JP4471423B2 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP4471423B2
JP4471423B2 JP27948999A JP27948999A JP4471423B2 JP 4471423 B2 JP4471423 B2 JP 4471423B2 JP 27948999 A JP27948999 A JP 27948999A JP 27948999 A JP27948999 A JP 27948999A JP 4471423 B2 JP4471423 B2 JP 4471423B2
Authority
JP
Japan
Prior art keywords
opening
fluid
header
plate
outer box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27948999A
Other languages
Japanese (ja)
Other versions
JP2001099586A (en
Inventor
忠夫 阿部
正弥 伊豆
泰司 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27948999A priority Critical patent/JP4471423B2/en
Publication of JP2001099586A publication Critical patent/JP2001099586A/en
Application granted granted Critical
Publication of JP4471423B2 publication Critical patent/JP4471423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複数の皿状のプレートを積層して各プレート間に2系統の流体流路を交互に形成したプレート式熱交換器の構造に関する。
【0002】
【従来の技術】
一般に、複数の皿状プレートを上下に積層し、各プレート間に2系統の流体流路を交互に形成したプレート式熱交換器が知られている。
【0003】
この種のものでは、一般に、2系統の流体流路を流れる流体が外部に漏れることがなく、しかも内部で各流体が混じらないこと、熱交換性能に優れること、イニシャルコストが安価なこと、等が要求される。
【0004】
この従来のプレート式熱交換器は、各プレートの底部にプレス成形によって波形状(ヘリンボーン)の凹凸を形成すると共に、段差を形成し、この段差を合わせて各プレートを積層し、各プレートの周縁部を溶接し、さらに各プレートに形成された連通孔の周縁部を溶接して組み立てられる。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の構成では、各プレートに形成された連通孔の隣接する周縁部同士を溶接するので、溶接作業が困難になる。また、各連通孔の位置合わせ精度を向上させるため、各連通孔の加工に寸法精度が要求されるので、これがネックとなって、溶接の自動化が図れない。さらに、溶接後は、各連通孔の周縁部が熱交換器の内部に位置するので、溶接漏れが合っても修正できない。また、プレートの連通孔の内、最も外側に位置する連通孔に、流体の入口管、或いは出口管を溶接しているので、その部分に配管応力が集中し、或いは熱応力が集中し、配管の接合部に亀裂等が入り易い等の問題がある。
【0006】
さらに、従来の構成では、例えば2枚のプレートを溶接接合した後、これらをまとめて接合する等のように、1,2枚ずつの組立しかできず、溶接作業が繁雑であり、作業性が悪い等の問題がある。
【0007】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、組立が容易で、溶接の自動化が容易で、配管部に応力集中せず、しかも組立時間の短縮が図れるプレート式熱交換器を提供することにある。
【0008】
【課題を解決するための手段】
請求項1記載の発明は、両側縁部に立ち上がり壁を有し、底部に段差を有した複数のプレートを備え、このプレートの段差を境にして一半部及び他半部に異なる流体流路を形成するように、各プレートを重ね合わせると共に、各流路を流れる流体が混じらないように、隣接するプレートの立ち上がり壁同士を接合し、これらプレートを両端が開口した外箱内に当該開口部に各流路が臨むように収納し、この外箱の両端の開口部に出入口部を構成するヘッダを溶接し、このヘッダは内部が仕切体でそれぞれ仕切られ、この仕切体がプレートの段差に対応した外箱の仕切体に溶接され、第1系統の流体は、入口部のヘッダの開口81から入って、一半部に形成される流体流路を通じて、出口部のヘッダの開口82から排出され、第2系統の流体は、入口部のヘッダの開口83から入って、他半部に形成される流体流路を通じて、出口部のヘッダの開口84から排出され、第1系統の流体と第2系統の流体との間で熱交換を行うことを特徴とするものである。
