JP4466796B2 - Pentacyclotetradecane derivative and method for producing the same - Google Patents

Pentacyclotetradecane derivative and method for producing the same Download PDF

Info

Publication number
JP4466796B2
JP4466796B2 JP03033999A JP3033999A JP4466796B2 JP 4466796 B2 JP4466796 B2 JP 4466796B2 JP 03033999 A JP03033999 A JP 03033999A JP 3033999 A JP3033999 A JP 3033999A JP 4466796 B2 JP4466796 B2 JP 4466796B2
Authority
JP
Japan
Prior art keywords
formula
producing
compound
pentacyclotetradecane
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03033999A
Other languages
Japanese (ja)
Other versions
JP2000229964A (en
Inventor
武明 光藤
輝幸 近藤
健司 和田
俊彰 鈴木
一男 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP03033999A priority Critical patent/JP4466796B2/en
Publication of JP2000229964A publication Critical patent/JP2000229964A/en
Application granted granted Critical
Publication of JP4466796B2 publication Critical patent/JP4466796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は機能性高分子モノマーとして、また医農薬や香料等の原料として有用な新規なペンタシクロテトラデカン誘導体及びその製造方法に関する。
【0002】
【従来の技術】
従来高分子モノマーとした芳香族化合物が多く開発されてきたが、それらを用いたポリマーとしては着色、耐候性や耐熱性に問題を残している。そこで近年はそれらの問題を克服しうる脂環式化合物特に多環式脂肪族化合物が注目されてきている。
【0003】
多環式脂肪族化合物の一つとして比較的安価に製造できるペンタシクロテトラデカジエン(PCTD)の合成についてJournal of Chemical Society, Chemical Communication,1994,435に報告されている。
またこれらの誘導体としてJournal of Chemical Society, Perkin Trans.1,1998,1095、特開平8−245456号公報及び特開平9−67286号公報に報告がある。
【0004】
【発明が解決しようとする課題】
ペンタシクロテトラデカジエンから反応性に富む官能基を付与した化合物は上記の文献類に報告されているだけの限られた化合物しか知られていない。そこでさらに種々の反応性官能基をこれらの化合物に付与できればポリマー原料としてまた生理活性化合物原料等としてその用途は大きく拡大しうるものである。
【0005】
【課題を解決するための手段】
これらの問題を解決するために本発明者らは鋭意検討を行った結果、ペンタシクロテトラデカジエンに酸化剤を反応させることにより、反応性に富む水酸基、ケタール、カルボン酸もしくはラクトンを導入できることを見出し本発明を完成した。
【0006】
本発明は式(1)、式(2)、式(3)、式(4)又は式(5)
【0007】
【化9】

Figure 0004466796
【0008】
【化10】
Figure 0004466796
【0009】
【化11】
Figure 0004466796
【0010】
【化12】
Figure 0004466796
【0011】
【化13】
Figure 0004466796
【0012】
で表されるペンタシクロテトラデカン誘導体に関する。また、本発明は、式(6)
【0013】
【化14】
Figure 0004466796
【0014】
で表されるペンタシクロテトラデカジエンに酸化剤としてオスミウム化合物を反応させて式(1)または(2)で表される化合物を製造する事を特徴とするペンタシクロテトラデカン誘導体の製造方法、或いは酸化剤としてルテニウム化合物を反応させて式(5)の化合物を、また、式(1)又は(2)の化合物に酸触媒の存在下アセトン等を反応させて式(3)又は(4)の化合物を、更に、式(6)の化合物に酸化剤としてレニウム酸化物を反応させて式(7)または(8)
【0015】
【化15】
Figure 0004466796
【0016】
【化16】
Figure 0004466796
【0017】
で表される化合物を製造することを特徴とするペンタシクロテトラデカン誘導体の製造方法に関する。
【0018】
【発明の実施の形態】
以下、更に本発明を詳細に説明する。まずはじめに式(1)又は式(2)で表されるアルコール誘導体の製造方法について述べる。
式(6)
【0019】
【化17】
Figure 0004466796
【0020】
で表されるペンタシクロテトラデカジエンに酸化剤を反応させることにより式(1)又は式(2)のペンタシクロテトラデカン誘導体を製造することができる。用いる酸化剤としては通常オレフィンをジオールに変換できる酸化剤であればすべて可能であるが好ましくはオスミウム化合物(特にK2OsO4)あるいはAD−mix−α又はβ(商品名 アルドリッチ社)が良い。
【0021】
AD−mix−βを使用するときは、使用する当量によって式(1)のジオール又は式(2)のテトラオールを別個にまたは混合物として合成できる。混合物として得られるときも蒸留等の操作によって分離することができる。反応溶媒としては不活性な溶媒であればすべて使用可能であるが、水−t−ブタノールの混合系溶媒とするのがよい。反応温度は−30℃〜溶媒の沸点まで可能であるが、好ましくは0℃〜30℃である。反応時間はTLC,G.C.,等の分析法を用いて原料の消失及び生成物の確認によって決定されるが通常0.5〜48時間である。
【0022】
オスミウム酸化剤を使用するときは、通常酸化剤が高価であるため触媒量の使用とし助酸化剤を使用する。助酸化剤としてはN−メチルモルフォリン−N−オキシドが好ましい。反応溶媒としては不活性な溶媒であればすべて使用可能であるが、水−t−ブタノール−アセトンの混合系溶媒とするのがよい。反応温度は−30℃〜溶媒の沸点まで可能であるが、好ましくは0℃〜30℃である。反応時間はTLC,G.C.,等の分析法を用いて原料の消失及び生成物の確認によって決定されるが通常0.5〜48時間である。
【0023】
このようにして得られた式(1)又は式(2)で表される化合物を酸触媒存在下でアセトンもしくはアセトンジメチルケタールと反応させることで式(3)又は式(4)で表される化合物を得ることができる。この際に用いる酸触媒としては通常p−トルエンスルホン酸が好ましい。反応溶媒は不活性なものであればすべて可能であるが、通常アセトンおよびアセトンジメチルケタールを過剰に用いることで特に溶媒は必要としない。
【0024】
反応温度は0℃〜溶媒の沸点まで可能であるが、好ましくは10℃〜溶媒の沸点である。反応時間はTLC,G.C.,等の分析法を用いて原料の消失及び生成物の確認によって決定されるが通常0.5〜48時間である。
【0025】
次に式(5)で表される化合物の製造方法について述べる。式(6)で表されるペンタシクロテトラデカジエンに酸化剤を反応させることにより式(5)の化合物を製造することができる。用いる酸化剤としては通常オレフィンを開裂して酸化できる酸化剤であればすべて可能であるが好ましくはルテニウム化合物(特にRuCl3)が良い。
【0026】
ルテニウム酸化剤を使用するときは、通常酸化剤が高価であるため触媒量の使用とし助酸化剤を使用する。助酸化剤としては過ヨウ素酸ナトリウムが好ましい。通常基質に対して2〜20当量用いる。反応溶媒は不活性なものであればすべて可能であるが、通常四塩化炭素、アセトニトリル、水等の混合溶媒を用いる。反応温度は0℃〜溶媒の沸点まで可能であるが、好ましくは0℃〜50℃である。反応時間はTLC,G.C.,等の分析法を用いて原料の消失及び生成物の確認によって決定されるが通常0.5〜48時間である。
【0027】
また式(2)で表される化合物を原料として用いて同様に反応させても式(5)の化合物を製造することができる。
次に式(7)又は式(8)で表される化合物の製造方法について述べる。これらの化合物は文献に公知の物質であるが以下の製造方法は公知の製造方法より収率、純度等の点で優れた製造方法である。
【0028】
すなわち式(6)で表されるペンタシクロテトラデカジエンにメチルトリオキソレニウムを触媒量用い、過酸化水素を必要当量加えて反応させることで式(7)又は式(8)で表される化合物を製造することができる。
反応溶媒は不活性なものであればすべて可能であるが、通常ニトロメタン、ジクロロメタン等の溶媒を用いる。また添加剤としてピリジンを加えることが好ましい。反応温度は0℃〜溶媒の沸点まで可能であるが、好ましくは0℃〜50℃である。反応時間はTLC,G.C.,等の分析法を用いて原料の消失及び生成物の確認によって決定されるが通常0.5〜48時間である。反応生成物の単離方法は特に限定されず、通常用いられる蒸留、カラムクロマトグラフィー、再結晶などにより精製することができる。
【0029】
これらの方法によって得られたペンタシクロテトラデカン誘導体には立体異性体が存在するが、当然すべての異性体が本方法に含まれるものである。
また上記で述べたような酸化方法を駆使することによって式(9)や式(10)で表される化合物の製造についてもできるものと考えられる。
【0030】
【化18】
Figure 0004466796
【0031】
【化19】
Figure 0004466796
【0032】
【実施例】
次に実施例を挙げ本発明の内容を具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1(式(1)、式(2)、式(3)又は式(4)の化合物の製造)
磁気回転子を入れた容量100mlの2つ口反応瓶に、式(6)の純度96%のペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデカ−4,11−ジエン(PCTD)372mg(PCTDとして1.94 mmol)をいれ、t−ブチルアルコール20mlおよび水20mlの混合溶液に溶解した後、不斉ジヒドロキシル化試薬AD−mix−β(商品名 アルドリッチ社)5.6g(オレフィン4.0mmolを酸化するのに必要な量、2.1当量)を加え、室温で24時間撹拌した。氷冷後反応溶液に亜硫酸ナトリウム6.0gを加え、室温に戻した後1時間撹拌後、固体をろ過により除去した。ろ液から酢酸エチル40mlで1回、20mlで3回抽出し、この酢酸エチル溶液に硫酸ナトリウムを加えて乾燥した。減圧下、酢酸エチルを留去すると、白色固体が得られた。
【0033】
これは、式(1)のジオール(11,12−ジヒドロキシペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデセン−4)と式(2)のテトラオール(4,5,11,12−テトラヒドロキシペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデカン)の混合物である。
【0034】
この白色固体に、アセトン4ml、2,2−ジメトキシプロパン5ml、p−トルエンスルホン酸60mgを加えた懸濁液を、室温で1時間撹拌し、均一になった溶液に炭酸水素ナトリウム水溶液10mlおよびヘキサン10mlを加えた。ヘキサン層を分離した後、水層をヘキサン5mlで2回抽出し、これもヘキサン層に加えた。硫酸ナトリウムを加えて乾燥した後、減圧下で溶媒を留去した。分取高速液体クロマトグラフィーより分離し、式(3)のジオールのアセタール化物114mg(0.44mmol、収率23%)および式(4)のテトラオールのジアセタール化物238mg(0.72mmol、収率37%)を得た。
ジオールは、ジオールとテトラオールの混合物をキューゲルロール蒸留することによっても単離できた。
【0035】
実施例2(式(2)の化合物の製造)
磁気回転子を入れた容量20mlの2つ口フラスコに、式(6)の純度96%のペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデカ−4,11−ジエン(PCTD)279mg(PCTDとして1.45mmol)をいれ、t−ブチルアルコール1.0ml、水1.0ml、アセトン2.0mlの混合溶液に溶解した後、N−メチルモルホリン−N−オキシド0.78g(7.7mmol、5.3当量)およびオスミウム酸カリウム11.1mg(0.033mmol、2.3mol%)を加え、室温で24時間撹拌し、生成した白色固体をろ別し洗浄すると、式(2)の粗テトラオール(4,5,11,12−テトラヒドロキシペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデカン)237mg(0.94mmol、粗収率65%)が得られた。
【0036】
この白色固体165mgを、磁気回転子を入れた容量20mlの2つ口フラスコにいれ、アセトン4ml、2,2−ジメトキシプロパン5ml、p−トルエンスルホン酸60mgを加えた懸濁液を、室温で1時間撹拌し、均一になった溶液に炭酸水素ナトリウム水溶液10mlおよびヘキサン10mlを加えた。ヘキサン層を分離した後、水層をヘキサン5mlで2回抽出し、これもヘキサン層に加えた。硫酸ナトリウムを加えて乾燥した後、減圧下で溶媒を留去し、キューゲルロール蒸留(130℃/1.5mmHg)により精製し、式(4)の無色固体ジアセタール化生成物を単離した。これを磁気回転子を入れた容量50mlの2つ口フラスコにいれ、酢酸8mlおよび水2mlの混合溶媒に溶解し、60℃で1.5時間撹拌し、放冷後、反応液をトルエン20mlで希釈した後、溶媒を減圧留去することにより純粋な式(2)のテトラオールを得た。
【0037】
実施例3(式(5)の化合物の製造方法)
磁気回転子を入れた容量200mlの2つ口反応瓶に、式(6)の純度96 %のペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデカ−4,11−ジエン(PCTD)1.05 g(PCTDとして5.5mmol)をいれ、四塩化炭素24ml、アセトニトリル24ml、水36mlの混合溶液に溶解した後、過ヨウ素酸ナトリウム11.7g(55mmol、10当量)、三塩化ルテニウム三水和物63 mg(0.24mmol、4.4mol%)を加え、室温で2時間撹拌した。油層を除去した後、水層に濃塩酸を加えてpH1とし、塩化メチレン50mlで3回抽出した後、硫酸ナトリウムを加えて乾燥させた。溶媒留去後、ジエチルエーテルで洗浄すると、式(5)の白色固体5,7−ジオキサ−4,8−ジオキソペンタシクロ[7.6.0.02,6.03,14.011,15]ペンタデカン−13−カルボン酸211mg(0.76mmol、収率14%)が得られた。メタノールから再結晶することにより、純粋なものが得られた。
【0038】
実施例4(式(2)の化合物から式(5)の化合物の製造)
磁気回転子を入れた容量50mlの2つ口反応瓶に、式(2)のテトラオール(4,5,11,12−テトラヒドロキシペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデカン)505mg(2.0mmol)、三塩化ルテニウム三水和物20mg(0.076mmol、3.8mol%)、過ヨウ素酸ナトリウム2.0g(9.4mmol、4.7当量)をいれ、四塩化炭素8.0ml、アセトニトリル8.0ml、水12mlを加えて懸濁させた後、室温で4時間撹拌した。油層を除去した後、水層に濃塩酸を加えてpH1とし、塩化メチレン15mlで3回抽出した後、硫酸ナトリウムを加えて乾燥させた。溶媒留去後、ジエチルエーテルで洗浄すると、式(5)の白色固体5,7−ジオキサ−4,8−ジオキソペンタシクロ[7.6.0.02,6.03,14.011,15]ペンタデカン−13−カルボン酸173mg(0.62mmol、収率31%)が得られた。
【0039】
参考例1(式(7)又は式(8)の化合物の製造)
磁気回転子を入れた容量20mlの2つ口フラスコに、式(6)の純度96%のペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデカ−4,11−ジエン(PCTD)370mg(PCTDとして1.93mmol)をいれ、ニトロメタン2mlを加えて溶解した後、メチルトリオキソレニウム5.9mg(1.2mol%)、ピリジン0.039ml(24mol%)、30%過酸化水素水0.21ml(2.1mmol、1.1当量)を加え、室温で2時間撹拌した。反応溶液のガスクロマトグラフィー分析より、式(7)のモノエポキシド収率65%、式(8)のジエポキシド収率20%であった。油層を分離した後、水層をジエチルエーテル5mlで3回抽出し、これも油層に加えた。硫酸ナトリウムを加えて乾燥した後、減圧下で溶媒を留去し、キューゲルロール蒸留(140℃/1.3mmHg)した後、分取高速液体クロマトグラフィーを用いて分離することにより純粋な式(7)の4,5−エポキシペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデセン−4が得られた。
【0040】
実施例6(式(8)の化合物の製造)
磁気回転子を入れた容量50mlの2つ口反応瓶に、式(6)の純度96%のペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデカ−4,11−ジエン(PCTD)1.69g(PCTDとして8.8mmol)をいれ、塩化メチレン10mlを加えて溶解した後、メチルトリオキソレニウム23mg(1.0mol%)、ピリジン0.20ml(24mol%)、30%過酸化水素水3.1ml(30mmol、3.4当量)を加え、室温で2時間撹拌した。油層を分離した後、水層をジエチルエーテル5mlで3回抽出し、これも油層に加えた。硫酸ナトリウムを加えて乾燥した後、減圧下で溶媒を留去し、キューゲルロール蒸留(140℃/1.3mmHg)により精製し、式(8)の無色の結晶4,5:11,12−ジエポキシペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデカン1.72g(7.95mmol、収率90%)を得た。
次に各化合物の物性について記載する。
【0041】
式(1)の化合物
11,12−ジヒドロキシペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデセン−4
無色固体
MS(m/z): 218(M+)
IR(KBr) : 3412,3035,2936,2894,1364,1357,1262,1223,1095,1076,1057,1036,792cm-1
1H NMR(400 MHz,CDCl3):δ5.65(dd,1H,11-H or 12-H,J=5.4,2.2 Hz),5.52(dd,1H,11-H or 12-H,J=5.4,2.2 Hz),4.21(br s,1H,4-H),3.99(br s,1H,5-H),3.41(m,3H,2-,13- and1 4-H),3.18(br t,1H,6-H,J=8.3 Hz),2.89(q,1H,1-H,J=9.3 Hz),2.72(td,1H,3-H,J=10.7,4.9 Hz),2.44(m,1H,8-H),2.36(ddd,1H,10-H,J=10.8,9.3,8.3 Hz),2.21(d,1H,OH,J=3.5 Hz),2.10(d,1H,OH,J=6.4 Hz),1.81(ddd,1H,7-exo-H,J=13.2,9.3,7.8 Hz),1.72(dt,1H,9-H,J=12.7,8.3 Hz),1.66(d,1H,7-endo-H,J=13.2 Hz),1.01(dt,1H,9-H,J=12.7,11.2 Hz).
13C NMR(100MHz,CDCl3):δ 136.7 and 129.8(C11 and C12),80.3(C5),76.5(C4),58.1(C2,C13 or C14),57.1(C3),56.5(C2,C13 or C14),56.1(C1),53.3(C2,C13 or C14),52.6(C6),52.5(C10),47.8(C8),36.0(C7),35.4(C9).
【0042】
式(2)の化合物
4,5,11,12−テトラヒドロキシペンタシクロ[6.6.0.02,6.03 ,13.010,14]テトラデカン
無色固体
IR(KBr) : 3468,3283,2943,2930,2859,1463,1349,1116,1100,1072,1059,1035,1018cm-1
1HNMR(400 MHz,DMSO-d6):δ4.29(d,2H,OH,J=4.4 Hz),4.18(d,2H,OH,J=5.4 Hz),3.99(br d,2H,4- and 12-H,J=3.4 Hz),3.87(br d,2H,5- and 11-H,J=3.9 Hz),3.19(q,2H,2- and 14-H,J=9.8 Hz),2.80(q,1H,1-H,J=9.8 Hz),2.53(m,3H,3-,8- and 13-H),2.31(m,2H,6- and 10-H),1.86(dt,2H,7-exo- and 9-exo-H,J=13.7,9.3 Hz),1.32(dt,2H,7-endo- and 9-endo-H,J=13.7,5.9 Hz).
13CNMR(75 MHz,DMSO-d6):δ80.2 and 75.2(C4,C5,C11 and C12),57.2(C2 and C14 or C3 and C13),56.2(C1),52.3(C2 and C14 or C3 and C13),52.3(C6 and C10),47.4(C8),36.6(C7 and C9).
【0043】
式(3)の化合物
14,14−ジメチル−13,15−ジオキサヘキサシクロ[9.6.0.02,9.03,7.04,17.012,16]ヘプタデセン−5
無色固体, 融点 57〜58.5℃
MS(m/z):258(M+)
IR(KBr) : 3034,2979,2949,2923,2905,2851,1375,1370,1264,1259,1224,1160,1053,1045,870,733,707cm-1
1H NMR(400MHz,CDCl3):δ5.69(dd,1H,11-H or 12-H,J=5.4,2.0 Hz),5.49(dd,1H,11-H or 12-H,J=5.4,2.0 Hz),4.67(d,1H,4-H,J=4.9 Hz),4.34(d,1H,5-H,J=4.9 Hz),3.42(q,1H,2-H,J=9.3 Hz),3.41(tt,1H,13-H,J=9.3,2.0 Hz),3.31(dt,1H,14-H,J=10.3,8.8 Hz),3.18(tt,1H,10-H,J=8.1,2.0 Hz),3.02(t,1H,3-H,J=9.3 Hz),2.92(dt,1H,1-H,J=10.3,9.3 Hz),2.55(dt,1H,6-H,J=11.2,9.3 Hz),2.45(m,1H,8-H),1.77(dt,1H,7-H,J=13.7,9.3 Hz),1.74(m,2H,9-H),1.31(dt,1H,7-H,J=13.7,11.2 Hz),1.44(s,3H,Me),1.26(s,3H,Me).
13C NMR(100MHz,CDCl3):δ138.4 and 129.4(C11 and C12),108.9(CMe2),88.8(C5),85.3(C4),59.4(C3),57.0(C14),56.9(C1),56.6(C2),53.7(C13),52.9(C6),52.3(C10),47.9(C8),36.4(C7),35.8(C9),27.3(Me),24.8(Me).
【0044】
式(4)の化合物
6,6,16,16−テトラメチル−5,7,15,17−テトラオキサヘプタシクロ[9.9.0.02,9.03,19.04,8.013,20.014,18]イコサン
無色固体 融点 106〜108℃
MS(m/z):317(M+-15)
元素分析値:分子式 C20H28O4:計算値:C, 72.26; H, 8.49.;測定値:C,72.16 ; H, 8.29.
IR(KBr): 2979,2952,2933,2901,2883,2855,1381,1371,1263,1255,1215,1210,1161,1056,1041,873cm-1
1H NMR(400 MHz,CDCl3):δ4.61(d,2H,4- and 12-H or 5- and 11-H,J=5.2 Hz),4.50(d,2H,4- and 12-H or 5- and 11-H,J=5.2 Hz),3.33(q,2H,2- and 14-H,J=9.3 Hz),2.86(br d,2H,3- and 13-H,J=9.3 Hz),2.83(q,1H,1-H,J=9.3 Hz),2.69(td,2H,6,and10-H,J=9.3,6.8 Hz),2.40(qt,1H,8-H,J=9.3,6.8 Hz),1.96(dt,2H,J=14.2,9.3 Hz),1.23(dt,2H,J=14.2,6.8 Hz),1.41(s,6H,Me),1.24(s,6H,Me).
13C NMR(100MHz,CDCl3):δ109.3,90.6 and 85.7(C4,C5,C11 and C12),57.8(C1,C2 and C14),56.7(C3 and C13),52.2(C6 and C10),47.5(C8),36.9(C7 and C9),27.2(Me),24.4(Me).
【0045】
式(5)の化合物
5,7−ジオキサ−4,8−ジオキソペンタシクロ[7.6.0.02,6.03,14.011,15]ペンタデカン−13−カルボン酸
無色固体
元素分析値:分子式 C14H14O6:計算値: C,60.43;H,5.07.;測定値: C,60.10;H,5.15.
IR(KBr):3433,2963,1783,1752,1707,1701,1691,1261,1124,1000,803cm-1
1H NMR(400 MHz,DMSO-d6):δ11.7(br,1H,CO2H),6.32(d,1H,4-H,J=6.6 Hz),3.56(dd,1H,13-H,J=10.3,8.8 Hz),3.35(td,1H,3-H,J=10.3,6.6 Hz),3.27(td,1H,10-H,J=10.3,7.3 Hz),3.20(dt,1H,1-H,J=11.0,8.8 Hz),3.07(dt,1H,6-H,J=13.2,8.8 Hz),3.00(td,1H,14-H,J=8.8,7.3 Hz),2.91(dt,1H,2-H,J=10.3,8.8 Hz),2.66(m,1H,8-H),2.29(dt,1H,7-H,J=13.9,8.8 Hz),2.12(dt,1H,9-H,J=13.2,10.3 Hz),1.56(ddd,1H,9-H,J=13.2,10.3,5.5 Hz),1.30(dt,1H,7-H,J=13.9,13.2 Hz).
13CNMR(100MHz,DMSO-d6):δ174.4(CO),174.0(CO),170.3(CO),99.8(C4,JC-H=186Hz),59.1(C1),48.8(C13),48.0(C14),47.8(C10),45.0(C6),42.5(C2),41.4(C3),40.7(C8),38.3(C7),33.2(C9).
ナンバーリングはPCTDに準ずる。
【0046】
【発明の効果】
本発明は反応性に富んだ官能基を有するペンタシクロテトラデカン誘導体およびその製造法に関するものであり、機能性ポリマー原料や生理活性化合物材料として有用な化合物である。[0001]
[Industrial application fields]
The present invention relates to a novel pentacyclotetradecane derivative useful as a functional polymer monomer and as a raw material for medical agrochemicals, perfumes and the like, and a method for producing the same.
[0002]
[Prior art]
Conventionally, many aromatic compounds have been developed as polymer monomers, but as a polymer using them, problems remain in coloring, weather resistance and heat resistance. Therefore, in recent years, alicyclic compounds that can overcome these problems, particularly polycyclic aliphatic compounds, have attracted attention.
[0003]
The synthesis of pentacyclotetradecadiene (PCTD), which can be produced relatively inexpensively as one of polycyclic aliphatic compounds, has been reported in Journal of Chemical Society, Chemical Communication, 1994, 435.
These derivatives are reported in Journal of Chemical Society, Perkin Trans. 1, 1998, 1095, JP-A-8-245456 and JP-A-9-67286.
[0004]
[Problems to be solved by the invention]
Only a limited number of compounds having a functional group rich in reactivity imparted from pentacyclotetradecadiene are reported as reported in the above-mentioned literatures. Therefore, if various reactive functional groups can be further imparted to these compounds, their uses can be greatly expanded as polymer raw materials and bioactive compound raw materials.
[0005]
[Means for Solving the Problems]
In order to solve these problems, the present inventors have conducted intensive studies. As a result, by reacting an oxidant with pentacyclotetradecadiene, it is possible to introduce a highly reactive hydroxyl group, ketal, carboxylic acid or lactone. The present invention has been completed.
[0006]
The present invention relates to formula (1), formula (2), formula (3), formula (4) or formula (5).
[0007]
[Chemical 9]
Figure 0004466796
[0008]
[Chemical Formula 10]
Figure 0004466796
[0009]
Embedded image
Figure 0004466796
[0010]
Embedded image
Figure 0004466796
[0011]
Embedded image
Figure 0004466796
[0012]
It is related with the pentacyclotetradecane derivative represented by these. Further, the present invention provides the formula (6)
[0013]
Embedded image
Figure 0004466796
[0014]
A process for producing a pentacyclotetradecane derivative characterized in that a compound represented by formula (1) or (2) is produced by reacting an osmium compound as an oxidizing agent with pentacyclotetradecadiene represented by the formula: The compound of formula (5) is reacted with a ruthenium compound as an agent, and the compound of formula (3) or (4) is reacted with acetone or the like in the presence of an acid catalyst with the compound of formula (1) or (2). Is further reacted with a rhenium oxide as an oxidant to the compound of formula (6) to give a compound of formula (7) or (8)
[0015]
Embedded image
Figure 0004466796
[0016]
Embedded image
Figure 0004466796
[0017]
And a method for producing a pentacyclotetradecane derivative, which comprises producing a compound represented by the formula:
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be further described in detail. First, a method for producing an alcohol derivative represented by formula (1) or formula (2) will be described.
Formula (6)
[0019]
Embedded image
Figure 0004466796
[0020]
A pentacyclotetradecane derivative represented by the formula (1) or the formula (2) can be produced by reacting an oxidant with the pentacyclotetradecadiene represented by the formula: As the oxidizing agent to be used, any oxidizing agent capable of converting an olefin into a diol can be used, but preferably an osmium compound (particularly K 2 OsO 4 ), AD-mix-α or β (trade name: Aldrich).
[0021]
When AD-mix-β is used, the diol of formula (1) or the tetraol of formula (2) can be synthesized separately or as a mixture, depending on the equivalents used. Even when it is obtained as a mixture, it can be separated by an operation such as distillation. Any inert solvent can be used as long as it is an inert solvent, but a mixed solvent of water-t-butanol is preferred. The reaction temperature can be from −30 ° C. to the boiling point of the solvent, but is preferably 0 ° C. to 30 ° C. The reaction time is TLC, G.M. C. It is usually 0.5 to 48 hours although it is determined by disappearance of raw materials and confirmation of the product using an analytical method such as.
[0022]
When an osmium oxidant is used, since an oxidizer is usually expensive, a catalytic amount is used and a co-oxidizer is used. As the co-oxidant, N-methylmorpholine-N-oxide is preferable. Any inert solvent can be used as long as it is an inert solvent, but a mixed solvent of water-t-butanol-acetone is preferred. The reaction temperature can be from −30 ° C. to the boiling point of the solvent, but is preferably 0 ° C. to 30 ° C. The reaction time is TLC, G.M. C. It is usually 0.5 to 48 hours although it is determined by disappearance of raw materials and confirmation of the product using an analytical method such as.
[0023]
The compound represented by formula (1) or formula (2) thus obtained is reacted with acetone or acetone dimethyl ketal in the presence of an acid catalyst, and is represented by formula (3) or formula (4). A compound can be obtained. As the acid catalyst used in this case, p-toluenesulfonic acid is usually preferred. Any inert solvent can be used as long as it is inert, but usually no excess solvent is required by using acetone and acetone dimethyl ketal in excess.
[0024]
The reaction temperature can be from 0 ° C. to the boiling point of the solvent, but is preferably from 10 ° C. to the boiling point of the solvent. The reaction time is TLC, G.M. C. It is usually 0.5 to 48 hours although it is determined by disappearance of raw materials and confirmation of the product using an analytical method such as.
[0025]
Next, the manufacturing method of the compound represented by Formula (5) is described. A compound of formula (5) can be produced by reacting an oxidant with pentacyclotetradecadiene represented by formula (6). As the oxidizing agent to be used, any oxidizing agent that can be oxidized by cleaving an olefin can be used, but a ruthenium compound (particularly RuCl 3 ) is preferable.
[0026]
When a ruthenium oxidant is used, since an oxidant is usually expensive, a catalytic amount is used and a co-oxidant is used. As a co-oxidant, sodium periodate is preferred. Usually, 2 to 20 equivalents are used relative to the substrate. Any reaction solvent can be used as long as it is inert, but usually a mixed solvent such as carbon tetrachloride, acetonitrile, water or the like is used. The reaction temperature can be from 0 ° C to the boiling point of the solvent, but is preferably 0 ° C to 50 ° C. The reaction time is TLC, G.M. C. It is usually 0.5 to 48 hours although it is determined by disappearance of raw materials and confirmation of the product using an analytical method such as.
[0027]
The compound of formula (5) can also be produced by reacting in the same manner using the compound represented by formula (2) as a raw material.
Next, the manufacturing method of the compound represented by Formula (7) or Formula (8) is described. These compounds are known in the literature, but the following production methods are superior to the known production methods in terms of yield, purity and the like.
[0028]
That is, a compound represented by formula (7) or formula (8) by reacting pentacyclotetradecadiene represented by formula (6) with a catalytic amount of methyltrioxorhenium and adding a required equivalent amount of hydrogen peroxide. Can be manufactured.
Any inert solvent can be used as long as it is inert, but usually a solvent such as nitromethane or dichloromethane is used. It is preferable to add pyridine as an additive. The reaction temperature can be from 0 ° C to the boiling point of the solvent, but is preferably 0 ° C to 50 ° C. The reaction time is TLC, G.M. C. It is usually 0.5 to 48 hours although it is determined by disappearance of raw materials and confirmation of the product using an analytical method such as. The isolation method of the reaction product is not particularly limited, and it can be purified by commonly used distillation, column chromatography, recrystallization and the like.
[0029]
The pentacyclotetradecane derivatives obtained by these methods have stereoisomers, but naturally all isomers are included in this method.
It is also considered that the compounds represented by formula (9) and formula (10) can be produced by making full use of the oxidation method as described above.
[0030]
Embedded image
Figure 0004466796
[0031]
Embedded image
Figure 0004466796
[0032]
【Example】
Next, the content of the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Example 1 (Production of compound of formula (1), formula (2), formula (3) or formula (4))
In a 100 ml two-necked reaction bottle containing a magnetic rotor, pentacyclo [6.6.0.0 2,6 . 0 3,13 . 0 10,14] tetradec-4,11-put diene (PCTD) 372mg (1.94 mmol as PCTD), was dissolved in a mixed solution of t- butyl alcohol 20ml and water 20ml, asymmetric dihydroxylation reagent AD -Mix-β (trade name: Aldrich) 5.6 g (amount required to oxidize 4.0 mmol of olefin, 2.1 equivalents) was added and stirred at room temperature for 24 hours. After cooling with ice, 6.0 g of sodium sulfite was added to the reaction solution, the mixture was returned to room temperature, stirred for 1 hour, and the solid was removed by filtration. The filtrate was extracted once with 40 ml of ethyl acetate and three times with 20 ml, and sodium sulfate was added to the ethyl acetate solution and dried. When ethyl acetate was distilled off under reduced pressure, a white solid was obtained.
[0033]
This is because the diol of formula (1) (11,12-dihydroxypentacyclo [6.6.0.0 2,6 0.0 3,13 .0 10,14 ] tetradecene-4) and tetra of formula (2) ol (4,5,11,12- tetrahydroxy penta cyclo [6.6.0.0 2,6 .0 3,13 .0 10,14] tetradecane) mixtures.
[0034]
A suspension obtained by adding 4 ml of acetone, 5 ml of 2,2-dimethoxypropane and 60 mg of p-toluenesulfonic acid to this white solid was stirred at room temperature for 1 hour, and 10 ml of aqueous sodium hydrogen carbonate solution and hexane were added to the uniform solution. 10 ml was added. After separating the hexane layer, the aqueous layer was extracted twice with 5 ml of hexane, and this was also added to the hexane layer. After adding sodium sulfate and drying, the solvent was distilled off under reduced pressure. Separated from preparative high-performance liquid chromatography, 114 mg (0.44 mmol, yield 23%) of the diol acetal of formula (3) and 238 mg (0.72 mmol, yield 37) of the tetraol diacetal of formula (4) %).
The diol could also be isolated by kuegel roll distillation of a mixture of diol and tetraol.
[0035]
Example 2 (Production of compound of formula (2))
Into a 20 ml two-necked flask containing a magnetic rotator, pentacyclo [6.6.0.0 2,6 . 0 3,13 . 0 10,14] tetradec-4,11-put diene (PCTD) 279mg (1.45mmol as PCTD), t- butyl alcohol 1.0 ml, water 1.0 ml, was dissolved in a mixed solution of acetone 2.0ml , N-methylmorpholine-N-oxide 0.78 g (7.7 mmol, 5.3 eq) and potassium osmate 11.1 mg (0.033 mmol, 2.3 mol%) were added and stirred at room temperature for 24 hours to form When the white solid is filtered and washed, crude tetraol of formula (2) (4,5,11,12- tetrahydroxy penta cyclo [6.6.0.0 2,6 .0 3,13 .0 10 , 14 ] tetradecane) 237 mg (0.94 mmol, crude yield 65%) was obtained.
[0036]
165 mg of this white solid was placed in a 20-ml two-necked flask containing a magnetic rotator, and a suspension containing 4 ml of acetone, 5 ml of 2,2-dimethoxypropane and 60 mg of p-toluenesulfonic acid was added at room temperature to 1 ml. The mixture was stirred for an hour, and 10 ml of an aqueous sodium hydrogen carbonate solution and 10 ml of hexane were added to the homogenized solution. After separating the hexane layer, the aqueous layer was extracted twice with 5 ml of hexane, and this was also added to the hexane layer. After adding sodium sulfate and drying, the solvent was distilled off under reduced pressure, and the residue was purified by Kugelrohr distillation (130 ° C./1.5 mmHg) to isolate the colorless solid diacetalized product of formula (4). This was placed in a 50 ml two-necked flask containing a magnetic rotor, dissolved in a mixed solvent of 8 ml of acetic acid and 2 ml of water, stirred at 60 ° C. for 1.5 hours, allowed to cool, and then the reaction solution was washed with 20 ml of toluene. After dilution, the solvent was removed under reduced pressure to obtain pure tetraol of formula (2).
[0037]
Example 3 (Method for producing compound of formula (5))
In a two-necked reaction bottle with a capacity of 200 ml containing a magnetic rotor, pentacyclo [6.6.0.0 2,6 . 0 3,13 . 0 10,14] tetradec-4,11-put diene (PCTD) 1.05 g (5.5mmol as PCTD), carbon tetrachloride 24 ml, acetonitrile 24 ml, was dissolved in a mixed solution of water 36 ml, periodic acid Sodium 11.7 g (55 mmol, 10 equivalents) and ruthenium trichloride trihydrate 63 mg (0.24 mmol, 4.4 mol%) were added, and the mixture was stirred at room temperature for 2 hours. After removing the oil layer, the aqueous layer was adjusted to pH 1 with concentrated hydrochloric acid, extracted three times with 50 ml of methylene chloride, and then dried by adding sodium sulfate. When the solvent was distilled off and washed with diethyl ether, the white solid of formula (5) 5,7-dioxa-4,8-dioxopentacyclo [7.6.0.0 2,6 . 0 3,14 . [ 0115 ] 211 mg (0.76 mmol, 14% yield) of pentadecane-13-carboxylic acid was obtained. A pure product was obtained by recrystallization from methanol.
[0038]
Example 4 (Production of compound of formula (5) from compound of formula (2))
2-neck reaction bottle volume 50ml containing the magnetic rotor, tetraol of formula (2) (4,5,11,12- tetrahydroxy penta cyclo [6.6.0.0 2,6 .0 3 , 13.0 10, 14] tetradecane) 505 mg (2.0 mmol), ruthenium trichloride trihydrate 20mg (0.076mmol, 3.8mol%), sodium periodate 2.0 g (9.4 mmol, 4. 7 equivalents), carbon tetrachloride 8.0 ml, acetonitrile 8.0 ml and water 12 ml were added and suspended, and the mixture was stirred at room temperature for 4 hours. After removing the oil layer, the aqueous layer was adjusted to pH 1 with concentrated hydrochloric acid, extracted three times with 15 ml of methylene chloride, and then dried by adding sodium sulfate. When the solvent was distilled off and washed with diethyl ether, the white solid of formula (5) 5,7-dioxa-4,8-dioxopentacyclo [7.6.0.0 2,6 . 0 3,14 . [ 0115 ] 173 mg (0.62 mmol, 31% yield) of pentadecane-13-carboxylic acid was obtained.
[0039]
Reference Example 1 (Production of compound of formula (7) or formula (8))
Into a 20 ml two-necked flask containing a magnetic rotator, pentacyclo [6.6.0.0 2,6 . 0 3,13 . 0 10,14] tetradec-4,11-put diene (PCTD) 370mg (1.93mmol as PCTD), was dissolved by adding nitromethane 2 ml, methyltrioxorhenium 5.9mg (1.2mol%), pyridine 0.039 ml (24 mol%) and 30% hydrogen peroxide solution 0.21 ml (2.1 mmol, 1.1 equivalents) were added, and the mixture was stirred at room temperature for 2 hours. From the gas chromatography analysis of the reaction solution, the yield of monoepoxide of formula (7) was 65% and the yield of diepoxide of formula (8) was 20%. After separating the oil layer, the aqueous layer was extracted 3 times with 5 ml of diethyl ether and added to the oil layer. After adding sodium sulfate and drying, the solvent is distilled off under reduced pressure, and after distillation with Kügelrohr (140 ° C./1.3 mmHg), separation is performed using preparative high performance liquid chromatography. 7) 4,5-epoxypentacyclo [6.6.0.0 2,6 . 0 3,13 . 0 10,14 ] tetradecene-4 was obtained.
[0040]
Example 6 (Production of compound of formula (8))
In a two-necked reaction bottle with a capacity of 50 ml containing a magnetic rotator, pentacyclo [6.6.0.0 2,6 . 0 3,13 . 0 10,14] tetradec-4,11-put diene (PCTD) 1.69g (8.8mmol as PCTD), was dissolved by adding methylene chloride 10 ml, methyltrioxorhenium 23mg (1.0mol%), 0.20 ml (24 mol%) of pyridine and 3.1 ml (30 mmol, 3.4 equivalents) of 30% aqueous hydrogen peroxide were added, and the mixture was stirred at room temperature for 2 hours. After separating the oil layer, the aqueous layer was extracted 3 times with 5 ml of diethyl ether and added to the oil layer. After adding sodium sulfate and drying, the solvent was distilled off under reduced pressure and purified by Kügelrohr distillation (140 ° C./1.3 mmHg) to obtain colorless crystals of the formula (8) 4,5: 11,12- Diepoxypentacyclo [6.6.0.0 2,6 . 0 3,13 . 0 10, 14] was obtained tetradecane 1.72g (7.95mmol, 90% yield).
Next, physical properties of each compound will be described.
[0041]
Compound of formula (1) 11,12-dihydroxypentacyclo [6.6.0.0 2,6 . 0 3,13 . 0 10,14 ] tetradecene-4
Colorless solid
MS (m / z): 218 (M + )
IR (KBr): 3412,3035,2936,2894,1364,1357,1262,1223,1095,1076,1057,1036,792 cm −1 .
1 H NMR (400 MHz, CDCl 3 ): δ 5.65 (dd, 1H, 11-H or 12-H, J = 5.4, 2.2 Hz), 5.52 (dd, 1H, 11-H or 12-H, J = 5.4, 2.2 Hz), 4.21 (br s, 1H, 4-H), 3.99 (br s, 1H, 5-H), 3.41 (m, 3H, 2-, 13- and 1 4-H), 3.18 ( br t, 1H, 6-H, J = 8.3 Hz), 2.89 (q, 1H, 1-H, J = 9.3 Hz), 2.72 (td, 1H, 3-H, J = 10.7,4.9 Hz), 2.44 (m, 1H, 8-H), 2.36 (ddd, 1H, 10-H, J = 10.8, 9.3, 8.3 Hz), 2.21 (d, 1H, OH, J = 3.5 Hz), 2.10 (d, 1H, OH, J = 6.4 Hz), 1.81 (ddd, 1H, 7-exo-H, J = 13.2,9.3,7.8 Hz), 1.72 (dt, 1H, 9-H, J = 12.7,8.3 Hz), 1.66 ( d, 1H, 7-endo-H, J = 13.2 Hz), 1.01 (dt, 1H, 9-H, J = 12.7, 11.2 Hz).
13 C NMR (100 MHz, CDCl 3 ): δ 136.7 and 129.8 (C11 and C12), 80.3 (C5), 76.5 (C4), 58.1 (C2, C13 or C14), 57.1 (C3), 56.5 (C2, C13 or C14), 56.1 (C1), 53.3 (C2, C13 or C14), 52.6 (C6), 52.5 (C10), 47.8 (C8), 36.0 (C7), 35.4 (C9).
[0042]
Compound 4,5,11,12-tetrahydroxypentacyclo [6.6.0.0 2,6 . 0 3 , 13 . 0 10,14 ] Tetradecane colorless solid
IR (KBr): 3468,3283,2943,2930,2859,1463,1349,1116,1100,1072,1059,1035,1018 cm −1 .
1 HNMR (400 MHz, DMSO-d 6 ): δ 4.29 (d, 2H, OH, J = 4.4 Hz), 4.18 (d, 2H, OH, J = 5.4 Hz), 3.99 (br d, 2H, 4 -and 12-H, J = 3.4 Hz), 3.87 (br d, 2H, 5- and 11-H, J = 3.9 Hz), 3.19 (q, 2H, 2- and 14-H, J = 9.8 Hz) , 2.80 (q, 1H, 1-H, J = 9.8 Hz), 2.53 (m, 3H, 3-, 8- and 13-H), 2.31 (m, 2H, 6- and 10-H), 1.86 ( dt, 2H, 7-exo- and 9-exo-H, J = 13.7,9.3 Hz), 1.32 (dt, 2H, 7-endo- and 9-endo-H, J = 13.7,5.9 Hz).
13 C NMR (75 MHz, DMSO-d 6 ): δ80.2 and 75.2 (C4, C5, C11 and C12), 57.2 (C2 and C14 or C3 and C13), 56.2 (C1), 52.3 (C2 and C14 or C3 and C13), 52.3 (C6 and C10), 47.4 (C8), 36.6 (C7 and C9).
[0043]
Compound of formula (3) 14,14-dimethyl-13,15-dioxahexacyclo [9.6.0.0 2,9 . 0 3,7 . 0 4,17 . 0 12,16 ] heptadecene-5
Colorless solid, mp 57-58.5 ℃
MS (m / z): 258 (M + )
IR (KBr): 3034, 2979, 2949, 2923, 2905, 2851, 1375, 1370, 1264, 1259, 1224, 1160, 1053, 1045, 870, 733, 707cm- 1 .
1 H NMR (400 MHz, CDCl 3 ): δ 5.69 (dd, 1H, 11-H or 12-H, J = 5.4, 2.0 Hz), 5.49 (dd, 1H, 11-H or 12-H, J = 5.4, 2.0 Hz), 4.67 (d, 1H, 4-H, J = 4.9 Hz), 4.34 (d, 1H, 5-H, J = 4.9 Hz), 3.42 (q, 1H, 2-H, J = 9.3 Hz), 3.41 (tt, 1H, 13-H, J = 9.3, 2.0 Hz), 3.31 (dt, 1H, 14-H, J = 10.3, 8.8 Hz), 3.18 (tt, 1H, 10-H, J = 8.1, 2.0 Hz), 3.02 (t, 1H, 3-H, J = 9.3 Hz), 2.92 (dt, 1H, 1-H, J = 10.3, 9.3 Hz), 2.55 (dt, 1H, 6- H, J = 11.2,9.3 Hz), 2.45 (m, 1H, 8-H), 1.77 (dt, 1H, 7-H, J = 13.7, 9.3 Hz), 1.74 (m, 2H, 9-H), 1.31 (dt, 1H, 7-H, J = 13.7, 11.2 Hz), 1.44 (s, 3H, Me), 1.26 (s, 3H, Me).
13 C NMR (100 MHz, CDCl 3 ): δ 138.4 and 129.4 (C11 and C12), 108.9 (CMe 2 ), 88.8 (C5), 85.3 (C4), 59.4 (C3), 57.0 (C14), 56.9 (C1 ), 56.6 (C2), 53.7 (C13), 52.9 (C6), 52.3 (C10), 47.9 (C8), 36.4 (C7), 35.8 (C9), 27.3 (Me), 24.8 (Me).
[0044]
Compound 6,6,16,16-tetramethyl-5,7,15,17-tetraoxaheptacyclo [9.9.0.0 2,9 . 0 3,19 . 0 4,8 . 0 13,20 . 0 14,18] icosane colorless solid, mp 106 to 108 ° C.
MS (m / z): 317 (M + -15)
Elemental analysis value: molecular formula C 20 H 28 O 4 : calculated value: C, 72.26; H, 8.49 .; measured value: C, 72.16; H, 8.29.
IR (KBr): 2979,2952,2933,2901,2883,2855,1381,1371,1263,1255,1215,1210,1161,1056,1041,873cm −1 .
1 H NMR (400 MHz, CDCl 3 ): δ4.61 (d, 2H, 4- and 12-H or 5- and 11-H, J = 5.2 Hz), 4.50 (d, 2H, 4- and 12- H or 5- and 11-H, J = 5.2 Hz), 3.33 (q, 2H, 2- and 14-H, J = 9.3 Hz), 2.86 (br d, 2H, 3- and 13-H, J = 9.3 Hz), 2.83 (q, 1H, 1-H, J = 9.3 Hz), 2.69 (td, 2H, 6, and10-H, J = 9.3, 6.8 Hz), 2.40 (qt, 1H, 8-H, J = 9.3, 6.8 Hz), 1.96 (dt, 2H, J = 14.2, 9.3 Hz), 1.23 (dt, 2H, J = 14.2, 6.8 Hz), 1.41 (s, 6H, Me), 1.24 (s, 6H , Me).
13 C NMR (100 MHz, CDCl 3 ): δ 109.3, 90.6 and 85.7 (C4, C5, C11 and C12), 57.8 (C1, C2 and C14), 56.7 (C3 and C13), 52.2 (C6 and C10), 47.5 (C8), 36.9 (C7 and C9), 27.2 (Me), 24.4 (Me).
[0045]
Compound 5,7-dioxa-4,8-dioxopentacyclo [7.6.0.0 2,6 . 0 3,14 . 0 11,15 ] pentadecane-13-carboxylic acid colorless solid elemental analysis value: molecular formula C 14 H 14 O 6 : calculated value: C, 60.43; H, 5.07 .; measured value: C, 60.10; H, 5.15.
IR (KBr): 3433,2963,1783,1752,1707,1701,1691,1261,1124,1000,803 cm −1 .
1 H NMR (400 MHz, DMSO-d 6 ): δ 11.7 (br, 1H, CO 2 H), 6.32 (d, 1H, 4-H, J = 6.6 Hz), 3.56 (dd, 1H, 13- H, J = 10.3,8.8 Hz), 3.35 (td, 1H, 3-H, J = 10.3,6.6 Hz), 3.27 (td, 1H, 10-H, J = 10.3,7.3 Hz), 3.20 (dt, 1H, 1-H, J = 11.0,8.8 Hz), 3.07 (dt, 1H, 6-H, J = 13.2,8.8 Hz), 3.00 (td, 1H, 14-H, J = 8.8,7.3 Hz), 2.91 (dt, 1H, 2-H, J = 10.3, 8.8 Hz), 2.66 (m, 1H, 8-H), 2.29 (dt, 1H, 7-H, J = 13.9, 8.8 Hz), 2.12 (dt , 1H, 9-H, J = 13.2,10.3 Hz), 1.56 (ddd, 1H, 9-H, J = 13.2,10.3,5.5 Hz), 1.30 (dt, 1H, 7-H, J = 13.9,13.2 Hz).
13 C NMR (100 MHz, DMSO-d 6 ): δ 174.4 (CO), 174.0 (CO), 170.3 (CO), 99.8 (C4, J CH = 186 Hz), 59.1 (C1), 48.8 (C13), 48.0 ( C14), 47.8 (C10), 45.0 (C6), 42.5 (C2), 41.4 (C3), 40.7 (C8), 38.3 (C7), 33.2 (C9).
Numbering is based on PCTD.
[0046]
【The invention's effect】
The present invention relates to a pentacyclotetradecane derivative having a functional group rich in reactivity and a method for producing the same, and is a useful compound as a functional polymer material or a physiologically active compound material.

Claims (9)

式(1)
Figure 0004466796
で表される11,12−ジヒドロキシペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデセン−4。
Formula (1)
Figure 0004466796
11,12-dihydroxypentacyclo [6.6.0.0 2,6 . 0 3,13 . 0 10,14 ] tetradecene-4.
式(2)
Figure 0004466796
で表される4,5,11,12−テトラヒドロキシペンタシクロ[6.6.0.02,6.03,13.010,14]テトラデカン。
Formula (2)
Figure 0004466796
4,5,11,12-tetrahydroxypentacyclo [6.6.0.0 2,6 . 0 3,13 . 0 10,14 ] Tetradecane.
式(3)
Figure 0004466796
で表される14,14−ジメチル−13,15−ジオキサヘキサシクロ[9.6.0.02,9.03,7.04,17.012,16]ヘプタデセン−5。
Formula (3)
Figure 0004466796
14,14-dimethyl-13,15-dioxahexacyclo [9.6.0.0 2,9 . 0 3,7 . 0 4,17 . 0 12,16 ] Heptadecene-5.
式(4)
Figure 0004466796
で表される6,6,16,16−テトラメチル−5,7,15,17−テトラオキサヘプタシクロ[9.9.0.02,9.03,19.04,8.013,20.014,18]イコサン。
Formula (4)
Figure 0004466796
And 6,6,16,16-tetramethyl-5,7,15,17-tetraoxaheptacyclo [9.9.0.0 2,9 . 0 3,19 . 0 4,8 . 0 13,20 . 0 14,18 ] Ikosan.
式(5)
Figure 0004466796
で表される5,7−ジオキサ−4,8−ジオキソペンタシクロ[7.6.0.02,6.03 ,14.011,15]ペンタデカン−13−カルボン酸。
Formula (5)
Figure 0004466796
5,7-dioxa-4,8-dioxopentacyclo [7.6.0.0 2,6 . 0 3 , 14 . 0 11,15 ] Pentadecane-13-carboxylic acid.
式(6)
Figure 0004466796
で表されるペンタシクロテトラデカジエンに酸化剤としてオスミウム酸カリウムを反応させて式(1)または式(2)で表される化合物を製造する事を特徴とするペンタシクロテトラデカン誘導体の製造方法。
Formula (6)
Figure 0004466796
A process for producing a pentacyclotetradecane derivative comprising reacting potassium osmate as an oxidizing agent with pentacyclotetradecadiene represented by formula (1) or (2) to produce a compound represented by formula (1):
式(6)で表されるペンタシクロテトラデカジエンに、助酸化剤として過ヨウ素酸ナトリウムの存在下、酸化剤として三塩化ルテニウムを反応させて式(5)で表される化合物を製造する事を特徴とするペンタシクロテトラデカン誘導体の製造方法。Producing a compound represented by formula (5) by reacting pentacyclotetradecadiene represented by formula (6) with ruthenium trichloride as an oxidizing agent in the presence of sodium periodate as a co-oxidant. A process for producing a pentacyclotetradecane derivative characterized by the above. 式(1)または式(2)で表される化合物に酸触媒存在下でアセトンもしくはアセトンジメチルケタールと反応させて式(3)または式(4)で表される化合物を製造する事を特徴とするペンタシクロテトラデカン誘導体の製造方法。  The compound represented by formula (1) or formula (2) is reacted with acetone or acetone dimethyl ketal in the presence of an acid catalyst to produce a compound represented by formula (3) or formula (4). A method for producing a pentacyclotetradecane derivative. 式(2)で表される化合物に、助酸化剤として過ヨウ素酸ナトリウムの存在下、酸化剤として三塩化ルテニウムを反応させて式(5)で表される化合物を製造する事を特徴とするペンタシクロテトラデカン誘導体の製造方法。A compound represented by the formula (5) is produced by reacting a compound represented by the formula (2) with ruthenium trichloride as an oxidizing agent in the presence of sodium periodate as a co-oxidant. A method for producing a pentacyclotetradecane derivative.
JP03033999A 1999-02-08 1999-02-08 Pentacyclotetradecane derivative and method for producing the same Expired - Lifetime JP4466796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03033999A JP4466796B2 (en) 1999-02-08 1999-02-08 Pentacyclotetradecane derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03033999A JP4466796B2 (en) 1999-02-08 1999-02-08 Pentacyclotetradecane derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000229964A JP2000229964A (en) 2000-08-22
JP4466796B2 true JP4466796B2 (en) 2010-05-26

Family

ID=12301079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03033999A Expired - Lifetime JP4466796B2 (en) 1999-02-08 1999-02-08 Pentacyclotetradecane derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP4466796B2 (en)

Also Published As

Publication number Publication date
JP2000229964A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
CN112608296B (en) Synthesis method of Brazilane natural product Brazilane
DE60105314T2 (en) METHOD FOR PRODUCING TAX DERIVATIVES
JP4466796B2 (en) Pentacyclotetradecane derivative and method for producing the same
JP4952272B2 (en) (Z)-Method for producing ligustilide
CN107488155B (en) Preparation method of α -unsaturated gamma-lactone
CN109535120A (en) The preparation method of 7- substitution -3,4,4,7- tetrahydro cyclobutane and cumarin -5- ketone
Cheng et al. An efficient synthesis of D-mannoheptulose via oxidation of an olefinated sugar with potassium permanganate in aqueous acetone
CN101553477A (en) Process for preparation of aldonic acids and derivatives thereof
CN107089957B (en) A kind of preparation method of 4H-5- (1- hydroxyl -1- Methylethyl) -2- methyl -2- furans ethyl alcohol
EP2300450A1 (en) Method for the preparation of c-4 coupled flavonoids, proanthocyanidins and analogues thereof
JPS63122644A (en) Production of 3,5,5-trimethylcyclohex-2-ene-1,4-dione
CN107129475B (en) A kind of preparation method of furan type linalool oxide
KR20030066594A (en) Intermediates for use in the preparation of vitamin e
KR100966027B1 (en) The novel preparation method of decursin and decursin analoges
CN117720467A (en) Preparation method of surface chiral [2.2] cycloquinoline imitation catalyst
JP2005314260A (en) Method for producing flavone c glycoside
JP4179724B2 (en) Method for producing cyclic polyether compound
KR100377327B1 (en) A method for preparing allylated 7-hydroxycoumarin derivatives
CN115124583A (en) Method for synthesizing ganoderic acid through selective reduction or oxidation reaction
WO2023275324A1 (en) Process for the biobased synthesis of schweinfurthins g, k and r
JPH04154775A (en) Production on trans-3,4-disubstituted gamma-lactone compounds
CN117886789A (en) Synthesis method of chiral alcohol or chiral cyclic ether
JP6365904B2 (en) Formation of chiral 4-chromanones using chiral pyrrolidines in the presence of phenols or thiophenols
KR101477058B1 (en) Method of preparing piridine derivatives
CN116410220A (en) Preparation method of anthocyanin intermediate and preparation method of anthocyanin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3