JP4467653B2 - Concentric aspherical multifocal ophthalmic lens and manufacturing method thereof - Google Patents

Concentric aspherical multifocal ophthalmic lens and manufacturing method thereof Download PDF

Info

Publication number
JP4467653B2
JP4467653B2 JP13600196A JP13600196A JP4467653B2 JP 4467653 B2 JP4467653 B2 JP 4467653B2 JP 13600196 A JP13600196 A JP 13600196A JP 13600196 A JP13600196 A JP 13600196A JP 4467653 B2 JP4467653 B2 JP 4467653B2
Authority
JP
Japan
Prior art keywords
concentric
aspheric
lens
multifocal
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13600196A
Other languages
Japanese (ja)
Other versions
JPH0926560A (en
Inventor
ジェフリー・エイチ・ロフマン
エドガー・ヴイ・メネゼス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Vision Care Inc
Original Assignee
Johnson and Johnson Vision Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Vision Care Inc filed Critical Johnson and Johnson Vision Care Inc
Publication of JPH0926560A publication Critical patent/JPH0926560A/en
Application granted granted Critical
Publication of JP4467653B2 publication Critical patent/JP4467653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/028Special mathematical design techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/042Simultaneous type
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive

Abstract

Concentric aspheric multifocal lens designs are disclosed which use a combination of an aspheric front surface, which results in aberration reduction and contrast vision enhancement, along with a concentric multifocal back surface, to produce a lens design which affords clear vision at a distance and also near without a loss in contrast which is generally typical of prior art simultaneous vision, concentric multifocal lens designs. The aspheric surface improves the modulation transfer function (MTF) of the lens eye combination which improves the focus and contrast of both distance and near images. The design form is valid for contact lenses and intraocular lenses.

Description

【0001】
【発明の属する技術分野】
第一の態様では、本発明は多焦点型同心環状リングレンズデザインの機能性を改良するものである。本発明は、非球面レンズデザインと同心レンズデザインの有利な特性を組み合わせ、且つ非球面の前面湾曲部と同心の後面湾曲部を組合わせて、若い、老眼でない患者に見られる連続範囲の焦点に近づく同時視野を提供する。デザイン形態はコンタクトレンズや眼内レンズに有効である。
【0002】
非球面はレンズと目の組合わせの変調伝達関数(MTF)を改良する。改良された変調伝達関数は遠方の像と近くの像の双方の像の焦点とコントラストを改良する。同心面は、入射光による光学的な瞳孔分割を近くの焦点と遠方の焦点に与える。さらに交互のレンズゾーンの屈折力(率)は一定である必要はないが、いくつかの数学的な関数によって変えることができる。この考え方で設計者に、レンズにアッド(add)とその位置を調整するレンズ設計をさせ、患者の特定の視覚的要求に合わせる。
【0003】
本発明は、第二の態様では同心非球面多焦点型レンズデザインに関し、特に、非球面の組合わせを使用し、同心多焦点面と共に収差の減少とコントラストの増大を得て、コントラストのロスがなく遠方と近くで鮮明な視野が得られる、典型的な従来技術の同時視野、同心多焦点型レンズデザインであるレンズデザインを製造する同心非球面多焦点型レンズデザインに関する。
【0004】
【従来の技術】
従来技術の同心多焦点レンズデザイン(設計)は、レンズを中心の領域と複数の周りの同心領域に分け、いくつかの同心領域は遠方の屈折力(a distance power)と近くの屈折力(a near power)を有し、そのレンズデザインでは近くの屈折力が眼の処方に記載された標準的な近くのアッドに基づいて計算される。そのような同心多焦点コンタクトレンズのデザインでは、瞳孔領域が遠方の複数屈折力領域と近くの複数屈折力領域に分けられ、いずれか一つの屈折力における効果的な屈折力も領域分割に基づいて小さくなる。
【0005】
タイトルが瞳孔調整多焦点眼病用レンズである特許出願番号第07/988,088号(出願人整理番号VTN56)は、老眼患者用に設計した多焦点同心眼病用レンズを開示している。そのレンズは多焦点設計において3個の一般的な環状レンズ部分から構成されている。そのレンズの中心円部は患者の遠方の矯正屈折力のみ有し、第一の環状部で囲まれており、その環状部は内部放射部を有する多環状リングからなる。その内部放射部は、患者用の遠近両用光学屈折力焦点矯正の実質的に等しい累積量の放射部で囲まれた患者の近くの焦点屈折力を向上させる。内部放射部は第二の外環状部で囲まれている。第二の外環状部は、眼病用レンズの光学的領域周辺近くで補助的な遠方の焦点の光学的屈折力を有する1個以上の環状リングからなる。各々の環状リングは、遠近いずれかの光学的屈折力を有し、他のレンズ部分と共同で作用し、レンズの環状部分で所望のF数を生ずる。
【0006】
特許出願番号第07/988,071号(出願人整理番号VTN57)は、各目に対する一対の眼病用レンズを開示しており、各レンズは、少なくとも二つの光学的屈折力、すなわち一つは近くの視野用、他の一つは遠方の視野用を有する。レンズの中心部には遠方の光学的屈折力が設けられ、その中心部を近くの光学的屈折力と遠方の光学的屈折力の双方の環状リングで囲み、各瞳孔の直径で遠近焦点長さ領域の累積比を与える。患者の効き目には50%より以上の遠方の光学的屈折力のレンズが与えられ、また患者の効き目でない方の目には50%より以上の近くの光学的屈折力のレンズが与えられる。
【0007】
従来の多焦点型コンタクトレンズのデザイン(設計)は、非球面レンズ、同心型レンズ、回折型レンズ等のような変動/交互屈折力デザインか多数の同時視野デザインを用いていた。同心型レンズのデザインは特定の分割領域で遠近両用の屈折力を与えることができることが知られている。この同心型レンズにより装着者は二つの距離ではっきりと見ることができると共に、同心型レンズは特に、高コントラスト/高輝度環境で十分に作用する。低輝度/コントラスト物体に対してはコントラストと視力の低下が幾分認められる。前面を非球面に設計することによりにコントラストに敏感な視力を増長させた長被写界深度をもたらす。
【0008】
【課題を解決するための手段】
本発明は、非球面を組合わせて用いる同心非球面多焦点型レンズデザインを提供するもので、そのレンズは同心多焦点面と共に、収差を減少し、視野コントラストを増大させ、遠方でも近くでも鮮明な視野を与え、従来技術の同時視野の同心多焦点型レンズデザインが有する典型的なコントラストも低下させることはない。
【0009】
本発明は非球面デザインと同心デザインの有効な特徴を組合わせ、且つ、非球面の前面湾曲部と同心の後面湾曲部を組合わせて若い老眼でない患者に見られる連続焦点範囲に近づく同時視野を提供する。非球面は、レンズと目の組合わせの変調伝達関数(MTF)を改良する。これは遠方の像と近くの像の双方の焦点とコントラストを改善する。同心面は入射光を遠方の焦点と近くの焦点に最適に分ける。このデザイン形態はコンタクトレンズと眼球内レンズに有効である。
【0010】
本発明は、同時視野の同心多焦点型デザインの機能性を改良する。そのデザインでは、交互の同心ゾーンにおける屈折力は一定である必要はなく、いくつかの数学的関数によって変えることができる。この考え方は、設計者にアッドとレンズ上のその位置を合わせて患者の視覚的要請に合うレンズデザインの製造を可能にする。
【0011】
本明細書に教示した本発明は、収差を減少し、コントラストを増大させて視力を改良する、非球面多焦点型同心環状リングレンズデザイン(設計)を提供する。そのレンズの前面は、レンズの変調伝達関数を改良し、その結果、収差を減少させ、コントラストを増大させる非球面湾曲部を有する。そのレンズの後面は、複数の同心型球面環状リングを備えた多焦点湾曲部を有する。その多焦点湾曲部では、改良された変調伝達関数が、遠方の像と近くの像の双方の焦点とコントラストを改良し、そしてコントラストを下げずに遠方の鮮明視野と共に近くの鮮明視野が得られるレンズデザインを作り出す。
【0012】
いくつかの好ましい態様をさらに詳細に説明する。複数の環状リングが、患者の基本的な目の処方Rxの遠方の光学的屈折力に対応する球面を備えた円形ディスクを有する中心領域を囲む。その上、複数の環状リングは、基本的な目の処方Rx球面の遠方の光学的屈折力を有する少なくとも一つの環状リングと、基本的な目の処方Rx球面の近くの光学的屈折力を有する少なくとも一つの第2環状リングを有する。他の実施態様では、中央ディスクが目の処方Rx球面の近くの光学的屈折力を有することができる。そのレンズはソフトヒドロゲルレンズのようなコンタクトレンズ又は眼内レンズでも可能である。
【0013】
一つの好ましい態様として、前面非球面湾曲部は、単純な楕円形湾曲部か放物線あるいは双曲線の湾曲部を有し、そして多焦点型同心球面環状リングの後面湾曲部は、その瞳孔がその瞳孔サイズにかかわらず、遠方の光学的屈折力の近くの光学的屈折力に対する略同一比を受ける特許出願(VTN56)と同様の瞳孔識別デザインを有する。
【0014】
他の態様において、非球面湾曲部は、生体外パラメータ測定と生体内装着を容易にするために直径2.0mm未満が好ましい球面の中心領域と、単純な長円形曲線か放物線か双曲線で可能な周りの非球面環を有するか、あるいは増加するk値を有する多数の非球面環で囲まれた中心球面か非球面中央領域を有するか、あるいはレンズ中央の球面湾曲部の0から楕円形か放物線か双曲線の湾曲部形態の区画された終点までのプログレッシブな連続非球面k値を有するか、生体外パラメータ測定と生体内装着を容易にするために好ましい2.0mm未満の直径を有する球面中央領域と、レンズ中央の球面曲線の0から楕円形か放物線か双曲線の湾曲部形態の区画された終点までのプログレッシブな連続非球面k値を備えた周りの非球面湾曲部を有する。
【0015】
別の態様では、多焦点型環状リング後面湾曲部は、特許出願(VTN56)と同様の瞳孔識別デザインを有するか、あるいは左右の目で環状ゾーンが異なる特許出願(VTN57)と同様の瞳孔識別デザインを有するか、あるいは瞳孔の中間域でピークを示すピークアッド屈折力関数による瞳孔デザインを有するか、アッド屈折力が、定義された一次関数または多項式関数で瞳孔サイズと共に変化するか、別の態様ではアッド屈折力が、瞳孔サイズと共に増大しあるいは瞳孔サイズと共に減少することができるかあるいは環状リングが非球面であるデザインを有することができる。
【0016】
【発明の実施の形態】
同心非球面多焦点型レンズデザインに係る上述の本発明の目的と利点は、当業者ならば、以下の好ましい数態様の詳細な説明を添付の図面(同一の要素には、各図にわたって同一の参照符号を付した)とともに参照すれば、容易に理解できるであろう。
【0017】
同心多焦点型レンズデザイン(変数アッドバージョン)として図1に示したように、n個の環状ゾーンによって囲まれた中心円形領域12を有する一つの同心多焦点型コンタクトレンズ又は眼球内レンズの設計10を考える。もしもrD=遠用補正の曲率半径、そしてrN=近用補正の曲率半径とすれば、本発明によれば、i番目の環状ゾーンの光学的屈折力(Pi)は、riで
【数1】

Figure 0004467653
ここでpiはリングiでの屈折力ジオプターである。
pdは遠方の屈折力iジオプターである。
pNは近くの屈折力iジオプターである。
上記式では光学面屈折力は以下の知られた式により等価半径に変えられる。
【数2】
Figure 0004467653
この式中n=レンズ材料の屈折率、
k=含まれた単位に対してある定数、
例えば、mmに対して、k=1000である。
【0018】
式(1)におけるf1(i),f2(i),f3(i),f4(i) の代わりに様々な機能性を代用することによって異なった変数アッド態様を作ることができるが、そのいくつかを以下に示す。 一般式(1)は、”1”を付した式の左部分と右部分に関し、一対の2値スイッチとして考えることができる。式(1)では、式の左部分と右部分の主要項は、以下示すように0か1である。
【0019】
【表1】
Figure 0004467653
fn(i)の値は、一般式(1)の”対比”を導く。
【0020】
f1(i)=f2(i)=f3(i)=f4(i)=1とした第一例では一般式が以下のように単純化する。
Figure 0004467653
この態様では二つのトグル、第1にiに基づくトグル、第2にf(n)に基づくトグルの組合わせによって中心遠用特性で関数がPd又はPnに対し選択的にトグルできる。この態様例は、全ての近くのリングの屈折力が等しく一定であり、且つ全ての遠方のリングの屈折力が等しく一定である上記表に示したように、中心が遠方でまた交互する近くと遠方の同心リングを有する同心多焦点型レンズに当たる。
【0021】
第2の態様例では,f1(i)=f2(i)=f3(i)=f4(i)=0である。この場合、一般式は以下のようになる。式1は中心近くで式3に単純化する。
Figure 0004467653
この態様例は、全ての遠方のリングの屈折力が等しく一定であり、且つ全ての近くのリングの屈折力が等しく一定である上記表に示したように、中心が近くでまた交互する遠方と近くの同心リングを有する同心多焦点型レンズに当たる。
【0022】
第3クラスの態様例は、定数Pdを有し、中心部と奇数のリングがPdで且つ偶数リングがPnである。f4(i) が一定でないためPnは一定でない。第3クラスの態様例では、以下のAからFの例のように、f1(i)=f2(i)=f3(i)=f4(i)=1であり、f4(i)が定義された関数である。その関数は以下のように標準化された近くの屈折力(Pn=1)を改良する。この場合、近くの屈折力、Pnは、複数の奇数リングが計算され示されたとしても、複数の偶数環で作用するだけである。
【0023】
以下の表は第3クラスの態様例を示すものであり、その表ではf1(i)=f2(i)=f3(i)=1であり、f4(i)は注を付け制約し縦欄式に印刷された例A,B,C,D,E,Fのf4(i)の表の上部に記載した関数である。
【0024】
【表2】
Figure 0004467653
【0025】
例AからFまでを図2と図3にプロットした。
f4(i)のいくつかの関数例:
【数3】
Figure 0004467653
【数4】
Figure 0004467653
【数5】
Figure 0004467653
【数6】
Figure 0004467653
【数7】
Figure 0004467653
【数8】
Figure 0004467653
【0026】
図2は関数A,D,E,Fの例示関数曲線であり、その曲線は屈折率対レンズ関数(i)である。
図3は関数A,B,Cの屈折率対レンズ関数(i)の例示関数曲線である。
【0027】
第2の態様では、本発明は、非球面を同心面と組合わせることによって特定の方法で非球面デザインと同心デザインの最良の特徴を組合わせる。一般に同心面がレンズのベース又は後面湾曲部側にあり、非球面湾曲部側が前面湾曲部側にあることが好ましい。非球面はレンズと目の組合わせの変調伝達関数(MTF)を改良する。これは遠方の像と近くの分離像の双方の焦点/コントラストを改良する。同心面は、瞳孔の識別分離を近くのの屈折力と遠方の屈折力に与える。
【0028】
球、放物線、楕円、双曲線を含む全円錐を記載する円錐の一般式は、
【数9】
Figure 0004467653
この式で k=0は球、
k=−1は放物線、
0>k>−1は楕円、
k<−1は双曲線である。
【0029】
Figure 0004467653
MTF増大モデルでは、−k値はどんな幾何学的な瞳孔分離も増大させる。
【0030】
図4は本発明の様々な実施態様に係る異なったタイプ(型式)の前面湾曲部例と異なったタイプの後面湾曲部例の目のゾーンのみを示すチャート図である。
組合わされた図4(a)と図4(f)は、単純な楕円か放物線か双曲線の湾曲部をとることができる前面非球面湾曲部40を、特許出願(VTN56)に開示されたように瞳孔識別設計をとることができる多焦点型同心非球面環状リング後面湾曲部42と組合わせて有する好ましい一例を示す。その設計では瞳孔がそのサイズにかかわらず、近くの屈折力に対する遠方の屈折力の略同一比を受け取る。
【0031】
図4(b)は、単純な楕円か放物線か双曲線の湾曲部をとることができる周りの非球面環48と共に、直径、約2.00mmの球面中心領域46を有して、生体外のパラメータ測定と生体内フィットを容易にする前面湾曲部44を示す。
図4(c)は、変化するか増加するk値を有する多非球面環58によって囲まれた中央球面あるいは非球面中心ゾーン56を有する前面湾曲部を示す。
図4(d)は、本発明に従ってk値を有するプログレッシブな連続非球面63を有する前面非球面湾曲部を示す。このk値は、一次関数64か多項式あるいは二次関数65のような定義された関数によってレンズの中心での球面湾曲部の0から、楕円、双曲線、方物線の湾曲部形状における終点まで変化する。
【0032】
図4(e)は、多焦点型同心球面環状リング後面湾曲部76と組合わせて、一次関数64か多項式あるいは二次関数65のような定義された関数によってレンズの中心での球面湾曲部の0から、楕円、双曲線、方物線の湾曲部形状における終点まで変化する、プログレッシブな連続非球面k値と共に、生体外のパラメータ測定と生体内フィットを容易にするために直径、約2.00mmの球面中心領域72を有する前面湾曲部70を示す。
図4(f)は、特許出願(VTN56)に開示されたように瞳孔識別設計をとることができる多焦点型同心非球面環状リングの後面湾曲部42を示す。その設計では瞳孔がそのサイズにかかわらず、近くの屈折力に対する遠方の屈折力の略同一比を受け取る。
図4(g)は、特許出願(VTN57)に開示された設計が可能な多焦点型同心非球面環状リングの後面湾曲部を示す。その設計では右目50用コンタクトレンズが左目52用コンタクトレンズと異なった同心環状リングパターンを有する。
【0033】
図4(h)は、瞳孔の中間区域でピークとなるピークアッド屈折力関数61を持った瞳孔設計を有する後面60を示す。
図4(i)は、多焦点型同心環状リング後面66を示す。その後面66では、アッド屈折力が一次関数67か多項式関数68かの瞳孔サイズで、増加67したり、減少68したりする。
図4(j)は、多焦点型同心非球面環状リングの後面湾曲部76を示す。
【0034】
図5と図6は、非球面の前面湾曲部デザインと同心(又は放射状)球面の後面湾曲部を1個のレンズに組合わせる利点を示す。
【0035】
特に、図5は下記欄の網膜の焦点分布を示す。
欄A(従来技術と同様の球面の前面および後面、単一視野デザイン)
欄B(従来技術と同様の非球面前面と球面後面、デザイン)
欄C(従来技術と同様の球面の前面および同心球面後面、二焦点デザイン)
欄D(本発明の非球面前面および同心球面後面、多焦点デザイン)
【0036】
図5は、従来技術の球面デザイン(実施例A)又は従来技術の非球面多焦点型デザイン(実施例B)又は従来技術の同心デザイン(実施例C)と比較して、本発明(実施例D)のデザインでは近くの焦点と遠方の焦点の双方から網膜上に焦点を結ぶ光の強度が増大していることを示す。図において、球状の目(実施例A)は、1.0 の基準強度を示し、その強度は同心デザイン(実施例C)では0.5の値に等分される。これと対照的に、実施例Dにおける本発明の非球面前面デザインと同心球面後面デザインは、近くの視野と遠方の視野の双方について1.0 よりかなり大きな強度を示し、焦点深度も増大させる。
【0037】
図6は、非球面湾曲部と同心湾曲部を組合わせて用いることがいかに患者を変えないかを示す。この図では、3人の患者、A,B,Cが示されており、その患者の近くの(N)焦点と遠方の(D)焦点が、従来の同心多焦点型湾曲部デザイン80に対してわずかにシフトしている。患者Aは、かなり改良された近くNの視野と遠方Dの視野を注目して下さい。また、もしも患者BとCを同心多焦点型湾曲部のみに合わせたら、図6の左側に図示されているように、患者Bは遠方Dの視野の低下を招き、一方、患者Cは近くNの視野の低下を招くことを注目して下さい。同じ同心多焦点型湾曲部を非球面湾曲部と組合わせると、図6の右側に湾曲部82で図示されているように、患者Bにより近くNの視野と、特に遠方Dの視野がかなり改良され、また患者Cにより特に近くNの視野と、遠方Dの視野がかなり改良される。要するに、網膜の焦点分布が二つあるため非球面前面と同心多焦点型後面との組合わせによって得られた視野深さが改良されるため、視野がかなり改良される。
【0038】
典型的な前面非球面/後面同心の組合わせに対して光線のトレースが行なわれた。光線トレースのモデルは、5.50mmの入射瞳孔直径でスーパーOSLOコンピュータープログラムを用いながら得られた軸性近視の人間の目である。
以下のデータはスポットサイズ, mmである。他のモデルでも行なったが同様の結果であった。
Figure 0004467653
近くの距離では、対象距離を40cmに移動し、そしてモデルを変えて年齢が40歳後半の患者に有効な限定された、解剖による目の調節量を映した。視野は軸上で0°の高さであった。
【0039】
図7は、遠方の視野の場合の球面と非球面の放射エネルギー分布のグラフを示し、図8は、近くの視野の場合の球面と非球面の放射エネルギー分布のグラフを示す。
この方法は、増大する直径の複数円でエネルギーを囲み、”検出”されたエネルギーを標準化することによって像を特徴づける。この結果、上記スポットサイズよりも大きな複数半径になる。それはそのスポットサイズがスポット中心からのrms(二乗平均)ずれであるためである。その他は放射エネルギー分布(円形の焦点)法によってより明らかになる。しかしながら、非球面/同心の組合わせは、純粋な球面同心より遠方と近くの双方において優れていることが容易に理解できる。
【0040】
この発明の一つの目的は、第一に、この明細書に記載したように、に非球面で多焦点型同心環状リングレンズ設計であり、次に、収差鏡又はMTF位置拡大装置のような体内像品質分析装置を用いて全ての残留収差を評価し、同定し、そして定量することである。これらの残留収差は、好ましくはレンズの非同心面の非球面化を再区画することによってあるいはレンズの同心面の非球面化によってさらに減少させ、目の性能および視力を改良することができる。このように、本発明は、レンズと眼系の組合わせの収差を減少させることによって達成される、球面屈折異常、老眼、あるいは乱視に対するデザイン性能の改良を提供するものである。収差の減少は屈折異常をそれ自身では補正しない。先ず患者(又は母集団)に同心レンズを合わせ、次に、その患者を生体内像品質装置でテストして目に合わせたレンズで残留収差を判断する。次に、上述したようにレンズを再設計して測定残留収差を減少させる。
【0041】
明らかに、本発明の多くの様々な実施態様は、非球面湾曲部の種類や、環状リングの数や、環状リングの幅および配置や、各環状リングに与えられた光屈折力を変えることによって可能である。
同心非球面多焦点型レンズデザインに係る本発明のいくつかの実施態様と変形がこの明細書に記載されているが、本発明の開示と教示によって当業者に他の多くのデザインを示唆できることは明らかである。
【0042】
なお本発明の具体的な実施態様は、以下の通である。
A)収差を減少し、コントラストを増大させて視力を向上させる非球面多焦点型同心環状リングレンズデザインであって、
前面と後面を有する前記レンズであって、該前面と後面の一つがレンズの変調伝達関数を改良し、その結果、収差を減少しコントラストを増大させる前記レンズを有し、
前記前面と後面の他の一つが、複数の同心非球面環状リングを有して遠方の像と近くの像を与える多焦点型湾曲部を有し、改良された変調伝達関数が該遠方の像と近くの像の双方の焦点とコントラストを改良する非球面多焦点型同心環状リングレンズデザイン。
1)前記前面は非球面湾曲部を有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
2)前記前面は多焦点型湾曲部を有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
3)前記複数の環状リングは、円形ディスクを有する中心領域を囲む実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
4)前記円形ディスクは、患者の基本的な目の処方Rx遠方の光学的屈折力に対応する球面を有する上記実施態様3)記載の非球面多焦点型同心環状リングレンズデザイン。
5)前記複数の環状リングは、基本的な目の処方Rx球面の遠方の光学的屈折力を有する少なくとも一つの環状リングと、基本的な目の処方Rx球面の近くの光学的屈折力を有する少なくとも一つの第2の球面環状リングを有する上記実施態様3)記載の非球面多焦点型同心環状リングレンズデザイン。
6)前記非球面湾曲部は、単純な楕円形、放物線、あるいは双曲線の湾曲部を有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
7)前記非球面湾曲部は、球面中心領域と、単純な楕円形、放物線、あるいは双曲線の湾曲部をとることができる周りの非球面環を有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
8)前記非球面中心領域は、直径が2.00mm未満である上記実施態様8)記載の非球面多焦点型同心環状リングレンズデザイン。
9)前記非球面湾曲部は、増大するk値を有する多数の非球面環によって囲まれた中心球面又は非球面中心ゾーンを有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
10)前記前面非球面湾曲部は、レンズの中心の非球面湾曲部の0から楕円、双曲線、あるいは放物線の湾曲部の形態における区画された終点までのプログレッシブな連続非球面k値を有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
【0043】
11)前記非球面湾曲部は、生体外のパラメータ測定と生体内フィットを容易にするための球面中心領域と、レンズの中心の非球面湾曲部の0から楕円、双曲線、あるいは放物線の湾曲部の形態における区画された終点までのプログレッシブな連続非球面k値を有する周りの非球面湾曲部を有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
12)前記球面中心領域は、直径が2.00mm未満である上記実施態様11)記載の非球面多焦点型同心環状リングレンズデザイン。
13)前記多焦点型同心球面環状リング後面湾曲部は、瞳孔サイズにかかわらず、瞳孔が遠方の光学的屈折力の、近くの光学的屈折力に対する略同一比を受ける瞳孔独立デザインを有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
14)右目用レンズに関する前記多焦点型同心球面環状リング湾曲部は、左目用レンズと異なった同心環状リングパターンを有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
15)前記後面湾曲部は、瞳孔の中間領域でピークとなるピークアッド屈折力関数を持った瞳孔デザインを有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
16)前記多焦点型同心環状リング後面において、前記アッド屈折力は、定義された一次又は多項式関数で瞳孔サイズとともに変化する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
17)前記アッド屈折力は瞳孔サイズとともに増加する上記実施態様16)記載の非球面多焦点型同心環状リングレンズデザイン。
18)前記アッド屈折力は瞳孔サイズとともに減少する上記実施態様16)記載の非球面多焦点型同心環状リングレンズデザイン。
19)前記同心環状リングは非球面を有する実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
20)前記レンズはコンタクトレンズである実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
【0044】
21)前記レンズはソフトヒドロゲルコンタクトレンズである上記実施態様20)記載の非球面多焦点型同心環状リングレンズデザイン。
22)前記レンズは眼内レンズである実施態様A)記載の非球面多焦点型同心環状リングレンズデザイン。
B)収差を減少し、コントラストを増大させて視力を向上させる非球面多焦点型同心環状リングレンズデザインを設計方法であって、
前面と後面を有する前記レンズであって、該前面と後面の一つがレンズの変調伝達関数を改良し、その結果、収差を減少しコントラストを増大させる前記レンズを有し、
前記前面と後面の他の一つが、複数の同心非球面環状リングを有して遠方の像と近くの像を与える多焦点型湾曲部を有し、改良された変調伝達関数が該遠方の像と近くの像の双方の焦点とコントラストを改良する非球面多焦点型同心環状リングレンズデザインを設計方法。
23)前記レンズの再設計は、前記非球面湾曲部を再設計することを有する実施態様B)記載のレンズの設計方法。
24)前記レンズの再設計は、複数の同心環状リングを非球面化すること有する実施態様B)記載のレンズの設計方法。
【0045】
【発明の効果】
以上説明したように、本発明によれば、同心多焦点面と共に、収差を減少し、視野コントラストを増大させ、遠方でも近くでも鮮明な視野を与え、従来技術の同時視野の同心多焦点型レンズデザインが有する典型的なコントラストも低下させることはない。
【図面の簡単な説明】
【図1】n個の環状ゾーンによって囲まれた中心円形領域を有する同心多焦点型コンタクトレンズ又は眼内レンズの一例平面図。
【図2】曲線が光学的屈折力対レンズ関数(i)である関数A,D,E,Fの関数曲線を示す図。
【図3】曲線が光学的屈折力対レンズ関数(i)である関数A,B,C,の関数曲線を示す図。
【図4】本発明に係るレンズの異なった種類の前面湾曲部と異なった種類の後面湾曲部の目のゾーンのみ示すチャート図。
【図5】欄A,B,Cは従来技術のレンズデザインを示し、欄Dは本発明に係るレンズデザインを示す4個の異なった種類のレンズの網膜の焦点分布を示す図。
【図6】遠(D)近(N)の視野が本発明のデザインで向上する3人の患者A,B,Cにとって非球面湾曲部/同心湾曲部を組合わせて使用することがいかに患者を変えにくくしているかを示すグラフ図。
【図7】遠方の視野の場合の球面および非球面の放射エネルギー分布のグラフ図。
【図8】近くの視野の場合の球面および非球面の放射エネルギー分布のグラフ図。
【符号の説明】
10 同心多焦点型コンタクトレンズ又は眼内レンズデザイン
40 前面非球面湾曲部
42 多焦点型同心球面環状リング後面湾曲部
44 前面湾曲部
46 球面中心領域
48 非球面環
54 前面湾曲部
56 中心球面又は非球面中心ゾーン
58 多数の非球面環
63 連続非球面
65 多項式又は二次関数
66 多焦点型同心環状リング後面
70 前面湾曲部
72 球面中心領域
74 周りの非球面湾曲部
76 多焦点型同心非球面環状リング後面湾曲部[0001]
BACKGROUND OF THE INVENTION
In a first aspect, the present invention improves the functionality of a multifocal concentric annular ring lens design. The present invention combines the advantageous properties of an aspheric lens design and a concentric lens design and combines an aspheric front curve with a concentric back curve to provide a continuous range of focus found in young, presbyopic patients. Provides close-in simultaneous vision. The design form is effective for contact lenses and intraocular lenses.
[0002]
An aspheric surface improves the modulation transfer function (MTF) of the lens and eye combination. The improved modulation transfer function improves the focus and contrast of both the far and near images. The concentric plane provides optical pupil division by incident light to the near and far focus. Furthermore, the refractive power (rate) of the alternating lens zones need not be constant, but can be varied by several mathematical functions. This concept allows the designer to design a lens that adjusts the add and its position on the lens to meet the patient's specific visual requirements.
[0003]
The present invention relates in a second aspect to a concentric aspheric multifocal lens design, and in particular, using a combination of aspheric surfaces to obtain a reduction in aberrations and an increase in contrast with a concentric multifocal surface, resulting in a loss of contrast. The present invention relates to a concentric aspheric multifocal lens design that produces a lens design that is a typical prior art simultaneous field of view, concentric multifocal lens design that provides a clear field of view far and near.
[0004]
[Prior art]
The prior art concentric multifocal lens design divides the lens into a central area and a plurality of surrounding concentric areas, some of which are a distance power and a near power (a The near power is calculated based on the standard near add listed in the eye prescription for that lens design. In such a concentric multifocal contact lens design, the pupil region is divided into a plurality of distant power regions and a plurality of near power regions, and the effective power at any one power is also reduced based on the region division. Become.
[0005]
Patent Application No. 07 / 988,088 (Applicant Docket No. VTN56) whose title is a pupil-adjusted multifocal ophthalmic lens discloses a multifocal concentric ophthalmic lens designed for presbyopia patients. The lens consists of three common annular lens parts in a multifocal design. The central circle portion of the lens has only a corrective refractive power far from the patient and is surrounded by a first annular portion, and the annular portion comprises a polycyclic ring having an internal radiating portion. The internal radiating portion improves the focal power near the patient surrounded by a substantially equal cumulative amount of radiating portion of the bifocal optical power focus correction for the patient. The inner radiating portion is surrounded by a second outer annular portion. The second outer annulus is composed of one or more annular rings having an optical power of auxiliary distant focus near the periphery of the optical area of the ophthalmic lens. Each annular ring has either optical power, either near or near, and cooperates with the other lens parts to produce the desired F number in the lens annular part.
[0006]
  Patent Application No. 07 / 988,071 (Applicant Docket No. VTN57) discloses a pair of ophthalmic lenses for each eye, each lens having at least two optical powers, one near. The other for the far field and the other for the far field. The center of the lens has a far optical power, and the center is surrounded by an annular ring of both near and far optical power. Gives the cumulative ratio of regions. The patient's efficacy is given a lens with a distance greater than 50% optical power, and the non-patient's eyeInA lens with a near optical power greater than 50% is provided.
[0007]
Conventional multifocal contact lens designs used variable / alternating power designs such as aspherical lenses, concentric lenses, diffractive lenses, etc. or multiple simultaneous field designs. It is known that the design of concentric lenses can provide a bifocal power in a specific divided area. This concentric lens allows the wearer to see clearly at two distances, and the concentric lens works particularly well in high contrast / high brightness environments. There is some reduction in contrast and visual acuity for low brightness / contrast objects. By designing the front surface to be aspheric, it provides a long depth of field with increased contrast-sensitive visual acuity.
[0008]
[Means for Solving the Problems]
The present invention provides a concentric aspheric multifocal lens design that uses a combination of aspheric surfaces, along with a concentric multifocal surface, that reduces aberrations, increases field contrast, and is clear at both distance and near. Provides a good field of view and does not reduce the typical contrast of prior art simultaneous field concentric multifocal lens designs.
[0009]
The present invention combines the effective features of an aspheric design and a concentric design, and combines the aspheric front curve and concentric back curve to provide a simultaneous field of view that approaches the continuous focus range seen in young non-presbyopic patients. provide. An aspheric surface improves the modulation transfer function (MTF) of the lens and eye combination. This improves the focus and contrast of both the far and near images. Concentric surfaces optimally divide incident light into a distant focal point and a near focal point. This design configuration is effective for contact lenses and intraocular lenses.
[0010]
  The present invention improves the functionality of concentric multifocal designs with simultaneous field of view. In that design, the power in alternating concentric zones does not need to be constant, but varies with several mathematical functions.Getbe able to. This concept allows the designer to produce a lens design that matches the visual requirements of the patient by aligning its position on the lens with the add.
[0011]
The invention taught herein provides an aspheric multifocal concentric ring lens design that reduces aberrations and increases contrast to improve vision. The front surface of the lens has an aspheric curvature that improves the modulation transfer function of the lens, thereby reducing aberrations and increasing contrast. The rear surface of the lens has a multifocal curved portion with a plurality of concentric spherical annular rings. In its multifocal curvature, an improved modulation transfer function improves the focus and contrast of both the far and near images and provides a near clear field with a far clear field without reducing contrast. Create a lens design.
[0012]
Some preferred embodiments are described in further detail. A plurality of annular rings surround a central region having a circular disc with a spherical surface corresponding to the optical power of the distal of the patient's basic eye prescription Rx. Moreover, the plurality of annular rings have at least one annular ring having optical power far away from the basic eye prescription Rx sphere and optical power near the basic eye prescription Rx sphere. Having at least one second annular ring. In other embodiments, the central disk can have an optical power near the eye prescription Rx sphere. The lens can be a contact lens such as a soft hydrogel lens or an intraocular lens.
[0013]
In one preferred embodiment, the front aspheric curve has a simple elliptic curve or a parabola or hyperbola curve, and the back curve of the multifocal concentric spherical ring has a pupil size equal to the pupil size. Regardless, it has a pupil identification design similar to the patent application (VTN56) that receives approximately the same ratio of the optical power at the far end to the optical power at the near end.
[0014]
In other embodiments, the aspheric curvature can be a spherical central region, preferably less than 2.0 mm in diameter, to facilitate in vitro parameter measurement and in vivo mounting, and a simple oval or parabolic or hyperbolic curve. Has a surrounding aspherical ring, or has a central spherical surface or aspherical central region surrounded by a large number of aspherical rings with increasing k-values, or from 0 to an elliptical or parabola of the spherical curvature in the center of the lens A spherical central region having a progressive continuous aspherical k-value to a segmented endpoint in the form of a hyperbolic curve or having a diameter of less than 2.0 mm, which is preferred for facilitating in vitro parameter measurement and in vivo mounting And a surrounding aspherical curve with progressive continuous aspherical k values from 0 of the spherical curve in the center of the lens to a partitioned end point in the form of an elliptical, parabolic or hyperbolic curve.
[0015]
In another aspect, the multifocal annular ring back curve has a pupil identification design similar to that of the patent application (VTN56) or a pupil identification design similar to that of the patent application (VTN57) in which the right and left eyes have different annular zones. Or has a pupil design with a peak add power function that exhibits a peak in the middle region of the pupil, or the add power changes with pupil size in a defined linear or polynomial function, The refractive power can increase or decrease with pupil size, or it can have a design where the annular ring is aspheric.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The above objects and advantages of the present invention relating to a concentric aspheric multifocal lens design will be understood by those skilled in the art from the following detailed description of several preferred embodiments, with reference to the accompanying drawings, wherein It will be easily understood if it is referred to together with (with reference numerals).
[0017]
As shown in FIG. 1 as a concentric multifocal lens design (variable add version), one concentric multifocal contact lens or intraocular lens design 10 having a central circular region 12 surrounded by n annular zones. think of. If rD = radius of curvature for distance correction and rN = radius of curvature for near distance correction, according to the present invention, the optical power (Pi) of the i th annular zone is ri
[Expression 1]
Figure 0004467653
Here, pi is a refractive power diopter in the ring i.
pd is a distance power i diopter.
pN is the nearby refractive power i diopter.
In the above formula, the optical surface refractive power is changed to an equivalent radius by the following known formula.
[Expression 2]
Figure 0004467653
Where n = refractive index of the lens material,
k = a constant for the included unit,
For example, for mm, k = 1000.
[0018]
Different variable add modes can be created by substituting various functionalities instead of f1 (i), f2 (i), f3 (i), and f4 (i) in equation (1). Is shown below. The general formula (1) can be considered as a pair of binary switches with respect to the left portion and the right portion of the formula with “1”. In the expression (1), the main terms of the left part and the right part of the expression are 0 or 1 as shown below.
[0019]
[Table 1]
Figure 0004467653
The value of fn (i) leads to the “contrast” of general formula (1).
[0020]
In the first example where f1 (i) = f2 (i) = f3 (i) = f4 (i) = 1, the general formula is simplified as follows.
Figure 0004467653
In this embodiment, the function can be selectively toggled with respect to Pd or Pn in the center distance characteristic by a combination of two toggles, first a toggle based on i and second a toggle based on f (n). This example embodiment shows that the powers of all nearby rings are equal and constant, and the powers of all far rings are equally constant, as shown in the table above, and the near and alternating near centers. It hits a concentric multifocal lens with a distant concentric ring.
[0021]
In the second example, f1 (i) = f2 (i) = f3 (i) = f4 (i) = 0. In this case, the general formula is as follows. Equation 1 simplifies to Equation 3 near the center.
Figure 0004467653
This embodiment is shown in the table above where the powers of all distant rings are equal and constant, and the powers of all nearby rings are equal and constant. Hits a concentric multifocal lens with a nearby concentric ring.
[0022]
An example of the third class has a constant Pd, the central part and the odd-numbered ring are Pd, and the even-numbered ring is Pn. Pn is not constant because f4 (i) is not constant. In the example of the third class, f1 (i) = f2 (i) = f3 (i) = f4 (i) = 1 and f4 (i) is defined as in the example of A to F below. Function. The function improves the standardized near power (Pn = 1) as follows: In this case, the nearby refractive power, Pn, will only work with multiple even rings, even if multiple odd rings are calculated and shown.
[0023]
The following table shows an example of the third class, where f1 (i) = f2 (i) = f3 (i) = 1 and f4 (i) These are the functions listed at the top of the f4 (i) table for Examples A, B, C, D, E, and F printed in the equation.
[0024]
[Table 2]
Figure 0004467653
[0025]
Examples A to F are plotted in FIGS.
Some example functions of f4 (i):
[Equation 3]
Figure 0004467653
[Expression 4]
Figure 0004467653
[Equation 5]
Figure 0004467653
[Formula 6]
Figure 0004467653
[Expression 7]
Figure 0004467653
[Equation 8]
Figure 0004467653
[0026]
FIG. 2 is an example function curve of functions A, D, E, and F, which is the refractive index versus lens function (i).
FIG. 3 is an exemplary function curve of the refractive index of the functions A, B, and C versus the lens function (i).
[0027]
In a second aspect, the present invention combines the best features of the aspheric design and the concentric design in a specific way by combining the aspheric surface with the concentric surface. In general, it is preferable that the concentric surface is on the base or rear curved portion side of the lens, and the aspheric curved portion side is on the front curved portion side. An aspheric surface improves the modulation transfer function (MTF) of the lens and eye combination. This improves the focus / contrast of both distant and nearby separated images. The concentric plane provides discriminative separation of the pupil to nearby and far power.
[0028]
The general formula for a cone describing a full cone, including a sphere, parabola, ellipse, and hyperbola, is
[Equation 9]
Figure 0004467653
Where k = 0 is a sphere,
k = -1 is a parabola,
0> k> -1 is an ellipse,
k <-1 is a hyperbola.
[0029]
Figure 0004467653
In the MTF augmentation model, the -k value increases any geometric pupil separation.
[0030]
  FIG. 4 is a chart showing only the eye zones of different types (models) of front curved portions and different types of rear curved portions according to various embodiments of the present invention.
  Combined Figure 4(A)And FIG.(F)Is a multifocal concentric aspherical surface capable of adopting a pupil identification design as disclosed in the patent application (VTN56) for a frontal aspherical curved surface 40 that can take a simple elliptical, parabolic or hyperbolic curve. A preferred example is shown in combination with the annular ring rear curved portion 42. In that design, the pupil receives approximately the same ratio of the far power to the near power, regardless of its size.
[0031]
  FIG.(B)Has a spherical center region 46, approximately 2.00 mm in diameter, with a surrounding aspheric ring 48 that can take a simple elliptical, parabolic or hyperbolic curve, in vitro parameter measurement and in vivo fit The front curved portion 44 that facilitates the above is shown.
  FIG.(C)Indicates a front curvature having a central spherical surface or aspherical central zone 56 surrounded by a polyaspherical ring 58 having a varying or increasing k value.
  FIG.(D)Shows a front aspherical curvature having a progressive continuous aspherical surface 63 having a k value according to the present invention. This k value varies from 0 of the spherical curved part at the center of the lens to the end point of the curved part shape of an ellipse, hyperbola, or rectangular shape by a defined function such as a linear function 64 or a polynomial function or a quadratic function 65. To do.
[0032]
  FIG.(E)Is combined with the multifocal concentric spherical annular ring back curve 76 from a spherical curve 0 at the center of the lens by means of a defined function such as a linear function 64 or a polynomial or quadratic function 65, an ellipse, A spherical center region 72 with a diameter of about 2.00 mm to facilitate in vitro parameter measurement and in vivo fitting, with progressive continuous aspherical k-values that change to the end of the curved shape of the hyperbola, parallelepiped. The front curved part 70 which has is shown.
  FIG.(F)Shows the back curve 42 of a multifocal concentric aspheric ring that can take a pupil identification design as disclosed in the patent application (VTN56). In that design, the pupil receives approximately the same ratio of the far power to the near power, regardless of its size.
  FIG.(G)Shows the back curve of a multifocal concentric aspheric annular ring capable of the design disclosed in the patent application (VTN57). In that design, the contact lens for the right eye 50 has a different concentric ring pattern than the contact lens for the left eye 52.
[0033]
  FIG.(H)Shows a back surface 60 having a pupil design with a peak add power function 61 that peaks in the middle area of the pupil.
  FIG.(I)Shows the rear surface 66 of the multifocal concentric ring. Thereafter, on the surface 66, the add power is increased 67 or decreased 68 by the pupil size of the linear function 67 or the polynomial function 68.
  FIG.(J)These show the back curved part 76 of a multifocal type concentric aspherical ring.
[0034]
5 and 6 illustrate the advantages of combining an aspheric front curve design and a concentric (or radial) spherical back curve into a single lens.
[0035]
In particular, FIG. 5 shows the retina focus distribution in the following column.
Column A (Spherical front and back surfaces as in the prior art, single field design)
Column B (Aspherical front and rear surfaces, similar to the prior art, design)
Column C (Spherical front and concentric spherical back as in the prior art, bifocal design)
Column D (Aspherical front and concentric spherical back of the present invention, multifocal design)
[0036]
FIG. 5 shows the present invention (Example) compared to a prior art spherical design (Example A) or a prior art aspheric multifocal design (Example B) or a prior art concentric design (Example C). The design of D) shows that the intensity of light that focuses on the retina from both near and far focus increases. In the figure, the spherical eye (Example A) shows a reference intensity of 1.0, which is equally divided into a value of 0.5 in the concentric design (Example C). In contrast, the aspheric front and concentric spherical back designs of the present invention in Example D show significantly greater intensity than 1.0 for both near and far fields, and also increase the depth of focus.
[0037]
FIG. 6 shows how using a combination of aspheric and concentric bends does not change the patient. In this figure, three patients, A, B, and C, are shown, with the near (N) focus and the far (D) focus of the patient compared to the conventional concentric multifocal curve design 80. Have shifted slightly. Patient A notices a much improved near N field of view and a far D field of view. Also, if the patients B and C are aligned with only the concentric multifocal curved part, as shown in the left side of FIG. 6, the patient B causes a decrease in the field of view of the far field D, while the patient C is near N Please note that the visual field will be degraded. Combining the same concentric multifocal bend with an aspheric bend significantly improves N's field of view closer to patient B, and especially far-field D's, as illustrated by bend 82 on the right side of FIG. Also, the near N field of view and the far D field of view are significantly improved by patient C. In short, the field of view is considerably improved because there are two retina focus distributions and the depth of field obtained by the combination of the aspheric front and the concentric multifocal back is improved.
[0038]
Ray tracing was performed on a typical front aspheric / rear concentric combination. The ray tracing model is a human eye with axial myopia obtained using the Super OSLO computer program with an entrance pupil diameter of 5.50 mm.
The following data is spot size, mm. Similar results were obtained with other models.
Figure 0004467653
At close distances, the target distance was moved to 40 cm, and the model was changed to reflect a limited amount of anatomical eye adjustment that was effective for patients late in the age of 40. The field of view was 0 ° high on the axis.
[0039]
FIG. 7 shows a graph of the radiant energy distribution of the spherical surface and the aspherical surface in the case of the far field, and FIG. 8 shows a graph of the radiant energy distribution of the spherical surface and the aspherical surface in the case of the near field of view.
This method characterizes the image by enclosing the energy in circles of increasing diameter and normalizing the “detected” energy. This results in multiple radii that are larger than the spot size. This is because the spot size is rms (root mean square) deviation from the center of the spot. Others become more apparent by the radiant energy distribution (circular focus) method. However, it can be readily seen that the aspheric / concentric combination is superior both at a distance and near a pure spherical concentricity.
[0040]
