JP4472861B2 - Predetermined location access method - Google Patents

Predetermined location access method Download PDF

Info

Publication number
JP4472861B2
JP4472861B2 JP2000345624A JP2000345624A JP4472861B2 JP 4472861 B2 JP4472861 B2 JP 4472861B2 JP 2000345624 A JP2000345624 A JP 2000345624A JP 2000345624 A JP2000345624 A JP 2000345624A JP 4472861 B2 JP4472861 B2 JP 4472861B2
Authority
JP
Japan
Prior art keywords
reference point
cell
sample
target
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000345624A
Other languages
Japanese (ja)
Other versions
JP2002151559A (en
Inventor
浩二 岩崎
將道 大井
達也 麻畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2000345624A priority Critical patent/JP4472861B2/en
Publication of JP2002151559A publication Critical patent/JP2002151559A/en
Application granted granted Critical
Publication of JP4472861B2 publication Critical patent/JP4472861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
電子ビーム装置や集束イオンビーム装置を用いて半導体デバイス等の既知の所定個所にアクセスする際、容易にアクセスするための方法に関し、特に繰返しパターンからなるメモリ等の欠陥解析に適した所定個所アクセス方法に関する。
【0002】
【従来の技術】
電子ビーム装置や集束イオンビーム装置を用いた半導体デバイスの評価や解析、欠陥修正の技術において、特定個所の位置決めは大変重要な事項であり、また時間のかかる厄介な作業である。特定個所の位置情報が既知であっても電子ビーム装置や集束イオンビーム装置の視野内にこれを捉えることは容易なことではない。従来は上記装置において試料を載置する試料ステージを位置制御しながらパターンマッチングなどの手法を駆使してこれを行っている。しかし、普通の高精度ステージでは位置決め精度は1〜2μmであり、とりわけ最近の半導体デバイスの超細密化、同一パターンの配列構造が進む中で特定個所へのアクセスは極めて時間のかかる厄介な作業となっている。同一繰り返しパターンに対してはパターンマッチングの手法は原理的に非効果的であるし、最近のメモリではμm単位で数百以上の同一繰り返しパターンとなっていて、試料ステージの駆動をこのオーダーで対応するためにはレーザーインターフェロー等を用いた超高精度のステージを使用する必要がある。ところがこのレーザーインターフェロー自体高価なものであり、5軸駆動のステージにはレーザー系を一緒に駆動させねばならないため超高精度のステージを採用しようとすると極めて困難なものとなってしまうという問題がある。
【0003】
【発明が解決しようとする課題】
本発明の課題は、高価な超高精度のステージを使用することなく、μm単位で数百以上の同一繰り返しパターンとなっている試料に対しても、特定個所へのアクセスが容易に実行できる電子ビーム装置や集束イオンビーム装置における位置決め方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は電子ビーム装置や集束イオンビーム装置において、試料面上に原点となる第1基準点を刻印し、それを顕微鏡視野内において目標点が存在する方向と反対のコーナーに位置決めして基準とし、顕微鏡視野内において目標点が存在する方向の端部周辺の特定点を第2基準点として刻印し、該第2基準点を新たな基準として目標点が存在する方向の顕微鏡視野内の端部周辺の特定点を次の基準点として刻印し、目標点が顕微鏡視野内に入るまでこれを繰返し、目標点が顕微鏡視野内に入ったときに該基準点をもとに当該目標位置を視野内でアクセスするようにした。
本発明は、複数のセルが配列された配列構造を有する試料において、目標のセルを含む配列構造のコーナーのセルに電子ビーム装置または集束イオンビーム装置のビームによるエッチングまたはデポジションで第1基準点を刻印する工程と、第1基準点を含む顕微鏡画像で目標のセルが存在する方向の顕微鏡画像の端部周辺のセルに第2基準点を刻印する工程と、第2基準点の位置が顕微鏡画像における第1基準点の位置に重なるように前記試料を移動する試料移動工程と、
第2基準点を含む新たな顕微鏡画像を取得する画像取得工程と、新たな顕微鏡画像で目標のセルが存在する方向の新たな顕微鏡画像の端部周辺のセルに新たな基準点として刻印する基準点刻印工程とを有する。
また、試料移動工程において、第1基準点と第2基準点とをパターンマッチングする。
また、基準点刻印工程と試料移動工程と画像取得工程とを繰り返し実施する。
また、顕微鏡画像上でカーソルを目標のセルに合わせ、目標のセルを画像中心に移動する。
【0005】
【発明の実施の形態】
例えば同一パターンのセルが列方向と行方向に数百オーダーで配列されたメモリの欠陥セルがテスターで分かり、これを走査イオン顕微鏡で断面観察したいといった場合、欠陥セルの位置情報はコーナーのセルを原点P1すなわち座標基準(1,1)とするなりして既知の座標情報(m,n)となる。図3はメモリの模式的な図でそのAは全体図で、Bはその分割した部分拡大図である。また、図4は64MDRAMの走査イオン顕微鏡像で、そのAは配列されたセル群の平面画像でありBはその特定セルの断面観察図である。ところがこの欠陥セルを顕微鏡視野内に捉えることは前述したように必ずしも容易ではない。欠陥セルの位置情報(m,n)が例えば(125,220)であったとして原点を顕微鏡視野内で確認し、行方向と方向に数えてアクセスすることは至難の技である。特定された観察セル位置は個々のセルが認識できる倍率では原点と共に同一顕微鏡視野内に捉えられる範囲ではなく、視野を移動させながら数えなくてはならない。しかし視野を移動しながら数えていくことは間違え易く実際には困難であるため、試料ステージの移動によって位置を特定しアクセスすることの方が容易である。ところがこの一般の試料ステージの移動情報は前述のように精度が低く最近の細密化されたメモリのセル特定には役に立たない。そこで本発明では何れの方法にもよらないで位置情報は精度の確かな観察画面上で割り出すことに想到した。
【0006】
まず原点セルP の位置を顕微鏡画像の中で把握することから始める。図1のAに示されるように試料1(デバイス)表面が保護膜2で覆われているときは、図1のBに示すように集束イオンビーム装置を用いてコーナーの原点1の近傍にイオンビーム(FIB)を照射して窓3を開け、デバイス表面を露出させ原点セルPを含む複数個のセル群を観察できるようにして原点セルPの位置を顕微鏡像で確認する。セル間の距離が既知であれば必要ないが未知である場合にはここで顕微鏡像で行間隔と列間隔を測長し原点と目標である欠陥セルとの距離を計算する。観察像の倍率をセルが観察可能な100μm×100μm前後の視野に設定し原点セルPを観察視野のコーナー部に位置決めする。そしてこの原点セルPから見た不良セル4の方向の所定個所を選定し第2基準点Pとして刻印する。この第2の基準点P の選定は観察視野内でなるべく不良セル4に近い点、すなわち原点セルP とは反対側の周辺画像領域を選定するのが早いアクセスのためには有利となる。そしてその選定位置は位置情報として取扱い易いセル単位または長さ単位で切りのよい座標を特定することが作業上有利である。またその刻印はデバイス表面が保護膜2で覆われた試料である場合はエッチングによってマークの刻み付けを行い、表面が露出している場合にはデポジションによってマークを付着させる。そして、このマークは識別し易いものが有利である。
【0007】
第2基準点P が刻印されたならば集束イオンビーム装置の試料ステージを移動させ、先に原点セルP を観察視野内でコーナー部に位置決めしたようにこの第2基準点P を視野内のコーナー部に位置決めする。このとき重要なことはパターンマッチングの技術を用いて第2基準点P を新たな原点位置に位置決めすることである。高精度試料ステージ駆動機構の位置精度はせいぜい1〜2μmといったところであるが、原点セルP に対して顕微鏡画像内の測長で高精度に確保され第2基準点P の位置情報は、このパターンマッチングの技術によって高精度試料ステージ駆動機構の位置精度に依存することなく0.1μm以下の位置決め精度が確保できる。第2基準点P の位置決めができたところで第3基準点P を選定し刻印する作業を実行する。この第3基準点P の選定は先の第2基準点P の選定と同様で、観察視野内で目標となる不良セルに近い画面の周辺領域で位置情報として取扱い易い点を選定する。選定された第3基準点P は先の第2基準点P と同様刻印され次回の観察視野における基準点となる。この作業を目標の不良セル4が観察視野内に捉えられるまで繰返す。試料1の大きさや不良セル4の位置にもよるが一般には数回の作業で目標を顕微鏡視野内に捉えることが出来る。最終基準点P からはx方向位置とy方向位置を観察視野内で測長し目標点の不良セル4を割り出すことができ、その位置精度は0.1μm程度に確保することが出来る。したがって、保護膜で表面が覆われたデバイスである場合にはその位置を中心にした領域に集束イオンビームの照射をおこなえば、目標の不良セル4を特定して露出させることができる。
【0008】
観察視野内に目標の不良セル4を捉えることができたとき、その不良セル4の位置は必ずしも観察視野内中央部にあるとは限らない。その際には集束イオンビーム装置のカーソル機能を適用することが効果的である。図2のAに示すように最終基準点P にカーソル5のx座標位置とy座標位置とを合わせておけば、試料ステージを適宜移動させても最終基準点P にカーソル5の交点はリンケージしており、目標の不良セル4を見失うようなことはない。図2のBに示したように不良セル4を観察視野内の中央付近に移動させてもカソール5の特定する最終基準点P に対して目標の不良セル4の位置はx方向1セル間隔y方向6セル間隔である点は変らないので移動を目で追わなくてもカーソル位置から簡単に割出すことができる。試料が繰り返しパターン形態である場合には観察視野の移動によって目標を見失い易いのであるが、このカーソル機能を利用することでこの心配は回避できる。なお、このカーソル5を設定する位置は必ずしも最終基準点P に限定する必要はなく、例えば目標点からx方向とy方向に数セル間隔離れた位置に合わせてもよい。要は同じ視野内に捉えられる近さの位置でその点からすぐに目標点が割り出せるような特定点を決めればよいのである。
【0009】
【実施例1】
いま、図4に示したような同一パターンのセルがマトリックス状に配列された64MDRAMデバイスの不良セルが、テスターによる試験で発見され、そのセルの断面画像を観察したいという要請があった場合を例にして本発明を説明する。また、この不良セルの位置は図3に示したように原点セルから数えてx方向に125個目でy方向に220個目のセルであることが分かっている。
図1に示すように試料1は保護膜2で被覆されているため、試料1を載置した試料ステージを駆動して原点セルP 近傍に集束イオンビームを照射できるようにセットする。図1のBに示したように原点セルP 近傍領域にイオンビームを照射して保護膜2をエッチングして取り除き窓3を開ける。この窓内に複数個のセルが配列されているのが顕微鏡画像から観察できるように窓3を加工する。図1のCに示すように窓3から原点セルP を含むセル群が露出されているので、この際の顕微鏡画像は個々のセルが判別できるような倍率、すなわち画像幅が100μm程度になるよう観察視野を設定する。この顕微鏡画像から各セルのx方向(列)間隔とy方向(行)間隔を測長し、記憶する。次に試料1の原点セルP を図1のDに示すように観察画面上のコーナー部の原点に一致させ画面上で第1基準点とするように試料ステージを操作する。
【0010】
この顕微鏡視野内で原点セルP に対して不良セル4の方向の画面端周辺領域で取扱い易い位置を特定し第2基準点P を刻印するのであるが、この例では原点セルP を基準としてx方向に100個目y方向にも100個目のセルの位置を選定した。この位置の割り出しは、設計情報または先に測長し記憶しておいたセル間の間隔×100を算出し、その位置を顕微鏡画面上で特定し、集束イオンビームを照射してスパッタエッチングにより十字形の刻印を施すようにした。次に図1のEに示すようにこの第2基準点P を顕微鏡画面上でほぼ対角線の反対位置にあたる先の原点セルP を位置決めしたところに試料ステージを駆動操作して一致させる。この際の位置決めには特定した第2基準点Pを観察視野内の基準位置に刻印した十字形を用いてパターンマッチング技術で基準位置に合わせてその位置を決定する。第2基準点P に対する不良セル4の位置はx方向に25個目のセル位置にありy方向には120個目のセルということが分かっているので、x方向には25個目のセルを特定すれば目標位置に到達できたことになる。しかしy方向には視野内の目一杯のきりのよい点100セル間隔をとってもまだ20セル分届かない。したがって、この観察視野ではいまだ目標点である不良セル4は捉えられないので、続いて第三の基準点Pを特定して刻印することになる。ここではEに図示されているように第2基準点P に対してx方向には25個目y方向には100個目のセル位置に第3基準点Pを特定して刻印する。
【0011】
次の観察視野はy方向成分だけシフトすれば目標の不良セル4を捉えることができるので、この第3基準点Pがこの例では最終基準点Pとなる。第3基準点Pを先の基準点のようにコーナー部に位置決めする必要はなく図1のFに示したようにx方向には顕微鏡画像上で中央部となる位置でy方向には端部位置に位置決めするのが目標の不良セル4を中央部に捉えることができるので、合理的である。y方向20セル間隔の位置が目標の不良セル4の位置であることを画面上で測長し特定する。この位置を中心にして集束イオンビームを照射して目標の不良セル4を保護膜4から露出させる。この作業する際に加工部となる不良セル4の位置がy方向に偏っている場合には第3基準点P または目標の不良セル4近傍の適宜の点をカーソル5を用いて特定し、位置を見失わないように手当てして試料ステージを操作するとよい。
所望の観察断面を加工するには周知の断面加工を施せばよいのであるが、該断面部の前の穴掘り加工を実行し、断面部を露出させる。まずビーム電流を大きくして粗掘りを行い観察のための穴ができたならば観察断面をビーム電流を押えた研磨加工で研ぎ出して加工する。加工が済んだところで試料ステージをチルトして断面の顕微鏡画像を得ることになる。
【0012】
【発明の効果】
最近の半導体デバイスの超細密化が進む中で、同一パターンの配列構造の中から特定個所へのアクセスは極めて時間のかかる厄介な作業となっているが、本発明は、電子ビーム装置や集束イオンビーム装置において、試料面上に原点となる第1基準点を刻印し、それを顕微鏡視野内において目標点が存在する方向と反対のコーナーに位置決めして基準とし、顕微鏡視野内において目標点が存在する方向の端部周辺の特定点を第2基準点として刻印し、該第2基準点を新たな基準として目標点が存在する方向の顕微鏡視野内の端部周辺の特定点を次の基準点として刻印し、目標点が顕微鏡視野内に入るまでこれを繰返し、目標点が顕微鏡視野内に入ったときに該基準点をもとに当該目標位置を視野内でアクセスする方法をとったものであるから、とりわけ高価なレーザーインターフェロー等を用いた超高精度のステージを使用する必要もなく、精度のよい顕微鏡画面上での測長技術に基いて目標点へのアクセスが容易に精度よく行うことが可能となった。
【0013】
また、基準点につける刻印はエッチング又はデポジションによって試料につける方法を採用したので、特別な手段を備える必要はなく、通常の集束イオンビーム装置を用いてすぐに実行できるものである。
更に、刻印された基準点の位置決めには、精度のよいパターンマッチングの技術が適用されるので、次の顕微鏡視野にシフトする際にも試料ステージの位置制御精度にかかわりなく高精度の位置情報の確保が出来るものである。
そして、最終基準点若しくは目標点近傍の特定点にカーソルを合わせて試料ステージの移動とリンケージさせれば、試料への加工作業を実行する際に試料ステージを適宜操作して試料の移動を実行しても目標点を見失うようなことがないものである。
【図面の簡単な説明】
【図1】本発明の半導体デバイスの所定位置アクセス方法を概念的に示した図で、A,B,Cは試料となる半導体デバイスの形態を、D,E,Fは顕微鏡画像内での作業の形態を示した図である。
【図2】本発明において試料ステージとカーソルのリンケージ機能を利用して目標点を見失わない方法を説明する図である。
【図3】本発明の対象となる同一パターンがマトリックス状に配列されたメモリデバイスを模式的に示した図で、Aは全体図Bはその部分拡大図である。
【図4】本発明の対象となる同一パターンがマトリックス状に配列されたメモリデバイス顕微鏡画像で、Aは平面画像でありBはその特定断面画像である。
【符号の説明】
1 試料 P 原点セル
2 保護膜 P 第2基準点
3 窓 P 第3基準点
4 不良セル P 最終基準点
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for easily accessing a predetermined predetermined location such as a semiconductor device using an electron beam apparatus or a focused ion beam apparatus, and more particularly to a predetermined location access method suitable for defect analysis of a memory having a repeated pattern. About.
[0002]
[Prior art]
In the technology of semiconductor device evaluation and analysis and defect correction using an electron beam apparatus or a focused ion beam apparatus, the positioning of a specific location is a very important matter and is a time-consuming and troublesome operation. Even if the position information of a specific location is known, it is not easy to capture this within the field of view of the electron beam apparatus or the focused ion beam apparatus. Conventionally, this is done by making full use of a technique such as pattern matching while controlling the position of the sample stage on which the sample is placed in the above apparatus. However, in a normal high-precision stage, the positioning accuracy is 1 to 2 μm, and in particular, access to a specific location is extremely time-consuming and troublesome work as ultra-fine semiconductor devices in recent years and the arrangement structure of the same pattern progress. It has become. The pattern matching method is ineffective for the same repetitive pattern in principle, and recent memories have several hundred or more identical repetitive patterns per μm, and the sample stage can be driven in this order. In order to achieve this, it is necessary to use an ultra-high accuracy stage using a laser interferor or the like. However, this laser interferor itself is expensive, and it is necessary to drive the laser system together with a 5-axis drive stage, which makes it extremely difficult to adopt an ultra-high precision stage. is there.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an electronic device that allows easy access to a specific location even for a sample having hundreds or more of the same repetitive pattern in μm units without using an expensive ultra-high precision stage. An object of the present invention is to provide a positioning method in a beam apparatus or a focused ion beam apparatus.
[0004]
[Means for Solving the Problems]
In the present invention, in an electron beam apparatus or a focused ion beam apparatus, a first reference point as an origin is imprinted on a sample surface, and this is positioned at a corner opposite to the direction in which the target point exists in the microscope field of view as a reference. A specific point around the end in the direction in which the target point exists in the microscope field is marked as a second reference point, and the end in the microscope field in the direction in which the target point exists using the second reference point as a new reference A specific point in the periphery is engraved as the next reference point, and this is repeated until the target point enters the microscope field of view. When the target point enters the microscope field of view, the target position is within the field of view based on the reference point. I tried to access with.
According to the present invention, in a sample having an array structure in which a plurality of cells are arrayed, a first reference point is formed by etching or deposition with a beam of an electron beam apparatus or a focused ion beam apparatus on a corner cell of the array structure including a target cell. A step of marking the second reference point on a cell around the edge of the microscope image in the direction in which the target cell is present in the microscope image including the first reference point, and the position of the second reference point is the microscope A sample moving step of moving the sample so as to overlap the position of the first reference point in the image;
An image acquisition step for acquiring a new microscope image including the second reference point, and a reference for marking a new reference point on a cell around the end of the new microscope image in the direction in which the target cell exists in the new microscope image A dot marking process.
In the sample moving process, the first reference point and the second reference point are pattern-matched.
Further, the reference point marking step, the sample moving step, and the image acquisition step are repeatedly performed.
Further, the cursor is moved to the target cell on the microscope image, and the target cell is moved to the center of the image.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
For example, if a tester can identify a defective cell in a memory in which cells with the same pattern are arranged in the column direction and the row direction in the order of several hundreds, and want to observe a cross section with a scanning ion microscope, the position information of the defective cell can be obtained from the corner cell. It becomes the origin P1, that is, the coordinate reference (1, 1) and becomes the known coordinate information (m, n). FIG. 3 is a schematic diagram of the memory, in which A is an overall view and B is an enlarged partial view thereof. FIG. 4 is a scanning ion microscope image of 64MDRAM, where A is a planar image of the arranged cell group, and B is a cross-sectional observation view of the specific cell. However, as described above, it is not always easy to capture the defective cell in the microscope field of view. The origin was confirmed by the microscopic field as the position information of the defective cell (m, n) is, for example, a (125,220), it is extremely difficult to access counted in rows and columns direction. The specified observation cell position must be counted while moving the field of view, not the range that can be captured in the same microscope field of view together with the origin at a magnification that can be recognized by each cell. However, since counting while moving the visual field is easy to make a mistake and actually difficult, it is easier to specify and access the position by moving the sample stage. However, the movement information of this general sample stage has low accuracy as described above, and is not useful for specifying a cell of a recent miniaturized memory. Therefore, the present invention has come up with the idea that the position information is determined on an accurate observation screen without using any method.
