JP2007280922A - Manufacturing method of electrode for battery - Google Patents

Manufacturing method of electrode for battery Download PDF

Info

Publication number
JP2007280922A
JP2007280922A JP2006249077A JP2006249077A JP2007280922A JP 2007280922 A JP2007280922 A JP 2007280922A JP 2006249077 A JP2006249077 A JP 2006249077A JP 2006249077 A JP2006249077 A JP 2006249077A JP 2007280922 A JP2007280922 A JP 2007280922A
Authority
JP
Japan
Prior art keywords
core material
uncoated
electrode
manufacturing
mixture paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006249077A
Other languages
Japanese (ja)
Inventor
Yoshinori Ito
義則 伊藤
Kazufumi Okawa
和史 大川
Takashi Ebihara
孝 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006249077A priority Critical patent/JP2007280922A/en
Publication of JP2007280922A publication Critical patent/JP2007280922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode for a battery with high precision in which a mixture paste is utilized with high yield, and variations in the width of unpainted portion leading directly to welding failure of the unpainted portion and a current collector and distortion of electrodes can be reduced. <P>SOLUTION: The manufacturing method of the electrode for battery comprises a painting process to coat continuously a mixture paste containing an active material on the core material made of continuous three-dimensional metal porous body. A pretreatment process in which an unpainted portion is provided by regulating the running position of the core material while interposing a part of the core material to make it in high density is provided before applying the painting process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は電池用電極の製造方法に関し、より詳しくはアルカリ蓄電池の電極を安定して連続的に生産するための方法に関する。   The present invention relates to a method for manufacturing a battery electrode, and more particularly to a method for stably and continuously producing an electrode for an alkaline storage battery.

アルカリ蓄電池などの電池は携帯機器の電源から電動工具の電源や電気自動車の補助電源に用途を拡大しつつある。これに伴って高率放電特性の向上が強く求められており、その対応策の一つとして電極(正極および負極)の長手方向に沿った一辺に未塗工部を形成させるように合剤ペーストを塗工し、正極と負極の未塗工部どうしが対峙しないようにセパレータを介在して交互に重ね合わせた状態で渦巻き状に巻付けて電極群を形成し、この電極群の上下面に正極集電板と負極集電板とを溶接する構成が採られる。この構成の利点として、長手方向の一端のみにリードを接合する従来技術とは異なり、正極および負極の全周から集電できるので内部抵抗が激減し、高率放電特性を向上させることができる。   Applications of batteries such as alkaline storage batteries are expanding from the power source of portable devices to the power source of electric tools and the auxiliary power source of electric vehicles. Along with this, improvement of the high rate discharge characteristics is strongly demanded, and as one of the countermeasures, a mixture paste that forms an uncoated part on one side along the longitudinal direction of the electrodes (positive electrode and negative electrode) In order to prevent the uncoated portions of the positive electrode and the negative electrode from facing each other, the electrode groups are formed by winding them in a spiral shape in a state of being alternately stacked with separators interposed between them. The structure which welds a positive electrode current collecting plate and a negative electrode current collecting plate is taken. As an advantage of this configuration, unlike the conventional technique in which the lead is joined to only one end in the longitudinal direction, current can be collected from the entire circumference of the positive electrode and the negative electrode, so that the internal resistance is drastically reduced and the high rate discharge characteristics can be improved.

三次元金属多孔体に活物質などの合剤を充填してなる電極は、少量の結着剤でこれら合剤を電極中に多量に保持できるという観点から、アルカリ蓄電池の正極を中心に実用化が広まっている。ただしこのような電極に精度よく未塗工部を形成するのは困難である。そこで三次元金属多孔体に合剤ペーストを充填した後に塗工部に当たる箇所をストライプロールプレス機によってプレス加工する一方、未塗工部に当たる箇所を残存凸状部としてプレス加工せずに、この箇所に超音波振動を与えて活物質を除去する方法が提案されている(例えば特許文献1)。また三次元的金属多孔体などの芯材に合剤ペーストを吐出するノズルを近接させて合剤ペーストを吐出し、芯材より幅が狭い塗工部を設ける方法が提案されている(例えば特許文献2)。
特開2002−075345号公報 特許第2976863号公報
Electrodes made by filling a three-dimensional metallic porous material with a mixture such as an active material have been put to practical use mainly in the positive electrode of alkaline storage batteries from the viewpoint that a large amount of these mixtures can be held in the electrode with a small amount of binder. Is spreading. However, it is difficult to accurately form an uncoated portion on such an electrode. Therefore, after filling the mixture paste into the three-dimensional metal porous body, the part that hits the coating part is pressed by a stripe roll press machine, while the part that hits the uncoated part is not left as a remaining convex part, and this part is pressed. There has been proposed a method of removing the active material by applying ultrasonic vibration to the material (for example, Patent Document 1). In addition, a method has been proposed in which a nozzle that discharges a mixture paste is brought close to a core material such as a three-dimensional metal porous body to discharge the mixture paste and provide a coating portion that is narrower than the core material (for example, a patent) Reference 2).
Japanese Patent Laid-Open No. 2002-075345 Japanese Patent No. 2976863

しかし特許文献1の方法では、除去した合剤ペーストがロスとなるので効率的とはいえない。その点では特許文献2の方法は合剤ペーストのロスが発生しない特長があるが、塗工直後に塗工部の両端で合剤ペーストが液垂れすることにより塗工部の幅のバラツキが大きくなり、これに追従して未塗工部の幅のバラツキも大きくなって、電極群の上下面に正極集電板と負極集電板とを溶接する際に未塗工部に残存した合剤ペーストによって溶接が不十分になるという課題が生じる。さらに生産性を向上させるためには三次元金属多孔体をフープ状にして連続的に供給する必要があるのだが、このような三次元金属多孔体は連続供給時に蛇行しやすい。しかるに特許文献1および2の方法では上述した蛇行を抑制する手段を有しないので、塗工後の電極に歪みが生じて湾曲することが避けられない。この湾曲により上述した溶接不具合はさらに増すことになる。   However, the method of Patent Document 1 cannot be said to be efficient because the removed mixture paste is lost. In that respect, the method of Patent Document 2 has the advantage that loss of the mixture paste does not occur, but the mixture paste dripping at both ends of the coating portion immediately after coating causes a large variation in the width of the coating portion. Following this, the variation in the width of the uncoated part also increases, and the mixture left in the uncoated part when welding the positive and negative current collector plates to the upper and lower surfaces of the electrode group The problem that welding becomes inadequate with a paste arises. Further, in order to improve productivity, it is necessary to continuously supply the three-dimensional metal porous body in a hoop shape. However, such a three-dimensional metal porous body is likely to meander during continuous supply. However, since the methods of Patent Documents 1 and 2 do not have means for suppressing the above-described meandering, it is inevitable that the electrode after coating is distorted and curved. This bending further increases the above-described welding defects.

本発明は上記課題に対処するためになされたもので、高い歩留で合剤ペーストを活用するとともに、未塗工部と集電板との溶接不具合に直結する未塗工部の幅のバラツキや電極の歪みを削減できる、精度の高い電池用電極の製造方法を提供することを目的とする。   The present invention has been made to address the above-described problems, and uses the mixture paste at a high yield, and the variation in the width of the uncoated portion that directly leads to a welding failure between the uncoated portion and the current collector plate. It is an object of the present invention to provide a highly accurate battery electrode manufacturing method capable of reducing distortion of electrodes.

上記目的を達成するために、本発明の電池用電極の製造方法は、連続する三次元金属多孔体からなる芯材に、活物質を含む合剤ペーストを連続的に塗工する塗工工程を含み、この塗工工程に先駆けて、芯材の走行位置を規制しつつこの芯材の一部を挟持しながら高密
度化して未塗工部を設ける前処理工程を設けたことを特徴とする。
In order to achieve the above object, the battery electrode manufacturing method of the present invention includes a coating step of continuously applying a mixture paste containing an active material to a core material composed of a continuous three-dimensional porous metal body. In addition, prior to this coating process, a pre-processing process is provided in which the travel position of the core material is regulated and a part of the core material is sandwiched and densified to provide an uncoated part. .

合剤ペーストを塗工する前に芯材の一部を高密度化して未塗工部を設けることにより、塗工部と未塗工部との境界が明確化して合剤ペーストが未塗工部へ液垂れしにくくなり、未塗工部の幅のバラツキが低減できる。さらにこの工程において芯材に設けた未塗工部を挟持することにより芯材の走行直線性が向上し、三次元金属多孔体ゆえに連続供給時に発生しやすい蛇行が抑制でき、塗工後の電極の歪みによる湾曲が回避できる。これらの効果によって未塗工部と集電板との溶接不具合を回避することが可能となる。   Before applying the mixture paste, by densifying a part of the core material and providing an uncoated part, the boundary between the coated part and the uncoated part is clarified and the mixture paste is not coated. It is difficult for the liquid to drip into the part, and the variation in the width of the uncoated part can be reduced. Further, by sandwiching the uncoated part provided in the core material in this process, the running linearity of the core material is improved, and the meandering that is likely to occur during continuous supply due to the three-dimensional metal porous body can be suppressed, and the electrode after coating Can be avoided. Due to these effects, it is possible to avoid welding defects between the uncoated portion and the current collector plate.

本発明によると、高い歩留で合剤ペーストを活用できる上に、未塗工部と集電板との溶接不具合に直結する未塗工部の幅のバラツキや電極の歪みを削減できるので、精度の高い電池用電極を製造することができる。   According to the present invention, the mixture paste can be used at a high yield, and the variation in the width of the uncoated part and the distortion of the electrode directly connected to the welding failure between the uncoated part and the current collector plate can be reduced. A battery electrode with high accuracy can be manufactured.

以下、本発明を実施するための最良の形態について、図を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

第1の発明は、連続する三次元金属多孔体からなる芯材に、活物質を含む合剤ペーストを連続的に塗工する塗工工程を含み、この塗工工程に先駆けて、芯材の走行位置を規制しつつこの芯材の一部を挟持しながら高密度化して未塗工部を設ける前処理工程を設けたことを特徴とする電池用電極の製造方法に関する。   1st invention includes the coating process which coats the mixture paste containing an active material continuously to the core material which consists of a continuous three-dimensional metal porous body, and precedes this coating process, The present invention relates to a method for manufacturing a battery electrode, characterized in that a pretreatment step is provided in which a density is increased while sandwiching a part of the core material while restricting a traveling position and an uncoated portion is provided.

図1は本発明の電池用電極の製造方法の概略図である。芯材1(具体的には三次元金属多孔体)はこの図の下側から上側へ走行し、芯材走行位置規制装置5と高密度処理装置6とを経た後に、合剤ペースト塗工装置4(例えばノズルなどからなる)を通過することにより、電極7となる。得られた電極7は未塗工部2と塗工部3とを有する。   FIG. 1 is a schematic view of a method for producing a battery electrode of the present invention. The core material 1 (specifically, the three-dimensional metal porous body) travels from the lower side to the upper side in this figure, passes through the core material travel position regulating device 5 and the high-density processing device 6, and then the mixture paste coating device. The electrode 7 is formed by passing through 4 (for example, composed of a nozzle or the like). The obtained electrode 7 has an uncoated portion 2 and a coated portion 3.

合剤ペースト塗工装置4を経る前に芯材1の一部を高密度化して未塗工部2を設けることにより、塗工部3と未塗工部2との境界が明確化して合剤ペーストが未塗工部2へ液垂れしにくくなり、未塗工部2の幅のバラツキが低減できる。さらにこの工程において芯材1の走行位置を芯材走行位置規制装置5が規制しており、かつ芯材1に設けた未塗工部2を高密度処理装置6が挟持しているので、芯材1の走行直線性が格段に向上し、三次元金属多孔体ゆえに連続供給時に発生しやすい蛇行が抑制でき、塗工後の電極7の歪みによる湾曲が回避できる。これらの効果によって未塗工部2と集電板(図示せず)との溶接不具合を回避することが可能となる。   Before passing through the mixture paste coating apparatus 4, a part of the core material 1 is densified to provide an uncoated part 2, thereby clarifying the boundary between the coated part 3 and the uncoated part 2. The agent paste is less likely to drip into the uncoated part 2, and variations in the width of the uncoated part 2 can be reduced. Further, in this process, the core material travel position regulating device 5 regulates the travel position of the core material 1, and the uncoated part 2 provided on the core material 1 is sandwiched by the high-density processing device 6. The running linearity of the material 1 is remarkably improved, the meandering that is likely to occur during continuous supply because of the three-dimensional porous metal body can be suppressed, and bending due to distortion of the electrode 7 after coating can be avoided. Due to these effects, it is possible to avoid welding defects between the uncoated portion 2 and the current collector plate (not shown).

なお本発明における高密度化とは、元の芯材1に対して合剤以外のもので空孔体積を減らすことを総称したものである。   The densification in the present invention is a general term for reducing the pore volume with a material other than the mixture with respect to the original core material 1.

本発明の電池用電極の製造方法の細部について、さらに詳しく説明する。図2は本発明における高密度処理装置6の断面模式図、図3は本発明における合剤ペースト塗工装置4の断面模式図である。芯材1が芯材走行位置規制装置5を経ることにより、芯材1の走行位置が規制される。しかる後に高密度処理装置6によって未塗工部2を形成するのだが、この高密度処理装置6が未塗工部2となる箇所を挟持するために、芯材1が走行中に左右に蛇行することを抑制できる。このような製造方法を経て得られた電極7は、未塗工部2と塗工部3との境界の直線性が高いものとなる(図4(B)および図5(B)参照)。さらには塗工時の蛇行が抑制されているので、塗工後に行う圧延工程にて顕著化する湾曲をも回避できる。   Details of the method for producing the battery electrode of the present invention will be described in more detail. FIG. 2 is a schematic cross-sectional view of the high-density treatment apparatus 6 in the present invention, and FIG. 3 is a schematic cross-sectional view of the mixture paste coating apparatus 4 in the present invention. When the core material 1 passes through the core material travel position regulating device 5, the travel position of the core material 1 is regulated. After that, the non-coated part 2 is formed by the high-density processing device 6, but the core material 1 meanders left and right while the core material 1 is traveling in order to sandwich the portion where the high-density processing device 6 becomes the uncoated part 2. Can be suppressed. The electrode 7 obtained through such a manufacturing method has a high linearity at the boundary between the uncoated portion 2 and the coated portion 3 (see FIGS. 4B and 5B). Furthermore, since the meandering at the time of coating is suppressed, it is possible to avoid the curvature that becomes prominent in the rolling process performed after coating.

一方で高密度処理装置6を省略すると、芯材1がわずかに蛇行する上に、未塗工部2に
合剤ペーストが液垂れするために、図4(A)に示すように未塗工部2の幅のバラツキが生じて、溶接の不具合が目立つようになる。また芯材走行位置規制装置5を省略すると、蛇行が激しくなって図5(A)に示すように塗工部3の波打ち現象が生じる。この現象は未塗工部2の幅のバラツキに直結するだけでなく、圧延工程を経た電極7の湾曲をも引き起こすため、未塗工部2と集電板との溶接不具合は顕著化する。
On the other hand, if the high-density treatment device 6 is omitted, the core material 1 slightly snakes and the mixture paste drips into the uncoated part 2, so that the uncoated material is not applied as shown in FIG. Variations in the width of the part 2 occur, and welding defects become conspicuous. Further, if the core material travel position regulating device 5 is omitted, the meandering becomes intense and the waviness phenomenon of the coating part 3 occurs as shown in FIG. This phenomenon is not only directly connected to the variation in the width of the uncoated part 2, but also causes the electrode 7 to be bent after the rolling process, so that the welding failure between the uncoated part 2 and the current collector plate becomes noticeable.

第2の発明は、第1の発明において、前処理工程において芯材1の両端部を未塗工部2とすること特徴とする。最も位置規制効果の高い芯材1の両端部を未塗工部2として挟持することにより、蛇行防止効果はさらに増し、塗工後に行なう圧延工程にて顕著化する湾曲をも回避できる。   The second invention is characterized in that, in the first invention, both end portions of the core material 1 are uncoated portions 2 in the pretreatment step. By sandwiching both end portions of the core material 1 having the highest position regulating effect as the uncoated portion 2, the meandering prevention effect is further increased, and the curvature that becomes prominent in the rolling process performed after coating can be avoided.

第3の発明は、第1の発明において、前処理工程において芯材1を圧縮することによって未塗工部2を設けることを特徴とする。高密度化処理した未塗工部2を設ける方法の中で、この方法は他の部材を必要としないので最も生産性が高い。   The third invention is characterized in that, in the first invention, the uncoated portion 2 is provided by compressing the core material 1 in the pretreatment step. Among the methods of providing the non-coated portion 2 subjected to the densification treatment, this method has the highest productivity because it does not require other members.

第4の発明は、第1の発明において、前処理工程において芯材1にこの芯材1と同一のものを貼り合わせることによって未塗工部2を設けることを特徴とする。未塗工部2の単位面積当たり金属重量を大きくすることにより、第3の発明を経たものよりも集電体との溶接が容易になるが、用意する部材の増加は免れない。その中でも第4の方法は、芯材1と同一のもの(例えば芯材1の一部を切片やリール状に加工したもの)を用いることができるので、部品点数を実質的に増やす必要がなくなる。   A fourth invention is characterized in that, in the first invention, the uncoated portion 2 is provided by bonding the same material as the core material 1 to the core material 1 in the pretreatment step. By increasing the metal weight per unit area of the uncoated portion 2, welding with the current collector is easier than that according to the third invention, but an increase in the number of members to be prepared is inevitable. Among them, the fourth method can use the same material as the core material 1 (for example, a part of the core material 1 processed into a slice or a reel), so that it is not necessary to substantially increase the number of parts. .

第5の発明は、第1の発明において、前処理工程において芯材1に金属板を貼り合わせることによって未塗工部2を設けることを特徴とする。この方法は第4の発明に記した方法に比べて部品点数が増すが、集電体との溶接をより容易にできるので好ましい。なお金属板としては、電池環境下において電気化学的に安定な材料であれば自由に選択できる。具体的にはニッケル板、鋼板にニッケルメッキしたものなどが挙げられる。   The fifth invention is characterized in that, in the first invention, the uncoated portion 2 is provided by bonding a metal plate to the core material 1 in the pretreatment step. Although this method increases the number of parts compared to the method described in the fourth invention, it is preferable because it can be more easily welded to the current collector. The metal plate can be freely selected as long as it is an electrochemically stable material in a battery environment. Specifically, a nickel plate, a steel plate plated with nickel, and the like can be mentioned.

本発明は、主にアルカリ蓄電池用正極の製造方法として有用である。アルカリ蓄電池用正極の合剤ペーストは、活物質である水酸化ニッケルと、高温特性などを改善するための添加剤である希土類酸化物や酸化亜鉛などと、結着剤であるポリテトラフルオエチレン(PTFE)などと、増粘剤であるカルボキシメチルセルロース(CMC)やキサンタンガムなどを水などの溶媒と混合して構成する。また芯材1は連続する三次元金属多孔体であって、具体的には発泡状あるいは繊維状のニッケルなどを、主としてフープ上に梱包してなる帯状の連続体が用いられる。   The present invention is mainly useful as a method for producing a positive electrode for an alkaline storage battery. The positive electrode mixture paste for alkaline storage batteries consists of nickel hydroxide, which is an active material, rare earth oxides and zinc oxide, which are additives for improving high temperature characteristics, and polytetrafluoroethylene ( PTFE) and the like, carboxymethyl cellulose (CMC), xanthan gum and the like as a thickener are mixed with a solvent such as water. The core material 1 is a continuous three-dimensional metal porous body. Specifically, a band-like continuous body obtained by packing foamed or fibrous nickel or the like mainly on a hoop is used.

以下、本発明における電池用電極の製造方法について詳細に説明する。   Hereafter, the manufacturing method of the battery electrode in this invention is demonstrated in detail.

(実施例1)
活物質である水酸化ニッケル100重量部に対して、酸化イッテルビウム1.5重量部、CMC0.1重量部、キサンタンガム0.1重量部、PTFE0.3重量部(固形分比)および適量の水を加えて練合し、合剤ペーストを得た。この合剤ペーストを、芯材1である連続する発泡状ニッケル多孔体(幅130mm、厚み0.5mm、多孔度98%、平均孔径200μm)の上に、図1〜3に示す方法で20m塗工した。なお塗工は、未塗工部2に掛からないようにして行った。ここで未塗工部2は芯材1を厚み0.1mmとなるように圧縮することによって設けた。またこの未塗工部2の幅は7mmとし、両端および略中央部の3箇所に設け、塗工部3における合剤(固形分比)の塗工量は0.06g/cm2とした。
Example 1
To 100 parts by weight of nickel hydroxide as an active material, 1.5 parts by weight of ytterbium oxide, 0.1 parts by weight of CMC, 0.1 parts by weight of xanthan gum, 0.3 parts by weight of PTFE (solid content ratio) and an appropriate amount of water In addition, kneading was performed to obtain a mixture paste. This mixture paste is coated on the continuous foamed nickel porous body (width 130 mm, thickness 0.5 mm, porosity 98%, average pore diameter 200 μm) as the core material 20 by the method shown in FIGS. Worked. The coating was performed so as not to be applied to the uncoated portion 2. Here, the uncoated part 2 was provided by compressing the core material 1 to a thickness of 0.1 mm. The width of the uncoated portion 2 was 7 mm, provided at three positions, both ends and substantially the central portion, and the coating amount of the mixture (solid content ratio) in the coated portion 3 was 0.06 g / cm 2 .

この後、塗工部3の厚みが0.28mmとなるように圧延し、電極7のフープを得た。これを実施例1とする。   Then, it rolled so that the thickness of the coating part 3 might be set to 0.28 mm, and the hoop of the electrode 7 was obtained. This is Example 1.

(実施例2)
実施例1に対して、芯材1の両端に未塗工部2を設けなかった(高密度化処理を芯材1の略中央部のみに行った)こと以外は実施例1と同様に電極7のフープを作製した。これを実施例2とする。
(Example 2)
In contrast to Example 1, the uncoated portions 2 were not provided at both ends of the core material 1 (the densification process was performed only on the substantially central portion of the core material 1). 7 hoops were produced. This is Example 2.

(実施例3)
実施例1に対して、高密度処理装置6の近傍に芯材1である発泡状ニッケル多孔体と同じ材質のリール(幅7mm)を備え付け、これを貼り合わせることにより厚みが0.2mmの未塗工部2を設けたこと以外は実施例1と同様に電極7のフープを作製した。これを実施例3とする。
(Example 3)
In contrast to Example 1, a reel (width 7 mm) made of the same material as the foamed nickel porous body, which is the core material 1, is provided in the vicinity of the high-density treatment apparatus 6, and this is bonded to a thickness of 0.2 mm. A hoop of the electrode 7 was produced in the same manner as in Example 1 except that the coating part 2 was provided. This is Example 3.

(実施例4)
実施例1に対して、高密度処理装置6の近傍に厚み0.08mmのニッケルリール(幅7mm)を備え付け、これを溶接電流値3A、電圧値240V、加圧120Nで溶接する事により、厚みが0.18mmの未塗工部2を設けたこと以外は実施例1と同様に電極7のフープを作製した。これを実施例4とする。
Example 4
Compared to Example 1, a nickel reel (width 7 mm) having a thickness of 0.08 mm is provided in the vicinity of the high-density processing apparatus 6 and welded at a welding current value of 3 A, a voltage value of 240 V, and a pressure of 120 N, thereby obtaining a thickness. Was prepared in the same manner as in Example 1 except that an uncoated portion 2 having a thickness of 0.18 mm was provided. This is Example 4.

(比較例1)
実施例1に対して、高密度処理装置6を外したこと以外は実施例1と同様に電極7のフープを作製した。これを比較例1とする。
(Comparative Example 1)
A hoop of the electrode 7 was produced in the same manner as in Example 1 except that the high-density processing apparatus 6 was removed from Example 1. This is referred to as Comparative Example 1.

(比較例2)
比較例1に対して、芯材走行位置規制装置5をさらに外したこと以外は比較例1と同様に電極7のフープを作製した。これを比較例2とする。
(Comparative Example 2)
A hoop of the electrode 7 was produced in the same manner as in Comparative Example 1 except that the core material travel position regulating device 5 was further removed from Comparative Example 1. This is referred to as Comparative Example 2.

以上の各例に対し、以下の評価を行った。結果を(表1)に示す。   The following evaluation was performed on each of the above examples. The results are shown in (Table 1).

(走行直線性)
当初設定した芯材1の一端の位置からのズレを位置センサーで計測し、その触れ幅の最大値を蛇行位置ズレ量として(表1)に記した。
(Running linearity)
The deviation from the position of one end of the core 1 that was initially set was measured by a position sensor, and the maximum value of the touch width was recorded in (Table 1) as the meandering position deviation amount.

(塗工部2と未塗工部3との境界の直線性)
当初設定した塗工部2と未塗工部3との境界に対する振れ幅の最大値を各n=10で光学顕微鏡にて測定し、(表1)に記した。
(Linearity of boundary between coated part 2 and uncoated part 3)
The maximum value of the deflection width with respect to the boundary between the initially set coated part 2 and the uncoated part 3 was measured with an optical microscope at each n = 10 and described in (Table 1).

(溶接性)
得られた電極7を幅50mm(うち未塗工部幅4mm)、長さ90cmに切断し、これを直径30mmとなるように負極、セパレータを一緒に捲回した後、厚み0.6mm、直径29mmのニッケル製集電板に溶接する。ここで、集電体溶接強度を引張強度試験機で確認し、引張強度100N以下の物を、溶接不具合品と判定し、その発生率を(表1)に記した。
(Weldability)
The obtained electrode 7 was cut into a width of 50 mm (including an uncoated portion width of 4 mm) and a length of 90 cm, and the negative electrode and the separator were wound together so as to have a diameter of 30 mm. Weld to a 29 mm nickel current collector. Here, the current collector welding strength was confirmed with a tensile strength tester, and those having a tensile strength of 100 N or less were determined as defective welding products, and the occurrence rates thereof are shown in (Table 1).

Figure 2007280922
芯材走行位置規制装置5を設け、かつ高密度処理装置6を芯材1の両端および略中央部に当接する箇所に設けた実施例1は、未塗工部2と塗工部3との境界の直線性が確保できたので、安定した溶接性を示した。ただし高密度処理装置6を芯材1の略中央部に当接する箇所のみに設けた実施例2は、両端部の高密度処理装置6がなく芯材1の狭持が1点のみであったので蛇行位置ズレ量が僅かに増加した上に、未塗工部2の幅のバラツキに起因する溶接不具合の発生率が僅かながら増加した。一方、実施例1に対して金属製の部材を貼り合わせて高密度化処理を行い、未塗工部2を形成した実施例3および4は、実施例1と同等の走行直線性を示すとともに、溶接部位の金属量の増加で塗工部2と未塗工部3との境界直線性が確保できたので、実施例1と同様、溶接性が安定した。
Figure 2007280922
Example 1 in which the core material travel position restricting device 5 is provided and the high-density treatment device 6 is provided at a position where the core material 1 is in contact with both ends and substantially the center portion of the uncoated portion 2 and the coated portion 3. Since the linearity of the boundary was secured, stable weldability was exhibited. However, in Example 2 in which the high-density treatment apparatus 6 is provided only at a position where the high-density treatment apparatus 6 is in contact with the substantially central portion of the core material 1, there is no high-density treatment apparatus 6 at both ends, and the core material 1 is held only at one point. As a result, the amount of deviation of the meandering position slightly increased, and the incidence of welding defects due to variations in the width of the uncoated portion 2 slightly increased. On the other hand, Examples 3 and 4 in which a metal member was bonded to Example 1 and subjected to a densification treatment to form an uncoated part 2 showed traveling linearity equivalent to Example 1. Since the boundary linearity between the coated part 2 and the uncoated part 3 could be secured by increasing the amount of metal at the welded part, the weldability was stabilized as in Example 1.

一方、高密度処理装置6を設けなかった比較例1は、芯材走行位置規制装置5のみで芯材1の走行位置を規制したものの、芯材1がわずかに蛇行する上に、未塗工部2に合剤ペーストが液垂れするために未塗工部2の幅のバラツキが生じて、溶接箇所に存在する合剤ペーストの影響で溶接不具合が目立つようになった。さらに芯材走行位置規制装置5をも設けなかった比較例2は、未塗工部2と塗工部3の境界に波打ち現象が生じるほどに蛇行が激しくなった。また比較例2は比較例1と比べて溶接不具合発生率が顕著に悪化したが、その理由として、比較例1と同様に未塗工部2に合剤ペーストが液垂れした影響と、空孔体積比率が異なる未塗工部2と塗工部3との境界が波打ちによって一定しないことによりその後の圧延工程で歪みが生じて電極7の湾曲を誘発した影響とが重複したことが考えられる。   On the other hand, in Comparative Example 1 in which the high-density processing device 6 was not provided, although the travel position of the core material 1 was restricted only by the core material travel position restricting device 5, the core material 1 slightly meandered and was not coated. Since the mixture paste drips in the part 2, the width of the uncoated part 2 varies, and the welding failure becomes conspicuous due to the influence of the mixture paste existing in the welded part. Further, in Comparative Example 2 in which the core material travel position restricting device 5 was not provided, the meandering became so intense that a wavy phenomenon occurred at the boundary between the uncoated part 2 and the coated part 3. In Comparative Example 2, the welding defect occurrence rate was remarkably deteriorated as compared with Comparative Example 1. As the reason, the effect of the mixture paste dripping on the uncoated part 2 as in Comparative Example 1, It can be considered that the boundary between the uncoated portion 2 and the coated portion 3 having different volume ratios is not constant due to the undulation, and thus the influence of causing distortion in the subsequent rolling process and inducing the bending of the electrode 7 is considered.

本発明を活用することにより、集電体との溶接が容易な電極を安定供給できるので、ハイブリッド自動車用電源など集電板を必須とする分野の電池の普及に多大な効果をもたらすことが期待できる。   By utilizing the present invention, an electrode that can be easily welded to a current collector can be stably supplied, so that it is expected to have a great effect on the spread of batteries in fields where a current collector plate is essential, such as a power source for a hybrid vehicle. it can.

本発明の電池用電極の製造方法の概略図Schematic of the manufacturing method of the battery electrode of the present invention 本発明における高密度処理装置の断面模式図Schematic cross-sectional view of a high-density processing apparatus in the present invention 本発明における合剤ペースト塗工装置の断面模式図Schematic cross-sectional view of a mixture paste coating apparatus in the present invention (A)本発明の未塗工部と塗工部との境界の直線性を示す平面図、(B)高密度処理装置を設けない場合の未塗工部と塗工部との境界の非直線性を示す平面図(A) The top view which shows the linearity of the boundary of the uncoated part and coated part of this invention, (B) The non-coating of the boundary between the uncoated part and the coated part when not providing a high-density processing apparatus Plan view showing linearity (A)本発明の未塗工部と塗工部との境界の直線性を示す断面図、(B)芯材走行位置規制装置を設けない場合の未塗工部と塗工部との境界の非直線性を示す断面図(A) Sectional drawing which shows the linearity of the boundary of the uncoated part of this invention, and a coated part, (B) The boundary of the uncoated part and coated part when not providing a core material travel position control apparatus Sectional view showing the non-linearity of

符号の説明Explanation of symbols

1 芯材
2 未塗工部
3 塗工部
4 合材ペースト塗工装置
5 芯材走行位置規制装置
6 高密度処理装置

DESCRIPTION OF SYMBOLS 1 Core material 2 Uncoated part 3 Coating part 4 Compound paste coating apparatus 5 Core material travel position control apparatus 6 High-density processing apparatus

Claims (5)

連続する三次元金属多孔体からなる芯材に、活物質を含む合剤ペーストを連続的に塗工する塗工工程を含む電池用電極の製造方法であって、
前記塗工工程に先駆けて、前記芯材の走行位置を規制しつつこの芯材の一部を挟持しながら高密度化して未塗工部を設ける前処理工程を設けたことを特徴とする電池用電極の製造方法。
A method for producing a battery electrode comprising a coating step of continuously applying a mixture paste containing an active material to a core material comprising a continuous three-dimensional metal porous body,
Prior to the coating process, a battery is provided with a pretreatment process in which a travel position of the core material is restricted and a part of the core material is sandwiched and densified to provide an uncoated part. For manufacturing an electrode.
前記前処理工程において、前記芯材の両端部を未塗工部とすること特徴とする、請求項1に記載の電池用電極の製造方法。 The method for manufacturing a battery electrode according to claim 1, wherein in the pretreatment step, both end portions of the core material are uncoated portions. 前記前処理工程において、前記芯材を圧縮することによって未塗工部を設けることを特徴とする、請求項1に記載の電池用電極の製造方法。 The method for manufacturing a battery electrode according to claim 1, wherein in the pretreatment step, an uncoated portion is provided by compressing the core material. 前記前処理工程において、前記芯材にこの芯材と同一のものを貼り合わせることによって未塗工部を設けることを特徴とする、請求項1に記載の電池用電極の製造方法。 2. The method for manufacturing a battery electrode according to claim 1, wherein in the pretreatment step, an uncoated portion is provided by bonding the same core material to the core material. 前記前処理工程において、前記芯材に金属板を貼り合わせることによって未塗工部を設けることを特徴とする、請求項1に記載の電池用電極の製造方法。 The method for manufacturing a battery electrode according to claim 1, wherein in the pretreatment step, an uncoated portion is provided by bonding a metal plate to the core material.
JP2006249077A 2006-03-15 2006-09-14 Manufacturing method of electrode for battery Pending JP2007280922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249077A JP2007280922A (en) 2006-03-15 2006-09-14 Manufacturing method of electrode for battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006070607 2006-03-15
JP2006249077A JP2007280922A (en) 2006-03-15 2006-09-14 Manufacturing method of electrode for battery

Publications (1)

Publication Number Publication Date
JP2007280922A true JP2007280922A (en) 2007-10-25

Family

ID=38682136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249077A Pending JP2007280922A (en) 2006-03-15 2006-09-14 Manufacturing method of electrode for battery

Country Status (1)

Country Link
JP (1) JP2007280922A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096702A1 (en) 2008-02-25 2009-09-02 Fuji Jukogyo Kabushiki Kaisha Electric Storage Device, Electrode, Method for Fabricating Electrode, and Management Method
JP2011216510A (en) * 2010-03-31 2011-10-27 Sumitomo Electric Ind Ltd Electrode for capacitor and capacitor
CN102376935A (en) * 2010-08-18 2012-03-14 株式会社杰士汤浅国际 Battery electrode sheet and manufacturing method therefor
JP2013122888A (en) * 2011-12-12 2013-06-20 Toyota Industries Corp Electrode body, secondary battery, and vehicle
JP2014225358A (en) * 2013-05-15 2014-12-04 三菱マテリアル株式会社 Electrode sheet and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166211A (en) * 1993-12-10 1995-06-27 Katayama Tokushu Kogyo Kk Production of metallic porous body provided with lead and metallic porous body provided with lead produced by the method
JPH0963579A (en) * 1995-08-22 1997-03-07 Toshiba Battery Co Ltd Pressure applying device for manufacture of battery electrode
JP2000012002A (en) * 1998-06-17 2000-01-14 Toshiba Battery Co Ltd Manufacturing device for belt-like electrode
JP2001236951A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Method of manufacturing battery pole plate
JP2001357840A (en) * 2000-04-14 2001-12-26 Toshiba Battery Co Ltd Working method and working device of electrode sheet for battery
JP2003109587A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Alkali storage battery and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166211A (en) * 1993-12-10 1995-06-27 Katayama Tokushu Kogyo Kk Production of metallic porous body provided with lead and metallic porous body provided with lead produced by the method
JPH0963579A (en) * 1995-08-22 1997-03-07 Toshiba Battery Co Ltd Pressure applying device for manufacture of battery electrode
JP2000012002A (en) * 1998-06-17 2000-01-14 Toshiba Battery Co Ltd Manufacturing device for belt-like electrode
JP2001236951A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Method of manufacturing battery pole plate
JP2001357840A (en) * 2000-04-14 2001-12-26 Toshiba Battery Co Ltd Working method and working device of electrode sheet for battery
JP2003109587A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Alkali storage battery and manufacturing method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096702A1 (en) 2008-02-25 2009-09-02 Fuji Jukogyo Kabushiki Kaisha Electric Storage Device, Electrode, Method for Fabricating Electrode, and Management Method
JP2011216510A (en) * 2010-03-31 2011-10-27 Sumitomo Electric Ind Ltd Electrode for capacitor and capacitor
CN102376935A (en) * 2010-08-18 2012-03-14 株式会社杰士汤浅国际 Battery electrode sheet and manufacturing method therefor
CN102376935B (en) * 2010-08-18 2015-06-24 株式会社杰士汤浅国际 Battery electrode sheet and manufacturing method therefor
JP2013122888A (en) * 2011-12-12 2013-06-20 Toyota Industries Corp Electrode body, secondary battery, and vehicle
JP2014225358A (en) * 2013-05-15 2014-12-04 三菱マテリアル株式会社 Electrode sheet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5527636B2 (en) Coating method and coating apparatus
CN103430360B (en) Rechargeable nonaqueous electrolytic battery and manufacture method thereof
US8722252B2 (en) Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
US8088444B2 (en) Method and apparatus for applying electrode mixture paste
KR101141820B1 (en) Battery current collector, method for producing the same, and nonaqueous secondary battery
JP2007280922A (en) Manufacturing method of electrode for battery
JP2010157484A (en) Electrode structure for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP7134978B2 (en) Sealed battery and manufacturing method thereof
JP2011228684A (en) Electrode body for capacitor, method for manufacturing the same, and capacitor using the electrode body
RU2581291C2 (en) Application of material on metallic cellular matrix, metallic cellular matrix and method of its fabrication
KR20160007557A (en) Electrode for electricity storage devices, electricity storage device, and method for producing electrode for electricity storage devices
JP2018089599A (en) Die
JP5796497B2 (en) battery
JPH1092418A (en) Manufacturing device for battery electrode plate and manufacture thereof and battery electrode plate
CN100594087C (en) Method for applying brazing filler metal on metallic carrier plain film
JP2016533013A (en) Battery manufacturing
JP4498772B2 (en) Alkaline storage battery and its manufacturing method
JP2013218813A (en) Aluminum alloy foil for secondary battery electrode and method for producing the same
JP2007234445A (en) Battery
JP5005951B2 (en) Positive electrode for battery, method for producing the same, and battery
JP2022073989A (en) Positive electrode for secondary battery and manufacturing method thereof
WO2021049088A1 (en) Porous metal body and method for producing porous metal body
JP4857548B2 (en) Secondary battery electrode paste coating method and secondary battery electrode paste coating and drying apparatus
JP2007265698A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery
EP4040545A1 (en) Method for producing secondary battery, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090721

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120