One object of the present invention is firstly an aspherical, multifocal concentric ring lens design as described in this specification, and then an internal body such as an aberration mirror or MTF position magnifying device. The evaluation, identification and quantification of all residual aberrations using an image quality analyzer. These residual aberrations can be further reduced, preferably by repartitioning the aspherical surface of the lens's non-concentric surface or by asphericing the concentric surface of the lens to improve eye performance and visual acuity. Thus, the present invention provides an improvement in design performance for spherical refractive errors, presbyopia, or astigmatism that is achieved by reducing the aberrations of the lens-eye system combination. Aberration reduction does not correct refractive errors by itself. First, a patient (or population) is fitted with a concentric lens, and then the patient is tested with an in-vivo image quality device to determine residual aberration with a lens that matches the eye. Next, the lens is redesigned as described above to reduce measurement residual aberration.
[0041]
Obviously, many different embodiments of the present invention can vary the type of aspheric curve, the number of annular rings, the width and placement of the annular rings, and the optical power imparted to each annular ring. Is possible.
Although several embodiments and variations of the present invention relating to concentric aspheric multifocal lens designs are described herein, many other designs can be suggested to one skilled in the art by the present disclosure and teachings. it is obvious.
[0042]
  The specific embodiments of the present invention are as follows.RIt is.
A) An aspheric multifocal concentric ring lens design that reduces aberrations and increases contrast to improve vision,
Said lens having an anterior surface and a posterior surface, wherein one of the anterior surface and the posterior surface improves the modulation transfer function of the lens, thereby reducing aberrations and increasing contrast,
The other one of the front and back surfaces has a multifocal curve that has a plurality of concentric aspheric annular rings to give a distant image and a near image, and an improved modulation transfer function is provided for the distant image. Aspheric multifocal concentric ring lens design that improves the focus and contrast of both the image and the nearby image.
  1) The front surface has an aspherical curved portion.Embodiment A)Aspheric multifocal concentric ring lens design as described.
  2) The front surface has a multifocal curved portion.Embodiment A)Aspheric multifocal concentric ring lens design as described.
  3) The plurality of annular rings surround a central region having a circular discEmbodiment A)Aspheric multifocal concentric ring lens design as described.
  4) The aspherical multifocal concentric ring lens design of embodiment 3), wherein the circular disc has a spherical surface corresponding to the optical refractive power of the patient's basic eye prescription Rx far away.
  5) The plurality of annular rings have at least one annular ring having an optical power far away from the basic eye prescription Rx sphere and an optical power close to the basic eye prescription Rx sphere. The aspheric multifocal concentric annular ring lens design of embodiment 3) having at least one second spherical annular ring.
  6) The aspherical curved part has a simple elliptical, parabolic or hyperbolic curved part.Embodiment A)Aspheric multifocal concentric ring lens design as described.
  7) The aspherical curved part has a spherical central region and a surrounding aspherical ring that can take a simple elliptical, parabolic or hyperbolic curved part.Embodiment A)Aspheric multifocal concentric ring lens design as described.
  8) The aspheric multifocal concentric ring lens design according to the embodiment 8), wherein the aspheric center region has a diameter of less than 2.00 mm.
  9) The aspherical curved portion has a central spherical surface or an aspherical central zone surrounded by a large number of aspherical rings having increasing k values.Embodiment A)Aspheric multifocal concentric ring lens design as described.
  10) The front aspherical curve has a progressive continuous aspherical k value from 0 of the aspherical curve at the center of the lens to a partitioned end point in the form of an elliptical, hyperbolic, or parabolic curve.Embodiment A)Aspheric multifocal concentric ring lens design as described.
[0043]
  11) The aspherical curved portion includes a spherical central region for facilitating in vitro parameter measurement and in vivo fitting, and an aspherical curved portion from 0 to an elliptical, hyperbolic, or parabolic curved portion at the center of the lens. Having a surrounding aspheric curvature with a progressive continuous aspheric k-value to the partitioned endpoint in the formEmbodiment A)Aspheric multifocal concentric ring lens design as described.
  12) The aspheric multifocal concentric ring lens design according to the embodiment 11), wherein the spherical central region has a diameter of less than 2.00 mm.
  13) The rear curved portion of the multifocal concentric spherical ring has a pupil independent design in which the pupil receives approximately the same ratio of the optical power in the distance to the optical power in the vicinity, regardless of the pupil size.Embodiment A)Aspheric multifocal concentric ring lens design as described.
  14) The multifocal concentric spherical ring curved portion relating to the right-eye lens has a concentric annular ring pattern different from that of the left-eye lens.Embodiment A)Aspheric multifocal concentric ring lens design as described.
  15) The rear curved portion has a pupil design having a peak add power function that peaks in an intermediate region of the pupil.Embodiment A)Aspheric multifocal concentric ring lens design as described.
  16) At the rear of the multifocal concentric ring, the add power varies with pupil size in a defined first order or polynomial functionEmbodiment A)Aspheric multifocal concentric ring lens design as described.
  17) The aspheric multifocal concentric ring lens design according to the embodiment 16), wherein the add refractive power increases with the pupil size.
  18) The aspheric multifocal concentric ring lens design according to the embodiment 16), wherein the add refractive power decreases with the pupil size.
  19) The concentric annular ring has an aspheric surfaceEmbodiment A)Aspheric multifocal concentric ring lens design as described.
  20) The lens is a contact lensEmbodiment A)Aspheric multifocal concentric ring lens design as described.
[0044]
  21) The aspheric multifocal concentric ring lens design of embodiment 20), wherein the lens is a soft hydrogel contact lens.
  22) The lens is an intraocular lensEmbodiment A)Aspheric multifocal concentric ring lens design as described.
B) A design method for an aspheric multifocal concentric ring lens design that reduces aberrations and increases contrast to improve vision,
Said lens having an anterior surface and a posterior surface, wherein one of the anterior surface and the posterior surface improves the modulation transfer function of the lens, thereby reducing aberrations and increasing contrast,
The other one of the front and back surfaces has a multifocal curve that has a plurality of concentric aspheric annular rings to give a distant image and a near image, and an improved modulation transfer function is provided for the distant image. How to design an aspheric multifocal concentric ring lens design that improves the focus and contrast of both the image and the nearby image.
  23) Redesigning the lens comprises redesigning the aspheric curveEmbodiment B)The lens design method described.
  24) The redesign of the lens comprises making a plurality of concentric annular rings aspheric.Embodiment B)The lens design method described.
[0045]
【The invention's effect】
As described above, according to the present invention, together with a concentric multifocal surface, the aberration is reduced, the field contrast is increased, a clear field of view is provided at a distance or near, and a concentric multifocal lens with a simultaneous field of view of the prior art. It does not reduce the typical contrast of the design.
[Brief description of the drawings]
FIG. 1 is a plan view of an example of a concentric multifocal contact lens or intraocular lens having a central circular region surrounded by n annular zones.
FIG. 2 is a diagram showing function curves of functions A, D, E, and F whose curves are optical power versus lens function (i).
FIG. 3 is a diagram showing a function curve of functions A, B, and C in which the curve is optical power versus lens function (i).
FIG. 4 is a chart showing only the eye zones of different types of front curved portions and different types of rear curved portions of the lens according to the present invention.
FIGS. 5A and 5B show the lens design of the prior art, and FIG. 5D shows the retina focal distribution of four different types of lenses showing the lens design according to the present invention.
FIG. 6: How to use a combination of aspherical and concentric curvatures for the three patients A, B and C whose far (D) and near (N) fields of view are improved with the design of the present invention. The graph which shows whether it is difficult to change.
FIG. 7 is a graph of radiant energy distribution of spherical and aspherical surfaces in the case of a far field of view.
FIG. 8 is a graph of radiant energy distribution of spherical and aspherical surfaces in the case of a near field of view.
[Explanation of symbols]
10 Concentric multifocal contact lens or intraocular lens design
40 Front aspherical curve
42 Multi-focal concentric spherical annular ring back curve
44 Front curve
46 Spherical center region
48 Aspherical ring
54 Front curve
56 Central spherical or aspheric central zone
58 Numerous aspheric rings
63 Continuous aspheric surface
65 Polynomial or quadratic function
66 Rear surface of multifocal concentric ring
70 Front curve
72 Spherical center region
74 Aspheric curve around 74
76 Rear curved part of multifocal concentric aspheric ring

Claims (7)

収差を減少させ、コントラストを増大させて視力を向上させる非球面多焦点型同心環状リング眼用レンズにおいて、
前面と、後面と、を有し、
前記前面と前記後面の一つが、球面の中心領域と、それを囲む、楕円、放物線、または双曲線の形状を含む、非球面の環と、を有する非球面形状を有し、
前記前面と前記後面の他の一つが、複数の同心球面環状リングを有して遠方の像と近くの像の両方を与える、多焦点型形状を有する、
非球面多焦点型同心環状リング眼用レンズ。
In an aspheric multifocal concentric ring ophthalmic lens that reduces aberrations and increases contrast to improve visual acuity,
A front surface and a rear surface;
One of the front and back surfaces has an aspheric shape having a spherical central region and an aspheric ring including an ellipsoid, parabola, or hyperbola shape surrounding it;
The other of the front and back surfaces has a multifocal shape having a plurality of concentric spherical annular rings to provide both a distant image and a near image;
Aspherical multifocal concentric ring eye lens.
請求項1に記載の非球面多焦点型同心環状リング眼用レンズにおいて、
前記複数の同心球面環状リングは、円形ディスクを有する中心領域を囲む、非球面多焦点型同心環状リング眼用レンズ。
The aspheric multifocal concentric ring eye lens according to claim 1,
The plurality of concentric spherical annular rings are aspheric multifocal concentric annular ophthalmic lenses that surround a central region having a circular disc.
請求項2に記載の非球面多焦点型同心環状リング眼用レンズにおいて、
前記円形ディスクは、処方の遠方の光学的屈折力に対応する球面を有する、非球面多焦点型同心環状リング眼用レンズ。
The aspheric multifocal concentric ring eye lens according to claim 2,
Said circular disc has a spherical surface corresponding to the optical power of the distant prescription, aspheric multifocal concentric annular ring ophthalmic lens.
請求項2に記載の非球面多焦点型同心環状リング眼用レンズにおいて、
前記複数の同心球面環状リングは、処方の球面の遠方の光学的屈折力を有する少なくとも一つの環状リングと、処方の球面の近くの光学的屈折力を有する少なくとも一つの第2の球面環状リングを有する、非球面多焦点型同心環状リング眼用レンズ。
The aspheric multifocal concentric ring eye lens according to claim 2,
Wherein the plurality of concentric spherical annular rings, at least one annular ring having an optical refractive power of the distant spherical prescription, at least one second spherical annular having a near optical power of the spherical prescription An aspheric multifocal concentric ring ophthalmic lens having a ring.
請求項1に記載の非球面多焦点型同心環状リング眼用レンズにおいて、
前記多焦点型の同心球面環状リング面はアッド屈折力を有し、前記アッド屈折力は瞳孔サイズとともに一次関数あるいは多項式関数として変化する、非球面多焦点型同心環状リング眼用レンズ。
The aspheric multifocal concentric ring eye lens according to claim 1,
The multifocal concentric annular ring surface has an add power, and the add power changes as a linear function or a polynomial function together with the pupil size.
請求項1に記載の非球面多焦点型同心環状リング眼用レンズにおいて、
前記レンズはコンタクトレンズである、非球面多焦点型同心環状リング眼用レンズ。
The aspheric multifocal concentric ring eye lens according to claim 1,
The lens is a contact lens, an aspheric multifocal concentric ring eye lens.
請求項1に記載の非球面多焦点型同心環状リング眼用レンズにおいて、
前記レンズは眼内レンズである、非球面多焦点型同心環状リング眼用レンズ。
The aspheric multifocal concentric ring eye lens according to claim 1,
The lens is an intraocular lens, an aspheric multifocal concentric ring eye lens.
JP13600196A 1995-05-04 1996-05-02 Concentric aspherical multifocal ophthalmic lens and manufacturing method thereof Expired - Lifetime JP4467653B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/433,736 US5715031A (en) 1995-05-04 1995-05-04 Concentric aspheric multifocal lens designs
US433736 1995-05-04

Publications (2)

Publication Number Publication Date
JPH0926560A JPH0926560A (en) 1997-01-28
JP4467653B2 true JP4467653B2 (en) 2010-05-26

Family

ID=23721339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13600196A Expired - Lifetime JP4467653B2 (en) 1995-05-04 1996-05-02 Concentric aspherical multifocal ophthalmic lens and manufacturing method thereof

Country Status (16)

Country Link
US (1) US5715031A (en)
EP (1) EP0741314B1 (en)
JP (1) JP4467653B2 (en)
KR (1) KR960040325A (en)
CN (1) CN1105313C (en)
AT (1) ATE288593T1 (en)
AU (1) AU698433B2 (en)
BR (1) BR9602151A (en)
CA (1) CA2175650A1 (en)
DE (1) DE69634282T2 (en)
IL (1) IL117936A0 (en)
NO (1) NO961800L (en)
NZ (1) NZ286403A (en)
SG (1) SG67352A1 (en)
TW (1) TW350922B (en)
ZA (1) ZA963543B (en)

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045225A (en) * 1997-02-10 2000-04-04 Nidek Co., Ltd. Optometric apparatus
TW532488U (en) * 1998-02-11 2003-05-11 Euro Lens Technology S P A A progressive multifocal contact lens suitable for compensating presbyopia
IL124598A (en) * 1998-05-21 2001-10-31 Ophir Optronics Ltd Precision double-sided aspheric elements
WO2000008516A1 (en) 1998-08-06 2000-02-17 Lett John B W Multifocal aspheric lens
CA2351435A1 (en) * 1998-12-16 2000-06-22 William Rovani Multifocal contact lens with aspheric surface
AU3739100A (en) * 1999-03-12 2000-09-28 Bausch & Lomb Incorporated Multifocal lens article
US6176580B1 (en) 1999-04-02 2001-01-23 Johnson & Johnson Vision Care, Inc. Method of designing and fitting contact lenses taking into account material properties of the lenses
US6196685B1 (en) 1999-04-02 2001-03-06 Johnson & Johnson Vision Care, Inc. Method of designing and fitting multifocal lenses taking into account material properties of the lenses
US6619799B1 (en) * 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6176579B1 (en) 1999-07-07 2001-01-23 Softfocal Co., Inc Bifocal contact lens with toric transition
DE19933775A1 (en) 1999-07-19 2001-02-08 Hecht Gmbh Kontaktlinsen Contact lens or intraocular lens with long-range and near-effect zones
US6325509B1 (en) 1999-08-20 2001-12-04 Art Optical Contact Lens, Inc. Low-mass ophthalmic lens
US6277146B1 (en) 1999-09-16 2001-08-21 Gholam A. Peyman Glare-free intraocular lens and method for using the same
US6280471B1 (en) * 1999-09-16 2001-08-28 Gholam A. Peyman Glare-free intraocular lens and method for using the same
US6250757B1 (en) 1999-12-15 2001-06-26 Johnson & Johnson Vision Products, Inc. Hybrid refractive birefringent multifocal ophthalmic lenses
US6364483B1 (en) 2000-02-22 2002-04-02 Holo Or Ltd. Simultaneous multifocal contact lens and method of utilizing same for treating visual disorders
DE10020914B4 (en) 2000-04-28 2020-07-02 Carl Zeiss Vision Gmbh Method for calculating a plurality of spectacle lenses from a spectacle lens family and method of manufacturing an spectacle lens from a spectacle lens family
AU2001289038B2 (en) 2000-09-12 2006-05-18 Revision Optics, Inc. System for packaging and handling an implant and method of use
US6543610B1 (en) * 2000-09-12 2003-04-08 Alok Nigam System for packaging and handling an implant and method of use
US8668735B2 (en) 2000-09-12 2014-03-11 Revision Optics, Inc. Corneal implant storage and delivery devices
JP3554703B2 (en) * 2000-10-12 2004-08-18 リバーベル株式会社 Information terminal equipment
US6695880B1 (en) * 2000-10-24 2004-02-24 Johnson & Johnson Vision Care, Inc. Intraocular lenses and methods for their manufacture
US7293871B2 (en) * 2000-11-27 2007-11-13 Ophthonix, Inc. Apparatus and method of correcting higher-order aberrations of the human eye
US6813082B2 (en) * 2000-11-27 2004-11-02 Ophthonix, Inc. Wavefront aberrator and method of manufacturing
SE0004829D0 (en) * 2000-12-22 2000-12-22 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US7217375B2 (en) * 2001-06-04 2007-05-15 Ophthonix, Inc. Apparatus and method of fabricating a compensating element for wavefront correction using spatially localized curing of resin mixtures
US7434931B2 (en) 2001-10-25 2008-10-14 Ophthonix Custom eyeglass manufacturing method
US6712466B2 (en) * 2001-10-25 2004-03-30 Ophthonix, Inc. Eyeglass manufacturing method using variable index layer
US6682195B2 (en) 2001-10-25 2004-01-27 Ophthonix, Inc. Custom eyeglass manufacturing method
US6923540B2 (en) * 2002-07-31 2005-08-02 Novartis Ag Toric multifocal contact lenses
US7381221B2 (en) * 2002-11-08 2008-06-03 Advanced Medical Optics, Inc. Multi-zonal monofocal intraocular lens for correcting optical aberrations
SE0203564D0 (en) * 2002-11-29 2002-11-29 Pharmacia Groningen Bv Multifocal opthalmic lens
US7896916B2 (en) 2002-11-29 2011-03-01 Amo Groningen B.V. Multifocal ophthalmic lens
US6923539B2 (en) * 2003-05-12 2005-08-02 Alcon, Inc. Aspheric lenses
FR2855084A1 (en) * 2003-05-22 2004-11-26 Air Liquide FOCUSING OPTICS FOR LASER CUTTING
US6951391B2 (en) * 2003-06-16 2005-10-04 Apollo Optical Systems Llc Bifocal multiorder diffractive lenses for vision correction
EP1639398B9 (en) 2003-06-30 2012-02-22 Werner Fiala Intra-ocular lens or contact lens exhibiting large depth of focus
US20050030759A1 (en) * 2003-08-04 2005-02-10 Guide Corporation Bifocal hyperbolic catadioptric collection system for an automotive lamp
US7776086B2 (en) * 2004-04-30 2010-08-17 Revision Optics, Inc. Aspherical corneal implant
US20080262610A1 (en) * 2007-04-20 2008-10-23 Alan Lang Biomechanical design of intracorneal inlays
US10835371B2 (en) 2004-04-30 2020-11-17 Rvo 2.0, Inc. Small diameter corneal inlay methods
US20050246016A1 (en) * 2004-04-30 2005-11-03 Intralens Vision, Inc. Implantable lenses with modified edge regions
US8057541B2 (en) * 2006-02-24 2011-11-15 Revision Optics, Inc. Method of using small diameter intracorneal inlays to treat visual impairment
US20110218623A1 (en) * 2004-04-30 2011-09-08 Jon Dishler Small Diameter Inlays
US20050260388A1 (en) * 2004-05-21 2005-11-24 Lai Shui T Apparatus and method of fabricating an ophthalmic lens for wavefront correction using spatially localized curing of photo-polymerization materials
US7365917B2 (en) * 2004-08-16 2008-04-29 Xceed Imaging Ltd. Optical method and system for extended depth of focus
US7061693B2 (en) 2004-08-16 2006-06-13 Xceed Imaging Ltd. Optical method and system for extended depth of focus
US7025456B2 (en) * 2004-08-20 2006-04-11 Apollo Optical Systems, Llc Diffractive lenses for vision correction
US7156516B2 (en) * 2004-08-20 2007-01-02 Apollo Optical Systems Llc Diffractive lenses for vision correction
US7455404B2 (en) * 2004-10-25 2008-11-25 Advanced Medical Optics, Inc. Ophthalmic lens with multiple phase plates
US7922326B2 (en) 2005-10-25 2011-04-12 Abbott Medical Optics Inc. Ophthalmic lens with multiple phase plates
US20070129797A1 (en) * 2005-12-01 2007-06-07 Revision Optics, Inc. Intracorneal inlays
US10555805B2 (en) 2006-02-24 2020-02-11 Rvo 2.0, Inc. Anterior corneal shapes and methods of providing the shapes
US20070255401A1 (en) * 2006-05-01 2007-11-01 Revision Optics, Inc. Design of Inlays With Intrinsic Diopter Power
US20070258143A1 (en) * 2006-05-08 2007-11-08 Valdemar Portney Aspheric multifocal diffractive ophthalmic lens
AR062067A1 (en) * 2006-07-17 2008-10-15 Novartis Ag TORICAS CONTACT LENSES WITH CONTROLLED OPTICAL POWER PROFILE
US9271828B2 (en) 2007-03-28 2016-03-01 Revision Optics, Inc. Corneal implant retaining devices and methods of use
US9549848B2 (en) 2007-03-28 2017-01-24 Revision Optics, Inc. Corneal implant inserters and methods of use
US8162953B2 (en) * 2007-03-28 2012-04-24 Revision Optics, Inc. Insertion system for corneal implants
US20090033864A1 (en) * 2007-07-30 2009-02-05 Shone Thomas R Multifocal contact lenses and methods for improving vision and for producing multifocal contact lenses
US9216080B2 (en) 2007-08-27 2015-12-22 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
WO2009101202A1 (en) 2008-02-15 2009-08-20 Amo Regional Holdings System, ophthalmic lens, and method for extending depth of focus
US8646908B2 (en) * 2008-03-04 2014-02-11 Johnson & Johnson Vision Care, Inc. Rotationally stabilized contact lenses and methods for their design
US7753521B2 (en) * 2008-03-31 2010-07-13 Johnson & Johnson Vision Care, Inc. Lenses for the correction of presbyopia and methods of designing the lenses
US9539143B2 (en) 2008-04-04 2017-01-10 Revision Optics, Inc. Methods of correcting vision
JP2011516180A (en) * 2008-04-04 2011-05-26 レヴィジオン・オプティックス・インコーポレーテッド Corneal inlay design and method for correcting vision
US8292953B2 (en) * 2008-10-20 2012-10-23 Amo Groningen B.V. Multifocal intraocular lens
US8734511B2 (en) * 2008-10-20 2014-05-27 Amo Groningen, B.V. Multifocal intraocular lens
CN102892381A (en) 2009-12-18 2013-01-23 Amo格罗宁根私人有限公司 Single microstructure lens, systems and methods
US8531783B2 (en) 2010-02-09 2013-09-10 Xceed Imaging Ltd. Imaging method and system for imaging with extended depth of focus
US8770749B2 (en) 2010-04-15 2014-07-08 Oakley, Inc. Eyewear with chroma enhancement
US9134547B2 (en) 2011-10-20 2015-09-15 Oakley, Inc. Eyewear with chroma enhancement
US8469948B2 (en) 2010-08-23 2013-06-25 Revision Optics, Inc. Methods and devices for forming corneal channels
US9329407B2 (en) 2010-09-13 2016-05-03 The Regents Of The University Of Colorado, A Body Corporate Extended depth field optics with variable pupil diameter
EP2646872A1 (en) 2010-12-01 2013-10-09 AMO Groningen B.V. A multifocal lens having an optical add power progression, and a system and method of providing same
WO2012082602A1 (en) * 2010-12-15 2012-06-21 Novartis Ag Aspheric optical lenses and associated systems and methods
KR20140074271A (en) * 2011-06-15 2014-06-17 비져니어링 테크놀로지스, 인크. Method of treating myopia progressions
CN104094164B (en) * 2011-07-27 2016-05-11 新加坡国立大学 For slowing down the optical mirror slip of myopia development
US9345569B2 (en) 2011-10-21 2016-05-24 Revision Optics, Inc. Corneal implant storage and delivery devices
WO2013114208A1 (en) 2012-02-03 2013-08-08 Coopervision International Holding Company, Lp Multifocal contact lenses and related methods and uses to improve vision of presbyopic subjects
WO2013114209A2 (en) 2012-02-03 2013-08-08 Coopervision International Holding Company, Lp Multifocal contact lenses and related methods and uses to improve vision of presbyopic subjects
MY168060A (en) 2012-02-03 2018-10-11 Coopervision Int Holding Co Lp Multifocal contact lenses and related methods and uses to improve vision of presbyopic subjects
MY189708A (en) 2012-02-03 2022-02-28 Coopervision Int Ltd Multifocal contact lenses and related methods and uses to improve vision of presbyopic subjects
TWI588560B (en) 2012-04-05 2017-06-21 布萊恩荷登視覺協會 Lenses, devices, methods and systems for refractive error
WO2013169987A1 (en) 2012-05-10 2013-11-14 Oakley, Inc. Eyewear with laminated functional layers
EP3824798A1 (en) 2012-08-31 2021-05-26 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
EP2908773B1 (en) 2012-10-17 2024-01-03 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
WO2014087249A2 (en) 2012-12-04 2014-06-12 Amo Groningen B.V. Lenses systems and methods for providing binocular customized treatments to correct presbyopia
ES2472121B1 (en) * 2012-12-27 2015-04-13 Consejo Superior De Investigaciones Científicas (Csic) Refractive multifocal intraocular lens with optimized optical quality in a focus range and procedure to obtain it
US9575335B1 (en) 2014-01-10 2017-02-21 Oakley, Inc. Eyewear with chroma enhancement for specific activities
US10871661B2 (en) 2014-05-23 2020-12-22 Oakley, Inc. Eyewear and lenses with multiple molded lens components
WO2016040331A1 (en) * 2014-09-09 2016-03-17 Staar Surgical Company Ophthalmic implants with extended depth of field and enhanced distance visual acuity
EP3218763A4 (en) 2014-11-13 2018-06-13 Oakley, Inc. Variable light attenuation eyewear with color enhancement
US9905022B1 (en) 2015-01-16 2018-02-27 Oakley, Inc. Electronic display for demonstrating eyewear functionality
WO2016144404A1 (en) 2015-03-12 2016-09-15 Revision Optics, Inc. Methods of correcting vision
JP6374345B2 (en) * 2015-04-20 2018-08-15 伊藤光学工業株式会社 Vision correction lens design method and vision correction lens
RU2642149C2 (en) 2016-01-12 2018-01-24 Самсунг Электроникс Ко., Лтд. Composite lens and display system containing it
CN105613503B (en) * 2016-01-29 2018-01-30 东北农业大学 A kind of herbicide for gramineous crop field and application thereof
EP3413839A1 (en) 2016-02-09 2018-12-19 AMO Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
CN109070506B (en) * 2016-03-09 2021-06-29 斯塔尔外科有限公司 Ocular implant with extended depth of field and enhanced distance vision
AU2018235011A1 (en) 2017-03-17 2019-10-24 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
CN107147907B (en) * 2017-06-26 2019-02-15 信利光电股份有限公司 A kind of detection method of camera module
WO2019002384A1 (en) 2017-06-28 2019-01-03 Amo Groningen B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
EP3639084A1 (en) 2017-06-28 2020-04-22 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
US11112622B2 (en) 2018-02-01 2021-09-07 Luxottica S.R.L. Eyewear and lenses with multiple molded lens components
CN108897078A (en) * 2018-07-13 2018-11-27 北京工业大学 The laser manufacturing device and method of more curved surface multi-curvature surface spreading lenticules
BR112021002881A2 (en) 2018-08-17 2021-05-11 Staar Surgical Company polymer composition exhibiting refractive index nanogradient
DE102018220779A1 (en) * 2018-12-03 2020-06-04 Carl Zeiss Microscopy Gmbh Detection method of induced light signals in a three-dimensional region of a sample
US11886046B2 (en) 2019-12-30 2024-01-30 Amo Groningen B.V. Multi-region refractive lenses for vision treatment
AU2020416055A1 (en) 2019-12-30 2022-08-25 Amo Groningen B.V. Lenses having diffractive profiles with irregular width for vision treatment
CN113040976B (en) * 2021-03-04 2022-06-28 天津世纪康泰生物医学工程有限公司 Ultrathin zero-spherical-aberration implantable myopia lens

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580882A (en) * 1983-04-21 1986-04-08 Benjamin Nuchman Continuously variable contact lens
US5017000A (en) * 1986-05-14 1991-05-21 Cohen Allen L Multifocals using phase shifting
IT1217703B (en) * 1988-05-24 1990-03-30 Mario Giovanzana MULTIFOCAL CONTACT LENS WITH PROGRESSIVE ECCENTRICITY AND PROCEDURE FOR ITS MANUFACTURE
US5002382A (en) * 1989-12-07 1991-03-26 Leonard Seidner Multifocal corneal contact lenses
US5181053A (en) * 1990-05-10 1993-01-19 Contact Lens Corporation Of America Multi-focal contact lens
US5220359A (en) * 1990-07-24 1993-06-15 Johnson & Johnson Vision Products, Inc. Lens design method and resulting aspheric lens
US5229797A (en) * 1990-08-08 1993-07-20 Minnesota Mining And Manufacturing Company Multifocal diffractive ophthalmic lenses
US5125729A (en) * 1991-05-03 1992-06-30 Les Laboratoires Opti-Centre Inc. Multifocal contact lens
US5406341A (en) * 1992-11-23 1995-04-11 Innotech, Inc. Toric single vision, spherical or aspheric bifocal, multifocal or progressive contact lenses and method of manufacturing
US5448312A (en) * 1992-12-09 1995-09-05 Johnson & Johnson Vision Products, Inc. Pupil-tuned multifocal ophthalmic lens
NZ250359A (en) * 1992-12-09 1996-07-26 Johnson & Johnson Vision Prod Multifocal ophthalmic lens pair
US5436678A (en) * 1993-09-30 1995-07-25 Wilmington Partners L.P. Aspheric multifocal contact lens

Also Published As

Publication number Publication date
CN1159587A (en) 1997-09-17
NO961800L (en) 1996-11-05
IL117936A0 (en) 1996-08-04
ATE288593T1 (en) 2005-02-15
NZ286403A (en) 1997-11-24
JPH0926560A (en) 1997-01-28
EP0741314B1 (en) 2005-02-02
BR9602151A (en) 1997-12-30
NO961800D0 (en) 1996-05-03
CA2175650A1 (en) 1996-11-05
DE69634282T2 (en) 2006-01-12
KR960040325A (en) 1996-12-17
DE69634282D1 (en) 2005-03-10
ZA963543B (en) 1997-11-03
SG67352A1 (en) 1999-09-21
TW350922B (en) 1999-01-21
EP0741314A2 (en) 1996-11-06
US5715031A (en) 1998-02-03
AU5195096A (en) 1996-11-14
CN1105313C (en) 2003-04-09
AU698433B2 (en) 1998-10-29
MX9601672A (en) 1997-07-31
EP0741314A3 (en) 1998-10-28

Similar Documents

Publication Publication Date Title
JP4467653B2 (en) Concentric aspherical multifocal ophthalmic lens and manufacturing method thereof
JP4519205B2 (en) Concentric single viewpoint lens and its design method
KR100405255B1 (en) Combined multifocal toric lens designs
JP4183772B2 (en) Multifocal concentric annular lens and design method thereof
US6474814B1 (en) Multifocal ophthalmic lens with induced aperture
US7178918B2 (en) Ophthalmic lenses with induced aperture and redundant power regions
KR100407733B1 (en) Multi-focus lens with intermediate optical power
EP1838246B1 (en) Apodized aspheric diffractive lenses
KR101864609B1 (en) Ophthalmic lens with optical sectors
US8444267B2 (en) Ophthalmic lens, systems and methods with angular varying phase delay
JP2019507624A (en) Multifocal lens with reduced visual impairment
WO1992006400A1 (en) Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens
CN114787694A (en) Ophthalmic lens for reducing, minimizing and/or eliminating interference of out-of-focus light with focused images
US20200121450A1 (en) High definition and extended depth of field intraocular lens
JP2001503882A (en) Multifocal corneal contact lens pair
CN116636956A (en) multifocal intraocular lens
JP2023534079A (en) multifocal lens
MXPA96001672A (en) Designs of multifocal lens, imperfect spherical, concentr
MXPA96001670A (en) Multifo multifo concentric ring lens

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070305

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term