[0006]
First the location of the origin cell P 1 begin to grasp in the microscope image. When the surface of the sample 1 (device) is covered with the protective film 2 as shown in FIG. 1A, ions are placed near the origin 1 of the corner using a focused ion beam device as shown in FIG. open the window 3 by irradiating a beam (FIB), and can be observed a plurality of cell groups including the origin cell P 1 to expose the device surface to confirm the position of the origin cell P 1 under a microscope image. If the distance between the cells is known, this is not necessary, but if the distance is unknown, the distance between the origin and the target defective cell is calculated by measuring the row interval and the column interval with a microscope image. The magnification of the observation image is set to a field of view around 100 μm × 100 μm where the cell can be observed, and the origin cell P 1 is positioned at the corner of the field of view. And stamping a second reference point P 2 selects a predetermined position in the direction of the defective cell 4 as viewed from the origin cell P 1. The second selection of the reference point P 2 is a point as close as possible to the defective cell 4 within the observation field of view, i.e. it is advantageous for fast access to select a surrounding image region on the opposite side of the origin cell P 1 . It is advantageous in terms of work to specify coordinates that are easily cut in units of cells or lengths that can be easily handled as position information. In addition, when the surface of the device is a sample whose surface is covered with the protective film 2, the mark is etched by etching, and when the surface is exposed, the mark is attached by deposition. And it is advantageous that this mark is easy to identify.
[0007]
Second reference point P 2 Positioning but moves the sample stage of the focused ion beam device if it is engraved, the second reference point P 2 as positioned at the corners in observation of the origin cell P 1 previously viewing the corner portion of the field of view To do. What is important here is to position the second reference point P 2 to the new origin position by using a pattern matching technique. Although the position accuracy of the high-precision sample stage driving mechanism is at most 1 to 2 μm, the position information of the second reference point P 2 which is secured with high accuracy by measuring in the microscope image with respect to the origin cell P 1 is The pattern matching technology can secure positioning accuracy of 0.1 μm or less without depending on the position accuracy of the high-precision sample stage drive mechanism. To perform the tasks that are stamped selects a third reference point P 3 where that could position the second reference point P 2. The third selection of the reference point P 3 is the same as the selection of the previous second reference point P 2, to select a point easily handled as the position information in the peripheral region of the screen close to the defective cell as a target in the observation field. Selected third reference point P 3 Serves as a reference point in the next observation field is stamped similarly to the second reference point P 2 of the first. This operation is repeated until the target defective cell 4 is captured within the observation field. Although depending on the size of the sample 1 and the position of the defective cell 4, in general, the target can be captured in the microscope field by several operations. From the final reference point Pf , the x-direction position and the y-direction position can be measured in the observation field to determine the defective cell 4 at the target point, and the position accuracy can be secured to about 0.1 μm. Therefore, in the case of a device whose surface is covered with a protective film, the target defective cell 4 can be identified and exposed by irradiating the focused ion beam to the region centered on the position.
[0008]
When the target defective cell 4 can be captured in the observation visual field, the position of the defective cell 4 is not necessarily in the central portion in the observation visual field. In that case, it is effective to apply the cursor function of the focused ion beam apparatus. If combined with x-coordinate position and the y-coordinate position of the cursor 5 to the final reference point P f as shown in A of FIG. 2, the intersection of the cursor 5 on the final reference point P f be moved sample stage appropriate Since it is linked, the target defective cell 4 is not lost. As shown in FIG. 2B, even if the defective cell 4 is moved to the vicinity of the center in the observation field, the final reference point P f specified by the cursor 5 is determined. On the other hand, since the position of the target defective cell 4 is 1 cell interval in the x direction and 6 cell intervals in the y direction does not change, it can be easily determined from the cursor position without following the movement. When the sample is in the form of a repeated pattern, it is easy to lose sight of the target by moving the observation field of view, but this concern can be avoided by using this cursor function. The position to set the cursor 5 is not necessarily limited to the last reference point P f, for example, may be combined from the target point at a distance several cell intervals in the x and y directions. In short, it is only necessary to determine a specific point from which the target point can be immediately determined at a position close to the same field of view.
[0009]
[Example 1]
Now, a case where a defective cell of a 64MDRAM device in which cells having the same pattern as shown in FIG. 4 are arranged in a matrix is found by a test by a tester, and there is a request to observe a cross-sectional image of the cell. The present invention will now be described. Further, it is known that the position of this defective cell is the 125th cell in the x direction and the 220th cell in the y direction counting from the origin cell as shown in FIG.
Since the sample 1 is covered with the protective film 2 as shown in FIG. 1, it drives the sample stage mounted with the sample 1 is set so as to be irradiated with the focused ion beam to the origin cell P 1 neighborhood. As shown in FIG. 1B, the region near the origin cell P 1 is irradiated with an ion beam to remove the protective film 2 by etching and open the window 3. The window 3 is processed so that a plurality of cells can be observed in the window from the microscope image. Since the cell group including the origin cell P 1 from the window 3, as shown in C of FIG. 1 is exposed, the magnification such as a microscope image at this time can be determined by individual cells, i.e., image width is about 100μm Set the observation field of view. From this microscope image, the x-direction (column) interval and the y-direction (row) interval of each cell are measured and stored. Then operating the sample stage so that a corner portion first reference point on the screen to match the origin on the viewing screen to indicate the origin cell P 1 of the sample 1 in D of FIG.
[0010]
This is to stamp the origin cell P 1 manageable position identifies a second reference point P 2 in the direction of the screen edge peripheral area of the defective cell 4 with respect to in the microscopic field, in this example the origin cell P 1 As a reference, the position of the 100th cell in the x direction and the 100th cell in the y direction was selected. This position is calculated by calculating the design information or the distance between cells measured and stored previously × 100, specifying the position on the microscope screen, irradiating with a focused ion beam, and performing sputter etching. A letter-shaped engraving was added. Next, as shown in E of FIG. 1, this second reference point P 2 is the origin cell P 1 that is the opposite of the diagonal line on the microscope screen. The sample stage is driven to coincide with the position where the position is positioned. In accordance with the reference position in the pattern-matching technique using a cross engraved with second reference point P 2 identified in the reference position in the observation field of view for positioning when the determining its position. Since the position of the defective cell 4 with respect to the second reference point P 2 is in there y-direction to the cell position of 25 th in the x-direction has been found that 120 th cell, 25 th cell in the x-direction If it is specified, the target position has been reached. However, in the y direction, even if there are 100 full points in the field of view that are 100 cells apart, they still have not reached 20 cells. Thus, since the observed defective cell 4 is still the target point in the visual field is not captured, it will be stamped to identify the third reference point P 3 followed. Here stamped to identify the third reference point P 3 to the 100th cell position in the 25 th y-direction in the x direction with respect to the second reference point P 2 as illustrated in E.
[0011]
When the following observation field can be regarded goals defective cell 4 when shifted y-direction component, the third reference point P 3 is in this example a final reference point P f. Third end in the y direction at a position where the central portion on a microscope image to the x-direction as shown in F of FIG. 1 is not necessary to position the corner portion as a reference point P 3 of the previous reference point Positioning at the part position is reasonable because the target defective cell 4 can be caught at the center part. It is measured and specified on the screen that the position of the 20-cell interval in the y direction is the position of the target defective cell 4. A focused ion beam is irradiated around this position to expose the target defective cell 4 from the protective film 4. Processing unit a position of the defective cell 4 is identified using the cursor 5 points appropriate defective cell 4 near the third reference point P 3 or goal if you are biased in the y direction at the time of this work, It is advisable to operate the sample stage with care so as not to lose sight of the position.
In order to process a desired observation cross section, a known cross section process may be performed. However, a drilling process is performed before the cross section to expose the cross section. First, if the beam current is increased and rough digging is performed to form a hole for observation, the observation cross section is sharpened and processed by polishing with the beam current suppressed. When the processing is completed, the sample stage is tilted to obtain a cross-sectional microscopic image.
[0012]
【The invention's effect】
In recent progress in ultra-fine semiconductor devices, access to specific locations from the same pattern arrangement structure has become a very time-consuming and troublesome task. In the beam system, the first reference point that is the origin is imprinted on the sample surface, and it is used as a reference by positioning it at the corner opposite to the direction in which the target point exists in the microscope field. The target point exists in the microscope field. The specific point around the end in the direction to be engraved as a second reference point, and the specific point around the end in the microscope field in the direction in which the target point exists with the second reference point as a new reference This is repeated until the target point enters the microscope visual field, and when the target point enters the microscope visual field, the target position is accessed in the visual field based on the reference point. because there is In particular, it is not necessary to use an ultra-high-precision stage using an expensive laser interferor, etc., and it is possible to access the target point easily and accurately based on the length measurement technology on a precise microscope screen. It became.
[0013]
In addition, since the method of applying the marking to the reference point to the sample by etching or deposition is adopted, it is not necessary to provide a special means, and it can be performed immediately using a normal focused ion beam apparatus.
In addition, since a highly accurate pattern matching technique is applied to the positioning of the engraved reference point, even when shifting to the next microscope field of view, high-accuracy position information can be obtained regardless of the position control accuracy of the sample stage. It can be secured.
If the cursor is placed at the final reference point or a specific point near the target point and linked to the movement of the sample stage, the sample stage is moved by appropriately operating the sample stage when processing the sample. However, there is no such thing as losing sight of the target point.
[Brief description of the drawings]
FIG. 1 is a diagram conceptually illustrating a method for accessing a predetermined position of a semiconductor device according to the present invention, wherein A, B, and C are forms of a semiconductor device as a sample, and D, E, and F are operations in a microscope image. It is the figure which showed the form.
FIG. 2 is a diagram for explaining a method of not losing sight of a target point using a linkage function between a sample stage and a cursor in the present invention.
FIG. 3 is a diagram schematically showing a memory device in which the same pattern as the object of the present invention is arranged in a matrix, and A is an overall view and B is a partially enlarged view thereof.
FIG. 4 is a memory device microscope image in which the same pattern as the object of the present invention is arranged in a matrix, A is a planar image, and B is a specific cross-sectional image thereof.
[Explanation of symbols]
1 Sample P 1 Origin cell 2 Protective film P 2 Second reference point 3 Window P 3 Third reference point 4 Defective cell P f Final reference point

Claims (4)

複数のセルが配列された配列構造を有する試料において、
目標のセルを含む前記配列構造のコーナーのセルに電子ビーム装置または集束イオンビーム装置のビームによるエッチングまたはデポジションで第1基準点を刻印する工程と
前記第1基準点含む顕微鏡画像で前記目標のセルが存在する方向の前記顕微鏡画像の端部周辺のセルに第2基準点刻印する工程と
前記第2基準点の位置が前記顕微鏡画像における前記第1基準点の位置に重なるように前記試料を移動する試料移動工程と、
前記第2基準点を含む新たな顕微鏡画像を取得する画像取得工程と、
前記新たな顕微鏡画像で前記目標のセルが存在する方向の前記新たな顕微鏡画像の端部周辺のセルに新たな基準点として刻印する基準点刻印工程と
を有する所定位置アクセス方法
In a sample having an array structure in which a plurality of cells are arrayed ,
Marking a first reference point by etching or deposition with a beam of an electron beam apparatus or a focused ion beam apparatus on a corner cell of the array structure including a target cell ;
Marking a second reference point on a cell around an edge of the microscope image in a direction in which the target cell exists in a microscope image including the first reference point ;
A sample moving step of moving the sample so that the position of the second reference point overlaps the position of the first reference point in the microscope image;
An image acquisition step of acquiring a new microscopic image including the second reference point;
A reference point marking step of marking as a new reference point to the end periphery of the cell in the direction of the new microscope image the new cell of the target in the microscopic image is present,
A predetermined location access method .
前記試料移動工程において、前記第1基準点と前記第2基準点とをパターンマッチングする請求項1に記載の所定位置アクセス方法 The predetermined position access method according to claim 1, wherein in the sample moving step, pattern matching is performed between the first reference point and the second reference point . 前記基準点刻印工程と前記試料移動工程と前記画像取得工程とを繰り返し実施する請求項1または2に記載の所定位置アクセス方法 The predetermined position access method according to claim 1 or 2, wherein the reference point marking step, the sample moving step, and the image acquisition step are repeatedly performed . 顕微鏡画像上でカーソルを前記目標のセルに合わせ、前記目標のセルを画像中心に移動する請求項1から3のいずれか一つに記載の所定位置アクセス方法 The predetermined position access method according to any one of claims 1 to 3, wherein a cursor is moved to the target cell on a microscope image, and the target cell is moved to the center of the image .
JP2000345624A 2000-11-13 2000-11-13 Predetermined location access method Expired - Lifetime JP4472861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345624A JP4472861B2 (en) 2000-11-13 2000-11-13 Predetermined location access method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345624A JP4472861B2 (en) 2000-11-13 2000-11-13 Predetermined location access method

Publications (2)

Publication Number Publication Date
JP2002151559A JP2002151559A (en) 2002-05-24
JP4472861B2 true JP4472861B2 (en) 2010-06-02

Family

ID=18819626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345624A Expired - Lifetime JP4472861B2 (en) 2000-11-13 2000-11-13 Predetermined location access method

Country Status (1)

Country Link
JP (1) JP4472861B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125652A (en) * 2011-12-14 2013-06-24 Samsung Yokohama Research Institute Co Ltd Electron beam device

Also Published As

Publication number Publication date
JP2002151559A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
JP2909829B2 (en) Compound scanning tunneling microscope with alignment function
US7420168B2 (en) Scanning electron microscope and CD measurement calibration standard specimen
US6673315B2 (en) Method and apparatus for accessing a site on a biological substrate
CN107516624B (en) Sample position calibration method and device
CN110291438A (en) To promote the camera of big regional imaging to be aligned in microscopy with sample
US20060243711A1 (en) System and method for aligning a wafer processing system in a laser marking system
JP2007303892A (en) Reference member for calibration, calibration method using the same, and electron beam apparatus
US5365072A (en) Repositionable substrate for microscopes
JPH11248489A (en) Two-dimensional abolute encoder and device and method for measuring two-dimensional position
CN102820238B (en) high accuracy beam placement for local area navigation
JP3987267B2 (en) Charged particle beam equipment
JPS6030896B2 (en) wafer assembly
JP4472861B2 (en) Predetermined location access method
JPS61160004A (en) Pattern edge measurement and its apparatus
US5608226A (en) Electron-beam exposure method and system
CN1333554A (en) Alignment method and apparatus for array type optical probe scanning IC photoetching system
US6178653B1 (en) Probe tip locator
JP2001148016A (en) Sample inspecting device, sample display device, and sample displaying method
US10649198B2 (en) Sample processing and analysis methods and apparatus
JP2000251824A (en) Electron beam apparatus and stage movement positioning method thereof
JP3399697B2 (en) Measurement point mapping apparatus and semiconductor wafer measurement apparatus using the same
US7315360B2 (en) Surface coordinate system
CN1210627C (en) Alignment method of array optical probe scanning integrated circuit photoetching system and its equipment
JP2913747B2 (en) Wafer inspection equipment
EP1014077B1 (en) Method of determining the structure of polycristaline solid samples

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091102

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4472861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term