JP4470034B2 - Solid electrolyte membrane and polymer electrolyte fuel cell using zeolite - Google Patents

Solid electrolyte membrane and polymer electrolyte fuel cell using zeolite Download PDF

Info

Publication number
JP4470034B2
JP4470034B2 JP2003055634A JP2003055634A JP4470034B2 JP 4470034 B2 JP4470034 B2 JP 4470034B2 JP 2003055634 A JP2003055634 A JP 2003055634A JP 2003055634 A JP2003055634 A JP 2003055634A JP 4470034 B2 JP4470034 B2 JP 4470034B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
zeolite
electrolyte membrane
membrane
polytetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003055634A
Other languages
Japanese (ja)
Other versions
JP2004265764A (en
Inventor
秀典 八尋
祐樹 譽田
元次 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003055634A priority Critical patent/JP4470034B2/en
Publication of JP2004265764A publication Critical patent/JP2004265764A/en
Application granted granted Critical
Publication of JP4470034B2 publication Critical patent/JP4470034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
固体電解質膜は、燃料電池、リチウム2次電池、イオンセンサー、ガスセンサーなどに利用されている。また、固体高分子型燃料電池は、水素やメタノールなどを燃料とし、アノード、カソード、セパレーター、固体電解質膜などから成り立ち、携帯機器用、家庭用、自動車用の新しいエネルギー源として期待されている。本発明は、固体電解質膜及びその固体電解質膜を使用する固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
従来、水素やメタノールなどを燃料とする固体高分子型燃料電池用の固体電解質膜は、パーフルオロスルホン酸系のイオン交換膜が使われていた。しかしパーフルオロスルホン酸系のイオン交換膜は、高温で使用できないため電極の選択肢が少なくなること、高コストであること、メタノールを燃料とした場合においてメタノールの浸透性が大きいことなどの問題が指摘されていた。
【0003】
ゼオライトを用いた固体電解質膜については、報告例がある(例えば、非特許文献1)。その中で、H−モルデナイトのみからなる膜が、プロトン導電性を有していることが報告されている。
【0004】
また、ゼオライトと有機系高分子を混合し、成膜した固体電解質膜についても、幾つか報告例(例えば、特許文献1)がある。その中で、イオン交換樹脂を高分子マトリックスとする固体イオン導電体であって、吸湿性無機多孔質粒子の吸湿容量が、関係湿度20%において2〜15%であることなどを特徴とする固体イオン導電体が開示されている。吸湿性無機多孔質粒子の含量は、イオン交換樹脂100重量部に対して0.5〜60重量部、特に好ましくは1〜30重量部、であることが好ましいと記載されている。ゼオライトを用いた実施例としては、合成ゼオライト(商品名:モレキュラーシーブ23364−1、アルドリッチ社製)を5重量部配合したパーフルオロカーボンスルホン酸樹脂の1例のみである。合成ゼオライトは、導電性を有するパーフルオロカーボンスルホン酸樹脂に対して、水を保持することができる吸湿剤(添加剤)として利用されており、ゼオライトの導電性に関して特に記述はない。
【0005】
またH−Y型ゼオライト,H−モルデナイトなどのゼオライトと、パーフルオロスルホン酸(ナフィオン),ポリテトラフルオロエチレンなどの有機高分子を混合し、成膜した固体電解質膜について報告されている(例えば、非特許文献2)。その中で、膜の導電率は、10-4S/cm以下の低いものであり、また膜の導電率は、ゼオライトのブロンステッド酸量に依存していると記載されている。
【0006】
更にNa−Y型ゼオライトとポリテトラフルオロエチレンを混合し、成膜した固体電解質膜が報告されている(例えば、非特許文献3)。その中で、膜の導電率は、10-3S/cm以下と低い導電率しか報告されていない。
【0007】
以上、ゼオライトと有機系高分子を混合し、成膜した固体電解質膜では、導電率などの性能面において、満足するものは得られていなかった。
【0008】
【特許文献1】
特許第3035885号公報
【非特許文献1】
ヒビノ(T.Hibino)、他2名、「ソリッド ステイト イオニックス(Solid State Ionics)」,(オランダ)、67,1−2,p71−76(1993)
【非特許文献2】
タカミ マサヨシ(Masayosi Takami)、他2名、「エレクトロケミストリー(Electrochemistry)」,69,2,p98−103(2001)
【非特許文献3】
譽田祐樹、他3名、「第88回触媒討論会(2001)予稿集」、p32
【0009】
【発明が解決しようとする課題】
本発明は、高温で使用できる安価な固体電解質膜を提供すること、及びその固体電解質膜を使用する固体高分子型燃料電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者等は、Li−Y型のゼオライトと有機系高分子を混合し、成膜した固体電解質膜を詳細に検討した結果、ゼオライト含有量が65重量%以上99重量%以下であり、膜の水分吸着量が10mmol/g以上20mmol/g以下である固体電解質膜が優れた導電率を有することを見出し、本発明を完成するに至ったものである。固体電解質膜の水分吸着量と導電率が相関する機構は明らかでないが、ゼオライトに吸着した水がHホッピングの役割を担っていると考えられる。以下、本発明を詳細に説明する。
【0011】
Li−Y型のゼオライトは、有機系高分子と混合・成膜した膜において、その含有量が65重量%以上99重量%以下、好ましくは70重量%以上95重量%以下である。含有量が65重量%より少なすぎると成膜したときの導電率が低くなり好ましくない。また99重量%より多すぎると膜の強度が低下するため好ましくない。
【0012】
ゼオライトの構造は、FAU構造のゼオライトである。またゼオライトのSi/Alも特に限定されないが、Si/Alが小さいほどゼオライトの水分吸着量が多くなるため、Si/Alが10より小さい方が好ましい。更にゼオライトのイオン種もLiである
【0013】
ゼオライトの凝集粒子径は特に限定されず、例えば、0.1〜300μmが例示できる。またゼオライトの平均細孔径、細孔容量も特に限定されない。
【0014】
ゼオライトの水分吸着量も、特に限定されないが、有機系高分子と混合・成膜した膜の水分吸着量を大きくするため、大きい方が好ましい。例えば、25℃、相対湿度20%において、20%以上が例示できる。
【0015】
本発明で使用される有機系高分子は、固体電解質膜として運転する温度において熱的に安定であれば良く、特に限定されないが、耐熱性高分子であることが好ましい。耐熱性高分子としては、ポリテトラフルオロエチレン、ポリアミド、アラミド、ポリイミド、ポリベンズイミダゾール、ポリエーテルイミド、ポリアミドイミド、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルケトン、ポリメチルペンテン、ポリビニリデンフロライド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート、ポリアセタールおよびポリフェニレンエーテルが例示でき、これらのうち少なくとも一種を用いる。
【0016】
本発明において、ゼオライトと有機系高分子を混合し、成膜した固体電解質膜の水分吸着量が、10mmol/g以上20mmol/g以下、好ましくは15mmol/g以上20mmol/g以下である。水分吸着量が、10mmol/g未満では導電率が低く、固体電解質膜としての性能が低くなる。また、水分吸着量が20mmol/gを越えると、ゼオライトおよび/または有機系高分子が特殊なものでしか実現できず、高価になるため、好ましくない。水分吸着量と導電率が相関する機構は明らかでないが、ゼオライトに吸着した水がH3+ホッピングの役割を担っていると考えられる。膜の水分吸着量は、膜をデシケーター中で飽和塩化アンモニウム水溶液と12時間以上室温で保った後に、熱分析(20℃から250℃までの重量減)することにより算出できる。
【0017】
ゼオライトと有機系高分子を混合し、成膜する方法は、特に限定されない。例えば、予め合成したゼオライト粒子と有機系高分子を懸濁・凝集させて、ゼオライトと有機系高分子の均一混合物を得て、更にホットプレスなどを用いて成膜する方法が挙げられる。
【0018】
膜の厚さは、特に限定されないが、例えば、10〜1000μmが例示できる。また、膜中のゼオライトと有機系高分子の分散度も特に限定されないが、均一であることが好ましい。
【0019】
本発明の固体電解質膜は、燃料電池、リチウム2次電池、イオンセンサー、ガスセンサーなどに利用できる。
【0020】
本発明の固体電解質膜は、アノード、カソードの間に配置し、さらにアノードとカソードの外側にセパレーターを配置して固体高分子型燃料電池を構成することができる。燃料電池の燃料として、水素、メタノールが例示できる。本発明の固体電解質膜を用いた固体高分子型燃料電池の運転温度は、限定されないが、70℃以上、特に100℃以上のときに、ゼオライトと有機系高分子を混合し、成膜した膜以外の膜と比べて優位性が発揮できる。
【0021】
【実施例】
以下本発明を実施例により更に詳細に説明するが、本発明は、これらの実施例に何ら限定されるものではない。
【0022】
実施例1 (Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜)
(膜の調製)
東ソー株式会社製のNa−Y型ゼオライト(商品名320NAA)を硝酸リチウム水溶液でリチウム交換を行ない、Li−Y型ゼオライトを得た。Li−Y型ゼオライトの一部をフッ酸水溶液で溶解し、ICP発光分光分析でLi交換率を求めたところ、74%であった。またLi−Y型ゼオライトのSi/Alは2.8、凝集粒子径は6μm、水分吸着量(25℃、相対湿度20%)は31%であった。次に、Li−Y型ゼオライトとポリテトラフルオロエチレン(35重量%,アルドリッチ製)の混合懸濁液を、Li−Y型ゼオライトがポリテトラフルオロエチレンとの混合物として80重量%になるように調製した。調製した混合懸濁液を50℃で50分間、強攪拌し、室温まで冷却した後に、凝集剤としてイソプロピルアルコールを加えた。得られた沈殿物をろ過し、70℃で12時間乾燥した。得られた乾燥物を350℃で加熱し、4.9MPaの圧力で加圧して、Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜を得た。
【0023】
(膜の水分吸着量)
Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜をデシケーター中で飽和塩化アンモニウム水溶液と12時間以上室温で保った後に、島津製作所製DTG−60熱分析装置を用いて、20℃から250℃までの重量減で評価した。膜の水分吸着量は、10.5mmol/gと大きな値であった。
【0024】
(導電率の測定)
固体電解質膜の導電率を測定する装置を図1に示す。固体電解質膜を金のプレートで挟み、LCRメーター(安藤電機製;AG−4311)に金線でつないだ。測定雰囲気として、水(80体積%)+窒素(バランス)のガスを125cm3/minの流量で測定セルに流通させ、温度を75〜150℃の間の一定温度で制御した。導電率は、0.1〜100kHzの周波数で測定した。得られた導電率を図2および図3に示す。75℃における導電率は、2.0×10-3S/cmと大きな値となった。
【0025】
比較例1 (Na−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜)
(膜の調製)
東ソー株式会社製のNa−Y型ゼオライト(商品名320NAA)を用いて、実施例1と同様にNa−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜を得た。なお用いたNa−Y型ゼオライトのSi/Alは2.8、凝集粒子径は6μm、水分吸着量(25℃、相対湿度20%)は30%であった。
【0026】
(膜の水分吸着量)
実施例1と同様に測定を行なった。図3に示したように、Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜に比べて、水分吸着量は小さかった。
【0027】
(導電率の測定)
実施例1と同様に測定を行なった。図2,3に示したように。Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜に比べて、導伝率は小さかった。
【0028】
比較例2 (Na−Y型ゼオライト(50重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜)
(膜の調製)
東ソー株式会社製のNa−Y型ゼオライト(商品名320NAA)を用いて、実施例1と同様にNa−Y型ゼオライト(50重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜を得た。
【0029】
(膜の水分吸着量)
実施例1と同様に測定を行なった。図3に示したように、Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜に比べて、水分吸着量は小さかった。
【0030】
(導電率の測定)
実施例1と同様に測定を行なった。図3に示したように。Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜に比べて、導伝率は小さかった。
【0031】
比較例3 (Na−Y型ゼオライト(20重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜)
(膜の調製)
東ソー株式会社製のNa−Y型ゼオライト(商品名320NAA)を用いて、実施例1と同様にNa−Y型ゼオライト(20重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜を得た。
【0032】
(膜の水分吸着量)
実施例1と同様に測定を行なった。図3に示したように、Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜に比べて、水分吸着量は小さかった。
【0033】
(導電率の測定)
実施例1と同様に測定を行なった。図3に示したように。Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜に比べて、導伝率は小さかった。
【0034】
比較例4 (K−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜)
(膜の調製)
東ソー株式会社製のNa−Y型ゼオライト(商品名320NAA)を用いて、K−Y型ゼオライト(K交換率92%)を調製し、実施例1と同様にK−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜を得た。なお用いたK−Y型ゼオライトのSi/Alは2.8、凝集粒子径は6μmであった。
【0035】
(膜の水分吸着量)
実施例1と同様に測定を行なった。図3に示したように、Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜に比べて、水分吸着量は小さかった。
【0036】
(導電率の測定)
実施例1と同様に測定を行なった。図2,3に示したように。Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜に比べて、導伝率は小さかった。
【0037】
比較例5 (H−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜)
(膜の調製)
東ソー株式会社製のNa−Y型ゼオライト(商品名320NAA)を用いて、H−Yを調製し、実施例1と同様にH−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜を得た。なお用いたH−Y型ゼオライトのSi/Alは2.8、凝集粒子径は6μm、水分吸着量(25℃、相対湿度20%)は24%であった。
【0038】
(膜の水分吸着量)
実施例1と同様に測定を行なった。図3に示したように、Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜に比べて、水分吸着量は小さかった。
【0039】
(導電率の測定)
実施例1と同様に測定を行なった。図2,3に示したように。Li−Y型ゼオライト(80重量%)とポリテトラフルオロエチレンを混合・成膜した固体電解質膜に比べて、導伝率は小さかった。
【0040】
【発明の効果】
本発明の固体電解質膜は、安価で且つ高温においても高い導電率を有する。また、その固体電解質膜を使用する固体高分子型燃料電池は、高温で使用できるため電極の選択肢が広がる等の効果がある。
【0041】
【図面の簡単な説明】
【図1】導電率測定装置の概略図
【図2】導電率測定結果の温度依存性
【図3】導電率測定結果の水分吸着量依存性
[0001]
BACKGROUND OF THE INVENTION
Solid electrolyte membranes are used in fuel cells, lithium secondary batteries, ion sensors, gas sensors, and the like. A polymer electrolyte fuel cell uses hydrogen, methanol, or the like as a fuel, and is composed of an anode, a cathode, a separator, a solid electrolyte membrane, and the like, and is expected as a new energy source for portable devices, home use, and automobiles. The present invention relates to a solid electrolyte membrane and a polymer electrolyte fuel cell using the solid electrolyte membrane.
[0002]
[Prior art]
Conventionally, perfluorosulfonic acid ion exchange membranes have been used as solid electrolyte membranes for polymer electrolyte fuel cells using hydrogen or methanol as fuel. However, perfluorosulfonic acid ion exchange membranes cannot be used at high temperatures, so there are fewer electrode options, high costs, and high methanol permeability when methanol is used as fuel. It had been.
[0003]
There are reported examples of solid electrolyte membranes using zeolite (for example, Non-Patent Document 1). Among them, it has been reported that a film composed only of H-mordenite has proton conductivity.
[0004]
Moreover, there are some report examples (for example, patent document 1) about the solid electrolyte membrane formed by mixing zeolite and organic polymer. Among them, a solid ionic conductor having an ion exchange resin as a polymer matrix, wherein the hygroscopic inorganic porous particles have a moisture absorption capacity of 2 to 15% at a relative humidity of 20%. An ionic conductor is disclosed. It is described that the content of the hygroscopic inorganic porous particles is preferably 0.5 to 60 parts by weight, particularly preferably 1 to 30 parts by weight with respect to 100 parts by weight of the ion exchange resin. As an example using zeolite, there is only one example of perfluorocarbon sulfonic acid resin containing 5 parts by weight of synthetic zeolite (trade name: Molecular Sieve 23364-1, manufactured by Aldrich). Synthetic zeolite is used as a hygroscopic agent (additive) capable of retaining water with respect to conductive perfluorocarbon sulfonic acid resin, and there is no particular description regarding the conductivity of zeolite.
[0005]
In addition, solid electrolyte membranes have been reported in which zeolites such as HY zeolite and H-mordenite are mixed with organic polymers such as perfluorosulfonic acid (Nafion) and polytetrafluoroethylene (for example, Non-patent document 2). Among them, it is described that the conductivity of the membrane is as low as 10 −4 S / cm or less, and that the conductivity of the membrane depends on the amount of Bronsted acid of the zeolite.
[0006]
Furthermore, a solid electrolyte membrane formed by mixing Na-Y zeolite and polytetrafluoroethylene to form a film has been reported (for example, Non-Patent Document 3). Among them, only a low conductivity of 10 −3 S / cm or less has been reported.
[0007]
As described above, a solid electrolyte membrane formed by mixing zeolite and an organic polymer to form a film has not been satisfactory in terms of performance such as conductivity.
[0008]
[Patent Document 1]
Japanese Patent No. 3035885 [Non-Patent Document 1]
T. Hibino, two others, "Solid State Ionics", (Netherlands), 67, 1-2, p71-76 (1993)
[Non-Patent Document 2]
Masayoshi Takami, two others, "Electrochemistry", 69, 2, p98-103 (2001)
[Non-Patent Document 3]
Yuki Hamada and 3 others, “88th Catalysis Conference (2001) Proceedings”, p. 32
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an inexpensive solid electrolyte membrane that can be used at a high temperature, and to provide a polymer electrolyte fuel cell using the solid electrolyte membrane.
[0010]
[Means for Solving the Problems]
As a result of examining the solid electrolyte membrane formed by mixing Li-Y type zeolite and organic polymer in detail, the inventors have found that the zeolite content is 65 wt% or more and 99 wt% or less. It has been found that a solid electrolyte membrane having a moisture adsorption amount of 10 mmol / g or more and 20 mmol / g or less has excellent conductivity, and has completed the present invention. Although the mechanism by which the moisture adsorption amount of the solid electrolyte membrane correlates with the conductivity is not clear, it is considered that the water adsorbed on the zeolite plays a role of H 3 O + hopping. Hereinafter, the present invention will be described in detail.
[0011]
The content of the Li-Y type zeolite in the film mixed and formed with the organic polymer is 65% by weight to 99% by weight, preferably 70% by weight to 95% by weight. If the content is less than 65% by weight, the conductivity when the film is formed is lowered, which is not preferable. On the other hand, if it is more than 99% by weight, the strength of the film is lowered, which is not preferable.
[0012]
The zeolite has a FAU structure . Also, the Si / Al of the zeolite is not particularly limited, but the smaller the Si / Al, the greater the amount of moisture adsorption of the zeolite. Therefore, the Si / Al is preferably smaller than 10. Further, the ionic species of zeolite is also Li .
[0013]
The agglomerated particle diameter of zeolite is not particularly limited, and examples thereof include 0.1 to 300 μm. Further, the average pore diameter and pore volume of zeolite are not particularly limited.
[0014]
The amount of moisture adsorption of zeolite is not particularly limited, but a larger amount is preferable in order to increase the amount of moisture adsorption of the film mixed and formed with an organic polymer. For example, 20% or more can be exemplified at 25 ° C. and a relative humidity of 20%.
[0015]
The organic polymer used in the present invention is not particularly limited as long as it is thermally stable at the temperature at which it operates as a solid electrolyte membrane, but is preferably a heat resistant polymer. Examples of heat-resistant polymers include polytetrafluoroethylene, polyamide, aramid, polyimide, polybenzimidazole, polyetherimide, polyamideimide, polyphenylene sulfide, polyethersulfone, polysulfone, polyetheretherketone, polymethylpentene, and polyvinylidene fluoride. Ride, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polyacetal, and polyphenylene ether can be exemplified, and at least one of them is used.
[0016]
In the present invention, the moisture adsorption amount of the solid electrolyte membrane formed by mixing zeolite and an organic polymer is 10 mmol / g or more and 20 mmol / g or less, preferably 15 mmol / g or more and 20 mmol / g or less. When the moisture adsorption amount is less than 10 mmol / g, the electrical conductivity is low, and the performance as a solid electrolyte membrane is low. On the other hand, if the amount of moisture adsorption exceeds 20 mmol / g, the zeolite and / or the organic polymer can be realized only with special ones and is expensive. Although the mechanism that correlates the moisture adsorption amount and the conductivity is not clear, it is considered that the water adsorbed on the zeolite plays a role of H 3 O + hopping. The moisture adsorption amount of the membrane can be calculated by thermal analysis (weight loss from 20 ° C. to 250 ° C.) after keeping the membrane in a desiccator with a saturated aqueous ammonium chloride solution for 12 hours or more at room temperature.
[0017]
A method for forming a film by mixing zeolite and an organic polymer is not particularly limited. For example, a method of suspending and aggregating previously synthesized zeolite particles and organic polymer to obtain a uniform mixture of zeolite and organic polymer, and further forming a film using a hot press or the like can be mentioned.
[0018]
Although the thickness of a film | membrane is not specifically limited, For example, 10-1000 micrometers can be illustrated. Further, the degree of dispersion of the zeolite and the organic polymer in the membrane is not particularly limited, but is preferably uniform.
[0019]
The solid electrolyte membrane of the present invention can be used for fuel cells, lithium secondary batteries, ion sensors, gas sensors and the like.
[0020]
The solid electrolyte membrane of the present invention can be disposed between an anode and a cathode, and further a separator can be disposed outside the anode and the cathode to constitute a solid polymer fuel cell. Examples of the fuel for the fuel cell include hydrogen and methanol. The operating temperature of the polymer electrolyte fuel cell using the solid electrolyte membrane of the present invention is not limited, but a membrane formed by mixing zeolite and an organic polymer when the temperature is 70 ° C. or higher, particularly 100 ° C. or higher. Advantages can be demonstrated compared to other films.
[0021]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.
[0022]
Example 1 (Li-Y type zeolite (80 wt%) and polytetrafluoroethylene mixed / film-formed solid electrolyte membrane)
(Preparation of membrane)
Lithium exchange was performed on Na-Y zeolite (trade name 320NAA) manufactured by Tosoh Corporation with a lithium nitrate aqueous solution to obtain Li-Y zeolite. A part of the Li-Y type zeolite was dissolved in a hydrofluoric acid aqueous solution, and the Li exchange rate was determined by ICP emission spectroscopic analysis. As a result, it was 74%. Moreover, Si / Al of the Li—Y type zeolite was 2.8, the agglomerated particle diameter was 6 μm, and the moisture adsorption amount (25 ° C., relative humidity 20%) was 31%. Next, a mixed suspension of Li-Y type zeolite and polytetrafluoroethylene (35% by weight, manufactured by Aldrich) is prepared so that the Li-Y type zeolite becomes 80% by weight as a mixture with polytetrafluoroethylene. did. The prepared mixed suspension was vigorously stirred at 50 ° C. for 50 minutes and cooled to room temperature, and then isopropyl alcohol was added as a flocculant. The resulting precipitate was filtered and dried at 70 ° C. for 12 hours. The obtained dried product was heated at 350 ° C. and pressurized at a pressure of 4.9 MPa to obtain a solid electrolyte membrane in which Li-Y zeolite (80 wt%) and polytetrafluoroethylene were mixed and formed.
[0023]
(Moisture adsorption amount of membrane)
A solid electrolyte membrane formed by mixing and forming a Li-Y zeolite (80% by weight) and polytetrafluoroethylene was kept in a desiccator with a saturated aqueous ammonium chloride solution at room temperature for 12 hours or more, and then DTG-60 thermal analysis manufactured by Shimadzu Corporation. Using the apparatus, the weight loss from 20 ° C. to 250 ° C. was evaluated. The moisture adsorption amount of the film was a large value of 10.5 mmol / g.
[0024]
(Measurement of conductivity)
An apparatus for measuring the conductivity of the solid electrolyte membrane is shown in FIG. The solid electrolyte membrane was sandwiched between gold plates and connected to an LCR meter (manufactured by Ando Electric Co., AG-4311) with a gold wire. As a measurement atmosphere, a gas of water (80% by volume) + nitrogen (balance) was passed through the measurement cell at a flow rate of 125 cm 3 / min, and the temperature was controlled at a constant temperature between 75 ° C. and 150 ° C. The conductivity was measured at a frequency of 0.1 to 100 kHz. The obtained conductivity is shown in FIG. 2 and FIG. The conductivity at 75 ° C. was a large value of 2.0 × 10 −3 S / cm.
[0025]
Comparative Example 1 (Solid electrolyte membrane in which Na-Y zeolite (80% by weight) and polytetrafluoroethylene are mixed and formed)
(Preparation of membrane)
Using a Na-Y zeolite (trade name 320NAA) manufactured by Tosoh Corporation, a solid electrolyte membrane in which Na-Y zeolite (80% by weight) and polytetrafluoroethylene were mixed and formed in the same manner as in Example 1 Obtained. The Na—Y zeolite used had an Si / Al ratio of 2.8, an aggregated particle size of 6 μm, and a moisture adsorption amount (25 ° C., relative humidity 20%) of 30%.
[0026]
(Moisture adsorption amount of membrane)
Measurements were performed in the same manner as in Example 1. As shown in FIG. 3, the moisture adsorption amount was smaller than that of the solid electrolyte membrane in which Li-Y type zeolite (80 wt%) and polytetrafluoroethylene were mixed and formed.
[0027]
(Measurement of conductivity)
Measurements were performed in the same manner as in Example 1. As shown in Figs. Compared with the solid electrolyte membrane in which Li-Y type zeolite (80% by weight) and polytetrafluoroethylene were mixed and formed, the conductivity was small.
[0028]
Comparative Example 2 (Solid electrolyte membrane in which Na-Y zeolite (50% by weight) and polytetrafluoroethylene are mixed and formed)
(Preparation of membrane)
Using a Na-Y zeolite (trade name 320NAA) manufactured by Tosoh Corporation, a solid electrolyte membrane in which Na-Y zeolite (50 wt%) and polytetrafluoroethylene were mixed and formed in the same manner as in Example 1 was prepared. Obtained.
[0029]
(Moisture adsorption amount of membrane)
Measurements were performed in the same manner as in Example 1. As shown in FIG. 3, the moisture adsorption amount was smaller than that of the solid electrolyte membrane in which Li-Y type zeolite (80 wt%) and polytetrafluoroethylene were mixed and formed.
[0030]
(Measurement of conductivity)
Measurements were performed in the same manner as in Example 1. As shown in FIG. Compared with the solid electrolyte membrane in which Li-Y type zeolite (80% by weight) and polytetrafluoroethylene were mixed and formed, the conductivity was small.
[0031]
Comparative Example 3 (Solid electrolyte membrane in which Na-Y zeolite (20% by weight) and polytetrafluoroethylene are mixed and formed)
(Preparation of membrane)
Using a Na-Y zeolite (trade name 320NAA) manufactured by Tosoh Corporation, a solid electrolyte membrane in which Na-Y zeolite (20% by weight) and polytetrafluoroethylene were mixed and formed in the same manner as in Example 1. Obtained.
[0032]
(Moisture adsorption amount of membrane)
Measurements were performed in the same manner as in Example 1. As shown in FIG. 3, the moisture adsorption amount was smaller than that of the solid electrolyte membrane in which Li-Y type zeolite (80 wt%) and polytetrafluoroethylene were mixed and formed.
[0033]
(Measurement of conductivity)
Measurements were performed in the same manner as in Example 1. As shown in FIG. Compared with the solid electrolyte membrane in which Li-Y type zeolite (80% by weight) and polytetrafluoroethylene were mixed and formed, the conductivity was small.
[0034]
Comparative Example 4 (Solid electrolyte membrane in which KY type zeolite (80% by weight) and polytetrafluoroethylene were mixed and formed)
(Preparation of membrane)
Using Na-Y type zeolite (trade name 320NAA) manufactured by Tosoh Corporation, KY type zeolite (K exchange rate 92%) was prepared, and KY type zeolite (80% by weight) was prepared in the same manner as in Example 1. ) And polytetrafluoroethylene were mixed to form a solid electrolyte membrane. The KY type zeolite used had a Si / Al ratio of 2.8 and an agglomerated particle diameter of 6 μm.
[0035]
(Moisture adsorption amount of membrane)
Measurements were performed in the same manner as in Example 1. As shown in FIG. 3, the moisture adsorption amount was smaller than that of the solid electrolyte membrane in which Li-Y type zeolite (80 wt%) and polytetrafluoroethylene were mixed and formed.
[0036]
(Measurement of conductivity)
Measurements were performed in the same manner as in Example 1. As shown in Figs. Compared with the solid electrolyte membrane in which Li-Y zeolite (80% by weight) and polytetrafluoroethylene were mixed and formed, the conductivity was small.
[0037]
Comparative Example 5 (Solid electrolyte membrane in which H-Y zeolite (80% by weight) and polytetrafluoroethylene are mixed and formed)
(Preparation of membrane)
H-Y was prepared using Na-Y zeolite (trade name 320NAA) manufactured by Tosoh Corporation, and H-Y zeolite (80 wt%) and polytetrafluoroethylene were mixed in the same manner as in Example 1. A formed solid electrolyte membrane was obtained. The H—Y type zeolite used had a Si / Al ratio of 2.8, an agglomerated particle size of 6 μm, and a moisture adsorption amount (25 ° C., relative humidity 20%) of 24%.
[0038]
(Moisture adsorption amount of membrane)
Measurements were performed in the same manner as in Example 1. As shown in FIG. 3, the moisture adsorption amount was smaller than that of the solid electrolyte membrane in which Li-Y type zeolite (80 wt%) and polytetrafluoroethylene were mixed and formed.
[0039]
(Measurement of conductivity)
Measurements were performed in the same manner as in Example 1. As shown in Figs. Compared with the solid electrolyte membrane in which Li-Y zeolite (80% by weight) and polytetrafluoroethylene were mixed and formed, the conductivity was small.
[0040]
【The invention's effect】
The solid electrolyte membrane of the present invention is inexpensive and has high conductivity even at high temperatures. In addition, since the polymer electrolyte fuel cell using the solid electrolyte membrane can be used at a high temperature, there are effects such as widening the choice of electrodes.
[0041]
[Brief description of the drawings]
[Fig. 1] Schematic diagram of conductivity measuring device [Fig. 2] Temperature dependence of conductivity measurement results [Fig. 3] Moisture adsorption dependence of conductivity measurement results

Claims (4)

Li−Y型のゼオライトと有機系高分子を混合し、成膜した固体電解質膜において、ゼオライト含有量が65重量%以上99重量%以下であり、膜の水分吸着量が10mmol/g以上20mmol/g以下である固体電解質膜。 In a solid electrolyte membrane formed by mixing Li-Y type zeolite and an organic polymer, the zeolite content is 65 wt% or more and 99 wt% or less, and the moisture adsorption amount of the membrane is 10 mmol / g or more and 20 mmol / A solid electrolyte membrane that is g or less. 有機系高分子が、耐熱性高分子である請求項1記載の固体電解質膜。Organic polymer, according to claim 1 Symbol placement of the solid electrolyte film is a heat-resistant polymer. 有機系高分子が、ポリテトラフルオロエチレン、ポリアミド、アラミド、ポリイミド、ポリベンズイミダゾール、ポリエーテルイミド、ポリアミドイミド、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルケトン、ポリメチルペンテン、ポリビニリデンフロライド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート、ポリアセタールおよびポリフェニレンエーテルからなる群より選ばれる少なくとも一種である請求項1乃至請求項記載の固体電解質膜。Organic polymers are polytetrafluoroethylene, polyamide, aramid, polyimide, polybenzimidazole, polyetherimide, polyamideimide, polyphenylene sulfide, polyethersulfone, polysulfone, polyetheretherketone, polymethylpentene, polyvinylidene fluoride The solid electrolyte membrane according to claim 1 or 2, which is at least one selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, polyarylate, polyacetal, and polyphenylene ether. 請求項1乃至請求項記載の固体電解質膜をアノードとカソードの間に配置し、さらにアノードとカソードの外側にセパレーターを配置して成る固体高分子型燃料電池。Claim 1 of the solid electrolyte membrane of claim 3, wherein arranged between the anode and the cathode, a polymer electrolyte fuel cell formed by disposing the separator further to the anode and cathode of the outer.
JP2003055634A 2003-03-03 2003-03-03 Solid electrolyte membrane and polymer electrolyte fuel cell using zeolite Expired - Lifetime JP4470034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055634A JP4470034B2 (en) 2003-03-03 2003-03-03 Solid electrolyte membrane and polymer electrolyte fuel cell using zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055634A JP4470034B2 (en) 2003-03-03 2003-03-03 Solid electrolyte membrane and polymer electrolyte fuel cell using zeolite

Publications (2)

Publication Number Publication Date
JP2004265764A JP2004265764A (en) 2004-09-24
JP4470034B2 true JP4470034B2 (en) 2010-06-02

Family

ID=33119590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055634A Expired - Lifetime JP4470034B2 (en) 2003-03-03 2003-03-03 Solid electrolyte membrane and polymer electrolyte fuel cell using zeolite

Country Status (1)

Country Link
JP (1) JP4470034B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045335A1 (en) 2010-10-05 2012-04-12 Universiteit Twente Proton exchange membrane
KR101710233B1 (en) * 2014-09-17 2017-02-24 주식회사 엘지화학 Composition for electrode protective film, electrode protective film comprising the same, electrode comprising the same, battery comprising the same and preparation method thereof
KR101845126B1 (en) * 2014-09-17 2018-04-03 주식회사 엘지화학 Composition for solide electrolyte, solide electrolyte comprising the same, battery comprising the same and preparation method thereof
JP6437307B2 (en) * 2014-12-26 2018-12-12 旭化成株式会社 Solid electrolyte
JP2016219134A (en) * 2015-05-15 2016-12-22 旭化成株式会社 Solid electrolyte
JP6889607B2 (en) * 2017-05-23 2021-06-18 旭化成株式会社 Solid electrolyte membrane

Also Published As

Publication number Publication date
JP2004265764A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
Di et al. Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries
Shabanikia et al. Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature
Li et al. Sulfonated poly (ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery
US20200358106A1 (en) Fuel Cells Constructed From Self-Supporting Catalyst Layers and/or Self-Supporting Microporous Layers
CA2706584C (en) Highly stable fuel cell membranes and methods of making them
KR100446662B1 (en) Polymer composite electrolyte membrane for fuel battery and method for preparing the same
Tsai et al. Enhancing performance of Nafion®-based PEMFC by 1-D channel metal-organic frameworks as PEM filler
Baglio et al. Zeolite-based composite membranes for high temperature direct methanol fuel cells
CA2639940A1 (en) Polymer electrolyte membrane with coordination polymer
KR100684787B1 (en) Polymer membrane for fuel cell, method of preparing the same, and stack for fuel cell and full cell system comprising the same
Kang et al. Cost-effective porous-organic-polymer-based electrolyte membranes with superprotonic conductivity and low activation energy
Mohanapriya et al. Cesium-substituted mesoporous phosphotungstic acid embedded chitosan hybrid polymer membrane for direct methanol fuel cells
Tsai et al. Microwave-assisted synthesis of silica aerogel supported pt nanoparticles for self-humidifying proton exchange membrane fuel cell
Amirinejad et al. Sulfonated poly (arylene ether)/heteropolyacids nanocomposite membranes for proton exchange membrane fuel cells
Lu et al. Efficient proton-selective hybrid membrane embedded with polydopamine modified MOF-808 for vanadium flow battery
JP4470034B2 (en) Solid electrolyte membrane and polymer electrolyte fuel cell using zeolite
Senthil et al. TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications
JP6543571B2 (en) Formation of active layer with improved performance
KR102387430B1 (en) Electrolyte membrane, preparing the same and fuel cell including the same
Uma et al. PMA/ZrO2–P2O5–SiO2 glass composite membranes: H2/O2 fuel cells
KR20140007164A (en) A phosphoric acid functionalized mesoporous silica/nafion composite membrane for high temperature proton exchange fuel cell and the manufacturing method of the same
US7722975B2 (en) Fuel cell and membrane-electrode assembly thereof
Hasani-Sadrabadi et al. Evaluation of fuel cell performance of Nafion/molecular sieves nanocomposite membranes
JP2006120409A (en) Proton conductive composite type electrolyte membrane and its manufacturing method
Yahiro et al. Conductivity of zeolite/poly (tetrafluoroethylene) composite membrane in the presence of water vapor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3