JP4466545B2 - Reactor water supply equipment - Google Patents

Reactor water supply equipment Download PDF

Info

Publication number
JP4466545B2
JP4466545B2 JP2005343016A JP2005343016A JP4466545B2 JP 4466545 B2 JP4466545 B2 JP 4466545B2 JP 2005343016 A JP2005343016 A JP 2005343016A JP 2005343016 A JP2005343016 A JP 2005343016A JP 4466545 B2 JP4466545 B2 JP 4466545B2
Authority
JP
Japan
Prior art keywords
water
reactor
water supply
pressure vessel
reactor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005343016A
Other languages
Japanese (ja)
Other versions
JP2007147466A (en
Inventor
清志 藤本
孝次 椎名
和明 木藤
雅夫 茶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005343016A priority Critical patent/JP4466545B2/en
Publication of JP2007147466A publication Critical patent/JP2007147466A/en
Application granted granted Critical
Publication of JP4466545B2 publication Critical patent/JP4466545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は原子炉への給水を司る給水装置に関し、特には、原子炉圧力容器内への給水の給水温度を建設当初の定格熱出力運転時に比較して低下させて原子炉の運転を行う場合であっても原子炉圧力容器の健全性を維持するのに好適な原子炉の給水装置に関するものである。   The present invention relates to a water supply apparatus that controls the supply of water to a nuclear reactor, and in particular, when the operation of a nuclear reactor is performed by lowering the temperature of the water supplied to the reactor pressure vessel as compared to the rated heat output operation at the beginning of construction. Even so, the present invention relates to a reactor water supply apparatus suitable for maintaining the soundness of the reactor pressure vessel.

通常の沸騰水型原子炉の設計ではまず、炉心の熱出力を決定し、その熱出力で最高の熱効率が得られるように主蒸気管以降の蒸気の流れを最適化している。具体的には、復水器で蒸気を水にすると熱サイクルの原理から通常の沸騰水型原子炉の圧力(約7MPa)ではエネルギーの2/3が排出される。   In the design of a normal boiling water reactor, the thermal power of the core is first determined, and the steam flow after the main steam pipe is optimized so that the highest thermal efficiency can be obtained with that thermal output. Specifically, when steam is converted into water by a condenser, 2/3 of the energy is discharged at a normal boiling water reactor pressure (about 7 MPa) from the principle of thermal cycle.

そこで、前述のように、蒸気のうちの一部を抽気して給水加熱器における給水を加熱するために用いる。この場合、抽気した抽気蒸気の熱が回収されるため原子炉の熱効率は向上する。一般に再循環ポンプとジェットポンプを用いて、湿分分離器を備えている沸騰水型原子炉においては、蒸気のうち最終的に低圧タービン出口から復水器に送られる蒸気の量は約55%で、残りの蒸気は給水の加熱に用いている。   Therefore, as described above, a part of the steam is extracted and used to heat the feed water in the feed water heater. In this case, since the heat of the extracted steam extracted is recovered, the thermal efficiency of the nuclear reactor is improved. Generally, in a boiling water reactor equipped with a moisture separator using a recirculation pump and a jet pump, the amount of steam finally sent from the low-pressure turbine outlet to the condenser is about 55%. The remaining steam is used to heat the feed water.

従来公知の特許文献3において、給水管,主蒸気配管,原子炉内の構造物にかかる負荷の増加を抑制するため、主蒸気流量及び給水流量を増加させずに給水温度を低下させる方法が提案されている。   In the conventionally known Patent Document 3, a method for lowering the feed water temperature without increasing the main steam flow rate and the feed water flow rate is proposed in order to suppress an increase in the load on the feed water pipe, the main steam pipe, and the structure in the reactor. Has been.

この際、給水ノズル部では高温の炉水と低温の給水との間には大きな温度差が生じ、前記給水ノズル部での熱応力及び熱疲労が懸念される。従って、耐熱応力や耐熱疲労に優れた給水システムが必要になる。   At this time, a large temperature difference occurs between the high-temperature reactor water and the low-temperature water supply in the water supply nozzle portion, and there is concern about thermal stress and thermal fatigue in the water supply nozzle portion. Therefore, a water supply system excellent in heat stress and heat fatigue is required.

さらに言及すれば、原子力発電所に採用されている原子炉には原子炉圧力容器内への給水系統が接続されている。その給水系統の給水管は、図3に示す原子炉圧力容器11の給水ノズル1の入口1aに接続され、給水ノズル1内のサーマルスリーブ3に連通している。そのサーマルスリーブ3の原子炉圧力容器11内側の端部には、流路がT字状のT字管6が一端に接続され、T字管6の残りの二端にはヘッダー管35が接続され、原子炉圧力容器内壁面に沿ってヘッダー管35が水平に設けられている。そのヘッダー管35に注水ノズル2が給水の吐出口36を原子炉圧力容器中心方向に向かう水平方向にむけて設置されている。   Furthermore, the water supply system to the reactor pressure vessel is connected to the reactor adopted in the nuclear power plant. The water supply pipe of the water supply system is connected to the inlet 1 a of the water supply nozzle 1 of the reactor pressure vessel 11 shown in FIG. 3 and communicates with the thermal sleeve 3 in the water supply nozzle 1. A T-tube 6 having a T-shaped flow path is connected to one end of the thermal sleeve 3 inside the reactor pressure vessel 11, and a header tube 35 is connected to the other two ends of the T-tube 6. The header pipe 35 is horizontally provided along the inner wall surface of the reactor pressure vessel. The water injection nozzle 2 is installed in the header pipe 35 with the water supply discharge port 36 facing in the horizontal direction toward the center of the reactor pressure vessel.

給水ノズル1やサーマルスリーブ3やT字管6や注水ノズル2やヘッダー管35等は、原子炉の定格運転時の炉水の水面下に位置しているので、原子炉の定格運転時には高温の炉水7にさらされている。このような高温環境の中に、給水系統を通じて注水ノズル2から原子炉圧力容器内の高温の炉水7の温度よりも低い温度の給水8が原子炉圧力容器のダウンカマ上方において原子炉圧力容器中心方向に向かう水平方向に吐出される。   The water supply nozzle 1, the thermal sleeve 3, the T-shaped tube 6, the water injection nozzle 2, the header pipe 35, etc. are located below the surface of the reactor water during the rated operation of the reactor. Exposed to reactor water 7 In such a high-temperature environment, the water supply 8 having a temperature lower than the temperature of the high-temperature reactor water 7 in the reactor pressure vessel is injected from the water injection nozzle 2 through the water supply system above the downcomer of the reactor pressure vessel. It is discharged in the horizontal direction toward the direction.

このように、サーマルスリーブ3内には高温の炉水7の温度よりも低温の給水8が通るので、サーマルスリーブ3と給水ノズル1との間の環状流路9には、図4のように、高温水20と低温水21との高低温水界面22が発生し、高低温水界面22から下方が低温に、上方が高温に曝されている。   As described above, since the water supply 8 having a temperature lower than the temperature of the high-temperature reactor water 7 passes through the thermal sleeve 3, the annular flow path 9 between the thermal sleeve 3 and the water supply nozzle 1 is provided as shown in FIG. 4. A high / low temperature water interface 22 between the high temperature water 20 and the low temperature water 21 is generated, and the lower side is exposed to a low temperature and the upper side is exposed to a high temperature.

このような状況下で、注水ノズル2から低温の給水8が原子炉圧力容器内に吐出されると、シュラウドヘッドボルト4やシュラウドヘッドボルトリング5に給水の流れが変更されて低温の給水を有する跳ね返り水23が、図4のように、発生して環状流路9内に入ってくることがある。   Under such circumstances, when the low temperature water supply 8 is discharged from the water injection nozzle 2 into the reactor pressure vessel, the flow of the water supply is changed to the shroud head bolt 4 or the shroud head bolt ring 5 to have the low temperature water supply. The rebound water 23 may be generated and enter the annular flow path 9 as shown in FIG.

このような状態では、給水ノズル1の入口1a側で行き止まりの環状流路9であるにもかかわらず、その環状流路9内に流れが発生して高低温水界面22の位置が変動して給水ノズル1やサーマルスリーブ3に熱衝撃を連続的に発生させる。低温の跳ね返り水23が環状流路9に入らないまでも、跳ね返り水23が給水ノズル1の原子炉圧力容器
11の付け根部近傍に接触することで、その部分が熱衝撃を受ける。
In such a state, the flow is generated in the annular flow path 9 and the position of the high / low temperature water interface 22 fluctuates in spite of the dead end annular flow path 9 on the inlet 1a side of the water supply nozzle 1. Thermal shock is continuously generated in the nozzle 1 and the thermal sleeve 3. Even if the low-temperature rebound water 23 does not enter the annular flow path 9, the rebound water 23 comes into contact with the vicinity of the root portion of the reactor pressure vessel 11 of the water supply nozzle 1, so that part is subjected to thermal shock.

このような熱衝撃の発生は、シュラウドヘッドボルト4やシュラウドヘッドボルトリング5が注水ノズル2に接近して配置されていない場合でもスタンドパイプで低温の跳ね返り水23が発生することも考えられ、少なからず発生する可能性がある。このような熱衝撃の発生は出来るだけ回避することが原子炉の安全を今以上さらに向上するに際して考慮されるべきである。   The occurrence of such a thermal shock can be considered that low-temperature rebound water 23 is generated in the standpipe even when the shroud head bolt 4 and the shroud head bolt ring 5 are not arranged close to the water injection nozzle 2. May occur. Avoiding such thermal shocks as much as possible should be considered when further improving the safety of the reactor.

また、前述の跳ね返り水23はサーマルスリーブ3での熱交換や原子炉圧力容器11内に放出されたときに温度が上昇するが、高低温水界面22を形成する低温水21の温度より低いことが推定される。そのため、注水ノズル2から放出される跳ね返り水23が直接高低温水界面22へ作用すると温度変動幅が大きくなり、給水ノズル1及びサーマルスリーブ3で熱疲労が発生しやすくなるため、これも回避する必要がある。   Further, the temperature of the above-mentioned rebound water 23 rises when heat is exchanged in the thermal sleeve 3 or when it is discharged into the reactor pressure vessel 11, but it may be lower than the temperature of the low-temperature water 21 that forms the high-low temperature water interface 22. Presumed. Therefore, if the rebound water 23 discharged from the water injection nozzle 2 directly acts on the high / low temperature water interface 22, the temperature fluctuation range becomes large, and thermal fatigue is likely to occur in the water supply nozzle 1 and the thermal sleeve 3. There is.

原子炉圧力容器の給水ノズル部での熱衝撃を防止する例として特許文献1が掲げられ、ノズル内にサーマルスリーブを採用する例として特許文献2が掲げられる。   Patent Document 1 is listed as an example of preventing thermal shock at the water supply nozzle portion of the reactor pressure vessel, and Patent Document 2 is listed as an example of employing a thermal sleeve in the nozzle.

特開昭55−48696号公報JP 55-48696 A 特開2005−201696号公報JP 2005-201696 A

特許文献1のように、給水ノズルの高さ位置を原子炉の定格運転時の炉水の水位を超える高さに変更することで、炉水や給水の各温度の影響を受けないようにして、給水ノズルで懸念される熱衝撃による熱疲労を排除するものが考えられている。しかしながら、既存の原子力発電所の発電プラントに採用されている原子炉では、給水ノズルが原子炉圧力容器内の炉水の水面下の高さに配置されているため、給水ノズルと原子炉容器内の炉水の液面との位置関係を変えると原子炉圧力容器内に設置されている気水分離器や蒸気乾燥器の性能を確保できるかが懸念される。   As in Patent Document 1, by changing the height position of the water supply nozzle to a height that exceeds the water level of the reactor water during the rated operation of the reactor, it is possible not to be affected by each temperature of the reactor water or water supply. In order to eliminate thermal fatigue caused by thermal shock, which is a concern with water supply nozzles, it has been considered. However, in the nuclear reactors used in the power plants of existing nuclear power plants, the feed water nozzle is arranged at a level below the surface of the reactor water in the reactor pressure vessel, so the feed water nozzle and the reactor vessel interior If the positional relationship with the liquid level of the reactor water is changed, there is a concern that the performance of the steam-water separator and the steam dryer installed in the reactor pressure vessel can be secured.

したがって、原子炉圧力容器内の機器の性能を確保するためには、原子炉圧力容器内の炉水の液面より下方に給水ノズルを設置した状態で、給水ノズル部の熱衝撃による熱疲労を回避することが望まれる。   Therefore, in order to ensure the performance of the equipment in the reactor pressure vessel, thermal fatigue due to the thermal shock of the water supply nozzle portion with the water supply nozzle installed below the level of the reactor water in the reactor pressure vessel. It is desirable to avoid it.

また、別の特許文献2では、ノズル部にサーマルスリーブを採用することが類似するが、冷却水の注入流量の安定化が目的であり、給水ノズル部の熱衝撃や熱疲労に関しては言及されていない。   Another patent document 2 is similar in that a thermal sleeve is used in the nozzle part, but the purpose is to stabilize the cooling water injection flow rate, and mention is made of thermal shock and thermal fatigue of the water supply nozzle part. Absent.

したがって、本発明の目的は、給水ノズルが炉水の液面下の高さに配置されている原子炉圧力容器に対する給水を熱衝撃を極力避けながら達成することにある。   Accordingly, an object of the present invention is to achieve water supply to a reactor pressure vessel in which a water supply nozzle is disposed at a level below the surface of the reactor water while avoiding thermal shock as much as possible.

本発明の基本的要件は、原子炉圧力容器と、前記原子炉圧力容器から蒸気を高圧タービン及び低圧タービンへ供給する蒸気系統と、前記低圧タービンから排出された蒸気を水に凝縮する復水器と、前記水を給水加熱器で加熱してポンプで給水管を通じて前記原子炉圧力容器に向けて導く給水系統と、前記原子炉圧力容器内の原子炉運転水位よりも下方の高さに配置されて、前記原子炉圧力容器の給水ノズルと、前記給水ノズル内に装備され、前記給水管と連通しているサーマルスリーブと、前記原子炉圧力容器内に装備され、前記サーマルスリーブに連通しているヘッダー管と、前記原子炉運転水位よりも下方の高さに配置され、前記ヘッダー管に連通して前記原子炉圧力容器内に前記水を吐出する注水ノズルと、を備えた原子炉の給水装置において、前記ヘッダー管は連通管で接続されて上下多段に装備され、前記下段のヘッダー管に前記注水ノズルが装備されていると共に、前記注水ノズルの前記水を吐出する吐出口の高さ方向中心位置が前記サーマルスリーブの高さ方向中心位置より下方に配置されている原子炉の給水装置である。
The basic requirements of the present invention are a reactor pressure vessel, a steam system for supplying steam from the reactor pressure vessel to a high pressure turbine and a low pressure turbine, and a condenser for condensing steam discharged from the low pressure turbine into water. And a water supply system that heats the water with a feed water heater and guides the water toward the reactor pressure vessel through a water supply pipe with a pump, and is disposed at a height lower than the reactor operating water level in the reactor pressure vessel. The reactor pressure vessel feed nozzle, the thermal nozzle provided in the feed nozzle and in communication with the feed pipe, the reactor pressure vessel in the reactor, and in communication with the thermal sleeve A reactor water supply apparatus comprising: a header pipe; and a water injection nozzle that is disposed at a lower level than the reactor operating water level and communicates with the header pipe to discharge the water into the reactor pressure vessel. Oite, the header pipe is equipped with are connected by the communicating pipe in the vertical multistage, together with the water injection nozzle header pipe of the lower is equipped, the height direction of the discharge port for discharging the water in the water injection nozzle A water supply device for a reactor, the center position of which is disposed below the center position in the height direction of the thermal sleeve.

本発明によれば、注水ノズルによる原子炉圧力容器内への吐出位置が給水ノズルの中心軸の高さよりも低い位置になり、原子炉圧力容器内壁面に沿って下降する炉水の流れに吐出後の給水が同伴されて下降して、上方の給水ノズルに到達困難となって給水ノズル部の熱衝撃の発生が抑制できる。   According to the present invention, the discharge position into the reactor pressure vessel by the water injection nozzle is lower than the height of the central axis of the water supply nozzle, and the discharge is performed in the flow of reactor water descending along the inner wall surface of the reactor pressure vessel. The subsequent water supply is accompanied and descends, and it becomes difficult to reach the upper water supply nozzle, and the occurrence of thermal shock at the water supply nozzle portion can be suppressed.

本発明の第1実施例を以下に説明する。原子力発電所の原子炉は、図9のように、原子炉圧力容器11に接続されている主蒸気系統と給水系統とを備えている。主蒸気系統は、原子炉圧力容器11内から蒸気を高圧タービン26及び低圧タービン28へ供給する系統である。   A first embodiment of the present invention will be described below. As shown in FIG. 9, a nuclear power plant nuclear reactor includes a main steam system and a water supply system connected to the reactor pressure vessel 11. The main steam system is a system that supplies steam from the reactor pressure vessel 11 to the high-pressure turbine 26 and the low-pressure turbine 28.

即ち、原子炉圧力容器11内で発生した高温高圧な蒸気は、主蒸気配管19を通じて高圧タービン26に供給されてその高圧タービン26を回転するのに用いられる。その高圧タービン26で用いられた蒸気は湿分分離器27に供給されて湿分が低減される。湿分が低減された蒸気は低圧タービン28に供給されて低圧タービン28を回転するのに用いられる。このように主蒸気系統の各タービンで用いられた蒸気は、復水器に供給され、そこで蒸気は凝縮されて低温の水となる。   That is, the high-temperature and high-pressure steam generated in the reactor pressure vessel 11 is supplied to the high-pressure turbine 26 through the main steam pipe 19 and used to rotate the high-pressure turbine 26. The steam used in the high-pressure turbine 26 is supplied to the moisture separator 27 to reduce the moisture. The steam with reduced moisture is supplied to the low-pressure turbine 28 and used to rotate the low-pressure turbine 28. Thus, the steam used in each turbine of the main steam system is supplied to the condenser, where the steam is condensed into low-temperature water.

高圧タービン26と低圧タービン28が回転駆動されると、各タービンに接続されている発電機が各タービンの回転駆動力で駆動されて発電作用を発揮し、発電電力はケーブルで原子力発電所外へ送電されるように構成されている。   When the high-pressure turbine 26 and the low-pressure turbine 28 are rotationally driven, the generator connected to each turbine is driven by the rotational driving force of each turbine to exert a power generation action, and the generated power is output to the outside of the nuclear power plant with a cable. It is configured to transmit power.

各タービンで用いられた蒸気が復水器29で低温の水に戻された後に、その水は給水として給水系統で取り扱われる。給水系統は以下の通りである。即ち、給水系統は、復水器29で蒸気から生成した水を給水として給水管37に通して給水ポンプ31でその給水を原子炉圧力容器11内に給水する。その給水管37の途中には、低圧給水加熱器30と高圧給水加熱器32とが直列に装備され、給水系統を通過中の給水を加熱する。   After the steam used in each turbine is returned to low-temperature water by the condenser 29, the water is handled as water supply in the water supply system. The water supply system is as follows. That is, in the water supply system, water generated from the steam in the condenser 29 is supplied as water to the water supply pipe 37, and the water is supplied into the reactor pressure vessel 11 by the water supply pump 31. A low-pressure feed water heater 30 and a high-pressure feed water heater 32 are provided in series in the middle of the feed water pipe 37 to heat the feed water passing through the feed water system.

給水系統の低温給水加熱器30へは給水との熱交換対象流体として蒸気が湿分分離器
27と低圧タービン28の中間段から抽出して供給されている。同じく、給水系統の高圧給水加熱器32には、給水との熱交換対象流体として蒸気が高圧タービン26の中間段と最終段から抽出して供給されている。高圧タービン26の最終段から抽出された蒸気を高圧給水加熱器32へ供給する配管の途中には、抽気流量調整弁33が設けられて高温給水加熱器へ供給する蒸気量を抽気流量調整弁33の開度調整で調整できる。
Steam is extracted and supplied from the intermediate stage of the moisture separator 27 and the low-pressure turbine 28 to the low-temperature feed water heater 30 of the feed water system as a fluid subject to heat exchange with the feed water. Similarly, steam is extracted and supplied from the intermediate stage and the final stage of the high-pressure turbine 26 to the high-pressure feed water heater 32 of the feed water system as a fluid subject to heat exchange with the feed water. In the middle of the pipe for supplying the steam extracted from the final stage of the high-pressure turbine 26 to the high-pressure feed water heater 32, an extraction flow rate adjustment valve 33 is provided, and the amount of steam supplied to the high-temperature feed water heater is extracted. It can be adjusted by adjusting the opening.

また、給水系統には、高圧給水加熱器32を給水が迂回する給水バイパス管34や、高圧給水加熱器32内の熱源である蒸気を低温給水加熱器30に供給する配管や、低温給水加熱器30の熱源である蒸気等の流体を復水器29に供給する配管等が付属する。   Further, the water supply system includes a water supply bypass pipe 34 for bypassing the high-pressure feed water heater 32, a pipe for supplying steam, which is a heat source in the high-pressure feed water heater 32, to the low-temperature feed water heater 30, and a low-temperature feed water heater. A pipe or the like for supplying a fluid such as steam as a heat source 30 to the condenser 29 is attached.

給水系統は、給水ノズルの入口での給水の温度を前記原子炉の建設当初の定格運転時のその温度よりも1℃以上低下させて前記原子炉圧力容器11内に向けて導くことが出来るように、抽気流量調整弁33を建設当初の定格運転時よりも絞る(閉じる方向)操作を行って、高圧タービン26内の蒸気(熱源)を高圧給水加熱器32へ供給する流量を減らす。   The water supply system can guide the temperature of the feed water at the inlet of the feed water nozzle into the reactor pressure vessel 11 by lowering the temperature by 1 ° C. or more from the temperature at the rated operation at the beginning of the construction of the reactor. Further, the flow rate of supplying steam (heat source) in the high-pressure turbine 26 to the high-pressure feed water heater 32 is reduced by performing an operation of closing (in the closing direction) the extraction flow rate adjusting valve 33 from the rated operation at the beginning of construction.

あるいは、給水ポンプ31からの給水を高圧給水加熱器32に供給せず、給水バイパス管34に通して直接原子炉圧力容器11へ給水することで、給水ノズルの入口での給水の温度を、建設当初の定格運転時の給水ノズルの入口における給水温度よりも1℃以上低下させて出力向上運転条件とする。給水バイパス管34に流量調整弁を設けて、その流量調整弁の開度を調整して、給水バイパス管34と高圧給水加熱器32への給水の流量配分を調整し、給水ノズルの入口での給水の温度を、建設当初の定格運転時の給水ノズルの入口における給水温度よりも1℃以上低下させて出力向上運転条件とするようにしても良い。   Alternatively, the feed water from the feed water pump 31 is not supplied to the high-pressure feed water heater 32, but is fed directly to the reactor pressure vessel 11 through the feed water bypass pipe 34. The operating condition is to improve the output by reducing it by 1 ° C. or more from the water supply temperature at the inlet of the water supply nozzle during the initial rated operation. The water supply bypass pipe 34 is provided with a flow rate adjustment valve, the opening of the flow rate adjustment valve is adjusted to adjust the flow distribution of the water supply to the water supply bypass pipe 34 and the high pressure feed water heater 32, and at the inlet of the water supply nozzle. The temperature of the water supply may be reduced by 1 ° C. or more from the water supply temperature at the inlet of the water supply nozzle at the time of rated operation at the beginning of construction so as to be an output improvement operation condition.

このように、通常運転時の給水温度の振れ幅以上である1℃以上給水温度を下げればよい。ただし、給水は原子炉圧力容器11に入るときに原子炉圧力容器11内の飽和温度の水と混合するから、給水ノズル部近傍の構成物間に温度差が生じる。給水温度を下げすぎるとこの部分で温度差が大きくなり、熱疲労の観点から設計限界を超える懸念があるので、その懸念が無いように設計限界との兼ね合いも考慮して下げ幅を設定する。   Thus, the feed water temperature may be lowered by 1 ° C. or more, which is equal to or greater than the fluctuation width of the feed water temperature during normal operation. However, since the feed water is mixed with water at the saturation temperature in the reactor pressure vessel 11 when entering the reactor pressure vessel 11, a temperature difference occurs between components near the feed water nozzle portion. If the feed water temperature is lowered too much, the temperature difference increases at this portion, and there is a concern that the design limit will be exceeded from the viewpoint of thermal fatigue. Therefore, the reduction width is set in consideration of the balance with the design limit so that there is no concern.

図9において、Qは原子炉圧力容器内で生成される熱出力百分率を、Gは図9の系統内の質量流量百分率を、Hは同じくエンタルピ(kJ/kg)を示す。図9でQ=105とあるのは、原子炉建設当初の定格熱出力の熱出力百分率Qが100%であったものを建設後に105%にまで出力向上したことを意味している。   In FIG. 9, Q represents the percentage of heat output generated in the reactor pressure vessel, G represents the mass flow percentage in the system of FIG. 9, and H represents enthalpy (kJ / kg). In FIG. 9, Q = 105 means that the power output percentage Q of the rated heat output at the beginning of the reactor construction was increased to 105% after the construction.

改良型沸騰水型原子炉における原子炉圧力容器11内の構成を図2に示す。原子炉圧力容器11内のシュラウド12内に炉心17が設置される。核分裂性物質を含む炉心17で水を沸騰させ、沸騰によって生じた蒸気は温水と混合状態で気水分離器13に流入して液滴を含む蒸気と温水に分離される。   FIG. 2 shows the configuration of the reactor pressure vessel 11 in the improved boiling water reactor. A core 17 is installed in the shroud 12 in the reactor pressure vessel 11. Water is boiled in the core 17 containing fissile material, and the steam generated by the boiling flows into the steam separator 13 in a mixed state with warm water, and is separated into steam containing droplets and warm water.

気水分離器13で分離された温水は、給水ノズル1から原子炉圧力容器11内への給水と混合して原子炉圧力容器11とシュラウド12との間に形成されたダウンカマ14を下方へ向けて通り、原子炉圧力容器11底部に設けた再循環ポンプ15で駆動され、下部プレナム16を経由して炉心17に再循環される。   The hot water separated by the steam separator 13 is mixed with the feed water from the feed nozzle 1 into the reactor pressure vessel 11 and the downcomer 14 formed between the reactor pressure vessel 11 and the shroud 12 is directed downward. Then, it is driven by a recirculation pump 15 provided at the bottom of the reactor pressure vessel 11 and recirculated to the core 17 via the lower plenum 16.

一方、気水分離器13で分離された液滴を含む蒸気は、気水分離器13の上方に配置された蒸気乾燥器18で蒸気内の液滴が除去され、その後、主蒸気配管19を経由して高圧タービン26,低圧タービン28へと送られ、高圧タービン,低圧タービンの軸と連動した発電機で電気を発生させている。   On the other hand, the steam containing the droplets separated by the steam separator 13 is removed from the steam by the steam dryer 18 disposed above the steam separator 13. It is sent to the high-pressure turbine 26 and the low-pressure turbine 28 via, and electricity is generated by the generator interlocked with the shafts of the high-pressure turbine and the low-pressure turbine.

各タービンで用いられた蒸気は復水器29で凝縮され水となり、その水は給水として各給水加熱器で温度調整されて給水ポンプ31で昇圧され、給水ノズル1の内側を通過して注水ノズル2から原子炉圧力容器11内に吐出され給水される。給水ノズル1は原子炉圧力容器11の周方向に複数設けられている。注水ノズル2からの給水の吐出方向は、水平断面で温水と冷却水が均一に混合されるように、図3の(b)図中の一点鎖線で示す原子炉圧力容器11中心に向かう水平方向となっている。   Steam used in each turbine is condensed into water by a condenser 29, and the water is adjusted in temperature by each feed water heater as feed water, and is pressurized by a feed water pump 31, passes through the inside of the feed water nozzle 1, and is a water injection nozzle. 2 is discharged into the reactor pressure vessel 11 and supplied with water. A plurality of water supply nozzles 1 are provided in the circumferential direction of the reactor pressure vessel 11. The discharge direction of the feed water from the water injection nozzle 2 is the horizontal direction toward the reactor pressure vessel 11 center indicated by the one-dot chain line in FIG. 3B so that the hot water and the cooling water are uniformly mixed in the horizontal section. It has become.

改良型沸騰水型原子炉の給水ノズル1部の構造を図1に示す。原子炉圧力容器11内で下降する高温の炉水7と、その炉水よりも低温の給水8の温度差による熱応力,熱疲労を低減するため、給水ノズル1内部には、給水ノズル1と同心状にサーマルスリーブ3を設置して直接温度差のある二流体が給水ノズル1内で接触することを回避している。その給水ノズル1の内壁面とサーマルスリーブ3の外壁面との間には、環状流路9が設けられている。   FIG. 1 shows the structure of the feed water nozzle 1 part of the improved boiling water reactor. In order to reduce thermal stress and thermal fatigue due to the temperature difference between the high-temperature reactor water 7 descending in the reactor pressure vessel 11 and the feed water 8 having a temperature lower than that of the reactor water, the feed nozzle 1 and The thermal sleeve 3 is installed concentrically to avoid contact between two fluids having a direct temperature difference in the water supply nozzle 1. An annular channel 9 is provided between the inner wall surface of the water supply nozzle 1 and the outer wall surface of the thermal sleeve 3.

給水ノズル1の給水の入口1aに近い部位には、サーマルスリーブ3の一端が一体化されている。サーマルスリーブ3の他端である先端には、Tの字状のT字管6が接続され、そのT字管6の左右両端には左右のヘッダー管35が接続され、そのヘッダー管35にはLの字状の注水ノズル2が複数個接続されている。   One end of the thermal sleeve 3 is integrated with a portion of the water supply nozzle 1 near the water supply inlet 1a. A T-shaped T-shaped tube 6 is connected to the tip which is the other end of the thermal sleeve 3, and left and right header tubes 35 are connected to the left and right ends of the T-shaped tube 6. A plurality of L-shaped water injection nozzles 2 are connected.

注水ノズル2は、図1のように、ヘッダー管35の下部位置に接続され、給水の吐出口36が、図3の(b)図中の一点鎖線で示す原子炉圧力容器11中心に向かう水平方向に向いている。給水は注水ノズル2の吐出口36から原子炉圧力容器11中心に向かう水平方向に吐出して原子炉圧力容器11内に給水される。吐出口36の中心を通っている注水ノズル2の中心軸2aは、サーマルスリーブ3と給水ノズル1の共通の中心軸3aよりも下方に配置されている。   As shown in FIG. 1, the water injection nozzle 2 is connected to the lower position of the header pipe 35, and the water supply discharge port 36 is horizontally directed toward the center of the reactor pressure vessel 11 as indicated by the one-dot chain line in FIG. Facing the direction. Water is discharged from the discharge port 36 of the water injection nozzle 2 in the horizontal direction toward the center of the reactor pressure vessel 11 and supplied into the reactor pressure vessel 11. The central axis 2 a of the water injection nozzle 2 passing through the center of the discharge port 36 is disposed below the central axis 3 a common to the thermal sleeve 3 and the water supply nozzle 1.

ヘッダー管35の近傍には、図1のように、シュラウドヘッドボルト4やシュラウドヘッドボルトリング5が配置されている。原子炉の定格運転時の炉水の通常運転水位が図2(b)中に示したA−A矢視レベルの高さにあるので、その高さより低い位置に設けられている給水ノズル1内は高温の炉水によって満たされ、シュラウドヘッドボルトリング5や注水ノズル2やヘッダー管35やT字管6やサーマルスリーブ3は、その高温の炉水中に存在する。当然に、給水ノズル1内面とサーマルスリーブ3外面との間の環状流路9にも高温の炉水7が満たされている。   A shroud head bolt 4 and a shroud head bolt ring 5 are arranged in the vicinity of the header pipe 35 as shown in FIG. Since the normal operating water level of the reactor water during the rated operation of the nuclear reactor is at the level indicated by the arrows AA shown in FIG. 2B, the water supply nozzle 1 provided at a position lower than that level. Is filled with high-temperature reactor water, and the shroud head bolt ring 5, the water injection nozzle 2, the header tube 35, the T-shaped tube 6 and the thermal sleeve 3 exist in the high-temperature reactor water. Naturally, the high-temperature reactor water 7 is also filled in the annular flow path 9 between the inner surface of the water supply nozzle 1 and the outer surface of the thermal sleeve 3.

次に、原子炉圧力容器11内の高温の炉水7と給水ノズル1からの低温の給水8の流れについて説明する。原子炉圧力容器11内の気水分離器13で蒸気と分離された高温の炉水7(例えば、280℃)は、注水ノズル2の上方から流れてくる。その後、高温の炉水7は注水ノズル2から吐出された低温の給水8と混合して、ダウンカマ14を通り、再循環ポンプ15で駆動され、下部プレナム16を経由して炉心17に再循環される。   Next, the flow of the high-temperature reactor water 7 in the reactor pressure vessel 11 and the low-temperature feed water 8 from the feed water nozzle 1 will be described. High-temperature reactor water 7 (for example, 280 ° C.) separated from steam by the steam-water separator 13 in the reactor pressure vessel 11 flows from above the water injection nozzle 2. Thereafter, the high temperature reactor water 7 is mixed with the low temperature feed water 8 discharged from the water injection nozzle 2, passes through the downcomer 14, is driven by the recirculation pump 15, and is recirculated to the core 17 via the lower plenum 16. The

低温の給水8は、給水管37から給水ノズル1内のサーマルスリーブ3を通り、T字管6で2方向に分流されてその二方向にあるヘッダー管35内に通って各注水ノズル2内に至り、その各注水ノズルの吐出口36から原子炉圧力容器11内に吐出する。   The low temperature water supply 8 passes through the thermal sleeve 3 in the water supply nozzle 1 from the water supply pipe 37, is divided into two directions by the T-shaped pipe 6, passes through the header pipe 35 in the two directions, and enters each water injection nozzle 2. Then, it is discharged into the reactor pressure vessel 11 from the discharge port 36 of each water injection nozzle.

注水ノズル2の吐出口36の向きは、原子炉圧力容器11中心に向かう水平向きになっているので、原子炉圧力容器11内に吐出された低温の給水8は、原子炉圧力容器11中心に向かう水平方向へ移動,拡散しながら高温の炉水7と混合する。   Since the direction of the discharge port 36 of the water injection nozzle 2 is horizontal toward the center of the reactor pressure vessel 11, the low-temperature water supply 8 discharged into the reactor pressure vessel 11 is centered on the reactor pressure vessel 11. It is mixed with hot reactor water 7 while moving and diffusing horizontally.

図1の(b)図のA矢視より、注水ノズル2の出口近傍を見ると、図1の(a)図のように、その近傍には、低温の給水8の放出を遮るものは直近に無いので、原子炉圧力容器11内の広範囲に給水できる。そのため、高温の炉水7と低温の給水8の混合を促進できる。   When the vicinity of the outlet of the water injection nozzle 2 is viewed from the direction of the arrow A in FIG. 1 (b), as shown in FIG. Therefore, water can be supplied over a wide range in the reactor pressure vessel 11. Therefore, mixing of the high temperature reactor water 7 and the low temperature feed water 8 can be promoted.

また、原子炉圧力容器11内へ放出された低温の給水8が注水ノズル2から吐出した直後に給水ノズル1側へ瞬時に跳ね返ることは無い。従って、給水ノズル1内面とサーマルスリーブ3外面の間の環状流路9に、図4に示すように形成される高低温水界面22への変動を抑制し、給水ノズル1の熱応力及び熱疲労の発生を防止でき、給水ノズル1の構造健全性を向上させることができる。   Further, immediately after the low-temperature water supply 8 discharged into the reactor pressure vessel 11 is discharged from the water injection nozzle 2, it does not instantaneously rebound to the water supply nozzle 1 side. Accordingly, the annular flow path 9 between the inner surface of the water supply nozzle 1 and the outer surface of the thermal sleeve 3 is restrained from changing to the high / low temperature water interface 22 formed as shown in FIG. Generation | occurrence | production can be prevented and the structural soundness of the water supply nozzle 1 can be improved.

また、注水ノズル2の中心軸2aの延長線上には、給水の吐出を遮るものは無いが、原子炉圧力容器11内の中央部には構造物がある。さらに、高温の炉水7の循環流量が注水ノズル2からの給水流量より多いため、原子炉圧力容器11内の流れは高温の炉水7の流れが支配的である。   Further, there is nothing that obstructs the discharge of water supply on the extension line of the central axis 2 a of the water injection nozzle 2, but there is a structure in the central part in the reactor pressure vessel 11. Further, since the circulation flow rate of the high-temperature reactor water 7 is larger than the feed water flow rate from the water injection nozzle 2, the flow of the high-temperature reactor water 7 is dominant in the flow in the reactor pressure vessel 11.

以上より、原子炉圧力容器11内に放出された低温の給水8は、瞬時ではないが給水ノズル1側への跳ね返りの流れはある。高温の炉水7は注水ノズル2の上方から下方へ流れており、低温の給水8は水平方向へ放出しているため、注水ノズル2の高さ位置より高い位置に低温の給水8が跳ね返ることは無い。一方、注水ノズル2の中心軸2aは吐出口
36の中心軸でもあるが、その中心軸2aの位置をサーマルスリーブ3の中心軸3aも含めて、その位置より下方にしている。そのため、給水ノズル1内面とサーマルスリーブ3外面との間に形成される高低温水界面22での温度変動に対する跳ね返り水23の影響を小さくすることができる。なお、注水ノズル2の配置は、従来に比べて、設置場所をヘッダー管35の上部から下部に変更するのみで対応できるため、容易に本実施例を実現できる。
From the above, the low-temperature water supply 8 discharged into the reactor pressure vessel 11 has a rebounding flow to the water supply nozzle 1 side, although not instantaneously. Since the high temperature reactor water 7 flows downward from above the water injection nozzle 2 and the low temperature water supply 8 is discharged in the horizontal direction, the low temperature water supply 8 rebounds to a position higher than the height position of the water injection nozzle 2. There is no. On the other hand, the central axis 2 a of the water injection nozzle 2 is also the central axis of the discharge port 36, but the position of the central axis 2 a including the central axis 3 a of the thermal sleeve 3 is set below the position. Therefore, the influence of the rebound water 23 on the temperature fluctuation at the high / low temperature water interface 22 formed between the inner surface of the water supply nozzle 1 and the outer surface of the thermal sleeve 3 can be reduced. In addition, since arrangement | positioning of the water injection nozzle 2 can respond | correspond only by changing an installation place from the upper part of the header pipe 35 to the lower part compared with the past, this Example can be implement | achieved easily.

また、跳ね返り水23は給水ノズル1より下方の原子炉圧力容器11内壁面に衝突する可能性がある。しかしながら、シュラウドヘッドボルトリング5に給水が当たって跳ね返ることがなく、シュラウドヘッドボルトリング5よりも原子炉圧力容器11の中心軸側にて跳ね返ることになるので、高温の炉水7と低温の給水8が原子炉圧力容器11内で十分混合されて跳ね返り、その跳ね返りの勢力も衰えているため、原子炉圧力容器11内壁へ跳ね返り水23が衝突した時の熱応力及び熱疲労への影響は従来になく抑制できる乃至は無くすることが出来る。   Further, the rebound water 23 may collide with the inner wall surface of the reactor pressure vessel 11 below the water supply nozzle 1. However, the shroud head bolt ring 5 is not rebounded when the water supply hits it, and rebounds on the central axis side of the reactor pressure vessel 11 with respect to the shroud head bolt ring 5. 8 is sufficiently mixed in the reactor pressure vessel 11 and bounces back, and the force of the bounce also declines. Therefore, the impact on the thermal stress and thermal fatigue when the water 23 collides with the inner wall of the reactor pressure vessel 11 and collides with the water 23 Can be suppressed or eliminated.

なお、本実施例では、注水ノズル2の出口向きが原子炉圧力容器11中心に向かう水平方向であるが、斜め下方向でもほぼ同様の効果が得られる。   In this embodiment, the outlet direction of the water injection nozzle 2 is the horizontal direction toward the center of the reactor pressure vessel 11, but substantially the same effect can be obtained even in the diagonally downward direction.

本発明の第2実施例を図5に示す。本実施例の特徴は、注水ノズル2の吐出口36の面の最も高い位置を給水ノズル1内壁面の下部位置より低くしている。より好ましくは、注水ノズル2の吐出口36の面の最も高い位置を給水ノズル1内壁面と原子炉圧力容器11内壁面が接する位置より低くする。その他の構成は既述の第1実施例と同じである。   A second embodiment of the present invention is shown in FIG. The feature of the present embodiment is that the highest position of the surface of the discharge port 36 of the water injection nozzle 2 is lower than the lower position of the inner wall surface of the water supply nozzle 1. More preferably, the highest position of the surface of the discharge port 36 of the water injection nozzle 2 is set lower than the position where the inner wall surface of the water supply nozzle 1 and the inner wall surface of the reactor pressure vessel 11 are in contact. Other configurations are the same as those of the first embodiment described above.

第2実施例の場合、図1の第1実施例に比べて、注水ノズル2のヘッダー管35への取付け側の長さを長くして、注水ノズル2の吐出口36の中心軸2aの高さ位置が一層低くしてある。そのため、跳ね返り水が生じても給水ノズル1内面とサーマルスリーブ3外面との間に形成される高低温水界面での温度変動はより確実に抑制できる。なお、注水ノズル2の取付け箇所については、図1の実施例と同様に、従来例の注水ノズル2のヘッダー管35への設置場所を上下に変更するのみで対応できるため、容易に本実施例を実現できる。   In the case of the second embodiment, compared with the first embodiment of FIG. 1, the length of the water injection nozzle 2 attached to the header pipe 35 is made longer, and the height of the central axis 2 a of the discharge port 36 of the water injection nozzle 2 is increased. The position is even lower. Therefore, even if rebounding water is generated, temperature fluctuations at the high / low temperature water interface formed between the inner surface of the water supply nozzle 1 and the outer surface of the thermal sleeve 3 can be more reliably suppressed. In addition, about the attachment location of the water injection nozzle 2, since it can respond only by changing the installation place to the header pipe 35 of the water injection nozzle 2 of a prior art example similarly to the Example of FIG. 1, this Example is easy. Can be realized.

また、跳ね返り水は給水ノズル1より下方の原子炉圧力容器11内壁面に衝突する可能性がある。しかしながら、高温の炉水7と低温の給水8が原子炉圧力容器11内で十分混合されて跳ね返るため、原子炉圧力容器11内壁へ衝突時の熱応力及び熱疲労への影響は無い。   Further, the rebound water may collide with the inner wall surface of the reactor pressure vessel 11 below the water supply nozzle 1. However, since the high-temperature reactor water 7 and the low-temperature feed water 8 are sufficiently mixed in the reactor pressure vessel 11 and rebounded, there is no influence on thermal stress and thermal fatigue at the time of collision with the inner wall of the reactor pressure vessel 11.

なお、本実施例では、注水ノズル2の吐出口36の向きが原子炉圧力容器11中心に向かう水平方向であるが、斜め下方向でもほぼ同様の効果が得られる。   In this embodiment, the direction of the discharge port 36 of the water injection nozzle 2 is the horizontal direction toward the center of the reactor pressure vessel 11, but substantially the same effect can be obtained even in a diagonally downward direction.

本発明の第3実施例を図6に示す。本実施例の特徴は、一つの注水ノズル2に給水の吐出口36が2つあることであり、その一つは原子炉圧力容器11の中心に向かう水平方向の吐出口36aであり、もう一つは下向きの吐出口36bである。その他の構成は第1実施例と同じである。   A third embodiment of the present invention is shown in FIG. The feature of this embodiment is that one water injection nozzle 2 has two discharge ports 36 for water supply, one of which is a horizontal discharge port 36a toward the center of the reactor pressure vessel 11, and the other. One is a downward discharge port 36b. Other configurations are the same as those of the first embodiment.

本実施例では、注水ノズル2の吐出口36a,36bが2つあり、1方向だけではなく、2方向で高温の炉水7と低温の給水8を混合させることができ、混合促進につながる。   In this embodiment, there are two discharge ports 36a and 36b of the water injection nozzle 2, and the high-temperature reactor water 7 and the low-temperature feed water 8 can be mixed not only in one direction but also in two directions, leading to the promotion of mixing.

なお、本実施例では注水ノズル2の吐出口36a,36bが2つであるが、吐出後の給水を上方向の流れに誘導する吐出方向でなければ吐出口が3つ以上でも本実施例と同様の効果が得られる。また、本実施例では注水ノズル2の吐出口36a,36bの向きは原子炉圧力容器11中心に向かう水平方向と下向きであるが、原子炉圧力容器11中心に向かう水平方向と斜め下向き、あるいは原子炉圧力容器11中心に向かう斜め下向きと下向きの組み合わせでも同様の効果が得られる。   In this embodiment, there are two discharge ports 36a, 36b of the water injection nozzle 2. However, even if there are three or more discharge ports in the discharge direction that guides the water supply after discharge to the upward flow, Similar effects can be obtained. In this embodiment, the discharge ports 36a and 36b of the water injection nozzle 2 are oriented horizontally and downward toward the center of the reactor pressure vessel 11, but horizontally and obliquely downward toward the center of the reactor pressure vessel 11 or atoms. A similar effect can be obtained by a diagonally downward and downward combination toward the center of the furnace pressure vessel 11.

本発明の第4実施例を図7に示す。本実施例の特徴は、注水ノズル2をヘッダー管35の上部に設置しながらも、注水ノズル2の中心軸2aの高さ位置をサーマルスリーブ3と給水ノズル1の中心軸3aの高さ位置よりも低く、好ましくは注水ノズル2の吐出口の面が給水ノズル1の下部内壁面よりも下方の位置より低くしたことである。   A fourth embodiment of the present invention is shown in FIG. The feature of this embodiment is that the height position of the central axis 2a of the water injection nozzle 2 is set higher than the height position of the central axis 3a of the thermal sleeve 3 and the water supply nozzle 1 while the water injection nozzle 2 is installed on the header pipe 35. The surface of the discharge port of the water injection nozzle 2 is preferably lower than the position below the lower inner wall surface of the water supply nozzle 1.

本実施例では、T字管6のTの字の一辺を成す配管部分を延長し且つ直角に曲げてサーマルスリーブ3にその延長端部を接続してある。そのT字管6の延長によって、先に説明したように注水ノズル2の吐出口が給水ノズル1の下部内壁面よりも下方の位置より低い位置に配置される。その他の構成は実施例1と同じである。   In this embodiment, the pipe portion forming one side of the T-shape of the T-tube 6 is extended and bent at a right angle, and the extended end portion is connected to the thermal sleeve 3. By extending the T-shaped tube 6, the outlet of the water injection nozzle 2 is disposed at a position lower than the position below the lower inner wall surface of the water supply nozzle 1 as described above. Other configurations are the same as those of the first embodiment.

このように、サーマルスリーブ3からT字管6の延長配管部分が下方向に曲がりT字管6に接続されたヘッダー管35が前述の各実施例よりも低い位置に配置されている。そのため、給水ノズル1の下部内壁面が下方向に曲がったT字管6により隠れている。そのため、給水ノズル1内面とサーマルスリーブ3外面との間の環状流路9に形成される高低温水界面への温度変動に影響する跳ね返り水の流れとともに高温の炉水7の流れも抑制できる。高温の炉水7の流れは、ヘッダー管35の上部に当たって、あるいはヘッダー管35の下部で渦巻いて乱れて、環状流路9に進入しやすいが、そのヘッダー管35の高さ位置が給水ノズル1よりも低い位置にあるから、環状流路9に給水や高温の炉水7が進入することを抑制できる。   In this way, the extension pipe portion of the T-tube 6 from the thermal sleeve 3 bends downward, and the header tube 35 connected to the T-tube 6 is disposed at a lower position than the above-described embodiments. Therefore, the lower inner wall surface of the water supply nozzle 1 is hidden by the T-shaped tube 6 bent downward. Therefore, the flow of the high-temperature reactor water 7 can be suppressed together with the flow of bounce water that affects the temperature fluctuation to the high and low temperature water interface formed in the annular flow path 9 between the inner surface of the water supply nozzle 1 and the outer surface of the thermal sleeve 3. The flow of the high-temperature reactor water 7 hits the upper part of the header pipe 35 or is swirled and disturbed at the lower part of the header pipe 35 and easily enters the annular flow path 9, but the height position of the header pipe 35 is the water supply nozzle 1. Since it is in a lower position than that, it is possible to prevent water supply or high-temperature reactor water 7 from entering the annular flow path 9.

なお、本実施例では、注水ノズル2の構造は現行の構造と同様としているが、図1,図5や図6の実施例で示した注水ノズル2の構造と配置を図7の配置位置を低めたヘッダー管35に適用しても問題は無い。   In this embodiment, the structure of the water injection nozzle 2 is the same as that of the current structure. However, the structure and arrangement of the water injection nozzle 2 shown in the embodiments of FIGS. There is no problem even if it is applied to the lowered header pipe 35.

本発明の第5実施例を図8に示す。本実施例の特徴は、ヘッダー管35の下方に下段のヘッダー管25を配置し、上段のヘッダー管35に下段のヘッダー管25を連通管24で連通接続し、その下段のヘッダー管25の側部に吐出口が水平方向に向けられた注水ノズル2を連通接続してある。その注水ノズル2は水平直線状の短管で構成され、その中心軸2aは、給水ノズル1の中心軸3aよりも低い位置であって、このましくは、注水ノズル2の吐出口が給水ノズル1の下部内壁面よりも下方の位置より低い位置に配置される。その他の構成は実施例1と同じである。   A fifth embodiment of the present invention is shown in FIG. The feature of the present embodiment is that a lower header pipe 25 is disposed below the header pipe 35, and the lower header pipe 25 is connected to the upper header pipe 35 through a communication pipe 24. A water injection nozzle 2 having a discharge port oriented in the horizontal direction is connected to the part. The water injection nozzle 2 is composed of a horizontal straight short pipe, and its central axis 2a is lower than the central axis 3a of the water supply nozzle 1, and preferably, the discharge port of the water injection nozzle 2 is the water supply nozzle. 1 is disposed at a position lower than a position below the lower inner wall surface. Other configurations are the same as those of the first embodiment.

本実施例では、サーマルスリーブ3,T字管6,連通管24,下段のヘッダー管25を通じて注水ノズル2から低温の給水8を吐出する。T字管6と下段のヘッダー管25との隙間が狭くなっているので、給水ノズル1内面とサーマルスリーブ3外面との間の環状流路9に形成される高低温水界面への温度変動に影響する跳ね返り水の流れも高温の炉水7の流れも抑制できる。   In the present embodiment, low temperature water supply 8 is discharged from the water injection nozzle 2 through the thermal sleeve 3, the T-shaped tube 6, the communication tube 24, and the lower header tube 25. Since the gap between the T-shaped pipe 6 and the lower header pipe 25 is narrow, it affects the temperature fluctuation to the high / low temperature water interface formed in the annular flow path 9 between the inner surface of the water supply nozzle 1 and the outer surface of the thermal sleeve 3. The flow of the rebounding water and the flow of the high-temperature reactor water 7 can be suppressed.

以上のように、既存の沸騰水型原子炉の給水システムを本発明のいずれかの実施例による給水システムに代替し、出力を向上した運転を行えば、例え給水温度が従来よりも低下しても十分に高信頼性の維持が出来、現状のプラント運転前に比べて電気出力の増加が図れる有効な原子力発電システムとなる。   As described above, if the existing boiling water reactor water supply system is replaced with the water supply system according to any of the embodiments of the present invention and the operation is performed with improved output, the water supply temperature will be lower than the conventional one. However, it is possible to maintain sufficiently high reliability, and an effective nuclear power generation system capable of increasing the electric output as compared with the current plant operation.

本発明の実施例によれば、給水ノズル,サーマルスリーブ,T字管及び注水ノズルは定格運転時における圧力容器内の循環炉水の液面より下方に配置され、注水ノズルの出口面の中心軸位置をサーマルスリーブの中心軸位置より下方に設けることで、注水ノズルの出口近傍には給水の放出を遮るものは無いため、原子炉圧力容器内の広範囲で高温の炉水と低温の給水を混合させることができる。また、注水ノズルの出口位置を低くしたことで、原子炉圧力容器中央から給水の跳ね返りがあっても、給水ノズル内面とサーマルスリーブ外面との間に形成される高低温水界面への温度変動に影響を小さくすることができる。また、跳ね返り水は原子炉圧力容器内で十分混合されているので、原子炉圧力容器の内壁面に跳ね返り水が衝突しても問題はない。   According to the embodiment of the present invention, the water supply nozzle, the thermal sleeve, the T-shaped tube, and the water injection nozzle are disposed below the level of the circulating reactor water in the pressure vessel during rated operation, and the central axis of the outlet surface of the water injection nozzle By providing the position below the center axis position of the thermal sleeve, there is nothing to block the discharge of feed water near the outlet of the water injection nozzle, so a wide range of hot reactor water and cold feed water are mixed in the reactor pressure vessel. Can be made. In addition, by lowering the outlet position of the water injection nozzle, even if the water supply bounces from the center of the reactor pressure vessel, it affects the temperature fluctuations at the high and low temperature water interface formed between the inner surface of the water supply nozzle and the outer surface of the thermal sleeve. Can be reduced. Further, since the rebound water is sufficiently mixed in the reactor pressure vessel, there is no problem even if the rebound water collides with the inner wall surface of the reactor pressure vessel.

また、給水ノズル,サーマルスリーブ,T字管及び注水ノズルは定格運転時における圧力容器内の循環炉水の液面より下方に配置され、給水ノズルの下部内壁面と原子炉圧力容器の内壁面が接する位置より下方に注水ノズルの吐出口面を設けた実施例に合っては、原子炉圧力容器内の広範囲で高温の炉水と低温の給水を混合させることができるうえに、注水ノズルの出口位置を低くしたことで、原子炉圧力容器中央から給水の跳ね返りがあっても、給水ノズル内面とサーマルスリーブ外面との間に形成される高低温水界面への温度変動に影響は無く、跳ね返り水も給水ノズルより下方の原子炉圧力容器壁面へ衝突する。また、跳ね返り水は原子炉圧力容器内で十分混合されているので、原子炉圧力容器の内壁面に跳ね返り水が衝突しても問題はない。従って、より確実に熱応力及び熱疲労を抑制できる構造健全性を向上させ得る。   The water supply nozzle, thermal sleeve, T-tube and water injection nozzle are arranged below the level of the circulating water in the pressure vessel during rated operation, and the lower inner wall surface of the water supply nozzle and the inner wall surface of the reactor pressure vessel are In accordance with the embodiment in which the outlet surface of the water injection nozzle is provided below the contact position, the high temperature reactor water and the low temperature water supply can be mixed in a wide range in the reactor pressure vessel, and the outlet of the water injection nozzle can be mixed. By lowering the position, even if the water supply bounces from the center of the reactor pressure vessel, there is no effect on the temperature fluctuation at the high and low temperature water interface formed between the inner surface of the water supply nozzle and the outer surface of the thermal sleeve. It collides with the reactor pressure vessel wall below the water supply nozzle. Further, since the rebound water is sufficiently mixed in the reactor pressure vessel, there is no problem even if the rebound water collides with the inner wall surface of the reactor pressure vessel. Therefore, it is possible to improve the structural integrity that can more reliably suppress thermal stress and thermal fatigue.

また、注水ノズルの吐出口を複数設けた実施例にあっては、原子炉圧力容器内の給水の炉水との混合範囲が広がるため、原子炉圧力容器の内壁面に跳ね返り水が衝突しても問題はない。   Further, in the embodiment in which a plurality of water injection nozzle discharge ports are provided, the range of mixing with the reactor water of the feed water in the reactor pressure vessel is widened, so that the splashed water collides with the inner wall surface of the reactor pressure vessel. There is no problem.

注水ノズルの出口向きが原子炉圧力容器中心に向かう水平方向、あるいは原子炉圧力容器中心に向かう斜め下方向、あるいは下方向にすることで、原子炉圧力容器内の高温の炉水と注水ノズルからの低温の給水の混合促進につながる。   By setting the outlet direction of the water injection nozzle in the horizontal direction toward the reactor pressure vessel center, or in the diagonally downward direction toward the reactor pressure vessel center, or in the downward direction, from the high-temperature reactor water and the injection nozzle in the reactor pressure vessel Leads to the promotion of mixing of low temperature water supply.

注水ノズルの吐出口向きが原子炉圧力容器中心に向かう水平方向かつ原子炉圧力容器中心に向かう斜め下方向あるいは下向きの組み合わせにする実施例にあっては、より一層高温の炉水と低温の給水の混合促進につながる。   In an embodiment in which the discharge port direction of the water injection nozzle is a horizontal direction toward the center of the reactor pressure vessel and an obliquely downward direction or downward direction toward the center of the reactor pressure vessel, the hotter reactor water and the lower temperature water supply are combined. Leads to the promotion of mixing.

給水ノズル,サーマルスリーブ,T字管及び注水ノズルは定格運転時における圧力容器内の循環炉水の液面より下方に配置され、給水ノズルのT字管の下方に下部水平管を設け、下部水平管とT字管は連通管で接続し、注水ノズルを下部水平管上に設け、注水ノズルの出口面の中心軸位置をサーマルスリーブの中心軸位置より下方に設ける実施例にあっては、給水ノズルの原子炉圧力容器側の環状流路近傍に構造物があるため、跳ね返り水の影響を受けにくくなり、熱応力及び熱疲労を抑制できる構造健全性を向上させた給水ノズルを実現できる。   The water supply nozzle, thermal sleeve, T-tube and water injection nozzle are located below the level of circulating reactor water in the pressure vessel during rated operation, and a lower horizontal pipe is provided below the T-tube of the water supply nozzle. In an embodiment in which the pipe and the T-shaped pipe are connected by a communication pipe, the water injection nozzle is provided on the lower horizontal pipe, and the center axis position of the outlet surface of the water injection nozzle is provided below the center axis position of the thermal sleeve. Since there is a structure in the vicinity of the annular flow path on the reactor pressure vessel side of the nozzle, it is difficult to be affected by the splashed water, and a water supply nozzle with improved structural soundness that can suppress thermal stress and thermal fatigue can be realized.

原子炉建設当時の定格熱出力よりも熱出力を上昇させた出力向上後の原子炉にいずれかの実施例による給水システムを設けて、原子炉圧力容器への給水ノズル入口温度の温度が原子炉建設当時に設定した温度以下でも給水ノズル部の構造健全性を維持ないしは向上させつつ、原子力発電の出力向上に寄与できる。   A water supply system according to any of the embodiments is installed in a reactor whose power output has been increased by increasing the heat output from the rated heat output at the time of reactor construction, and the temperature of the feed water nozzle inlet to the reactor pressure vessel is Even below the temperature set at the time of construction, it can contribute to improving the output of nuclear power generation while maintaining or improving the structural integrity of the water supply nozzle.

原子炉建設当時の定格熱出力よりも熱出力を上昇させた出力向上後の原子炉に本発明のいずれかの実施例を採用して、原子炉出力向上後の定格運転時の給水ノズル入口温度を原子炉建設当時の定格運転時の給水ノズル入口温度よりも1℃以上低下させた出力向上運転でも給水ノズルの構造健全性を維持もしくは向上しつつ、原子力発電の出力向上に寄与できる。   Adopting one of the embodiments of the present invention to a reactor whose power output has been increased more than the rated heat output at the time of reactor construction, the feed water nozzle inlet temperature during rated operation after the reactor power has been improved Can improve the output of nuclear power generation while maintaining or improving the structural soundness of the feed water nozzle even in the power improvement operation where the temperature is lowered by 1 ° C. or more than the inlet temperature of the feed water nozzle at the rated operation at the time of reactor construction.

いずれの実施例においても、原子力発電システムにおいて、炉心熱出力の増加に際し、原子炉から発生する蒸気量を増加させずに給水温度を低下して除熱する運転法の場合、給水ノズル部で温度差の大きな炉水と給水が混合しても、給水ノズル内面とサーマルスリーブ外面との間の環状流路内に形成される高低温水界面への温度変動外乱を抑制することができ、温度変動に起因した高サイクル熱疲労の発生を防止できるため、負担をかけないで原子力発電所の電気出力を増加させることができる。   In any of the embodiments, in the nuclear power generation system, when the core thermal output is increased, in the operation method in which heat is removed by lowering the feed water temperature without increasing the amount of steam generated from the reactor, the temperature at the feed water nozzle section Even if the reactor water and feed water with a large difference are mixed, the temperature fluctuation disturbance to the high and low temperature water interface formed in the annular flow path between the inner surface of the feed water nozzle and the outer surface of the thermal sleeve can be suppressed. Since the occurrence of the high cycle thermal fatigue caused can be prevented, the electrical output of the nuclear power plant can be increased without imposing a burden.

本発明は、原子力発電所の原子炉に付属する給水システムに利用される。   The present invention is used for a water supply system attached to a nuclear power plant reactor.

本発明の第1実施例による原子炉の給水ノズル部近傍の構造を示す図にして、(a)図は給水部ノズル部を原子炉圧力容器の内側((b)図のA矢視)から見た立面図であり、(b)図は(a)図のB−B断面図である。The figure which shows the structure of the water supply nozzle part vicinity of the reactor by 1st Example of this invention, (a) A figure shows a water supply part nozzle part from the inside of a reactor pressure vessel (A arrow view of (b) figure). FIG. 2B is an elevation view as seen, and FIG. 本発明が実施される対象の原子炉の原子炉圧力容器の概要にして、(a)図は気水分離器の高さ位置((b)図のA―A矢視)から見た横断面図であり、(b)図は原子炉圧力容器の縦断面図である。In the outline of a reactor pressure vessel of a reactor to which the present invention is implemented, (a) is a cross section viewed from the height position of the steam separator (A-A arrow in (b)). FIG. 2B is a longitudinal sectional view of a reactor pressure vessel. 従来例による原子炉の給水ノズル部近傍の構造を示す図にして、(a)図は給水部ノズル部を原子炉圧力容器の内側((b)図のA矢視)から見た立面図であり、(b)図は(a)図のB−B断面図である。It is a figure which shows the structure of the water supply nozzle part vicinity of the reactor by a prior art example, (a) figure is the elevation which looked at the water supply part nozzle part from the inner side of the reactor pressure vessel (A arrow view of (b) figure) (B) The figure is a BB sectional view of (a) figure. 図3の(b)図における主要部の拡大断面図である。It is an expanded sectional view of the principal part in the (b) figure of FIG. 本発明の第2実施例による原子炉の給水ノズル部近傍の構造を示す図にして、(a)図は給水部ノズル部を原子炉圧力容器の内側((b)図のA矢視)から見た立面図であり、(b)図は(a)図のB−B断面図である。FIG. 5 is a view showing the structure in the vicinity of the water supply nozzle portion of the reactor according to the second embodiment of the present invention, and FIG. FIG. 2B is an elevation view as seen, and FIG. 本発明の第3実施例による原子炉の給水ノズル部近傍の構造を示す図にして、(a)図は給水部ノズル部を原子炉圧力容器の内側((b)図のA矢視)から見た立面図であり、(b)図は(a)図のB−B断面図である。FIG. 6 is a diagram showing the structure near the water supply nozzle portion of the reactor according to the third embodiment of the present invention, in which FIG. FIG. 2B is an elevation view as seen, and FIG. 本発明の第4実施例による原子炉の給水ノズル部近傍の構造を示す図にして、(a)図は給水部ノズル部を原子炉圧力容器の内側((b)図のA矢視)から見た立面図であり、(b)図は(a)図のB−B断面図である。FIG. 4 is a diagram showing a structure near the water supply nozzle portion of a nuclear reactor according to a fourth embodiment of the present invention. FIG. FIG. 2B is an elevation view as seen, and FIG. 本発明の第5実施例による原子炉の給水ノズル部近傍の構造を示す図にして、(a)図は給水部ノズル部を原子炉圧力容器の内側((b)図のA矢視)から見た立面図であり、(b)図は(a)図のB−B断面図である。FIG. 9 is a view showing the structure in the vicinity of a water supply nozzle portion of a nuclear reactor according to a fifth embodiment of the present invention. FIG. FIG. 2B is an elevation view as seen, and FIG. 本発明の実施例が適用される原子炉の主蒸気系統と給水系統との系統図である。1 is a system diagram of a main steam system and a water supply system of a nuclear reactor to which an embodiment of the present invention is applied.

符号の説明Explanation of symbols

1…給水ノズル、2…注水ノズル、3…サーマルスリーブ、4…シュラウドヘッドボルト、5…シュラウドヘッドボルトリング、6…T字管、7…高温の炉水、8…低温の給水、9…環状流路、11…原子炉圧力容器、12…シュラウド、13…気水分離器、14…ダウンカマ、15…再循環ポンプ、16…下部プレナム、17…炉心、18…蒸気乾燥器、19…主蒸気配管、20…高温水、21…低温水、22…高低温水界面、23…跳ね返り水、24…連通管、25,35…ヘッダー管、26…高圧タービン、27…湿分分離器、28…低圧タービン、29…復水器、30…低圧給水加熱器、31…給水ポンプ、32…高圧給水加熱器、33…抽気流量調整弁、34…給水バイパス管、36,36a,36b…吐出口、37…給水管。   DESCRIPTION OF SYMBOLS 1 ... Water supply nozzle, 2 ... Water injection nozzle, 3 ... Thermal sleeve, 4 ... Shroud head bolt, 5 ... Shroud head bolt ring, 6 ... T-tube, 7 ... High temperature reactor water, 8 ... Low temperature water supply, 9 ... Ring Flow path, 11 ... Reactor pressure vessel, 12 ... Shroud, 13 ... Steam separator, 14 ... Downcomer, 15 ... Recirculation pump, 16 ... Lower plenum, 17 ... Core, 18 ... Steam dryer, 19 ... Main steam Piping, 20 ... high temperature water, 21 ... low temperature water, 22 ... high and low temperature water interface, 23 ... bounce water, 24 ... communication pipe, 25,35 ... header pipe, 26 ... high pressure turbine, 27 ... humidity separator, 28 ... low pressure Turbine, 29 ... Condenser, 30 ... Low pressure feed water heater, 31 ... Feed water pump, 32 ... High pressure feed water heater, 33 ... Extraction flow rate adjustment valve, 34 ... Feed water bypass pipe, 36, 36a, 36b ... Discharge port, 37 ... water pipes.

Claims (6)

原子炉圧力容器と、
前記原子炉圧力容器から蒸気を高圧タービン及び低圧タービンへ供給する蒸気系統と、
前記低圧タービンから排出された蒸気を水に凝縮する復水器と、
前記水を給水加熱器で加熱してポンプで給水管を通じて前記原子炉圧力容器に向けて導く給水系統と、
前記原子炉圧力容器内の原子炉運転水位よりも下方の高さに配置されて、前記原子炉圧力容器の給水ノズルと、
前記給水ノズル内に装備され、前記給水管と連通しているサーマルスリーブと、
前記原子炉圧力容器内に装備され、前記サーマルスリーブに連通しているヘッダー管と、
前記原子炉運転水位よりも下方の高さに配置され、前記ヘッダー管に連通して前記原子炉圧力容器内に前記水を吐出する注水ノズルと、を備えた原子炉の給水装置において、
前記ヘッダー管は連通管で接続されて上下多段に装備され、前記下段のヘッダー管に前記注水ノズルが装備されていると共に、
前記注水ノズルの前記水を吐出する吐出口の高さ方向中心位置が前記サーマルスリーブの高さ方向中心位置より下方に配置されている原子炉の給水装置。
A reactor pressure vessel;
A steam system for supplying steam from the reactor pressure vessel to a high-pressure turbine and a low-pressure turbine;
A condenser for condensing steam discharged from the low-pressure turbine into water;
A water supply system that heats the water with a feed water heater and leads it to the reactor pressure vessel through a water supply pipe with a pump;
Disposed at a height below the reactor operating water level in the reactor pressure vessel, a water supply nozzle of the reactor pressure vessel;
A thermal sleeve provided in the water supply nozzle and in communication with the water supply pipe;
A header pipe provided in the reactor pressure vessel and communicating with the thermal sleeve;
A water supply apparatus for a reactor comprising: a water injection nozzle that is disposed at a height lower than the reactor operating water level and communicates with the header pipe to discharge the water into the reactor pressure vessel.
The header pipe is connected with a communication pipe and is equipped in multiple upper and lower stages, and the lower header pipe is equipped with the water injection nozzle,
A water supply device for a nuclear reactor, wherein a central position in a height direction of a discharge port for discharging the water of the water injection nozzle is disposed below a central position in the height direction of the thermal sleeve.
請求項1において、前記吐出口の最も高い位置が、前記給水ノズルの下部内壁面の高さ位置より下方に配置されている原子炉の給水装置。   The water supply apparatus for a reactor according to claim 1, wherein the highest position of the discharge port is disposed below a height position of a lower inner wall surface of the water supply nozzle. 請求項1又は請求項2において、前記吐出口の向きが前記原子炉圧力容器中心に向かう水平方向、あるいは前記原子炉圧力容器中心に向かう斜め下方向、あるいは下向きである原子炉の給水装置。   3. The reactor water supply apparatus according to claim 1, wherein the direction of the discharge port is a horizontal direction toward the center of the reactor pressure vessel, a diagonally downward direction toward the center of the reactor pressure vessel, or a downward direction. 請求項1又は請求項2において、前記注水ノズルには、複数の吐出口が設けられ、前記複数の吐出口の内の少なくとも一つの吐出口の吐出向きが、前記原子炉圧力容器中心に向かう水平方向、あるいは前記原子炉圧力容器中心に向かう斜め下方向、あるいは下向き方向の各方向のいずれか一つの方向であり、前記各吐出口の内の他の少なくとも一つの吐出口の向きが、前記各方向の内の前記一つの方向以外の方向である原子炉の給水装置。   3. The water injection nozzle according to claim 1, wherein the water injection nozzle is provided with a plurality of discharge ports, and a discharge direction of at least one of the plurality of discharge ports is horizontal toward the reactor pressure vessel center. Direction, or a diagonally downward direction toward the center of the reactor pressure vessel, or a downward direction, and the direction of at least one other discharge port among the discharge ports A reactor water supply device having a direction other than the one of the directions. 請求項1から請求項4までのいずれか一項において、前記原子炉は、前記原子炉の建設当初の原子炉の定格熱出力を前記建設の後に前記当初の定格熱出力を超えて上昇させた出力向上後の原子炉である原子炉の給水装置。5. The reactor according to claim 1, wherein the nuclear reactor has increased the rated heat output of the reactor at the beginning of the construction of the reactor beyond the original rated heat output after the construction. A water supply system for a nuclear reactor, which is a nuclear reactor whose power has been improved. 請求項5において、前記給水系統は、前記水の前記給水ノズルの入口での温度を前記原子炉の建設当初の定格運転時のその温度よりも1℃以上低下させて前記原子炉圧力容器内に向けて導く給水系統である原子炉の給水装置。6. The water supply system according to claim 5, wherein the water supply system lowers the temperature of the water at the inlet of the water supply nozzle by 1 ° C. or more from the temperature at the rated operation at the time of initial construction of the reactor. A water supply system for a nuclear reactor, which is a water supply system that leads toward the reactor.
JP2005343016A 2005-11-29 2005-11-29 Reactor water supply equipment Active JP4466545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343016A JP4466545B2 (en) 2005-11-29 2005-11-29 Reactor water supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343016A JP4466545B2 (en) 2005-11-29 2005-11-29 Reactor water supply equipment

Publications (2)

Publication Number Publication Date
JP2007147466A JP2007147466A (en) 2007-06-14
JP4466545B2 true JP4466545B2 (en) 2010-05-26

Family

ID=38209035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343016A Active JP4466545B2 (en) 2005-11-29 2005-11-29 Reactor water supply equipment

Country Status (1)

Country Link
JP (1) JP4466545B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108053898A (en) * 2017-12-28 2018-05-18 中广核研究院有限公司 The peace of reactor pressure vessel and reactor pressure vessel note pipe

Also Published As

Publication number Publication date
JP2007147466A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP6063581B2 (en) Reactor with liquid metal coolant
AU2016201493B2 (en) Economizer water recirculation system for boiler exit gas temperature control in supercritical pressure boilers
US20060080964A1 (en) Air cooler for power plants and use of such an air cooler
CN104937339A (en) Condenser and steam-turbine plant provided therewith
CA2638330A1 (en) Black plant steam furnace injection
JP4466545B2 (en) Reactor water supply equipment
KR20160096126A (en) Fast neutron reactor and neutron reflector block of a fast neutron reactor
JP4731577B2 (en) Emergency reactor cooling water reactor vessel direct injection device
CN202674674U (en) Anti-condensing and anti-impact expansion joint for torch pipeline
JP6153628B2 (en) Steam temperature regulator for gas / steam turbine equipment
US10480779B2 (en) Steam dump device for a nuclear power plant
JP2012058113A (en) Steam separation facility for nuclear reactor
JP2007278814A (en) Reactor water supply nozzle
CN212998475U (en) Condenser deaerating plant and system with injection type nozzle
JP2007198997A (en) Super-critical pressure water cooled reactor and super-critical pressure water cooled fuel assembly
JP2012117917A (en) Steam separation facility for nuclear reactor
JP4396482B2 (en) Water supply nozzle and nuclear reactor equipment using the water supply nozzle
EP2696137B1 (en) Water supply pipe for vapor generator
KR20140059810A (en) Gas turbine cooling system, and gas turbine cooling method
JP3262431B2 (en) Condenser
CN215929540U (en) Novel reheater desuperheater
JP2002081610A (en) Boiler
JP2005273952A (en) Desuperheater
US20100246743A1 (en) Steam flow vortex straightener
CN113804013A (en) Recovery system for continuously discharging fluid into surface condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R151 Written notification of patent or utility model registration

Ref document number: 4466545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3