【0009】
請求項2記載の発明は、両側縁部に立ち上がり壁を有し、底部に段差を有した2枚のプレートを、当該段差を境にして底部の一半部同士が密着して、他半部に第一の流路を形成するように重ね合わせ、2枚のプレートの立ち上がり壁同士を接合して複数のエレメントを形成し、各エレメントを、前記段差を境にして前記一半部側に第二の流路を形成するように、両端が開口した外箱内に当該開口部に各流路が臨むように収納し、この外箱の両端の開口部に出入口部を構成するヘッダを溶接し、このヘッダは内部が仕切体でそれぞれ仕切られ、この仕切体がプレートの段差に対応した外箱の仕切体に溶接され、第1系統の流体は、入口部のヘッダの開口81から入って、第一の流路を通じて、出口部のヘッダの開口82から排出され、第2系統の流体は、入口部のヘッダの開口83から入って、第二の流路を通じて、出口部のヘッダの開口84から排出され、第1系統の流体と第2系統の流体との間で熱交換を行うことを特徴とするものである。
【0010】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。
【0011】
図1において、符号1は、例えば吸収式冷凍機に用いられて好適な比較的大型のプレート式熱交換器を示している。
【0012】
このプレート式熱交換器1は、図2に示すように、外箱51を有し、この外箱51内に複数のSPCC製プレート(例えば、厚さt=0.5mm)3を重ね合わせて収納・構成されている。各プレート3は、図4に示すように、両側縁部に立ち上がり壁3aを有し、底部3bに段差53を有し、かつ両端縁部3cが切落とし状に形成されている。
【0013】
また、各プレート3の底部3bには、プレス成形によって波形状(ヘリンボーン)の突部55が一体に形成され、この突部55は、図2に示すように各プレート3が組み合わされた場合、各プレート3間に形成される流路A、B間に突出して、その流れに乱流を形成する。
【0014】
図4を参照して、各プレート3の段差53について詳述すると、下のプレート3Aでは、図中で底部3bの左半部(一半部)10が浅く、底部3bの右半部(他半部)20が深く形成され、その中央部に段差53Aが形成されている。一方、上のプレート3Bでは、図中で底部3bの左半部(一半部)30が深く、底部3bの右半部(他半部)40が浅く形成され、その中央部に段差53Bが形成されている。これらプレート3A、3Bを、この段差53A、53Bを合わせて積層した場合、図5に示すように、一半部10,30同士が密着し、他半部20,40側には空間(第一の流路)Aが形成される。
【0015】
この状態で、各プレート3A、3Bの立ち上がり壁同士をシーム溶接11すると共に、相互に密着した一半部10,30の端縁同士をティグ溶接12して1つのエレメント41を形成する。
【0016】
このプレート式熱交換器1は、図2に示すように、エレメント41の他に、2つのエレメント42,43を有し、これらは各プレート3C、3D及び3E、3Fの立ち上がり壁同士、及び相互に密着した一半部10,30の端縁同士を同様の手順で溶接して形成される。なお、最上位のエレメント43は、その断面形状が、他のエレメント41,42と異なっているが、製造手順は同じであり、このエレメント43の段差53の上面と後述する蓋51aとの間は図示を省略したシール手段でシールされる。
【0017】
各エレメント41〜43は外箱51の蓋51aをあけ、その開口部から内部に順に収納され、その後、蓋51aが外箱51に溶接される。なお、各エレメント41〜43を外箱51内に収納する場合、各プレート3の立ち上がり壁3aの傾斜角度を利用して、当該立ち上がり壁3aの先端が外箱51の内面に圧接するように、各エレメント41〜43が収納される。
【0018】
これによれば、各エレメント41〜43は、上記段差53を境にして一半部10,30側に空間(第二の流路)Bを形成するように重ね合わされて、外箱51内に収納される。そして、これらが収納されると、この空間B及び上記の空間Aは、外箱51の両端の開口部に臨む。
【0019】
この外箱51の両端の開口部には、図3に示すように、それぞれ仕切体57が設けられている。そして、この外箱51内に収納された各プレート3A〜3Fの端縁が、仕切体57にティグ溶接され、これによって各プレート間の流路A、Bが完全に仕切られる。各プレート3A〜3Fの端縁と仕切体57間の溶接の容易化のため、そこに溶接ピース58を介在させることが望ましい。
【0020】
最後に、外箱51の両端の開口部に、図1に示すように、この熱交換器の出入口を構成するヘッダ71,73がティグ溶接される。そして、このヘッダ71,73は内部が仕切体75でそれぞれ仕切られ、この仕切体75が外箱51の仕切体57に溶接されている。各ヘッダ71,73に形成された開口81〜84は、それぞれ2系統の流体流路の出入口を構成する。
【0021】
すなわち、第1系統の流体は、開口81から入って、交互に設けた第一の流路Aを通じて熱交換器1内を流れ、開口82から排出される。また、第2系統の流体は、開口83から入って、交互に設けた第二の流路Bを通じて熱交換器1内を流れ、開口84から排出される。この間に、第1系統の流体と第2系統の流体との間で熱交換が行われる。
【0022】
なお、図1において、開口81及び開口82は、第一の流路Aにのみ連通し、開口83及び開口84は、第二の流路Bにのみ連通し、それ以外の連通は不可能なように、熱交換器の出入口を構成するヘッダ71,73が、外箱51の両端の開口部に取り付けられている。
【0023】
このプレート式熱交換器1を吸収式冷凍機に用いる場合、一方が濃液で、他方が稀液である。両者の圧力差は小さい。
【0024】
この実施形態では、各エレメント41〜43を製造する場合、プレート3の立ち上がり壁同士をシーム溶接できるので、溶接作業が容易であり、しかも漏れのない溶接を短時間の内に実行できる。
【0025】
なお、この実施形態では、各プレート3の底部3bにプレス成形によって凹凸55を形成しているが、これに限定されず、各プレート3の底部3bは平坦面に形成して、その代わりに、各プレート3間に、別の部材で構成された遮蔽材(図示せず)を介装することが可能である。
【0026】
この遮蔽材は、各流体流路(領域A、B)中に延在し、当該プレート3間の寸法を略均一に保持し、かつ乱流を発生させる機能を有している。この遮蔽材は、例えば、複数本の丸棒材を直交させて配置し、各丸棒材の交点を溶接して構成される。この遮蔽材は、各プレート間に配置されるが、好ましくは、プレート3の底部に例えばスポット溶接する。
【0027】
この実施形態では、各ヘッダ71,73が溶接により設けられ、そこに開口81〜84が形成され、この開口81〜84を通じて、それぞれ2系統の流体流路が出入する構成であるので、従来のように、各プレート3に連通孔を形成する必要がなく、また、各連通孔の隣接する周縁部同士を溶接する必要がないので、溶接作業の工程を削減できる。また、各連通孔の位置合わせを行う必要がなく、各エレメント41〜43を外箱51に収納するだけであるので、各エレメント41〜43を製造する工程を含めて、溶接の自動化が図られる。
【0028】
さらに、各プレート3に連通孔を有しないので、溶接の箇所が減少し、溶接不良に起因する漏れが少なくなる。
【0029】
また、各ヘッダ71,73に開口81〜84を形成して、流体の出入口を構成しているので、従来のように、プレート3の連通孔の内、最も外側に位置する連通孔に、流体の入口管、或いは出口管を溶接したものと比べて、その部分に配管応力が集中したり、或いは熱応力が集中したりすることがなく、配管の接合部に亀裂等が入り易い等の欠点が解消される。
【0030】
さらに、従来の構成では、例えば2枚のプレートを溶接接合した後、これらをまとめて接合する等のように、1,2枚ずつの組立しかできず、溶接作業が繁雑であり、作業性が悪かったが、この実施形態では、各エレメント41〜43を製造した後、外箱51内に収納し、この外箱51の両端の開口部に各ヘッダ71,73を溶接するだけなので、作業性を向上させることができ、プレート式熱交換器1の製造コストを低減できる。
【0031】
以上、一実施形態に基づいて本発明を説明したが、本発明はこれに限定されるものではない。例えば、外箱51或いはヘッダ71,73は上記のものに限定されず、その形態は任意に変更可能である。また溶接はいかなる溶接形式であってもよく、上記形式に限定されるものではない。
【0032】
【発明の効果】
本発明によれば、プレート式熱交換器の組立が容易で、溶接の自動化が容易で、配管部に応力集中せず、しかも組立時間の短縮が図れる。
【図面の簡単な説明】
【図1】本発明によるプレート式熱交換器の一実施形態を示す斜視図である。
【図2】図1のII−II断面図である。
【図3】図2のIII−III断面図である。
【図4】2枚のプレートの分解斜視図である。
【図5】2枚のプレートの組立斜視図である。
【符号の説明】
1 プレート式熱交換器
3 プレート
10,30 一半部
20,40 他半部
41〜43 エレメント
51 外箱
53 段差
71,73 ヘッダ
81〜84 開口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a plate heat exchanger in which a plurality of dish-shaped plates are stacked and two fluid flow paths are alternately formed between the plates.
[0002]
[Prior art]
In general, a plate heat exchanger is known in which a plurality of plate-like plates are stacked one above the other and two fluid flow paths are alternately formed between the plates.
[0003]
In general, this kind of fluid does not leak to the outside through the two fluid flow paths, and the fluids are not mixed inside, excellent in heat exchange performance, low initial cost, etc. Is required.
[0004]
In this conventional plate heat exchanger, corrugated (herringbone) irregularities are formed by press molding at the bottom of each plate, and a step is formed. The parts are welded, and the peripheral part of the communication hole formed in each plate is welded to be assembled.
[0005]
[Problems to be solved by the invention]
However, in the conventional configuration, adjacent peripheral portions of the communication holes formed in each plate are welded to each other, so that the welding operation becomes difficult. In addition, in order to improve the alignment accuracy of each communication hole, dimensional accuracy is required for processing of each communication hole, and this becomes a bottleneck, making it impossible to automate welding. Furthermore, after welding, since the peripheral edge portion of each communication hole is located inside the heat exchanger, it cannot be corrected even if a welding leak occurs. In addition, since the fluid inlet pipe or outlet pipe is welded to the outermost communicating hole of the plate communicating holes, piping stress or thermal stress concentrates on that part. There is a problem that cracks or the like are likely to enter the joint portion.
[0006]
Furthermore, in the conventional configuration, for example, after two plates are welded and joined, the plates can only be assembled one by one, so that welding work is complicated and workability is improved. There are problems such as bad.
[0007]
Accordingly, an object of the present invention is to solve the above-mentioned problems of the conventional technology, facilitate assembly, facilitate welding automation, do not concentrate stress on the piping, and reduce the assembly time. To provide an exchange.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is provided with a plurality of plates having rising walls at both side edges and steps at the bottom, and different fluid flow paths in one half and the other half with respect to the steps of the plates. As shown in the figure, the plates are overlapped, and the rising walls of adjacent plates are joined together so that the fluid flowing through each flow path is not mixed, and these plates are placed in the opening in the outer box with both ends open. Each channel is stored so that it faces, and the headers that make up the entrance and exit are welded to the openings at both ends of the outer box . The header is partitioned by a partition, and the partition corresponds to the level difference of the plate. Welded to the partition of the outer box, the first system fluid enters from the header opening 81 of the inlet portion, and is discharged from the opening 82 of the outlet header through the fluid passage formed in one half, The second system fluid is Heat enters between the first system fluid and the second system fluid through the fluid flow path formed in the other half, entering from the header opening 83 in the inlet section, and exhausted from the header opening 84 in the outlet section. It is characterized by exchanging .
[0009]
The invention described in claim 2 has two plates having rising walls on both side edges and a step on the bottom, and one half of the bottom is in close contact with the other step on the other step. Overlapping so as to form the first flow path, the rising walls of the two plates are joined together to form a plurality of elements, and each element is connected to the second half on the one half side with the step as a boundary. so as to form a flow path, both ends accommodated to face each flow path to the opening in the outer box with an opening, and welding the header constituting the entrance portion to the opening portions at both ends of the outer box, the The header is partitioned by a partition, and the partition is welded to the partition of the outer box corresponding to the level difference of the plate. The first system fluid enters from the opening 81 of the header at the inlet, and the first The second system is discharged from the opening 82 of the outlet header through the flow path of The fluid enters from the opening 83 of the header of the inlet portion, is discharged from the opening 84 of the header of the outlet portion through the second flow path, and exchanges heat between the fluid of the first system and the fluid of the second system. It is characterized by doing .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0011]
In FIG. 1, the code | symbol 1 has shown the comparatively large plate type heat exchanger suitable for using, for example in an absorption refrigerator.
[0012]
As shown in FIG. 2, the plate heat exchanger 1 has an outer box 51, and a plurality of SPCC plates (for example, thickness t = 0.5 mm) 3 are stacked in the outer box 51. Stored and configured. As shown in FIG. 4, each plate 3 has rising walls 3a at both side edges, a step 53 at the bottom 3b, and both end edges 3c are cut off.
[0013]
Further, a corrugated (herringbone) projection 55 is integrally formed on the bottom 3b of each plate 3 by press molding, and this projection 55 is formed when the plates 3 are combined as shown in FIG. It projects between the flow paths A and B formed between the plates 3 to form a turbulent flow in the flow.
[0014]
Referring to FIG. 4, the step 53 of each plate 3 will be described in detail. In the lower plate 3A, the left half (one half) 10 of the bottom 3b is shallow in the figure, and the right half (the other half) of the bottom 3b. Part) 20 is formed deep, and a step 53A is formed at the center thereof. On the other hand, in the upper plate 3B, in the drawing, the left half (one half) 30 of the bottom 3b is deep, the right half (other half) 40 of the bottom 3b is shallow, and a step 53B is formed in the center. Has been. When these plates 3A and 3B are laminated together with the steps 53A and 53B, as shown in FIG. 5, the half portions 10 and 30 are in close contact with each other, and the other half portions 20 and 40 have a space (first A flow path) A is formed.
[0015]
In this state, the rising walls of the plates 3 </ b> A and 3 </ b> B are seam-welded 11, and the edges of the half portions 10 and 30 that are in close contact with each other are TIG-welded 12 to form one element 41.
[0016]
As shown in FIG. 2, the plate heat exchanger 1 has two elements 42 and 43 in addition to the element 41, which are the rising walls of the plates 3 </ b> C, 3 </ b> D, 3 </ b> E, and 3 </ b> F, The edges of the half portions 10, 30 that are in close contact with each other are welded in the same procedure. The uppermost element 43 has a cross-sectional shape different from those of the other elements 41 and 42, but the manufacturing procedure is the same. Between the upper surface of the step 53 of the element 43 and a lid 51a described later. Sealing is performed by sealing means (not shown).
[0017]
Each element 41 to 43 opens the lid 51 a of the outer box 51, and is sequentially housed inside from the opening, and then the lid 51 a is welded to the outer box 51. In addition, when each element 41-43 is accommodated in the outer box 51, using the inclination angle of the rising wall 3a of each plate 3, the tip of the rising wall 3a is pressed against the inner surface of the outer box 51. Each element 41-43 is accommodated.
[0018]
According to this, the elements 41 to 43 are overlapped so as to form a space (second flow path) B on the half portions 10 and 30 side with the step 53 as a boundary, and stored in the outer box 51. Is done. And when these are accommodated, this space B and said space A will face the opening part of the both ends of the outer case 51. FIG.
[0019]
As shown in FIG. 3, partition bodies 57 are provided at the openings at both ends of the outer box 51. And the edge of each plate 3A-3F accommodated in this outer box 51 is TIG-welded to the partition 57, and, thereby, the flow paths A and B between each plate are completely partitioned. In order to facilitate welding between the edge of each of the plates 3A to 3F and the partition 57, it is desirable to interpose a welding piece 58 therein.
[0020]
Finally, as shown in FIG. 1, headers 71 and 73 constituting the entrance / exit of this heat exchanger are TIG welded to the openings at both ends of the outer box 51. The headers 71 and 73 are each partitioned by a partition body 75, and the partition body 75 is welded to the partition body 57 of the outer box 51. The openings 81 to 84 formed in the headers 71 and 73 constitute the entrances and exits of the two fluid flow paths, respectively.
[0021]
That is, the first system fluid enters from the opening 81, flows through the heat exchanger 1 through the alternately provided first flow paths A, and is discharged from the opening 82. Further, the fluid of the second system enters from the opening 83, flows through the heat exchanger 1 through the second flow paths B provided alternately, and is discharged from the opening 84. During this time, heat exchange is performed between the fluid of the first system and the fluid of the second system.
[0022]
In FIG. 1, the opening 81 and the opening 82 communicate only with the first flow path A, the opening 83 and the opening 84 communicate with only the second flow path B, and other communication is impossible. As described above, the headers 71 and 73 constituting the entrance and exit of the heat exchanger are attached to the opening portions at both ends of the outer box 51.
[0023]
When this plate heat exchanger 1 is used in an absorption refrigerator, one is a concentrated liquid and the other is a rare liquid. The pressure difference between the two is small.
[0024]
In this embodiment, when manufacturing each element 41-43, since the standing walls of the plate 3 can be seam-welded, welding work is easy and welding without leakage can be performed within a short time.
[0025]
In this embodiment, the irregularities 55 are formed by press molding on the bottom 3b of each plate 3. However, the present invention is not limited to this, and the bottom 3b of each plate 3 is formed on a flat surface. A shielding material (not shown) made of another member can be interposed between the plates 3.
[0026]
This shielding material extends in each fluid flow path (regions A and B), and has a function of maintaining a uniform dimension between the plates 3 and generating turbulence. For example, the shielding material is configured by arranging a plurality of round bars at right angles and welding the intersections of the round bars. This shielding material is disposed between the plates, but is preferably spot-welded, for example, to the bottom of the plate 3.
[0027]
In this embodiment, the headers 71 and 73 are provided by welding, and openings 81 to 84 are formed therein, and through these openings 81 to 84, two fluid flow paths are respectively inserted and removed. Thus, since it is not necessary to form a communication hole in each plate 3, and it is not necessary to weld the adjacent peripheral parts of each communication hole, the process of welding work can be reduced. Moreover, since it is not necessary to align each communicating hole and each element 41-43 is only accommodated in the outer box 51, automation of welding including the process of manufacturing each element 41-43 is achieved. .
[0028]
Furthermore, since each plate 3 does not have a communication hole, the number of welding points is reduced and leakage due to poor welding is reduced.
[0029]
Further, since the openings 81 to 84 are formed in the headers 71 and 73 to constitute the fluid inlet / outlet port, the fluid communication hole located on the outermost side among the communication holes of the plate 3 is formed in the fluid communication hole as in the prior art. Compared to the welded inlet pipe or outlet pipe of this type, the pipe stress does not concentrate on that part, or thermal stress does not concentrate, and cracks etc. are likely to occur in the joint part of the pipe. Is resolved.
[0030]
Furthermore, in the conventional configuration, for example, after two plates are welded and joined, the plates can only be assembled one by one, so that welding work is complicated and workability is improved. Although it was bad, in this embodiment, after manufacturing each element 41-43, it accommodates in the outer box 51, and each header 71,73 is welded to the opening part of this both ends of this outer box 51, Therefore Workability | operativity And the manufacturing cost of the plate heat exchanger 1 can be reduced.
[0031]
As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this. For example, the outer box 51 or the headers 71 and 73 are not limited to those described above, and the form thereof can be arbitrarily changed. Further, the welding may be of any welding type and is not limited to the above type.
[0032]
【The invention's effect】
According to the present invention, it is easy to assemble a plate heat exchanger, it is easy to automate welding, stress is not concentrated on the piping portion, and the assembly time can be shortened.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a plate heat exchanger according to the present invention.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
3 is a sectional view taken along line III-III in FIG.
FIG. 4 is an exploded perspective view of two plates.
FIG. 5 is an assembled perspective view of two plates.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plate type heat exchanger 3 Plate 10, 30 One half 20, 40 Other half 41-43 Element 51 Outer box 53 Level | step difference 71, 73 Header 81-84 Opening

Claims (2)

両側縁部に立ち上がり壁を有し、底部に段差を有した複数のプレートを備え、このプレートの段差を境にして一半部及び他半部に異なる流体流路を形成するように、各プレートを重ね合わせると共に、各流路を流れる流体が混じらないように、隣接するプレートの立ち上がり壁同士を接合し、これらプレートを両端が開口した外箱内に当該開口部に各流路が臨むように収納し、この外箱の両端の開口部に出入口部を構成するヘッダを溶接し、このヘッダは内部が仕切体でそれぞれ仕切られ、この仕切体がプレートの段差に対応した外箱の仕切体に溶接され、第1系統の流体は、入口部のヘッダの開口81から入って、一半部に形成される流体流路を通じて、出口部のヘッダの開口82から排出され、第2系統の流体は、入口部のヘッダの開口83から入って、他半部に形成される流体流路を通じて、出口部のヘッダの開口84から排出され、第1系統の流体と第2系統の流体との間で熱交換を行うことを特徴とするプレート式熱交換器。Each plate is provided with a plurality of plates having rising walls at both side edges and steps at the bottom, and different fluid flow paths are formed in one half and the other half with the step of the plate as a boundary. In addition to overlapping, the rising walls of adjacent plates are joined together so that the fluid flowing through each flow path is not mixed, and these plates are stored in an outer box with both ends open so that each flow path faces the opening. The headers constituting the entrance / exit part are welded to the openings at both ends of the outer box, and the header is partitioned by a partition body, and the partition body is welded to the partition body of the outer box corresponding to the step of the plate The first system fluid enters from the opening 81 of the inlet header, and is discharged from the opening 82 of the outlet header through the fluid passage formed in one half. Part header opening In from 3, through the fluid flow path formed on the other half, is discharged from the opening 84 of the header in the outlet portion, characterized by performing the heat exchange with the fluid in the fluid and the second system of the first system A plate heat exchanger. 両側縁部に立ち上がり壁を有し、底部に段差を有した2枚のプレートを、当該段差を境にして底部の一半部同士が密着して、他半部に第一の流路を形成するように重ね合わせ、2枚のプレートの立ち上がり壁同士を接合して複数のエレメントを形成し、各エレメントを、前記段差を境にして前記一半部側に第二の流路を形成するように、両端が開口した外箱内に当該開口部に各流路が臨むように収納し、この外箱の両端の開口部に出入口部を構成するヘッダを溶接し、このヘッダは内部が仕切体でそれぞれ仕切られ、この仕切体がプレートの段差に対応した外箱の仕切体に溶接され、第1系統の流体は、入口部のヘッダの開口81から入って、第一の流路を通じて、出口部のヘッダの開口82から排出され、第2系統の流体は、入口部のヘッダの開口83から入って、第二の流路を通じて、出口部のヘッダの開口84から排出され、第1系統の流体と第2系統の流体との間で熱交換を行うことを特徴とするプレート式熱交換器。Two plates with rising walls on both side edges and a step on the bottom are brought into close contact with each other at the bottom, and the first channel is formed in the other half. In order to form a plurality of elements by joining the rising walls of the two plates and forming each element, the second flow path is formed on the one half side with the step as a boundary. both ends accommodated to face each flow path to the opening in the outer box with an opening, and welding the header constituting the entrance portion to the opening portions at both ends of the outer box, the header respectively internally by a partition member The partition body is welded to the partition body of the outer box corresponding to the level difference of the plate, and the fluid of the first system enters from the opening 81 of the header of the inlet section, passes through the first flow path, The fluid of the second system discharged from the opening 82 of the header passes through the inlet head. Enters from the opening 83, plate through the second flow path is discharged from the opening 84 of the header in the outlet portion, and performs heat exchange with the fluid in the fluid and the second system of the first system Type heat exchanger.
JP27948999A 1999-09-30 1999-09-30 Plate heat exchanger Expired - Fee Related JP4471423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27948999A JP4471423B2 (en) 1999-09-30 1999-09-30 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27948999A JP4471423B2 (en) 1999-09-30 1999-09-30 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2001099586A JP2001099586A (en) 2001-04-13
JP4471423B2 true JP4471423B2 (en) 2010-06-02

Family

ID=17611768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27948999A Expired - Fee Related JP4471423B2 (en) 1999-09-30 1999-09-30 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP4471423B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007009713A1 (en) * 2005-07-19 2007-01-25 Behr Gmbh & Co. Kg Heat exchanger
KR101717093B1 (en) * 2015-07-23 2017-03-27 주식회사 경동나비엔 Heat exchanger

Also Published As

Publication number Publication date
JP2001099586A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
JPH08254399A (en) Heat exchanger
WO2006018953A1 (en) Heat exchanger
WO1998025093A1 (en) Heat exchanger
JPH0674680A (en) Heat exchanger plate and manufacture thereof
JP2005221175A (en) Stacked heat exchanger
JPH09250896A (en) Heat exchanger
JP4471423B2 (en) Plate heat exchanger
JPH0961084A (en) Manufacture of inlet or outlet pipe for stacked type heat exchanger
JP2864170B2 (en) Heat exchanger
KR20030057382A (en) Heat exchange unit
JPH07318288A (en) Tank partition structure for heat exchanger
JP3054939B2 (en) Stacked heat exchanger
JPH0429257Y2 (en)
EP0805330B1 (en) Heat exchanger enabling leak test of chambers in tank separated by single partition
JP7456795B2 (en) Stacked Heat Exchanger
KR101980359B1 (en) Stacked plate type heat exchanger
JPH08271177A (en) Lamination type heat exchanger
JP3640496B2 (en) Repair method for plate heat exchanger
JPH0624712Y2 (en) Heat exchanger
JPH04121595A (en) Heat exchanger
JP2001099582A (en) Plate type heat exchanger and manufacturing method
JPH087248Y2 (en) Intercooler
JP2002062084A (en) Heat exchanger
JPH11294989A (en) Heat exchanger
JPH0464894A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees