で、その両側部の径が滑らかに縮小されているロールにて構成されており、帯状三次元金属多孔体1の厚さがリード板3の両側縁から滑らかに正規の厚さ部分に移行するように圧延成形される。
【0019】
このように本実施形態においては、接合したリード板3の近傍を圧延することによってリード板3の接合によってリード板3に向けて引っ張られて生じていたリード板3近傍における帯状三次元金属多孔体1の応力や歪みが矯正される。かくしてその後切断して形成した極板用基板7に反りを発生することはなく、帯状三次元金属多孔体1の全体の厚みを変化させることなく、上記実施形態と同様に極板用基板7の反りによる活物質の充填量のばらつきや搬送系のトラブルの発生を防止することができる。
【0020】
(第3の実施形態)
次に、本発明の第3の実施形態を、図3を参照して説明する。本実施形態では切断線6で切断して極板用基板7を形成した後、この極板用基板7を圧延ロール5に通して極板用基板7全体を圧延している。
【0021】
本実施形態によれば、リード板3の接合によって生じていた局部応力や歪みを極板用基板7の状態で確実に矯正して極板用基板7の反りを無くすことができ、上記実施形態と同様の作用効果がより確実に得られる。
【0022】
(第4の実施形態)
次に、本発明の第4の実施形態を、図4を参照して説明する。本実施形態では切断線6で切断して極板用基板7を形成した後、極板用基板7を圧延ロール8に通してリード板3の近傍のみをロール圧延している。
【0023】
本実施形態によれば、リード板3の接合によって生じていた局部応力や歪みを極板用基板7の状態で確実に矯正して極板用基板7の反りを無くすことができ、上記実施形態と同様の作用効果が得られる。
【0024】
以上の各実施形態による作用効果の具体例を従来例と比較して図5〜図8に示す。極板用基板7の反りは、図5に示すように、従来例では12mmあったものが、第1の実施形態では3mm、第2の実施形態では7mm、第3の実施形態では2mm、第2の実施形態では5mmであり、リード板3の近傍だけを圧延するよりも帯状三次元金属多孔体1又は極板用基板7の全体を圧延すると、より大きな効果が得られ、また帯状三次元金属多孔体1の状態よりも極板用基板7にした状態で圧延した方が効果が大きいことが分かる。但し、全体を圧延すると全体の厚さが変化し、極板用基板7の状態で圧延すると設備が大掛かりとなる。
【0025】
これら極板用基板7の反りが設備稼働率に対して与える影響は図6に示すようになる。従来例では反りが大きいために20%程度であった稼働率が、上記実施形態では70〜90%に向上できる。
【0026】
また、極板用基板7の反りが活物質の充填量ばらつきに対して与える影響は、図7に示すようになる。この充填量ばらつきは、図8に示すように、極板用基板7の幅方向の中間部Bと両側の反り部Cとの間の充填量の差を%で表示している。従来例では14%もあったものが、各実施形態では5〜9%に低減することができ、電池の容量ばらつきを低減することができる。
【0027】
【発明の効果】
本発明の電池用極板の製造方法によれば、以上のように帯状のリード板を接合した後リード板近傍を圧延し、その後切断して極板用基板を形成するので、リード板の接合によってリード板に向けて引っ張られて生じていた応力や歪みを矯正でき、したがって極板用基板に反りを発生することはなく、極板用基板の反りによる活物質の充填量のばらつきや搬送系のトラブルの発生を防止することができる。
【0028】
また、帯状のリード板を接合した後帯状三次元金属多孔体を圧延し、その後切断して極板用基板を形成しても、帯状三次元金属多孔体の全体の圧延によって上記と同様にリード板の接合によって生じていた応力や歪みを矯正でき、極板用基板に反りを発生することはなく、同様の効果を奏する。
【0029】
また、切断して形成した基板のリード板近傍を圧延しても、リード板の接合によって生じていた応力や歪みが矯正されて基板のそりが無くなり、同様の効果を奏する。
【0030】
また、切断して形成した基板を圧延しても、同様に基板のそりが無くなり、同様の効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態における極板用基板の製造工程の概略構成を示す斜視図である。
【図2】本発明の第2の実施形態における極板用基板の製造工程の概略構成を示し、(a)は全体斜視図、(b)は(a)のA−A矢視断面図である。
【図3】本発明の第3の実施形態における極板用基板の製造工程の要部の概略構成を示す斜視図である。
【図4】本発明の第4の実施形態における極板用基板の製造工程の要部の概略構成を示す斜視図である。
【図5】各実施形態と従来例における極板用基板の反り高さを示す図である。
【図6】各実施形態と従来例における設備稼働率を示す図である。
【図7】各実施形態と従来例における活物質の充填量ばらつきを示す図である。
【図8】活物質の充填量ばらつきの算出方法の説明図である。
【図9】従来例の極板用基板の製造工程の概略構成を示す斜視図である。
【図10】従来例の極板用基板の斜視図である。
【符号の説明】
1 帯状三次元金属多孔体
3 リード板
5 圧延ロール
6 切断線
7 極板用基板
8 圧延ロール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a battery electrode plate.
[0002]
[Prior art]
For example, as a nickel metal hydride secondary battery, an electrode plate group is accommodated together with an electrolyte in a rectangular parallelepiped battery case having a narrow short side surface and a wide long side surface, and the upper surface opening of the battery case is An electrode plate group that has been integrally closed with a lid has been proposed. The electrode plate group is composed of a plurality of positive electrode plates made of Ni foam metal and an active material obtained by pasting hydrogen punching alloy powder into Ni punching metal. A plurality of coated negative plates are alternately arranged, and a separator is interposed between the positive plate and the negative plate by covering each positive plate with a bag-like separator made of a polypropylene nonwoven fabric having openings in the lateral direction. It is configured by stacking in a state.
[0003]
In addition, the positive and negative electrode plates are provided with lead portions with the opposite side edges protruding outward, and the lead plate pressurizes and compresses foam metal and seams the lead plate to one side In addition, the lead portion of the negative electrode plate is constituted by an uncoated portion of the active material. Then, on both sides of the electrode plate group, a positive electrode and a negative electrode current collector plate made of a nickel plate or a nickel-plated steel plate are welded and joined perpendicularly to the side edges of the lead portions.
[0004]
As shown in FIG. 9, the positive electrode plate constituting the electrode plate group is bonded to a strip-like wide Ni foam metal 11 with a strip-like lead plate 12 at an appropriate interval in one or more places in the width direction. Then, the strip-shaped foam metal 11 is cut along cutting lines 13 at appropriate lengths to produce a substrate 14 for a predetermined size as shown in FIG. The foam metal 11 is manufactured by filling and drying the active material, and then dividing and cutting the electrode plate substrate 14.
[0005]
[Problems to be solved by the invention]
However, since the electrode plate substrate 14 is manufactured by bonding the lead plate 12 to the foamed metal 11 and then cutting, as shown in FIG. This is because the foam metal 11 is compressed at the portion where the lead plate 12 is joined, and the peripheral portion is pulled toward the joined portion. When warping δ occurs in the electrode plate substrate 14 in this way, the active material is non-uniformly filled into the electrode plate substrate 14, the occurrence rate of filling amount variation failure is increased, and the electrode plate substrate 14 is On the other hand, there is a problem that the occurrence rate of troubles is increased in the transport system for each process such as supply, filling, drying, and stacking when filling the active material.
[0006]
In view of the above-described conventional problems, the present invention eliminates warping of an electrode plate substrate formed by joining one or more strip-shaped lead plates to a strip-shaped three-dimensional porous metal body, and then cutting the lead plate. It aims at providing the manufacturing method of the electrode plate for batteries which prevented generation | occurrence | production of the trouble of the conveyance system by the dispersion | variation of a filling amount, and a curvature.
[0007]
[Means for Solving the Problems]
The method for producing a battery electrode plate according to the present invention comprises joining one or more belt-like lead plates to a belt-like three-dimensional metal porous body and then cutting the electrode plate at an appropriate length to form an electrode plate substrate. Is a method for manufacturing a battery electrode plate that is appropriately cut and thereafter cut to produce an electrode plate having a lead portion on one side, and the vicinity of the lead plate is rolled after joining the strip-shaped lead plate. Then, it is cut to form a substrate for an electrode plate, and the stress and distortion generated by being pulled toward the lead plate by joining the lead plate by rolling the vicinity of the joined lead plate are corrected, Therefore, warpage does not occur in the electrode plate substrate formed by subsequent cutting, and it is possible to prevent variations in the amount of the active material filled due to warpage of the electrode plate substrate and troubles in the transport system.
[0008]
In addition, even if the strip-shaped three-dimensional metal porous body is rolled after joining the strip-shaped lead plate and then cut to form the electrode plate substrate, the lead is formed in the same manner as described above by rolling the entire strip-shaped three-dimensional metal porous body. The stress and distortion generated by the joining of the plates are corrected, and the electrode plate substrate formed by cutting thereafter is not warped, and the same effect can be obtained.
[0009]
Further, even if the vicinity of the lead plate of the electrode substrate formed by cutting is rolled, the stress and distortion generated by joining the lead plates are corrected, and the substrate is not warped.
[0010]
Moreover, even if the electrode plate substrate cut and formed is rolled, the substrate is similarly warped, and the same effect can be obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, each embodiment of the manufacturing method of the battery electrode plate of the present invention will be described with reference to FIGS.
[0012]
(First embodiment)
In FIG. 1 showing the first embodiment of the present invention, reference numeral 1 denotes a band-shaped three-dimensional structure in which a three-dimensional metal porous body such as a foam metal of Ni, which is a raw material of a positive electrode plate of a nickel metal hydride secondary battery, is formed in a wide band shape. It is a metal porous body and is supplied in the state of the coil 2. The strip-shaped three-dimensional metal porous body 1 is pulled out from the coil 2, and one or a plurality of (two rows in the illustrated example) strip-shaped lead plates 3 are joined with a suitable space in the width direction. In joining the lead plate 3, the strip-shaped lead plate 3 is continuously supplied onto the strip-shaped three-dimensional metal porous body 1, energized while being pressed by the roll electrode 4, and the lead plate 3 is compressed while compressing the three-dimensional metal porous body. The seam is welded. Ultrasonic welding may be performed instead of or in combination with seam welding.
[0013]
Next, the strip-shaped three-dimensional metal porous body 1 to which the lead plate 3 is bonded is rolled by a rolling roll 5. The roll-shaped rolling adjusts the thickness of the band-shaped three-dimensional metal porous body 1 to a predetermined thickness and eliminates local stresses and distortions generated in the vicinity due to the joining of the lead plate 3.
[0014]
After that, the strip-shaped three-dimensional metal porous body 1 is cut along cutting lines 6 set at appropriate length intervals to form an electrode plate substrate 7 for manufacturing a positive electrode plate or the like. Since the electrode plate substrate 7 does not have local stress or distortion at the joint portion of the lead plate 3 as described above, it does not warp after cutting.
[0015]
This electrode plate substrate 7 is then supplied toward the active material filling step to be filled with the active material, filled with the active material, then dried, integrated, and further appropriately divided and cut. An electrode plate such as a positive electrode plate of a predetermined shape having a lead portion on the side is formed and supplied to the subsequent assembly process of the electrode plate group.
[0016]
When the electrode plate substrate 7 is filled with the active material, the electrode plate substrate 7 is not warped, so there is no risk of large variations in the filling amount of the active material, and trouble occurs in the conveyance system during that time. And there is no such thing as lowering the equipment availability.
[0017]
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In the following description of the embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and only differences will be described.
[0018]
In this embodiment, after the lead plate 3 is joined to the band-shaped three-dimensional metal porous body 1, only the vicinity of the lead plate 3 is roll-rolled by the rolling roll 8. As shown in detail in FIG. 2 (b), the rolling roll 8 is composed of a roll that is wider than the width of the lead plate 3 and whose diameters on both sides are smoothly reduced. The former metal porous body 1 is rolled and formed so that the thickness of the original metal porous body 1 smoothly shifts from the both side edges of the lead plate 3 to the regular thickness portion.
[0019]
As described above, in the present embodiment, the strip-shaped three-dimensional metal porous body in the vicinity of the lead plate 3 generated by rolling the vicinity of the joined lead plate 3 and being pulled toward the lead plate 3 by joining the lead plate 3. 1 stress and distortion are corrected. Thus, the electrode substrate 7 formed by cutting thereafter is not warped, and without changing the entire thickness of the band-shaped three-dimensional porous metal body 1, the electrode substrate 7 of the electrode plate 7 is not changed. Variations in the amount of active material filling due to warping and troubles in the conveyance system can be prevented.
[0020]
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. In this embodiment, after forming the electrode plate substrate 7 by cutting along the cutting line 6, the electrode plate substrate 7 is passed through the rolling roll 5 to roll the entire electrode plate substrate 7.
[0021]
According to the present embodiment, the local stress and distortion caused by the joining of the lead plate 3 can be surely corrected in the state of the electrode plate substrate 7 to eliminate the warp of the electrode plate substrate 7, and the above embodiment. The same operational effects can be obtained more reliably.
[0022]
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, after forming the electrode plate substrate 7 by cutting along the cutting line 6, only the vicinity of the lead plate 3 is rolled by passing the electrode plate substrate 7 through the rolling roll 8.
[0023]
According to the present embodiment, the local stress and distortion caused by the joining of the lead plate 3 can be surely corrected in the state of the electrode plate substrate 7 to eliminate the warp of the electrode plate substrate 7, and the above embodiment. The same effect can be obtained.
[0024]
Specific examples of the effects of the above embodiments are shown in FIGS. 5 to 8 in comparison with the conventional example. As shown in FIG. 5, the warpage of the electrode substrate 7 was 12 mm in the conventional example, but 3 mm in the first embodiment, 7 mm in the second embodiment, 2 mm in the third embodiment, In the second embodiment, the thickness is 5 mm, and rolling the entire band-shaped three-dimensional metal porous body 1 or the electrode plate substrate 7 is more effective than rolling only the vicinity of the lead plate 3, and the band-shaped three-dimensional is obtained. It can be seen that the rolling effect in the state of the electrode plate substrate 7 is more effective than the state of the metal porous body 1. However, if the whole is rolled, the whole thickness changes, and if it is rolled in the state of the electrode plate substrate 7, the equipment becomes large.
[0025]
The influence of the warpage of the electrode plate substrate 7 on the equipment operation rate is as shown in FIG. Since the warpage is large in the conventional example, the operating rate which is about 20% can be improved to 70 to 90% in the above embodiment.
[0026]
Moreover, the influence which the curvature of the board | substrate 7 for electrode plates has with respect to the filling amount variation of an active material becomes as shown in FIG. As shown in FIG. 8, the variation in the filling amount indicates the difference in filling amount between the intermediate portion B in the width direction of the electrode plate substrate 7 and the warped portions C on both sides in%. What was 14% in the conventional example can be reduced to 5 to 9% in each embodiment, and the battery capacity variation can be reduced.
[0027]
【The invention's effect】
According to the method for manufacturing a battery electrode plate of the present invention, since the strip-shaped lead plate is joined as described above, the vicinity of the lead plate is rolled and then cut to form the electrode plate substrate. Can correct the stress and strain generated by being pulled toward the lead plate by the, so that the electrode substrate is not warped, the active material variation due to warping of the electrode substrate and the transport system The occurrence of troubles can be prevented.
[0028]
In addition, even if the strip-shaped three-dimensional metal porous body is rolled after joining the strip-shaped lead plate and then cut to form the electrode plate substrate, the lead is formed in the same manner as described above by rolling the entire strip-shaped three-dimensional metal porous body. The stress and distortion generated by the joining of the plates can be corrected, and the same effect can be obtained without warping the electrode plate substrate.
[0029]
Moreover, even if the vicinity of the lead plate of the substrate formed by cutting is rolled, the stress and distortion generated by the joining of the lead plate are corrected, and the substrate is not warped.
[0030]
Moreover, even if the substrate formed by cutting is rolled, the substrate is similarly warped, and the same effect is obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of a manufacturing process of an electrode plate substrate in a first embodiment of the present invention.
FIGS. 2A and 2B show a schematic configuration of a manufacturing process of an electrode plate substrate according to a second embodiment of the present invention, wherein FIG. 2A is an overall perspective view, and FIG. 2B is a cross-sectional view taken along line AA in FIG. is there.
FIG. 3 is a perspective view showing a schematic configuration of a main part of a manufacturing process of an electrode plate substrate in a third embodiment of the present invention.
FIG. 4 is a perspective view showing a schematic configuration of a main part of a manufacturing process of an electrode plate substrate in a fourth embodiment of the present invention.
FIG. 5 is a view showing the warpage height of the electrode plate substrate in each embodiment and a conventional example.
FIG. 6 is a diagram showing an equipment operation rate in each embodiment and a conventional example.
FIG. 7 is a diagram showing variations in the amount of active material filling in each embodiment and a conventional example.
FIG. 8 is an explanatory diagram of a method for calculating variation in the filling amount of an active material.
FIG. 9 is a perspective view showing a schematic configuration of a manufacturing process of a conventional electrode plate substrate.
FIG. 10 is a perspective view of a conventional electrode plate substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Strip | belt-shaped three-dimensional metal porous body 3 Lead board 5 Rolling roll 6 Cutting line 7 Electrode board substrate 8 Rolling roll

Claims (4)

帯状三次元金属多孔体に1本以上の帯状のリード板を接合した後適当長さで切断して極板用基板を形成し、極板用基板に活物質を充填し、その後適当に切断して一側にリード部を有する極板を製造する電池用極板の製造方法であって、帯状のリード板を接合した後リード板近傍を圧延し、その後切断して極板用基板を形成することを特徴とする電池用極板の製造方法。After joining one or more strip-shaped lead plates to the strip-shaped three-dimensional metal porous body, the electrode plate substrate is formed by cutting at an appropriate length, the electrode substrate is filled with an active material, and then appropriately cut. A battery plate manufacturing method for manufacturing a plate having a lead portion on one side, after joining the belt-shaped lead plate, rolling the vicinity of the lead plate, and then cutting to form a substrate for the electrode plate The manufacturing method of the electrode plate for batteries characterized by the above-mentioned. 帯状三次元金属多孔体に1本以上の帯状のリード板を接合した後適当長さで切断して極板用基板を形成し、極板用基板に活物質を充填し、その後適当に切断して一側にリード部を有する極板を製造する電池用極板の製造方法であって、帯状のリード板を接合した後帯状三次元金属多孔体を圧延し、その後切断して極板用基板を形成することを特徴とする電池用極板の製造方法。After joining one or more strip-shaped lead plates to the strip-shaped three-dimensional metal porous body, the electrode plate substrate is formed by cutting at an appropriate length, the electrode substrate is filled with an active material, and then appropriately cut. A method of manufacturing a battery electrode plate for manufacturing an electrode plate having a lead portion on one side, wherein the band-shaped lead plate is joined, the band-shaped three-dimensional metal porous body is rolled, and then cut to form a substrate for electrode plate Forming a battery electrode plate. 帯状三次元金属多孔体に1本以上の帯状のリード板を接合した後適当長さで切断して極板用基板を形成し、極板用基板に活物質を充填し、その後適当に切断して一側にリード部を有する極板を製造する電池用極板の製造方法であって、切断して形成した極板用基板のリード板近傍を圧延することを特徴とする電池用極板の製造方法。After joining one or more strip-shaped lead plates to the strip-shaped three-dimensional metal porous body, the electrode plate substrate is formed by cutting at an appropriate length, the electrode substrate is filled with an active material, and then appropriately cut. A battery electrode manufacturing method for manufacturing an electrode plate having a lead portion on one side, wherein the vicinity of the lead plate of the electrode plate substrate formed by cutting is rolled. Production method. 帯状三次元金属多孔体に1本以上の帯状のリード板を接合した後適当長さで切断して極板用基板を形成し、極板用基板に活物質を充填し、その後適当に切断して一側にリード部を有する極板を製造する電池用極板の製造方法であって、切断して形成した極板用基板を圧延することを特徴とする電池用極板の製造方法。After joining one or more strip-shaped lead plates to the strip-shaped three-dimensional metal porous body, the electrode plate substrate is formed by cutting at an appropriate length, the electrode substrate is filled with an active material, and then appropriately cut. A battery plate manufacturing method for manufacturing a plate having a lead portion on one side, the method comprising rolling a plate substrate formed by cutting.
JP2000044103A 2000-02-22 2000-02-22 Manufacturing method of battery electrode plate Expired - Fee Related JP4473396B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000044103A JP4473396B2 (en) 2000-02-22 2000-02-22 Manufacturing method of battery electrode plate
EP01301500A EP1128455A1 (en) 2000-02-22 2001-02-20 Method of manufacturing electrode plates for batteries
US09/788,538 US6666899B2 (en) 2000-02-22 2001-02-21 Method of manufacturing electrode plates for batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000044103A JP4473396B2 (en) 2000-02-22 2000-02-22 Manufacturing method of battery electrode plate

Publications (2)

Publication Number Publication Date
JP2001236951A JP2001236951A (en) 2001-08-31
JP4473396B2 true JP4473396B2 (en) 2010-06-02

Family

ID=18566922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000044103A Expired - Fee Related JP4473396B2 (en) 2000-02-22 2000-02-22 Manufacturing method of battery electrode plate

Country Status (1)

Country Link
JP (1) JP4473396B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280922A (en) * 2006-03-15 2007-10-25 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for battery
JP2012256583A (en) * 2011-02-18 2012-12-27 Sumitomo Electric Ind Ltd Manufacturing method of electrode for electrochemical element
JP5954220B2 (en) * 2013-02-28 2016-07-20 株式会社豊田自動織機 Electrode manufacturing apparatus and electrode manufacturing method

Also Published As

Publication number Publication date
JP2001236951A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP5004452B2 (en) Battery manufacturing method
JP4876444B2 (en) Battery and battery manufacturing method
JP6572204B2 (en) Secondary battery and manufacturing method thereof
JP2008066050A (en) Manufacturing method of electrode plate for lithium secondary battery
JP2004071301A (en) Manufacturing method of case for storage element
JP5918914B2 (en) Multilayer battery manufacturing method and manufacturing apparatus
JPH1079254A (en) Rectangular battery
JP2019125441A (en) Device for measuring electrode laminated body
JP4473396B2 (en) Manufacturing method of battery electrode plate
JP4342160B2 (en) Storage battery and manufacturing method thereof
JP2001023681A (en) Battery having winding structure electrode body
US5478362A (en) Method for producing a spiral electrodes
JP2007018833A (en) Manufacturing method of storage battery
KR101247605B1 (en) Apparatus for Transporting Film
US20200112047A1 (en) Power storage device
US6666899B2 (en) Method of manufacturing electrode plates for batteries
JP6062197B2 (en) battery
JP7359023B2 (en) Energy storage module
CN111213278B (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2000323165A (en) Wound body electrode group for accumulator and alkali storage battery
JP3849478B2 (en) Alkaline storage battery and method of manufacturing the same
JPH11265707A (en) Electrode for battery and manufacture of electrode
JPH11354110A (en) Sealed battery electrode plate and its manufacture
JP7024188B2 (en) Manufacturing method of electrode assembly
JP4349042B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070811

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4473396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees