KR100377327B1 - A method for preparing allylated 7-hydroxycoumarin derivatives - Google Patents

A method for preparing allylated 7-hydroxycoumarin derivatives Download PDF

Info

Publication number
KR100377327B1
KR100377327B1 KR10-2002-0036479A KR20020036479A KR100377327B1 KR 100377327 B1 KR100377327 B1 KR 100377327B1 KR 20020036479 A KR20020036479 A KR 20020036479A KR 100377327 B1 KR100377327 B1 KR 100377327B1
Authority
KR
South Korea
Prior art keywords
formula
compound
reaction
preparing
hydroxycoumarin
Prior art date
Application number
KR10-2002-0036479A
Other languages
Korean (ko)
Other versions
KR20020068475A (en
Inventor
김유승
강순방
금교창
조상원
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2002-0036479A priority Critical patent/KR100377327B1/en
Publication of KR20020068475A publication Critical patent/KR20020068475A/en
Application granted granted Critical
Publication of KR100377327B1 publication Critical patent/KR100377327B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 발명은 화학식 1로 표시되는 알릴 할라이드를 화학식 2로 표시되는 방향족 화합물과 반응시켜 알릴화된 방향족 화합물 3을 제조하는 방법에 관한 것이다. 보다 상세하게 말하자면, 본 발명은 재생가능한 금속 인듐을 촉매로 이용하여 화학식 2의 방향족 화합물에 화학식 1로 표시되는 알릴 화합물을 반응시켜 생리활성이 있는 천연 쿠마린 화합물 제조에 유용한 화합물인 화학식 4의 전구물질인 화학식 3으로 표시되는 알릴화된 방향족 화합물의 제조방법에 관한 것이다.The present invention relates to a method for preparing an allylated aromatic compound 3 by reacting an allyl halide represented by Formula 1 with an aromatic compound represented by Formula 2. More specifically, the present invention relates to a precursor of Formula 4, which is a compound useful for preparing a natural coumarin compound having bioactivity by reacting an allyl compound represented by Formula 1 with an aromatic compound of Formula 2 using a renewable metal indium as a catalyst. It relates to a method for producing an allylated aromatic compound represented by the formula (3).

다음의 반응식 1은 상기 반응을 도식적으로 표시한 것이다.The following scheme 1 schematically illustrates the reaction.

[반응식 1]Scheme 1

화학식 1의 화합물을 화학식 2의 화합물과 반응시켜 화학식 3의 화합물을 제조하는 데에 있어서, 금속 인듐을 촉매로 사용하는 것에 의하여 공기나 물 등에서도 안정하여 다루기 쉽고, 환경 친화적이며, 무엇보다 재생가능해서 경제적이라는 이점을 얻을 수 있다. 또한, 어려운 반응 공정을 거치지 않고 용이하게 생성물을 얻을 수 있으며, 수율이 높고 효율적이라는 이점이 있다.In preparing the compound of Formula 3 by reacting the compound of Formula 1 with the compound of Formula 2, by using metal indium as a catalyst, it is stable in air, water, etc., is easy to handle, environmentally friendly, and above all, renewable. You can get economic benefits. In addition, the product can be easily obtained without undergoing a difficult reaction process, has the advantage of high yield and efficiency.

따라서, 본 발명은 유기합성공업 및 의약제조등에 다양하게 응용될 수 있다.Therefore, the present invention can be applied in various ways to organic synthesis industry and pharmaceutical production.

Description

알릴화된 7-히드록시쿠마린 유도체의 제조방법{A METHOD FOR PREPARING ALLYLATED 7-HYDROXYCOUMARIN DERIVATIVES}A manufacturing method of allylated 7-hydroxycoumarin derivatives {A METHOD FOR PREPARING ALLYLATED 7-HYDROXYCOUMARIN DERIVATIVES}

본 발명은 화학식 1로 표시되는 알릴 할라이드를 화학식 2로 표시되는 7-히드록시쿠마린과 반응시켜 알릴화된 7-히드록시쿠마린 유도체 3을 제조하는 방법에 관한 것이다. 보다 상세하게 말하자면, 본 발명은 재생가능한 금속 인듐을 촉매로 이용하여 화학식 2의 화합물에 화학식 1로 표시되는 알릴 화합물을 반응시켜 생리활성이 있는 천연 쿠마린 화합물 제조에 유용한 화합물인 화학식 4의 전구물질인 화학식 3으로 표시되는 알릴화된 방향족 화합물의 제조방법에 관한 것이다.The present invention relates to a method of preparing an allylated 7-hydroxycoumarin derivative 3 by reacting an allyl halide represented by the formula (1) with a 7-hydroxycoumarin represented by the formula (2). More specifically, the present invention relates to a precursor of Formula 4, which is a compound useful for preparing a natural coumarin compound having a physiological activity by reacting an allyl compound represented by Formula 1 with a compound of Formula 2 using a renewable metal indium as a catalyst. It relates to a method for producing an allylated aromatic compound represented by the formula (3).

다음의 반응식 1은 상기 반응을 도식적으로 표시한 것이다.The following scheme 1 schematically illustrates the reaction.

일반적으로 쿠마린, 크로몬 그리고 플라본 유도체들은 식물에서 추출되는 천연물 유사체로서 약학적으로 중요한 화합물들이다. 이들 중에는 발암물질인 다중고리 방향족탄화수소(polycyclic aromatic hydrocarbon)가 암을 유발하는 것을 억제하는 것으로 알려져 있다 [Digiovanni, J. In modification of polycyclic aromatic hydrocarbon carcinogenesis, 1981, 259]. 이들 중 특히 쿠마린 화합물은 자연에 널리 분포하고 있고, 이 쿠마린 소단위체를 포함하고 있는 많은 천연물들은 항균제, 항응고제, 경련진정제 및 담즙분비장애 억제제 등의 역할을 하는 것으로 알려져 있다 [Ann. Biochem. Exp. Med. 1957, 17, 57; J. Pharmacol. 1963, 20, 29; J. Pharm. Sci. 1962, 51, 149].In general, coumarin, chromone and flavone derivatives are pharmaceutically important compounds as natural analogues extracted from plants. Among them, carcinogen polycyclic aromatic hydrocarbons are known to inhibit cancer (Digiovanni, J. In modification of polycyclic aromatic hydrocarbon carcinogenesis, 1981, 259). Of these, coumarin compounds are widely distributed in nature, and many natural products containing these coumarin subunits are known to play the role of antimicrobial agents, anticoagulants, spasms and inhibitors of bile secretion disorders [Ann. Biochem. Exp. Med. 1957, 17, 57; J. Pharmacol. 1963, 20, 29; J. Pharm. Sci. 1962, 51, 149].

그 중에서, 상기 화학식 3의 화합물은 천연물 유도체 및 다양한 헤테로고리 화합물 제조에 사용될 수 있는 중요한 중간체이며, 이들로부터 화학식 4와 같은 피라노쿠마린 모핵을 제조하는 것과 다양한 치환기를 반응시켜 활성이 있는 천연 피라노쿠마린 유도체들을 제조하는 것이 알려져 있다 [ W. Steck,Can. J. Chem. 1971, 49, 2297].Among them, the compound of formula (3) is an important intermediate that can be used in the preparation of natural derivatives and various heterocyclic compounds, from which the production of a pyranokumarin parent nucleus, such as formula (4) and various substituents react with the active natural pyrano It is known to prepare coumarin derivatives [W. Steck, Can. J. Chem . 1971, 49, 2297].

또한, 상기 화학식 4의 화합물, 특히 그중에서 2,4-디히드록시-5-(3-메틸-2-부텐일)벤즈알데히드 (R1=R2=CH3, R3=H)는 천연 쿠마린(coumarin) 유도체인 데커신 (decursin) 5를 합성하는 중간체로 유용하다고 알려져 있는데(반응식 2), 얻어진 데커신 (decursin) 5는 C19H20O5의 분자식을 갖는 피라노쿠마린계열이며 중요한 한약재 중 한 가지인 참당귀의 주요 성분으로 알려져 있다 [J. Pharm. Soc. Korea 1967, 11, 22-26 및 1969, 13, 47-50].Further, the compound of formula 4, in particular 2,4-dihydroxy-5- (3-methyl-2-butenyl) benzaldehyde (R 1 = R 2 = CH 3 , R 3 = H) is a natural coumarin (coumarin) derivatives of Decker Shin (decursin) also known to be useful as an intermediate for synthesis of 5 (Scheme 2), obtained Dekker new (decursin) 5 is pyrano coumarin series having a molecular formula of C 19 H 20 O 5 important medicinal herbs It is known to be one of the main components of Angelica gigas [J. Pharm. Soc. Korea 1967, 11, 22-26 and 1969, 13, 47-50].

당귀는 진통, 배농(排膿), 지혈, 강장작용이 있으므로 한방에서 복통, 종기, 타박상, 및 부인병 등에 애용되고 있는 중요한 한약재이며 암세포주에 대해 강한 치사작용을 나타내는 반면 정상세포에 대해서는 상기 암세포주들에 대한 치사작용에 비해 훨씬 낮은 치사작용을 나타내어 항암제로 사용할 수 있음이 알려져 있다 [생약학회지 1970, 1(1), 25-32 및 1982, 13(2), 55-61; Planta Medica 1996, 62, 7-9].Angelica is an important herbal medicine that has been used for abdominal pain, boils, bruises, and gynecological diseases because of its analgesic, drainage, hemostasis, and tonic effects. It is known that it can be used as an anticancer agent because it exhibits a much lower lethal action than those of the medicinal plants [Journal of Pharmacognosy 1970, 1 (1), 25-32 and 1982, 13 (2), 55-61; Planta Medica 1996, 62, 7-9].

따라서 데커신을 비롯한 피라노쿠마린계열의 생리활성 유효성분 제조에서 필수적으로 사용될 수 있는 화학식 3과 같은 중요 중간체를 효율적으로 합성할 수 있는 방법의 개발은, 천연자원의 고갈 및 환경오염에 따른 천연원료 확보의 어려움 해결과 함께 활성이 있는 다양한 화합물 제조에 필요한 원료물질의 원활한 공급을 위해 매우 중요하다 하겠다.Therefore, the development of a method for efficiently synthesizing important intermediates such as Formula 3, which can be used in the production of bioactive active ingredients of pyranocmarin series including dekerin, secures natural raw materials due to depletion of natural resources and environmental pollution. It is very important for the smooth supply of raw materials necessary for the preparation of various active compounds with the solution of the difficulties.

한편, 화학식 2의 7-히드록시쿠마린으로부터 화학식 3의 화합물의 제조방법은 알려진 것이 없는 형편이다.On the other hand, a method for preparing the compound of formula 3 from 7-hydroxycoumarin of formula 2 is unknown.

따라서 본 발명의 목적은 데커신을 비롯한 중요 천연쿠마린 화합물 제조에중요 중간체인 화학식 3의 화합물을 기존에 알려진 방법보다 고수율 고효율로 합성하는 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for synthesizing a compound of formula 3, which is an important intermediate for the production of important natural coumarin compounds, including decusin, with higher yield and higher efficiency than previously known methods.

본 발명자들은 종래 기술의 단점을 해결한 효율적인 천연물 합성법 개발을 위해 예의 연구한 결과, 본 연구진들이 이미 확립하여 논문발표 [김유승 등, Tetrahedron Lett, 1999, 40, 1547] 및 특허출원[김유승 등, 한국특허 출원번호 99-30637 및 99-11595]한 기술을 이용하여 어려운 반응공정을 거치지 않고 경제적이고 진보된 방법으로 화학식 3의 화합물을 고수율로 제조하는 방법을 확립하고 본 발명을 완성하게 되었다.The present inventors earnestly studied for the development of an efficient natural product synthesis method that solves the shortcomings of the prior art. Patent Application Nos. 99-30637 and 99-11595 have been used to establish a method for producing the compound of Formula 3 in high yield and economically and by an advanced method without going through a difficult reaction process to complete the present invention.

본 발명은 공기나 물 등에서도 안정하여 다루기가 쉽고, 환경 친화적이며, 무엇보다도 재생 가능해서 경제적인 인듐 금속을 촉매로 사용하여 화학식 2의 화합물을 화학식 1의 화합물과 반응시켜, 쿠마린 유도체 제조의 중간체로 사용되는 화학식 3의 알릴 방향족 화합물을 효율적으로 제조하는 것을 특징으로 하며, 인듐 금속을 촉매로 사용함에 의해 반응과정에서 불가피하게 형성되는 부생성물을 최소화하여 화학식 3의 화합물을 높은 수율로 얻을 수 있다(반응식 3).The present invention is stable in air, water and the like, is easy to handle, environmentally friendly, and most of all, is renewable and economical. The compound of formula 2 is reacted with the compound of formula 1 using an indium metal as a catalyst to produce an intermediate of coumarin derivatives. It is characterized in that to efficiently prepare the allyl aromatic compound of Formula 3 to be used as, by using the indium metal as a catalyst to minimize the by-products inevitably formed in the reaction process can obtain the compound of Formula 3 in high yield (Scheme 3).

화학식 1에서 X는 할로겐 원자, 보다 바람직하게는 염소 또는 브롬이며, R1과 R2는 각각 수소, 직쇄 또는 측쇄의 C1-5탄화수소를 나타낸다. 화학식 3에서 R1및 R2는 상기 화학식 1에서와 동일하다.In formula (1), X is a halogen atom, more preferably chlorine or bromine, and R 1 and R 2 each represent hydrogen, straight or branched C 1-5 hydrocarbon. R 1 and R 2 in Formula 3 are the same as in Formula 1.

화학식 1의 알릴 할로겐 화합물을 화학식 2의 화합물과 반응시켜 쿠마린 유도체 3을 제조하는 알릴화 반응의 촉매로 사용되는 인듐은 화학식 2로 표시되는 7-히드록시쿠마린에 대해 통상 0.01 내지 2 당량의 양으로 사용되며, 이것은 회수가능하며, 재사용하여 사용할 수 있다.Indium, which is used as a catalyst for the allylation reaction of reacting an allyl halogen compound of Formula 1 with a compound of Formula 2 to produce coumarin derivative 3, is usually in an amount of 0.01 to 2 equivalents relative to 7-hydroxycoumarin represented by Formula 2. It is recoverable and can be reused.

그리고, 알릴화 반응에 사용되는 알릴 할로겐 화합물과 7-히드록시쿠마린의 몰 비는 통상 10:1 내지 1:10 범위내에서 변화가능하며, 바람직하게는 1:2 내지 2:1이며, 가장 바람직하게는 1:1.5 내지 1.5:1의 범위 내이다.The molar ratio of allyl halogen compound and 7-hydroxycoumarin used in the allylation reaction is usually changeable within the range of 10: 1 to 1:10, preferably 1: 2 to 2: 1, most preferably Preferably in the range of 1: 1.5 to 1.5: 1.

상기 알릴화 반응에 사용될 수 있는 유기용매의 예로는 벤젠, 톨루엔 등과 같은 C6-7방향족 탄화수소, 메틸렌 클로라이드, 클로로포름, 아세토니트릴, 디옥센, 디에틸에테르 및 테트라히드로퓨란 등이 있으나, 반드시 이에 한정되는 것은 아니다.Examples of the organic solvent that can be used in the allylation reaction include C 6-7 aromatic hydrocarbons such as benzene and toluene, methylene chloride, chloroform, acetonitrile, dioxene, diethyl ether and tetrahydrofuran, but are not limited thereto. It doesn't happen.

상기 알릴화 반응은 통상 염기의 존재하에서 수행되며, 반응에 사용될 수 있는 염기의 예로는 OH-, CO3 2-또는 HCO3 -를 포함하는 금속 화합물을 들 수 있다. 금속의 예로는 Li, Na, K, Cs, Mg, Ca 또는 Ba를 들 수 있다. 반응에 사용되는 염기의 양은 통상 화학식 2로 표시되는 7-히드록시쿠마린에 대해 2 당량 이하(단, 0은 포함하지 않는다)이다.The allylation reaction is conducted in the presence of a base, and examples of bases that can be used in the reaction is OH - it can be a metal compound containing a -, CO 3 2- or HCO 3. Examples of the metal include Li, Na, K, Cs, Mg, Ca or Ba. The amount of base used for the reaction is usually 2 equivalents or less (but not including 0) relative to 7-hydroxycoumarin represented by the formula (2).

상기 반응에는 분자체(molecular sieve)를 첨가하는 것이 보다 바람직한 결과를 제공해주며, 그 예로는 4Å 분자체를 들 수 있으며, 첨가되는 양은 통상 화학식 2로 표시되는 7-히드록시쿠마린에 대해 200 질량% 이하(단, 0은 포함하지 않는다)이다.The addition of a molecular sieve to the reaction gives a more desirable result, for example, 4 Å molecular sieve, the amount is added 200% by mass relative to 7- hydroxycoumarin represented by the general formula (2) (However, 0 is not included).

상기 알릴화 반응은 20 내지 150℃, 바람직하게는 30 내지 70℃, 가장 바람직하게는 35 내지 50℃ 범위내에서 수행되며, 반응 시간은 1 내지 48 시간, 바람직하게는 3 내지 6시간 범위내에서 조절가능하다.The allylation reaction is carried out in the range of 20 to 150 ° C, preferably 30 to 70 ° C, most preferably 35 to 50 ° C, and the reaction time is within the range of 1 to 48 hours, preferably 3 to 6 hours. It is adjustable.

상기 알릴화 반응을 보다 상세히 설명하면 다음과 같다. 화학식 2로 표시되는 7-히드록시쿠마린을 적당한 유기용매에 용해시킨 후, 화학식 1로 표시되는 알릴 할라이드를 천천히 적가하고, 이 혼합 용액에 인듐 금속원자 0.01 내지 2 당량, 적당한 염기 및 4Å 분자체를 가한 후, 20 - 150℃ 에서 1 - 48시간 동안 반응시키면 주생성물로 제조될 수 있다. 화학식 1로 표시되는 알릴 할라이드, 화학식 2로 표시되는 7-히드록시쿠마린 및 인듐 촉매의 가장 바람직한 몰 비는 0.8:1:0.01이다. 유기 용매는 벤젠, 톨루엔, 디옥센, 아세토니트릴, 디에틸에테르 또는 테트라히드로퓨란 중에서 선택될 수 있으며, 이 때 상기 화학식 1의 치환기 X는 브롬과 염소 원자 모두 수율이 좋다. 본 발명에 사용되는 염기로는 Li, Na, K, Cs, Mg, Ca, Ba 등의 히드록시(OH-), 탄산(CO3 2-) 및 탄산수소(HCO3 -) 등을 포함한 금속 화합물을 고체 염기로 이용하여 인듐 촉매와 함께 병용하면 높은 수율로 목적화합물을 얻을 수 있으나, 바람직한 고체 염기의 예로는 CaCO3/4Å 분자체 시스템이다. 바람직한 염기의 양과 4Å 분자체의 양은 각각 40 몰%와 5 질량% 이며, 4Å 분자체의 양이 감소하거나 없어도 원하는 생성물은 얻어진다. 반응이 진행될수록 반응 용액의 색이 점점 진해진다. 그리고 반응액의 색 변화와 함께 얇은막 크로마토그리피(TLC)로 반응 종결점을 확인할 수 있다. 반응 후 실온으로 냉각하고, 얻어진 생성물은 증발, 여과, 추출, 크로마토그래피 분리법 및 이들의 조합과 종래의 기술에 의해서 분리 정제할 수 있다. 예를 들면 모액을 얇은 층의 실리카겔로 여과한 후 감압하에서 농축 또는 증류한다. 생성물은1H-NMR과 GC/MSD 등의 종래의 방법으로 확인할 수 있다.The allylation reaction is described in more detail as follows. After dissolving 7-hydroxycoumarin represented by the formula (2) in a suitable organic solvent, allyl halide represented by the formula (1) was slowly added dropwise, and 0.01-2 equivalents of an indium metal atom, a suitable base, and a 4 'molecular sieve were added to the mixed solution. After the addition, the reaction may be performed at 20-150 ° C. for 1-48 hours to prepare the main product. The most preferred molar ratio of allyl halide represented by the formula (1), 7-hydroxycoumarin and the indium catalyst represented by the formula (2) is 0.8: 1: 0.01. The organic solvent may be selected from benzene, toluene, dioxene, acetonitrile, diethyl ether or tetrahydrofuran, wherein the substituent X of Formula 1 has a good yield of both bromine and chlorine atoms. Examples of the base to be used in the present invention is a hydroxy (OH -), such as Li, Na, K, Cs, Mg, Ca, Ba - metal compound, including, carbonate (CO 3 2-), and sodium hydrogen carbonate (HCO 3) When the use of a solid base used in combination with an indium catalyst, but to obtain the desired compound in a high yield, and examples of preferred bases are solid CaCO 3 / 4Å molecular sieve system. Preferred amounts of base and 4 'molecular sieves are 40 mol% and 5 mass%, respectively, and the desired product is obtained even if the amount of 4' molecular sieve is reduced or absent. As the reaction proceeds, the color of the reaction solution becomes darker. And with the color change of the reaction solution, the reaction termination point can be confirmed by thin film chromatography (TLC). After the reaction, the reaction product is cooled to room temperature, and the obtained product can be separated and purified by evaporation, filtration, extraction, chromatographic separation, combinations thereof, and conventional techniques. For example, the mother liquor is filtered through a thin layer of silica gel and then concentrated or distilled under reduced pressure. The product can be confirmed by conventional methods such as 1 H-NMR and GC / MSD.

이하, 아래의 실시예를 들어 본 발명을 보다 상세히 설명할 것이나, 본 발명의 범위가 이들 실시에에 한정하지 아니한다. 본 실시예에서 특별한 언급이 없으면 백분율 또는 비율 등은 중량을 기준으로 한다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to these embodiments. Unless otherwise specified in the present embodiment, percentages or ratios are based on weight.

실시예Example

실시예 1Example 1

6-(3-메틸-2-부텐일)-7-히드록시쿠마린 36- (3-methyl-2-butenyl) -7-hydroxycoumarin 3

7-히드록시쿠마린 200 mg (1.234 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 169 mg (1.2 당량), 탄산칼슘 49.4 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)를 가한 후, 1-클로로-3-메틸-2-부텐 103.2 mg (0.987 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 3을 얻었다.200 mg (1.234 mmol) of 7-hydroxycoumarin was dissolved in 10 ml of benzene, and 169 mg (1.2 equiv) of indium, 49.4 mg (0.4 equiv) of calcium carbonate, and 10 mg (5 mass%) of 4 ′ molecular sieve were added thereto. Thereafter, 103.2 mg (0.987 mmol) of 1-chloro-3-methyl-2-butene was slowly added dropwise. The reaction temperature was raised to 40 ° C. and stirred for 4 hours. Termination of the reaction was confirmed by thin layer chromatography (TLC), and the reaction was terminated and cooled to room temperature. The reaction mixture was passed through a filter filled with silica gel thinly, and the filtrate was concentrated under reduced pressure, and then purified by column chromatography (developing solvent: ethyl acetate / n-hexane = 1/9) to obtain the title compound (3).

Rf= 0.35 (에틸아세테이트:n-헥산 = 1:2)R f = 0.35 (ethyl acetate: n-hexane = 1: 2)

수율 : 0.248 g, 85%Yield: 0.248 g, 85%

m. p. 129 - 133 ℃m. p. 129-133 ℃

1H NMR (CDCl3): δ7.65(d, J=9.5Hz, CH=CH), 7.44(s, 1H, aromatic H-5), 7.07(s, 1H, aromatic H-8), 6.23(d, J=9.5Hz, CH=CH), 5.32(t, J=7Hz, =CH), 3.38(d, J=7Hz, CH2), 1.75-1.80(s, 2 vinyl methyls) 1 H NMR (CDCl 3 ): δ7.65 (d, J = 9.5 Hz, C H = CH), 7.44 (s, 1H, aromatic H-5), 7.07 (s, 1H, aromatic H-8), 6.23 (d, J = 9.5Hz, CH = C H ), 5.32 (t, J = 7Hz, = CH), 3.38 (d, J = 7Hz, CH 2 ), 1.75-1.80 (s, 2 vinyl methyls)

실시예 2Example 2

6-(3-메틸-2-부텐일)-7-히드록시쿠마린 36- (3-methyl-2-butenyl) -7-hydroxycoumarin 3

7-히드록시쿠마린 200 mg (1.234 mmol)을 벤젠 10 ml에 용해시키고, 여기에인듐 169 mg (1.2 당량), 탄산칼슘 49.4 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)를 가한 후, 4-브로모-2-메틸-2-부텐 147.1 mg (0.987 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 3을 얻었다.200 mg (1.234 mmol) of 7-hydroxycoumarin was dissolved in 10 ml of benzene, and 169 mg (1.2 equiv) of indium, 49.4 mg (0.4 equiv) of calcium carbonate and 10 mg (5 mass%) of 4 ′ molecular sieve were added thereto. Thereafter, 147.1 mg (0.987 mmol) of 4-bromo-2-methyl-2-butene was slowly added dropwise. The reaction temperature was raised to 40 ° C. and stirred for 4 hours. Termination of the reaction was confirmed by thin layer chromatography (TLC), and the reaction was terminated and cooled to room temperature. The reaction mixture was passed through a filter filled with silica gel thinly, and the filtrate was concentrated under reduced pressure, and then purified by column chromatography (developing solvent: ethyl acetate / n-hexane = 1/9) to obtain the title compound (3).

Rf= 0.35 (에틸아세테이트:n-헥산 = 1:2)R f = 0.35 (ethyl acetate: n-hexane = 1: 2)

수율 : 0.248 g, 85%Yield: 0.248 g, 85%

m. p. 129 - 133 ℃m. p. 129-133 ℃

1H NMR (CDCl3): δ7.65(d, J=9.5Hz, CH=CH), 7.44(s, 1H, aromatic H-5), 7.07(s, 1H, aromatic H-8), 6.23(d, J=9.5Hz, CH=CH), 5.32(t, J=7Hz, =CH), 3.38(d, J=7Hz, CH2), 1.75-1.80(s, 2 vinyl methyls) 1 H NMR (CDCl 3 ): δ7.65 (d, J = 9.5 Hz, C H = CH), 7.44 (s, 1H, aromatic H-5), 7.07 (s, 1H, aromatic H-8), 6.23 (d, J = 9.5Hz, CH = C H ), 5.32 (t, J = 7Hz, = CH), 3.38 (d, J = 7Hz, CH 2 ), 1.75-1.80 (s, 2 vinyl methyls)

실시예 3Example 3

7-히드록시-8,8-디메틸-7,8-디히드로-6H-피라노[3,2-g]-크로멘-2-온 (데커시놀 4)7-hydroxy-8,8-dimethyl-7,8-dihydro-6H-pyrano [3,2-g] -chromen-2-one (deckerinol 4)

6-(3-메틸-2-부텐일)-7-히드록시쿠마린 250 mg (1.086 mmol)을 클로로포름 20 ml에 용해시키고, 여기에 MMPP(magnesium monoperoxyphthalate hexahydrate) 산화제 250 mg (0.47 당량)과 파라톨루엔설포닐산 10mg(0.01 당량)을 가한 후 상온에서 24시간동안 교반하였다. 반응의 종결을 얇은막크로마토그래피로 확인하였으며, 반응이 종결되면 0.1M 탄산수소나트륨용액과 물로 씻은 후 무수황산마그네슘으로 수분을 제거하고 여과하였다. 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/15)로 정제하여 목적 화합물인 데커시놀 4를 얻었다.250 mg (1.086 mmol) of 6- (3-methyl-2-butenyl) -7-hydroxycoumarin are dissolved in 20 ml of chloroform, in which 250 mg (0.47 equiv) of parasulfene and 250 mg of magnesium monoperoxyphthalate hexahydrate (MMPP) oxidant are dissolved. 10 mg (0.01 equivalent) of sulfonylic acid was added thereto, followed by stirring at room temperature for 24 hours. The termination of the reaction was confirmed by thin layer chromatography. When the reaction was terminated, the resultant was washed with 0.1 M sodium hydrogen carbonate solution and water, and then filtered with anhydrous magnesium sulfate. The obtained filtrate was concentrated under reduced pressure, and then purified by column chromatography (developing solvent: ethyl acetate / n-hexane = 1/15) to obtain Decusinol 4 as a target compound.

Rf= 0.20 (에틸아세테이트:n-헥산 = 1:2)R f = 0.20 (ethyl acetate: n-hexane = 1: 2)

수율 :0.237 g, 90%Yield: 0.237 g, 90%

m. p. 166 - 168 ℃m. p. 166-168 ℃

1H NMR (CDCl3): δ7.54(d, J=9.5Hz, CH=CH), 7.15(s, 1H, aromatic H-5), 6.76(s,1H, aromatic H-8), 6.19(d, J=9.5Hz, CH=CH), 3,86(dd, J=5,6Hz, CH2), 3.07(dd, J=5.16Hz, CHOH), 2.80(dd, J=5.16Hz, CHOH), 1.37 (s, gem-dimethyls) 1 H NMR (CDCl 3 ): δ 7.54 (d, J = 9.5 Hz, C H = CH), 7.15 (s, 1H, aromatic H-5), 6.76 (s, 1H, aromatic H-8), 6.19 (d, J = 9.5 Hz, CH = C H ), 3,86 (dd, J = 5,6 Hz, CH 2 ), 3.07 (dd, J = 5.16 Hz, C H OH), 2.80 (dd, J = 5.16 Hz, C H OH), 1.37 (s, gem-dimethyls)

실시예 4Example 4

7-히드록시-8,8-디메틸-7,8-디히드로-6H-피라노[3,2-g]-크로멘-2-온 (데커시놀 4)7-hydroxy-8,8-dimethyl-7,8-dihydro-6H-pyrano [3,2-g] -chromen-2-one (deckerinol 4)

6-(3-메틸-2-부텐일)-7-히드록시쿠마린 250 mg (1.086 mmol)을 클로로포름 20 ml에 용해시키고, 여기에 MMPP(magnesium monoperoxyphthalate hexahydrate) 산화제 250 mg (0.47 당량)과 피리디움파라톨루엔설포네이트15mg(0.01 당량)을 가한 후 상온에서 24시간동안 교반하였다. 반응의 종결을 얇은막크로마토그래피로 확인하였으며, 반응이 종결되면 0.1M 탄산수소나트륨용액과 물로 씻은 후 무수황산마그네슘으로 수분을 제거하고 여과하였다. 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/15)로 정제하여 목적 화합물인 데커시놀 4를 얻었다.250 mg (1.086 mmol) of 6- (3-methyl-2-butenyl) -7-hydroxycoumarin are dissolved in 20 ml of chloroform, in which 250 mg (0.47 equiv) of pyridium and magnesium monoperoxyphthalate hexahydrate (MMPP) oxidant are dissolved. 15 mg (0.01 equivalent) of paratoluenesulfonate was added thereto, followed by stirring at room temperature for 24 hours. The termination of the reaction was confirmed by thin layer chromatography. When the reaction was terminated, the resultant was washed with 0.1 M sodium hydrogen carbonate solution and water, and then filtered with anhydrous magnesium sulfate. The obtained filtrate was concentrated under reduced pressure, and then purified by column chromatography (developing solvent: ethyl acetate / n-hexane = 1/15) to obtain Decusinol 4 as a target compound.

Rf= 0.20 (에틸아세테이트:n-헥산 = 1:2)R f = 0.20 (ethyl acetate: n-hexane = 1: 2)

수율 :0.245 g, 92%Yield: 0.245 g, 92%

m. p. 166 - 168 ℃m. p. 166-168 ℃

1H NMR (CDCl3): δ7.54(d, J=9.5Hz, CH=CH), 7.15(s, 1H, aromatic H-5), 6.76(s,1H, aromatic H-8), 6.19(d, J=9.5Hz, CH=CH), 3,86(dd, J=5,6Hz, CH2), 3.07(dd, J=5.16Hz, CHOH), 2.80(dd, J=5.16Hz, CHOH), 1.37 (s, gem-di methyls) 1 H NMR (CDCl 3 ): δ 7.54 (d, J = 9.5 Hz, C H = CH), 7.15 (s, 1H, aromatic H-5), 6.76 (s, 1H, aromatic H-8), 6.19 (d, J = 9.5 Hz, CH = C H ), 3,86 (dd, J = 5,6 Hz, CH 2 ), 3.07 (dd, J = 5.16 Hz, C H OH), 2.80 (dd, J = 5.16 Hz, C H OH), 1.37 (s, gem-di methyls)

실시예 5Example 5

7-히드록시-8,8-디메틸-7,8-디히드로-6H-피라노[3,2-g]-크로멘-2-온 (데커시놀 4)7-hydroxy-8,8-dimethyl-7,8-dihydro-6H-pyrano [3,2-g] -chromen-2-one (deckerinol 4)

6-(3-메틸-2-부텐일)-7-히드록시쿠마린 250 mg (1.086 mmol)을 메틸렌클로라이드 20 ml에 용해시키고, 여기에 과산화수소용액 30 질량% 73.9 mg (2.0 당량)과 테트라부틸암모늄설페이트 10mg(0.01 당량)을 넣고 상온에서 24시간동안 교반하였다. 반응의 종결을 얇은막크로마토그래피로 확인하였으며, 반응이 종결되면 0.1M 탄산수소나트륨용액과 물로 씻은 후 무수황산마그네슘으로 수분을 제거하고 여과하였다. 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/15)로 정제하여 목적 화합물인 데커시놀 4를 얻었다.250 mg (1.086 mmol) of 6- (3-methyl-2-butenyl) -7-hydroxycoumarin are dissolved in 20 ml of methylene chloride, where 73.9 mg (2.0 equivalents) of 30% by mass of hydrogen peroxide solution and tetrabutylammonium are added. Sulfate 10 mg (0.01 equiv) was added and stirred at room temperature for 24 hours. The termination of the reaction was confirmed by thin layer chromatography. When the reaction was terminated, the resultant was washed with 0.1 M sodium hydrogen carbonate solution and water, and then filtered with anhydrous magnesium sulfate. The obtained filtrate was concentrated under reduced pressure, and then purified by column chromatography (developing solvent: ethyl acetate / n-hexane = 1/15) to obtain Decusinol 4 as a target compound.

Rf= 0.20 (에틸아세테이트:n-헥산 = 1:2)R f = 0.20 (ethyl acetate: n-hexane = 1: 2)

수율 :0.158 g, 60%Yield: 0.158 g, 60%

m. p. 166 - 168 ℃m. p. 166-168 ℃

1H NMR (CDCl3): δ7.54(d, J=9.5Hz, CH=CH), 7.15(s, 1H, aromatic H-5), 6.76(s,1H, aromatic H-8), 6.19(d, J=9.5Hz, CH=CH), 3,86(dd, J=5,6Hz, CH2), 3.07(dd, J=5.16Hz, CHOH), 2.80(dd, J=5.16Hz, CHOH), 1.37 (s, gem-dimethyls) 1 H NMR (CDCl 3 ): δ 7.54 (d, J = 9.5 Hz, C H = CH), 7.15 (s, 1H, aromatic H-5), 6.76 (s, 1H, aromatic H-8), 6.19 (d, J = 9.5 Hz, CH = C H ), 3,86 (dd, J = 5,6 Hz, CH 2 ), 3.07 (dd, J = 5.16 Hz, C H OH), 2.80 (dd, J = 5.16 Hz, C H OH), 1.37 (s, gem-dimethyls)

실시예 6Example 6

2,2-디메틸-8-옥소-3,4-디히드로-2H,8H-피라노[3,2-g]-크로멘-3-일 3-메틸-2-부테노익 에스테르 (데커신 5)2,2-dimethyl-8-oxo-3,4-dihydro-2H, 8H-pyrano [3,2-g] -chromen-3-yl 3-methyl-2-butenoic ester (deckerin 5 )

데커시놀 50 mg(0.203 mmol)을 피리딘 0.02 g(1.0 당량)에 용해시키고, 여기에 3-메틸크로토노일 클로라이드(senecioyl chloride) 24.0 mg(0.203 mmol)을 천천히 적하하고, 30 ℃에서 1시간동안 교반하였다. 반응 혼합물을 메틸렌 클로라이드로 묽힌 후, 0.1N 염화수소 수용액과 물로 씻어준 후 여액을 감압농축하고 에틸아세테이트-헥산하에서 재결정하여 목적 화합물 5를 얻었다.50 mg (0.203 mmol) of decosinol was dissolved in 0.02 g (1.0 equiv) of pyridine, and 24.0 mg (0.203 mmol) of 3-methylcrotonoyl chloride was slowly added dropwise thereto, and the mixture was stirred at 30 DEG C for 1 hour. Was stirred. The reaction mixture was diluted with methylene chloride, washed with 0.1 N aqueous hydrogen chloride solution and water, and the filtrate was concentrated under reduced pressure and recrystallized under ethyl acetate-hexane to obtain the title compound (5).

Rf= 0.18 (에틸아세테이트:n-헥산 = 1:3)R f = 0.18 (ethyl acetate: n-hexane = 1: 3)

수율 : 0.061 g, 92%Yield: 0.061 g, 92%

m. p. 110 - 111 ℃m. p. 110-111 ℃

1H NMR (CDCl3): δ7.54(d, J=9.5Hz, CH=CH), 7.16(s, 1H, aromatic H-5),6.73(s,1H, aromatic H-8), 6.15(d, J=9.5Hz, CH=CH), 5.67(q, J=1Hz, =CH), 5.09(t, 2H, J=4.8Hz ,-CH2), 2.14(d, 3H,(CH 3 )2C-), 1.88(d, 3H,(CH 3 )2C-), 1.39(s, gem-dimethyls, J=5.16Hz) 1 H NMR (CDCl 3 ): δ 7.54 (d, J = 9.5 Hz, C H = CH), 7.16 (s, 1H, aromatic H-5), 6.73 (s, 1H, aromatic H-8), 6.15 (d, J = 9.5 Hz, CH = C H ), 5.67 (q, J = 1 Hz, = CH), 5.09 (t, 2H, J = 4.8 Hz, -CH 2 ), 2.14 (d, 3H, (C H 3 ) 2 C-), 1.88 (d, 3H, (C H 3 ) 2 C-), 1.39 (s, gem-dimethyls, J = 5.16Hz)

화학식 1의 화합물을 화학식 2의 화합물과 반응시켜 화학식 3의 화합물을 제조하는데 있어서, 금속 인듐을 촉매로 사용함에 의해 공기나 물 등에서도 안정하여 다루기 쉽고, 환경 친화적이며, 무엇보다 재생가능해서 경제적이다는 이점을 얻을 수 있다. 또한, 어려운 반응 공정을 거치지 않고 용이하게 생성물을 얻을 수 있으며, 고수율로 효율적이다는 이점이 있다.In preparing the compound of Formula 3 by reacting the compound of Formula 1 with the compound of Formula 2, it is stable and easy to handle in the air, water, etc. by using metal indium as a catalyst, environmentally friendly, and most of all, renewable and economical. Can benefit. In addition, there is an advantage that the product can be easily obtained without undergoing a difficult reaction process, and is efficient at high yield.

따라서, 본 발명은 유기합성공업 및 의약 제조 등에 다양하게 응용될 수 있다.Therefore, the present invention can be applied to various applications such as organic synthesis industry and medicine manufacture.

Claims (13)

금속 인듐을 촉매로 사용하여 유기 용매 존재 하에서 화학식 1의 알릴 할로겐 화합물을 화학식 2의 7-히드록시쿠마린과 반응시켜 화학식 3의 7-히드록시쿠마린 유도체를 제조하는 방법.A process for preparing a 7-hydroxycoumarin derivative of formula 3 by reacting an allyl halogen compound of formula 1 with 7-hydroxycoumarin of formula 2 in the presence of an organic solvent using a metal indium as a catalyst. [화학식 1][Formula 1] [화학식 2][Formula 2] [화학식 3][Formula 3] 식 중, 화학식 1에서 X는 할로겐 원자이며, R1과 R2는 각각 수소, 직쇄 또는 측쇄의 C1-5탄화수소를 나타낸다. 화학식 3에서 R1및 R2는 상기 화학식 1에서와 동일하다.In the formula, X in the formula (1) is a halogen atom, R 1 and R 2 each represent hydrogen, linear or branched C 1-5 hydrocarbon. R 1 and R 2 in Formula 3 are the same as in Formula 1. 제1항에 있어서, X가 브롬 또는 염소 원자인 것을 특징으로 하는 방법.The method of claim 1 wherein X is a bromine or chlorine atom. 제1항에 있어서, 상기 유기용매가 벤젠, 톨루엔, 메틸렌 클로라이드, 클로로포름, 아세토니트릴, 디옥센, 디에틸에테르 및 테트라히드로퓨란으로 구성되는 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the organic solvent is selected from the group consisting of benzene, toluene, methylene chloride, chloroform, acetonitrile, dioxene, diethyl ether and tetrahydrofuran. 제1항에 있어서, 상기 반응이 염기 존재 하에서 수행되는 것을 특징으로 하는 방법.The method of claim 1 wherein the reaction is carried out in the presence of a base. 제4항에 있어서, 상기 염기가 OH-, CO3 2-또는 HCO3 -를 포함하는 금속 화합물인 것을 특징으로 하는 방법.The method of claim 4, wherein the base is an OH - characterized in that the metal compound comprising a -, CO 3 2- or HCO 3. 제5항에 있어서, 상기 금속이 Li, Na, K, Cs, Mg, Ca 또는 Ba인 것을 특징으로 하는 방법.6. The method of claim 5 wherein the metal is Li, Na, K, Cs, Mg, Ca or Ba. 제6항에 있어서, 염기의 첨가량이 화학식 2로 표시되는 화합물에 대해 2 당량 이하(단, 0은 포함하지 않는다)인 것을 특징으로 하는 방법.The method according to claim 6, wherein the amount of base added is 2 equivalents or less (but does not include 0) based on the compound represented by the formula (2). 제5항에 있어서, 4Å 분자체가 추가로 첨가되는 것을 특징으로 하는 방법.The method of claim 5, wherein a 4 ′ molecular sieve is further added. 제8항에 있어서, 상기 4Å 분자체의 첨가량이 화학식 2로 표시되는 화합물에대해 200 질량% 이하(단, 0은 포함하지 않는다)인 것을 특징으로 하는 방법.The method according to claim 8, wherein the amount of the 4 ′ molecular sieve added is 200 mass% or less (but does not include 0) relative to the compound represented by the formula (2). 제1항에 있어서, 알릴 할로겐 화합물과 화학식 2로 표시되는 화합물의 몰 비가 10:1 내지 1:10인 것을 특징으로 하는 방법.The method of claim 1, wherein the molar ratio of the allyl halogen compound and the compound represented by the formula (2) is 10: 1 to 1:10. 제1항에 있어서, 인듐의 사용량이 화학식 2의 화합물에 대해 0.01 내지 2 당량인 것을 특징으로 하는 방법.The method of claim 1, wherein the amount of indium used is 0.01 to 2 equivalents based on the compound of Formula 2. 제1항에 있어서, 상기 반응의 반응 온도가 20 내지 150℃인 것을 특징으로 하는 방법.The method of claim 1, wherein the reaction temperature of the reaction is 20 to 150 ℃. 제1항에 있어서, 반응 시간이 1 내지 48 시간인 것을 특징으로 하는 방법.The method of claim 1 wherein the reaction time is 1 to 48 hours.
KR10-2002-0036479A 2002-06-27 2002-06-27 A method for preparing allylated 7-hydroxycoumarin derivatives KR100377327B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0036479A KR100377327B1 (en) 2002-06-27 2002-06-27 A method for preparing allylated 7-hydroxycoumarin derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0036479A KR100377327B1 (en) 2002-06-27 2002-06-27 A method for preparing allylated 7-hydroxycoumarin derivatives

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020000019995A Division KR100365293B1 (en) 2000-04-17 2000-04-17 A method for preparing allylated aromatic compounds and pyranocoumarins

Publications (2)

Publication Number Publication Date
KR20020068475A KR20020068475A (en) 2002-08-27
KR100377327B1 true KR100377327B1 (en) 2003-03-26

Family

ID=27727053

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0036479A KR100377327B1 (en) 2002-06-27 2002-06-27 A method for preparing allylated 7-hydroxycoumarin derivatives

Country Status (1)

Country Link
KR (1) KR100377327B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821936B1 (en) * 2006-12-20 2008-04-15 강원대학교산학협력단 Coupling method between carbons in the unsaturated hydrocarbon compound using organo-indium compound as coupling agent

Also Published As

Publication number Publication date
KR20020068475A (en) 2002-08-27

Similar Documents

Publication Publication Date Title
CN100564370C (en) The preparation of isoflavone derivative
KR19990088113A (en) Fumagillol derivatives and preparation method thereof
EP1860103B1 (en) Anticancer compound, intermediate therefor, and processes for producing these
EP1919887A2 (en) Method for enantioselective hydrogenation of chromenes
US20040249174A1 (en) Synthesis of cannabinoids
AU2002253386A1 (en) Synthesis of cannabinoids
JPS5946233B2 (en) Method for producing chroman derivatives
KR101829102B1 (en) Preparation method of chromanone 2-carboxylic acid or chroman 2-carboxylic acid derivatives
KR100377327B1 (en) A method for preparing allylated 7-hydroxycoumarin derivatives
KR100365293B1 (en) A method for preparing allylated aromatic compounds and pyranocoumarins
Page et al. Asymmetric epoxidation of chromenes mediated by iminium salts: Synthesis of mollugin and (3S, 4R)-trans-3, 4-dihydroxy-3, 4-dihydromollugin
Al-Abed et al. Stereoselective synthesis of β-oxy-and α-methylene-γ-butyrolactones on pyranose templates
CN112645863B (en) Dipyrromethene-1-ketone compound and preparation method thereof
JP2002534423A (en) Method for synthesizing 5- (α-hydroxyalkyl) benzo [1,3] dioxole
FR2831538A1 (en) NEW ARTEMISININ DERIVATIVES AND THEIR USES IN THE TREATMENT OF MALARIA
CN111995605B (en) Chrysin cinnamate or its derivative and its preparation method
CN108947953B (en) Synthetic method of flavonoid derivative
KR20050044334A (en) Preparation of cis-fused 3,3a,8,12b-tetrahydro-2h-dibenzo[3,4:6,7]cyclohepta[1,2-b]furan derivatives
JP3086738B2 (en) Method for producing high-purity tocopheryl retinoate
KR20050044329A (en) Preparation of trans-fused 3,3a,8,12b-tetrahydro-2h-dibenzo[3,4:6,7]cyclohepta[1,2-b]furan derivatives
CN115197188B (en) Sesquiterpene hydroquinone compound with pentacyclic skeleton and preparation method thereof
JPS62209070A (en) Neolignane derivative
CN101265246A (en) Trifluoromethyl substituted benzofuran derivatives and preparation method thereof
JPS63239238A (en) Manufacture of optically active carbonyl compound
KR100422253B1 (en) Alpha-tocopheryl cycloproylates, the new vitamin e derivatives, and methods for producing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080229

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee