JP4396482B2 - Water supply nozzle and nuclear reactor equipment using the water supply nozzle - Google Patents

Water supply nozzle and nuclear reactor equipment using the water supply nozzle Download PDF

Info

Publication number
JP4396482B2
JP4396482B2 JP2004313221A JP2004313221A JP4396482B2 JP 4396482 B2 JP4396482 B2 JP 4396482B2 JP 2004313221 A JP2004313221 A JP 2004313221A JP 2004313221 A JP2004313221 A JP 2004313221A JP 4396482 B2 JP4396482 B2 JP 4396482B2
Authority
JP
Japan
Prior art keywords
water supply
supply nozzle
thermal
water
thermal sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004313221A
Other languages
Japanese (ja)
Other versions
JP2006125950A (en
Inventor
孝次 椎名
肇男 青山
雅哉 大塚
雅夫 茶木
和明 木藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004313221A priority Critical patent/JP4396482B2/en
Publication of JP2006125950A publication Critical patent/JP2006125950A/en
Application granted granted Critical
Publication of JP4396482B2 publication Critical patent/JP4396482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、内部にサーマルスリーブを備えた給水ノズルに関する。   The present invention relates to a water supply nozzle having a thermal sleeve inside.

沸騰水型軽水炉(BWR)は核分裂性物質を含む炉心で水を沸騰させ、沸騰によって生じた蒸気を主蒸気管へ通して高圧タービン,低圧タービンへと送り、高圧タービン,低圧タービンの軸と連動した発電機で電気を発生させている。通常のBWRでは低圧タービン出口側に設置された復水器で蒸気は凝縮して水となり、その後、給水加熱器および給水ポンプ等を通って昇圧,加熱されて原子炉圧力容器内に給水される。   Boiling water light water reactor (BWR) boiles water in a core containing fissile material, passes the steam generated by boiling through the main steam pipe to the high-pressure turbine and low-pressure turbine, and interlocks with the shafts of the high-pressure turbine and low-pressure turbine. The generator is used to generate electricity. In a normal BWR, the steam is condensed into water by a condenser installed on the outlet side of the low-pressure turbine, and then pressurized and heated through a feed water heater and a feed water pump to be fed into the reactor pressure vessel. .

通常のBWRの設計ではまず、炉心の熱出力を決定し、その熱出力で最高の熱効率が得られるように主蒸気管以降の蒸気の流れを最適化している。具体的には、復水器で蒸気を水にすると熱サイクルの原理から通常のBWRの圧力(約7MPa)ではエネルギーの2/3が排出されて無駄になる。   In a normal BWR design, first, the thermal output of the core is determined, and the steam flow after the main steam pipe is optimized so that the highest thermal efficiency can be obtained with the thermal output. Specifically, when steam is converted to water by a condenser, 2/3 of the energy is discharged and wasted at the normal BWR pressure (about 7 MPa) from the principle of thermal cycle.

そこで、主蒸気のうちの一部を抽気して給水加熱器における給水を加熱するために用いる。この場合、主蒸気の熱はそのほとんどが回収されるため原子炉の熱効率は向上する。一般に再循環ポンプとジェットポンプを用いて湿分分離器を備えているBWRにおいては主蒸気のうち最終的に低圧タービン出口から復水器に送られる蒸気の量は約56%で、残りの蒸気は給水の加熱に用いている。   Therefore, a part of the main steam is extracted and used to heat the feed water in the feed water heater. In this case, most of the heat of the main steam is recovered, so that the thermal efficiency of the reactor is improved. Generally, in a BWR equipped with a moisture separator using a recirculation pump and a jet pump, the amount of steam finally sent from the low-pressure turbine outlet to the condenser is about 56% of the main steam, and the remaining steam Is used for heating water supply.

その給水は給水加熱器によって加熱されて原子炉圧力容器へ給水系統を通じて給水ノズルから給水される。その給水に際して、給水と原子炉圧力容器内の雰囲気の間で大きな温度差が生じると給水ノズルやその周辺に温度差依存による無理が加わる。そのため、その無理な状況を緩和するために、給水ノズル内にはサーマルスリーブという円筒状の構造物が採用され、温度差によるショックが少なくなるように給水ノズルは二重管構造となっている(例えば、特開平10−288690号公報参照)。   The feed water is heated by a feed water heater and fed to the reactor pressure vessel from the feed nozzle through the feed water system. When a large temperature difference occurs between the water supply and the atmosphere in the reactor pressure vessel during the water supply, an unreasonable temperature difference is added to the water supply nozzle and its surroundings. Therefore, in order to alleviate the unreasonable situation, a cylindrical structure called a thermal sleeve is adopted in the water supply nozzle, and the water supply nozzle has a double pipe structure so that the shock due to the temperature difference is reduced ( For example, see JP-A-10-288690.

特開平10−288690号公報Japanese Patent Laid-Open No. 10-288690

この出願よりも先に出願済みの特願2004−006198号において、炉心での熱出力を除去するため、主蒸気流量及び給水流量を増加させずに給水温度を低下させる方法が提案されている。この際、給水ノズル部では高温の原子炉圧力容器内温度と低温の給水配管からの給水温度には大きな温度差が生じ、当該ノズル部位での熱応力及び熱疲労が懸念される。従って、増出力運転時においても構造健全性を確保するような給水ノズル及びスリーブが必要になる。   In Japanese Patent Application No. 2004-006198 filed earlier than this application, a method of lowering the feed water temperature without increasing the main steam flow rate and the feed water flow rate is proposed in order to remove the heat output in the core. At this time, in the water supply nozzle portion, a large temperature difference occurs between the temperature inside the high temperature reactor pressure vessel and the temperature of the water supplied from the low temperature water supply pipe, and there is a concern about thermal stress and thermal fatigue at the nozzle portion. Therefore, a water supply nozzle and a sleeve that ensure structural soundness even during the increased output operation are required.

一般に新設の原子炉は電気出力または熱出力を一定で運転することを想定している。そのため原子炉設置後に出力を大幅に増加するためにはプラント機器の交換が必要となる。一方で、あらかじめプラント機器を出力増加を見込んで設計しておくと各機器が大型化するとともに機器の効率も低下する。   In general, it is assumed that a newly installed nuclear reactor operates at a constant electric power or heat output. Therefore, replacement of plant equipment is necessary to greatly increase the power output after the reactor is installed. On the other hand, if the plant equipment is designed in advance with an expectation of an increase in output, the size of each equipment increases and the efficiency of the equipment also decreases.

次に既設の原子炉を増出力する場合、出力増加にほぼ比例して給水流量および主蒸気流量が増加する。そのため、給水系配管,給水加熱器,給水ポンプ,蒸気乾燥器などの炉内構造物,主蒸気管,高圧タービン,低圧タービンおよび復水器など、ほとんど全ての機器の設計余裕が減少する。通常のBWRでは主蒸気流量の増加によって最初に設計余裕がなくなる機器の1つが高圧タービンである。BWR以外の原子力発電システムにおいても、高圧タービンの設計余裕が比較的小さいプラントについては同様の課題がある。   Next, when increasing the output of an existing reactor, the feed water flow rate and the main steam flow rate increase in proportion to the increase in output. For this reason, design margins of almost all devices such as feed water piping, feed water heaters, feed water pumps, steam dryers and other in-furnace structures, main steam pipes, high pressure turbines, low pressure turbines and condensers are reduced. In a normal BWR, one of the devices that initially loses its design margin due to an increase in the main steam flow rate is a high-pressure turbine. In nuclear power generation systems other than BWR, there is a similar problem for a plant having a relatively small design margin for a high-pressure turbine.

本発明の目的は、給水ノズル部位での熱応力及び熱疲労が懸念される際の給水ノズルの健全性を確保しやすい給水ノズルを提供することにあり、他の目的はその給水ノズルを用いて、原子炉設備の増出力運転を健全性を確保しながら安全に行える原子炉設備を提供することに有る。   An object of the present invention is to provide a water supply nozzle that is easy to ensure the soundness of the water supply nozzle when there is a concern about thermal stress and thermal fatigue at the water supply nozzle portion, and another object is to use the water supply nozzle. The purpose of the present invention is to provide a nuclear reactor facility that can safely perform an increased output operation of the nuclear reactor facility while ensuring soundness.

この出願の発明の目的を達成するための手段は、内部にサーマルスリーブを備えた給水ノズルにおいて、前記給水ノズルの内面と前記サーマルスリーブの外面との間に形成される環状流路の間隔をδとし、前記給水ノズルの内径をDiとし、前記間隔と前記内径との関係がδ/Di≦0.03であることを特徴とする給水ノズル、或いは、内部にサーマルスリーブを備えた給水ノズルにおいて、前記給水ノズルの内面と前記サーマルスリーブの外面との間、及び/又は前記サーマルスリーブの内面に前記給水ノズルや前記サーマルスリーブの長手方向に長手方向が向けられたリブを備えていることを特徴とする給水ノズル、或いは、内部にサーマルスリーブを備えた給水ノズルにおいて、
前記給水ノズルの内面と前記サーマルスリーブの外面との間に環状又は螺旋状の部材を備え、前記給水ノズルの内面と前記環状又は螺旋状の部材の間の流路の間隔をδとし、前記給水ノズルの内径をD i とし、前記間隔と前記内径との関係がδ/D i ≦0.03であることを特徴とする給水ノズルである。



Means for achieving the object of the invention of this application is a water supply nozzle having a thermal sleeve therein, wherein the interval between the annular flow paths formed between the inner surface of the water supply nozzle and the outer surface of the thermal sleeve is δ. and then, the inner diameter of the water supply nozzles and D i, a water supply nozzle, characterized in that the relationship between the said spacing inside diameter of δ / D i ≦ 0.03, or water nozzle with a thermal sleeve inside In the above, a rib whose longitudinal direction is directed in the longitudinal direction of the water supply nozzle or the thermal sleeve is provided between the inner surface of the water supply nozzle and the outer surface of the thermal sleeve and / or the inner surface of the thermal sleeve. In the water supply nozzle characterized by the above, or the water supply nozzle provided with a thermal sleeve inside,
The Bei example annular or helical member between the inner surface of the water supply nozzle and the outer surface of the thermal sleeve, the spacing of the flow path between the inner surface and the annular or spiral member of the water supply nozzle and [delta], the the inner diameter of the water supply nozzles and D i, a water supply nozzle, wherein the relationship between the distance between the inner diameter of δ / D i 0.03.



本発明の給水ノズルによれば、給水ノズル部位での熱応力及び熱疲労が懸念される際の給水ノズルの健全性を確保しやすいという効果が得られる。   According to the water supply nozzle of the present invention, there is an effect that it is easy to ensure the soundness of the water supply nozzle when there is a concern about thermal stress and thermal fatigue at the water supply nozzle portion.

本発明の原子炉設備によれば、給水系機器の設計余裕を適切に維持しつつ出力増加を可能にすることが出来る。   According to the nuclear reactor equipment of the present invention, it is possible to increase the output while appropriately maintaining the design margin of the water supply system equipment.

本発明の実施例を図1から図7を用いて説明する。まず、図1は本発明の好適な実施例である増出力時の沸騰水型軽水炉の低圧タービンへの熱バランスシフト法に関するシステム系統図を示す。原子炉圧力容器1から発生する高圧の主蒸気は主蒸気管2から高圧タービン3へ供給されて当該高圧タービン3で回転エネルギーに変換されて仕事をする。この後、膨張した主蒸気は湿分分離器4へ供給され、当該湿分分離器4で湿分を除去された後、蒸気は低圧タービン5でも同様の仕事をし、膨張した低圧蒸気は復水器6で凝縮する。その後、復水した冷却水は低圧給水加熱器7,主給水ポンプ8及び高圧給水加熱器9で昇温・昇圧されて、再び原子炉圧力容器1内へ供給される。通常の沸騰水型軽水炉では事故・過渡時に十分に炉心の健全性が確保される範囲で、高圧タービンや湿分分離器からの抽気蒸気やドレン水を給水加熱に用いることにより冷却材の給水温度を高くして熱効率が最大となるように設計されている。なお、図1中では炉心の熱出力をQ、水および蒸気の質量流量をG、水および蒸気のエンタルピをHで表しており、熱出力Qと質量流量Gはプラント建設時の主蒸気流量に対する比(%)を、エンタルピは(kJ/kg)単位の数値で表している。   An embodiment of the present invention will be described with reference to FIGS. First, FIG. 1 shows a system diagram relating to a heat balance shift method for a low pressure turbine of a boiling water light water reactor at the time of increased output, which is a preferred embodiment of the present invention. High-pressure main steam generated from the reactor pressure vessel 1 is supplied from the main steam pipe 2 to the high-pressure turbine 3 and converted into rotational energy by the high-pressure turbine 3 to work. Thereafter, the expanded main steam is supplied to the moisture separator 4, and after the moisture is removed by the moisture separator 4, the steam performs the same work in the low-pressure turbine 5, and the expanded low-pressure steam is recovered. Condensate in water bottle 6. Thereafter, the condensed cooling water is heated and boosted by the low-pressure feed water heater 7, the main feed water pump 8 and the high-pressure feed water heater 9, and is supplied again into the reactor pressure vessel 1. In a normal boiling water light water reactor, the water supply temperature of the coolant is achieved by using the extracted steam or drain water from the high-pressure turbine or moisture separator for feed water heating within the range where the soundness of the core is sufficiently secured in the event of an accident or transition. Is designed to maximize the thermal efficiency. In FIG. 1, the thermal output of the core is represented by Q, the mass flow rate of water and steam is represented by G, and the enthalpy of water and steam is represented by H. The thermal output Q and mass flow rate G are relative to the main steam flow rate during plant construction. The ratio (%) and enthalpy are expressed in numerical values in units of (kJ / kg).

本実施例ではプラント建設時に比較して炉心の出力を5%増加させるとともに高圧タービン出口からの抽気の割合を少なくしている。このことは圧力容器に供給される水の加熱量を減少させることであるから、供給される水の温度とエンタルピが低下する。圧力容器の入口における給水の温度が低下することにより、炉心内で冷却材である水が沸騰を開始するまでに吸収する熱量が増加し、これが出力増加分とつりあう場合、炉心の出力を増加させても主蒸気流量は増加しない。主蒸気流量および高圧タービンの蒸気流量は増加しないが、高圧タービン3出口から抽気する高圧給水加熱器9用の蒸気量を減らしているため低圧タービン5へ入る蒸気量は増加し、その結果低圧タービン5から復水器6に流入する蒸気量も増加する。抽気流量を減少させるには抽気点から給水加熱器までの間の抽気管上にオリフィスまたは流量調整弁10を設けている。またこれと別の方法として、主給水管上に給水バイパス管11を設置し、少なくとも1つの給水加熱器をバイパスした後に給水管に戻しても良い。原子力発電システムでは一般に発電量の約2/3は低圧タービンで回収しており、低圧タービンへ入る蒸気量を増やすことにより、主蒸気流量を増やさずに原子炉の電気出力を増加させることが可能である。本実施例に示した手法では主蒸気流量を変えずに電気出力を約4%増加させることが可能である。   In this embodiment, the power of the core is increased by 5% and the ratio of the bleed air from the high-pressure turbine outlet is reduced as compared with the time of plant construction. This is to reduce the heating amount of the water supplied to the pressure vessel, so that the temperature and enthalpy of the supplied water are lowered. As the temperature of the feed water at the inlet of the pressure vessel decreases, the amount of heat absorbed by the water, which is the coolant in the core, begins to boil, and when this balances with the increase in power, the power of the core is increased. However, the main steam flow does not increase. Although the main steam flow and the steam flow of the high-pressure turbine do not increase, the amount of steam entering the low-pressure turbine 5 increases because the amount of steam for the high-pressure feed water heater 9 extracted from the outlet of the high-pressure turbine 3 is reduced. As a result, the low-pressure turbine The amount of steam flowing from 5 into the condenser 6 also increases. In order to reduce the extraction flow rate, an orifice or a flow rate adjustment valve 10 is provided on the extraction pipe between the extraction point and the feed water heater. As another method, the water supply bypass pipe 11 may be installed on the main water supply pipe, and at least one water heater may be bypassed and then returned to the water supply pipe. In a nuclear power generation system, approximately 2/3 of the power generation is generally recovered by a low-pressure turbine. By increasing the amount of steam entering the low-pressure turbine, it is possible to increase the electrical output of the reactor without increasing the main steam flow rate. It is. In the method shown in this embodiment, the electric output can be increased by about 4% without changing the main steam flow rate.

すなわち本発明の実施例では、増出力後の原子炉圧力容器から主蒸気管に流入する蒸気流量をGf1、低圧タービンから復水器に流入する蒸気流量をGf2とする場合、通常の設計方法とは逆にGf2/Gf1を増加させることに特徴がある。このような熱バランスを取ることにより、プラントの熱効率は減少するものの、給水温度が下がるために通常の増出力時に比較して炉心の安全性は向上し圧力損失も低減する。給水流量と主蒸気流量を低く抑えることが出来るために給水系から高圧タービンまでの間の設計余裕を小さくすること無く増出力が可能となる。さらに一般的に大幅な増出力時には交換が必要となる高圧タービンを交換することなく大幅な増出力を実施することが可能となる。プラント熱効率の低下を防止するためには、原子炉の圧力を増加させる、湿分分離器を湿分分離再熱器または湿分分離過熱器に置き換える、給水加熱系にポンプドレンアップを導入するなどすれば良い。沸騰水型軽水炉以外の直接サイクル型のプラントも同様の方法で増出力が可能である。   That is, in the embodiment of the present invention, when the flow rate of steam flowing into the main steam pipe from the reactor pressure vessel after the increased output is Gf1, and the flow rate of steam flowing into the condenser from the low-pressure turbine is Gf2, Is characterized by increasing Gf2 / Gf1. By taking such a heat balance, although the thermal efficiency of the plant is reduced, the feed water temperature is lowered, so that the safety of the core is improved and the pressure loss is reduced as compared with the normal power increase. Since the feed water flow rate and the main steam flow rate can be kept low, it is possible to increase the output without reducing the design margin between the feed water system and the high pressure turbine. Furthermore, it is possible to implement a large increase in power without replacing a high-pressure turbine that generally needs to be replaced at a large increase in power. To prevent decline in plant thermal efficiency, increase reactor pressure, replace moisture separator with moisture separation reheater or moisture separation superheater, introduce pump drain up to feed water heating system, etc. Just do it. A direct cycle type plant other than the boiling water type light water reactor can increase the output by the same method.

このように、熱バランスシフト法による増出力運転を行う場合、給水温度が低下するため、原子炉圧力容器の側面へ設置されている給水ノズル部で炉水との温度差が従来よりも大きくなるため、環状流路内での熱成層化による温度変動に基づく高サイクル熱疲労の増加が予想される。この際、従来の給水ノズルでは温度変動発生の原因である熱成層化及び最大温度発生箇所は特定されていないため、熱応力低減のために増出力運転条件下での給水ノズル構造が不可欠となる。   In this way, when performing the increased output operation by the thermal balance shift method, the feed water temperature decreases, so the temperature difference from the reactor water at the feed water nozzle part installed on the side of the reactor pressure vessel becomes larger than before. Therefore, an increase in high-cycle thermal fatigue based on temperature fluctuations due to thermal stratification in the annular channel is expected. At this time, in the conventional water supply nozzle, the thermal stratification and the maximum temperature generation location which are the cause of the temperature fluctuation are not specified, so the water supply nozzle structure under the increased power operation condition is indispensable for reducing the thermal stress. .

そこで、図2に本発明の好適な実施例である給水ノズルの概要を示す。また、図3から図6までに、これらの動作及び特性を説明するための温度変動と熱疲労のメカニズムの概要を示す。図3は給水ノズル周りの温度分布の概要図、図4は給水ノズル内部での熱成層化による密度差分離に関する現象説明図、図5は熱伝達率と流体温度変動に対する壁面温度変動割合の概要図、そして図6は給水ノズルの熱疲労評価フロー概要図を示す。   FIG. 2 shows an outline of a water supply nozzle which is a preferred embodiment of the present invention. 3 to 6 show an outline of the mechanism of temperature fluctuation and thermal fatigue for explaining these operations and characteristics. FIG. 3 is a schematic diagram of the temperature distribution around the water supply nozzle, FIG. 4 is a phenomenon explanatory diagram regarding density difference separation by thermal stratification inside the water supply nozzle, and FIG. 5 is an overview of the wall temperature fluctuation ratio with respect to the heat transfer coefficient and fluid temperature fluctuation. FIG. 6 and FIG. 6 show a schematic diagram of the thermal fatigue evaluation flow of the water supply nozzle.

図2は、原子炉圧力容器1へ給水配管12を設置した給水ノズルの部位を示している。ここで、炉水18と給水17との間で、これら二流体混合時の温度差による熱応力を低減するため、給水ノズル13内部にサーマルスリーブ14を設置して直接温度差のある二流体が接触することを回避し、サーマルスリーブの先端にある給水スパージャ15から原子炉圧力容器1中へ噴出する構造になっている。このとき、給水ノズル13とサーマルスリーブ14間における狭い環状流路16(以下、ギャップδと略すことも有る)内での流体温度変動を抑制し、当該ギャップ16内で自然対流熱伝達を小さくし、給水ノズル内壁表面(以下、給水ノズル内面とも言う。)13aでの材料の温度変動を抑制する必要がある。そのためには、従来から行われている構造強度の観点から検討するだけではなく、熱疲労の元凶である熱成層界面形成による流体温度変動発生原因を抑制する必要がある。そこで、本発明ではこのギャップ寸法の適正化を検討した。   FIG. 2 shows a portion of a water supply nozzle in which a water supply pipe 12 is installed in the reactor pressure vessel 1. Here, in order to reduce the thermal stress due to the temperature difference during mixing of these two fluids between the reactor water 18 and the feed water 17, a thermal sleeve 14 is installed inside the feed water nozzle 13 so that the two fluids having a direct temperature difference can be obtained. The structure is such that the contact is avoided and the water supply sparger 15 at the tip of the thermal sleeve is ejected into the reactor pressure vessel 1. At this time, fluid temperature fluctuations in the narrow annular flow path 16 (hereinafter also abbreviated as gap δ) between the water supply nozzle 13 and the thermal sleeve 14 are suppressed, and natural convection heat transfer is reduced in the gap 16. It is necessary to suppress the temperature fluctuation of the material on the inner wall surface of the water supply nozzle (hereinafter also referred to as the inner surface of the water supply nozzle) 13a. For that purpose, it is necessary not only to study from the viewpoint of the structural strength that has been conventionally performed, but also to suppress the cause of fluid temperature fluctuations due to the formation of the thermal stratification interface, which is the cause of thermal fatigue. Therefore, in the present invention, the optimization of the gap size was studied.

図3は給水ノズル周りの温度分布Tの概要を示す。高温の炉水Trと低温の給水Tfwが給水ノズル部内で熱交換し、炉水の温度が低下する。一方、炉水18により加熱された給水17は炉内中央に向かう流れ方向に沿って温度上昇して、最終的に給水スパージャ
15出口から炉水中へ流出し温度差混合が生じる。このとき、環状流路内で炉水は熱交換により温度低下し、高温水Trhは密度が小さいため給水ノズル上部13bへ、低温水
Trcは密度が大きいために給水ノズル下部13cへと密度差により分離して熱成層化を生じる。しかし、成層化が生じても熱成層界面19が静的に安定していれば、給水ノズルやサーマルスリーブは静的熱応力発生だけの問題となる。ところが、炉水18の下向き流れに含まれる外乱が熱成層界面19へ作用してここで温度変動が生じる。この際の流体温度変動がギャップ内での熱伝達を介して給水ノズル13内面及びサーマルスリーブ14外面へと伝播し、これら材料の温度変動に起因した熱疲労が発生することになり、これを回避する必要がある。
FIG. 3 shows an outline of the temperature distribution T around the water supply nozzle. The high temperature reactor water Tr and the low temperature feed water Tfw exchange heat in the feed nozzle portion, and the temperature of the reactor water decreases. On the other hand, the temperature of the feed water 17 heated by the reactor water 18 rises along the flow direction toward the center of the reactor, and finally flows out from the feed water sparger 15 outlet into the reactor water, resulting in temperature difference mixing. At this time, the temperature of the reactor water in the annular channel decreases due to heat exchange, and the high-temperature water Trh has a low density, so that the density of the low-temperature water Trc is high. Separation causes thermal stratification. However, if the thermal stratification interface 19 is statically stable even if stratification occurs, the water supply nozzle and the thermal sleeve pose only a problem of static thermal stress generation. However, the disturbance included in the downward flow of the reactor water 18 acts on the thermal stratification interface 19 to cause temperature fluctuation. Fluid temperature fluctuations at this time are propagated to the inner surface of the water supply nozzle 13 and the outer surface of the thermal sleeve 14 through heat transfer in the gap, and thermal fatigue due to temperature fluctuations of these materials occurs, and this is avoided. There is a need to.

また、給水ノズル周りでの熱流動現象を考える。図4は給水ノズル内部での熱成層化に関する現象を示す。図示のように、定格運転の給水時には、高温の炉水がギャップ内に停留しているところへ給水配管から低温の給水17が供給され、サーマルスリーブ14を介してギャップ内の高温水からサーマルスリーブ14内の低温水へ入熱21されて熱交換する。この結果、ギャップ内に停留している高温水は温度が低下する。しかし、狭いギャップ内では一様な温度低下とはならずに、自然対流を発生し高温水は密度が小さいためにギャップ内の上部へ、低温水は密度が大きいために下部へと密度差分離していく。なお、ギャップ内では小さなベナードセルと呼ばれる自然対流渦が徐々に合体して大きな対流渦
20aとなる。すなわち、給水ノズル13とサーマルスリーブ14間の環状流路内では自然対流熱伝達を伴う熱成層化現象が生じる。一方、起動停止時は、給水配管からの給水
17が停止状態になるため、サーマルスリーブ14内で低温の給水が周りから入熱21されて最終的には熱成層化が生じ、この界面19で温度揺らぎが生じる。
Also consider the heat flow phenomenon around the water supply nozzle. FIG. 4 shows a phenomenon related to thermal stratification inside the water supply nozzle. As shown in the figure, at the time of water supply for rated operation, low temperature water 17 is supplied from the water supply pipe to the place where the high temperature reactor water is stopped in the gap, and the thermal sleeve is supplied from the high temperature water in the gap via the thermal sleeve 14. Heat is input 21 to the low-temperature water in 14 to exchange heat. As a result, the temperature of the high-temperature water that remains in the gap decreases. However, the temperature does not decrease evenly in the narrow gap, and natural convection is generated and the high temperature water has a low density, so the density difference is separated to the upper part in the gap, and the low temperature water has a high density, so the density difference is separated to the lower part. To go. In the gap, natural convection vortices called small Benard cells gradually merge to form a large convection vortex 20a. That is, a thermal stratification phenomenon accompanied by natural convection heat transfer occurs in the annular flow path between the water supply nozzle 13 and the thermal sleeve 14. On the other hand, when starting and stopping, since the water supply 17 from the water supply pipe is in a stopped state, the low-temperature water supply in the thermal sleeve 14 receives heat 21 from the surroundings, and finally thermal stratification occurs. Temperature fluctuation occurs.

ここで、熱流体の観点から、次式に示す無次元数である環状流路内でのレーリー数Raと給水ノズル内のレイノルズ数Recが考えられる。 Here, from the viewpoint of thermal fluid, it is considered the Reynolds number Re c Rayleigh number Ra and the water supply nozzle in the annular flow path is a dimensionless number expressed by the following equation.

Ra=Gr・Pr=(δ3βgΔT/ν2)・Pr (1)
Rec=vDi/ν (2)
但し、δは環状流路の間隔(ギャップ)、βは体膨張係数、gは重力加速度、ΔTは温度差、νは動粘性係数、Prはプラントル数、vは管内流速、Diはノズル内径である。
Ra = Gr · Pr = (δ 3 βgΔT / ν 2 ) · Pr (1)
Re c = vD i / ν ( 2)
Where δ is the interval (gap) of the annular flow path, β is the body expansion coefficient, g is the gravitational acceleration, ΔT is the temperature difference, ν is the kinematic viscosity coefficient, Pr is the Prandtl number, v is the pipe flow velocity, Di is the nozzle inner diameter It is.

給水ノズルの寸法に関わらず、Ra>1700では環状流路内で小さなベナードセルが複合した大きな自然循環渦による自然対流場となり、またRec>1.0×104ではノズル内は一様に発達した強制対流場となる。ここで、式(1)に示すように、ギャップδの三乗に比例して、グラスホフ数Gr及びレーリー数Raが小さくなり、式(3)に示す関係から給水ノズルとサーマルスリーブ間での自然対流熱伝達率hが減少し、例え熱成層化が生じてもこの界面近傍での温度揺らぎが給水ノズル材及びサーマルスリーブ材の温度変動発生箇所22へ伝達しにくいことになる。 Despite the size of the water supply nozzle, Ra> In 1700 the annular flow path within a small Benard cell becomes natural convection field by a large natural circulation vortices in complex, also Re c> 1.0 × 10 4 in the nozzle is uniformly developed Forced convection field. Here, as shown in the equation (1), the Grashof number Gr and the Rayleigh number Ra become smaller in proportion to the cube of the gap δ, and the natural relationship between the water supply nozzle and the thermal sleeve is reduced from the relationship shown in the equation (3). Even if the convective heat transfer coefficient h decreases and thermal stratification occurs, temperature fluctuations in the vicinity of this interface are not easily transmitted to the temperature fluctuation occurrence point 22 of the water supply nozzle material and the thermal sleeve material.

Nu∝h∝Ram∝(δ3m (3)
但し、Nuはヌッセルト数、mは指数である。
Nu∝h∝Ra m δ (δ 3 ) m (3)
Where Nu is the Nusselt number and m is an exponent.

次に、図5は給水ノズルの環状流路内での熱伝達率と流体温度変動に対する壁面温度変動割合を示す。ここで、縦軸のΔTwは壁面温度変動、ΔTfは流体温度変動を示している。図中のΔTw/ΔTf≦0.3 は、給水ノズルの熱疲労回避のための目標値を示す。図中右上に示すように、熱伝達率hの大きさによっては、大きな流体温度変動振幅ΔTfが小さな壁面温度変動振幅ΔTwになる可能性がある。検討条件は、BWR 110万
kWe級、給水ノズルの材質はステンレス、給水配管の内径はD=280mmとし、不確定な温度変動周波数fをパラメータとした。従来より、壁面温度変動に関する予測式として、次式が用いられている(出典は、H. Choe, C. M. Kwong, ASME 79−WA/HT−23,1980参照)。
Next, FIG. 5 shows the heat transfer coefficient in the annular flow path of the water supply nozzle and the wall surface temperature fluctuation ratio with respect to the fluid temperature fluctuation. Here, ΔTw on the vertical axis indicates wall surface temperature fluctuation, and ΔTf indicates fluid temperature fluctuation. ΔTw / ΔTf ≦ 0.3 in the figure indicates a target value for avoiding thermal fatigue of the water supply nozzle. As shown in the upper right in the figure, depending on the magnitude of the heat transfer coefficient h, there is a possibility that the large fluid temperature fluctuation amplitude ΔTf may become a small wall surface temperature fluctuation amplitude ΔTw. The examination conditions were BWR 1.1 million kWe, the material of the water supply nozzle was stainless steel, the inner diameter of the water supply pipe was D = 280 mm, and the uncertain temperature fluctuation frequency f was used as a parameter. Conventionally, the following equation has been used as a prediction equation relating to wall surface temperature fluctuation (see H. Choe, CM Kwong, ASME 79-WA / HT-23, 1980 for the source).

ΔTw/ΔTf=1/√2e2+2e+1 (4)
e=√ρmπCmλmf/h (5)
ここで、ρm は材料の密度、Cm は材料の比熱、λm は材料の熱伝導率、hは熱伝達率である。式(5)の定数eは流体から材料へ伝播される温度変動割合を示し、これらの割合を式(4)のような経験式として表したものである。これより、熱伝達率hの増加とともに、壁面温度変動割合ΔTw/ΔTfは単調増加する。また、変動周波数fが大きくなるとΔTw/ΔTfは低下する傾向がある。従って、図示の結果から許容変動熱応力の制限としてΔTw/ΔTf≦0.3 を満足するためには、実現象から考えられる最も小さな周波数f=0.01Hzを考慮してもh≦900W/m2K となる必要がある。これは、式(3)の関係からδ≦10mmを満足する必要がある。
ΔTw / ΔTf = 1 / √2e 2 + 2e + 1 (4)
e = √ρ m πC m λ m f / h (5)
Here, ρ m is the density of the material, C m is the specific heat of the material, λ m is the thermal conductivity of the material, and h is the heat transfer coefficient. The constant e in the equation (5) indicates the temperature fluctuation ratio transmitted from the fluid to the material, and these ratios are expressed as an empirical expression such as the expression (4). As a result, the wall surface temperature fluctuation ratio ΔTw / ΔTf monotonously increases as the heat transfer coefficient h increases. Also, ΔTw / ΔTf tends to decrease as the fluctuation frequency f increases. Therefore, in order to satisfy ΔTw / ΔTf ≦ 0.3 as the limit of the allowable fluctuation thermal stress from the results shown in the figure, h ≦ 900 W / m even if the smallest frequency f = 0.01 Hz considered from the actual phenomenon is considered It needs to be 2K. This needs to satisfy δ ≦ 10 mm from the relationship of the expression (3).

従って、下記の関係を満足すれば、熱成層化による給水ノズル内表面での熱疲労は回避できることになる。   Therefore, if the following relationship is satisfied, thermal fatigue on the inner surface of the water supply nozzle due to thermal stratification can be avoided.

δ/Di≦0.03 (6)
ここで、Diは給水ノズル内径である。
δ / D i ≦ 0.03 (6)
Here, Di is the feed nozzle inner diameter.

以上の給水ノズル構造及び条件に基づき、給水ノズル材の熱疲労を評価する手順を説明する。図6は給水ノズルの熱疲労評価フロー概要を示す。まず、低温の給水と高温の炉水がサーマルスリーブを介して熱交換する。次に、運転状態で左右の2つの現象に分かれる。図の左側は、定格運転時の高サイクル熱疲労の評価フローを示す。環状流路内で高低温水の密度差による分離が生じ、熱成層化が生じる。この成層界面で炉水の外乱による流体温度変動が生じる。この流体温度変動が自然対流熱伝達により給水ノズル内表面及びサーマルスリーブ外表面での材料壁面での温度変動として伝播され、これに起因する高サイクル熱疲労が発生する。これは急激に変動する温度揺らぎの変動荷重を意味する。原子炉全体の運転状態から見ると、小さな温度変動荷重を受けながら、長時間運転、すなわち変動回数が多いため、累積損傷係数UFh は大きい。一方、図の右側は、起動・停止時におけるサーマルサイクルによる低サイクル熱疲労の評価フローを示す。起動・停止時には、熱成層化した環状流路の上部と下部で最も大きな温度差が発生し、これに緩やかな熱過渡サイクルを受けることにより静的熱応力が緩やかに変動し、低サイクル熱疲労が起こる。これは緩やかな過渡状態の変動荷重を意味する。原子炉全体の運転状態から見ると、大きな温度変動荷重を受けるけれども、短時間運転、すなわち変動回数が少ないため、累積損傷係数UFl は小さい。これら両者の累積損傷係数UFh と累積損傷係数UFl を加算して最終的な累積損傷係数UF(Usage Factor)を算出し、給水ノズル及びサーマルスリーブ材料に対する熱疲労の可能性があるか否かを判定する。この値が1以下であれば構造的に健全であるということになる。 A procedure for evaluating thermal fatigue of the water supply nozzle material will be described based on the above water supply nozzle structure and conditions. FIG. 6 shows an outline of the thermal fatigue evaluation flow of the water supply nozzle. First, low-temperature water supply and high-temperature reactor water exchange heat through a thermal sleeve. Next, it is divided into two phenomena on the left and right in the driving state. The left side of the figure shows the evaluation flow for high cycle thermal fatigue during rated operation. Separation occurs due to the difference in density of high and low temperature water in the annular flow path, and thermal stratification occurs. Fluid temperature fluctuations occur due to reactor water disturbance at this stratification interface. This fluid temperature fluctuation is propagated as a temperature fluctuation on the wall surface of the material on the inner surface of the water supply nozzle and the outer surface of the thermal sleeve by natural convection heat transfer, and high cycle thermal fatigue due to this is generated. This means a fluctuating load of temperature fluctuation that fluctuates rapidly. When viewed from the operation state of the entire reactor, the cumulative damage coefficient UF h is large because it is operated for a long time while receiving a small temperature fluctuation load, that is, the number of fluctuations is large. On the other hand, the right side of the figure shows an evaluation flow of low cycle thermal fatigue due to thermal cycle at start / stop. When starting and stopping, the largest temperature difference occurs between the upper and lower parts of the thermally stratified annular flow path, and the static thermal stress fluctuates slowly due to the gentle thermal transient cycle, resulting in low cycle thermal fatigue. Happens. This means a gradual transient fluctuating load. When viewed from the operating state of the entire reactor, although it receives a large temperature fluctuation load, the cumulative damage coefficient UF l is small because of the short time operation, that is, the fluctuation frequency is small. By adding the cumulative damage coefficient UF l and cumulative damage coefficient UF h of both calculating a final cumulative damage coefficients UF (U sage F actor), there is a potential for thermal fatigue against the water supply nozzle and the thermal sleeve material Determine whether or not. If this value is 1 or less, it is structurally sound.

以上の評価フローに従い、従来型と本発明の実施例との累積損傷係数UFの値を比較した。図7にその結果を示す。ここで、累積損傷係数UFは高サイクル熱疲労による累積損傷係数UFh と低サイクル熱疲労による累積損傷係数UFl との和で表す。従来の給水ノズルを用いて現行の運転を行う場合はUF=0.3 程度となるが、増出力運転時、すなわち給水温度が従来よりも約20から30℃低下する場合はUF=1.6 へと増加する。ここで、材料表面での熱疲労を回避できるクライテリヤとしてUF<1が一般的な基準となる。従って、従来構造及び寸法のままでは、ギャップ内での温度変動による熱疲労が問題となる可能性がある。一方、本発明の給水ノズルではUF=0.7 程度となり、熱的な構造健全性に問題ないことが確認された。なお、図示したものは同じ検討条件で評価した一例であり、二流体温度差,材料の種類,ギャップ,変動周波数,構造材の表面粗さ,炉水の流れ方,給水流量などにより、若干異なることを付記しておく。 According to the above evaluation flow, the value of the cumulative damage coefficient UF was compared between the conventional type and the example of the present invention. FIG. 7 shows the result. Here, the cumulative damage factor UF represents the sum of the cumulative damage factor UF l by cumulative damage factor UF h and the low cycle thermal fatigue due to high cycle thermal fatigue. When the current operation is performed using the conventional water supply nozzle, UF is about 0.3, but at the time of the increased output operation, that is, when the water supply temperature is lowered by about 20 to 30 ° C. than before, UF = 1.6 It increases to. Here, UF <1 is a general criterion as a criterion capable of avoiding thermal fatigue on the material surface. Therefore, with the conventional structure and dimensions, thermal fatigue due to temperature fluctuations in the gap may be a problem. On the other hand, in the water supply nozzle of the present invention, UF = about 0.7, and it was confirmed that there was no problem in thermal structural integrity. In addition, what is shown in the figure is an example evaluated under the same examination conditions. It differs slightly depending on the temperature difference between the two fluids, the type of material, the gap, the fluctuation frequency, the surface roughness of the structural material, the flow of the reactor water, the feed water flow rate, etc. I will note that.

本発明のこのような実施例では、本発明の目的を達成する為に、給水ノズルとサーマルスリーブの間の環状流路内ギャップを、自然対流熱伝達率が900W/m2K 以下になるように小さくする。これにより、例え低温の給水と高温炉水との間の熱成層化が生じても給水ノズル内面への熱伝達率が小さく、給水ノズル内表面での温度変動が小さくなる。それにより、温度変動による熱疲労での材料健全性を確保することができる。 In such an embodiment of the present invention, in order to achieve the object of the present invention, the gap in the annular flow path between the water supply nozzle and the thermal sleeve is set so that the natural convection heat transfer coefficient is 900 W / m 2 K or less. Make it smaller. Thereby, even if thermal stratification occurs between the low-temperature feed water and the high-temperature reactor water, the heat transfer rate to the inner surface of the feed water nozzle is small, and the temperature fluctuation on the inner surface of the feed water nozzle is small. Thereby, material soundness due to thermal fatigue due to temperature fluctuation can be ensured.

図8から図17に、本発明の他の実施例を示す。まず図8は環状流路内での熱成層化を抑制するためにサーマルスリーブ外面14aへ少なくとも1つ以上のリブ機構である管外リブ14cを取り付けた場合の給水ノズルの構造の概要を示す。これは、サーマルスリーブの軸方向にノズル端部までの長さを有する。できれば、最小でも周方向に45度ピッチで8本設置すれば望ましい。これにより、ギャップ16内での熱伝達率も抑制できる効果を有する。これは、定格運転時に環状流路内に形成される熱成層界面での流体温度変動を減衰させるためのものである。この場合の長所は、従来式のサーマルスリーブ14の仕様をそのまま用いて、上記の熱伝達率低減効果を達成しうるものであるため、改造が比較的容易な点である。さらに、原子炉内圧や静的熱変形による撓みが生じても、当該リブ機構である管外リブ14cが給水ノズル内面とサーマルスリーブ外面で接触し、単純支持状態となるため、熱的な大変形も抑制できる。なお以下の実施例で、内外面へリブ機構を設置するものは、いずれも少なくとも1つ以上設置するものである。図9はサーマルスリーブ内面14bへリブ機構である管内リブ14dを取り付けた場合の給水ノズルの構造概要図を示す。これは、給水停止時にサーマルスリーブ内に形成される熱成層界面での流体温度変動を減衰させるためのものである。図10は図8と図9の両者の長所を組み合わせたものである。図11はサーマルスリーブを二重管構造にして自然対流を抑制する機構である。サーマルスリーブ14の外周に配置したサーマルスリーブB14eを二重に追加することにより、まずこれだけで対流形成を抑制でき、その上に各リブ14a,14b,14fで対流形成を抑制できる。   8 to 17 show another embodiment of the present invention. First, FIG. 8 shows an outline of the structure of the water supply nozzle when at least one outer rib 14c, which is a rib mechanism, is attached to the outer surface 14a of the thermal sleeve in order to suppress thermal stratification in the annular flow path. This has a length to the nozzle end in the axial direction of the thermal sleeve. If possible, it is desirable to install eight at a 45 degree pitch in the circumferential direction at the minimum. Thereby, the heat transfer coefficient in the gap 16 can be suppressed. This is for attenuating fluid temperature fluctuations at the thermal stratification interface formed in the annular flow path during rated operation. The advantage in this case is that it is possible to achieve the above-described effect of reducing the heat transfer coefficient by using the specifications of the conventional thermal sleeve 14 as they are, and therefore, the modification is relatively easy. Furthermore, even if bending due to reactor internal pressure or static thermal deformation occurs, the pipe outer rib 14c, which is the rib mechanism, comes into contact with the inner surface of the water supply nozzle and the outer surface of the thermal sleeve and is in a simple support state. Can also be suppressed. In the following embodiments, at least one or more rib mechanisms are installed on the inner and outer surfaces. FIG. 9 is a schematic diagram of the structure of the water supply nozzle when the pipe rib 14d as a rib mechanism is attached to the inner surface 14b of the thermal sleeve. This is for attenuating fluid temperature fluctuations at the thermal stratification interface formed in the thermal sleeve when the water supply is stopped. FIG. 10 combines the advantages of both FIG. 8 and FIG. FIG. 11 shows a mechanism for suppressing natural convection by making the thermal sleeve into a double tube structure. By adding double the thermal sleeve B14e arranged on the outer periphery of the thermal sleeve 14, convection formation can be suppressed by this alone, and convection formation can be suppressed by the ribs 14a, 14b, 14f thereon.

このように、給水ノズルとサーマルスリーブの間の環状流路内ギャップを確保した上で、サーマルスリーブ内外表面上へ少なくとも周方向に1つ以上の軸方向に伸びたリブ機構を設置すると、局部的に給水ノズル内面とサーマルスリーブ外面が接触するかのごとき狭いギャップ部が形成され、このギャップ部位においては自然対流熱伝達から熱伝導に変化し、例え低温の給水と高温炉水との間でも熱成層化が生じない。もし熱成層化が生じたとしても、自然対流熱伝達が小さくなり、その結果として流体の温度変動は給水ノズル内面で急激に減衰することになるため、熱疲労の懸念は少なくなる。   As described above, when the gap in the annular flow path between the water supply nozzle and the thermal sleeve is ensured and at least one or more axially extending rib mechanisms are installed on the inner and outer surfaces of the thermal sleeve, A narrow gap is formed as if the inner surface of the water supply nozzle and the outer surface of the thermal sleeve are in contact with each other. In this gap portion, the heat transfer is changed from natural convection heat transfer to heat transfer even between the low temperature water supply and the high temperature reactor water. No stratification occurs. Even if thermal stratification occurs, natural convection heat transfer is reduced, and as a result, the temperature fluctuation of the fluid is abruptly attenuated on the inner surface of the water supply nozzle, thereby reducing the fear of thermal fatigue.

図8から図11の各実施例における給水ノズルの内面とリブ機構の間の関係も、給水ノズルの内面とリブ機構の給水ノズルの内面側へ突き出された突端との間の流路の間隔をδとし、給水ノズルの内径をDiとし、その間隔と前記内径との関係がδ/Di≦0.03であるようにして自然対流熱伝達率を低くすることが好ましい。 The relationship between the inner surface of the water supply nozzle and the rib mechanism in each of the embodiments shown in FIGS. 8 to 11 is also the distance between the flow paths between the inner surface of the water supply nozzle and the protruding end protruding toward the inner surface of the water supply nozzle of the rib mechanism. and [delta], the inner diameter of the water supply nozzles and D i, it is preferable that the relationship between the inner diameter and the spacing as is δ / D i ≦ 0.03 to reduce the natural convection heat transfer coefficient.

図12はサーマルスリーブ14の外面へ、ギャップ縮小化のために螺旋状突起機構23を巻き付けたものである。ここで、給水系での圧力は本来のサーマルスリーブ14で持ち、螺旋状突起機構23はノズルとサーマルスリーブ間でのギャップδを小さくするためのものである。もちろん、この機構はサーマルスリーブよりも柔い構造で使用が可能であり、従来のサーマルスリーブへ当該機構を追設するだけで改造がほとんど不要となり増出力運転時の給水ノズルとして容易な対応法となる。図13は上図の他の実施例で、スクリュー状突起機構24である。これは、サーマルスリーブ14と一体構造でも、別構造のものを取り付けてもどちらでも良い。これにより、通常のノズルとサーマルスリーブ間でのギャップδを小さくすることが可能となり、大幅な構造変更を伴わないで、熱成層化による温度変動を抑制する効果がある。   FIG. 12 shows a spiral projection mechanism 23 wound around the outer surface of the thermal sleeve 14 in order to reduce the gap. Here, the pressure in the water supply system is held by the original thermal sleeve 14, and the spiral protrusion mechanism 23 is for reducing the gap δ between the nozzle and the thermal sleeve. Of course, this mechanism can be used with a softer structure than the thermal sleeve, and by simply adding the mechanism to the conventional thermal sleeve, almost no modification is required and it can be easily handled as a water supply nozzle during increased output operation. Become. FIG. 13 shows another embodiment of the above figure, which is a screw-like projection mechanism 24. This may be either an integral structure with the thermal sleeve 14 or a separate structure attached. As a result, the gap δ between the normal nozzle and the thermal sleeve can be reduced, and there is an effect of suppressing temperature fluctuation due to thermal stratification without accompanying a significant structural change.

このような図12と図13の各実施例におけるギャップδの小ささについても、好ましくは、給水ノズルの内面と螺旋状突起機構23或いはスクリュー状突起機構24の間の関係も、給水ノズルの内面と螺旋状突起機構23或いはスクリュー状突起機構24の給水ノズルの内面側へ突き出された突端との間の流路の間隔をδとし、給水ノズルの内径をDi とし、その間隔と前記内径との関係がδ/Di≦0.03であるようにして自然対流熱伝達率を低くすることが好ましい。 Regarding the small gap δ in each of the embodiments shown in FIGS. 12 and 13, it is preferable that the relationship between the inner surface of the water supply nozzle and the helical protrusion mechanism 23 or the screw-like protrusion mechanism 24 is also the inner surface of the water supply nozzle. and the distance between the flow path between the tip which protrudes into the inner surface side of the water supply nozzle of the spiral projection mechanism 23 or screw like projection mechanism 24 and [delta], the inner diameter of the water supply nozzles and D i, and the inner diameter and the interval It is preferable to reduce the natural convection heat transfer coefficient such that δ / D i ≦ 0.03.

また、ギャップ内での熱成層化発生を防止するために、当該ギャップ部内へ熱的緩衝材を詰め込めば、ギャップ内での炉水の流動はなく、温度変動抑制効果はより大きくなる。この熱的緩衝材は少なくとも1つ以上の多層構造であり、熱変形による応力境界とはならないものである。   Further, if a thermal buffer material is packed in the gap portion in order to prevent the occurrence of thermal stratification in the gap, there is no flow of the reactor water in the gap, and the temperature fluctuation suppressing effect is further increased. This thermal buffer material has at least one or more multilayer structures and does not become a stress boundary due to thermal deformation.

また、螺旋状突起機構23或いはスクリュー状突起機構24はサーマルスリーブ外周面に巻きつけるように或いは一体にした螺旋状の部材であるが、その部材はサーマルスリーブ外周面にサーマルスリーブと同心状に装着された環状の部材であっても良い。   The spiral projection mechanism 23 or the screw projection mechanism 24 is a spiral member that is wound around or integrated with the outer peripheral surface of the thermal sleeve. The member is mounted on the outer peripheral surface of the thermal sleeve concentrically with the thermal sleeve. An annular member may be used.

図14は炉水の下降流内に含まれる外乱が環状流路内へ流入するのを抑制する板状のガイド機構25を板面を給水ノズルの給水出口に流入抑制度合いに応じた隙間を開けたうえでその給水出口に対面させて設けたものである。例え熱成層化が生じても、安定した成層界面のままであれば温度変動が生じないため、高サイクル熱疲労は抑制できる。本実施例はガイド機構25を給水スパージャの外面へ設置したが、原子炉圧力容器1内壁面へ当該機構を設置しても同じ効果が得られる。ガイド機構25の板形状は円盤状でも矩形上でも良い。   FIG. 14 shows a plate-like guide mechanism 25 that suppresses the disturbance contained in the downward flow of the reactor water from flowing into the annular flow path, and opens a gap corresponding to the degree of inflow suppression at the water supply outlet of the water supply nozzle. In addition, it is provided facing the water supply outlet. Even if thermal stratification occurs, temperature fluctuation does not occur as long as the stable stratification interface remains, so high cycle thermal fatigue can be suppressed. In this embodiment, the guide mechanism 25 is installed on the outer surface of the water supply sparger, but the same effect can be obtained even if the mechanism is installed on the inner wall surface of the reactor pressure vessel 1. The plate shape of the guide mechanism 25 may be a disk shape or a rectangular shape.

図14の実施例は、本発明の他の実施例と組み合わせて実施することで、他の実施例を単独で用いる場合よりも一層のこと給水ノズル部の熱疲労の懸念は少なくなる。   The embodiment of FIG. 14 is implemented in combination with the other embodiments of the present invention, so that there is less concern about thermal fatigue of the water supply nozzle portion than when the other embodiments are used alone.

以上、既存のBWRの給水ノズルを本発明の給水ノズルに代替し、熱バランスシフト法による増出力運転を行えば、例え給水温度が従来よりも低下しても十分に高信頼性の給水ノズルのため、現状のプラント運転前に比べて約10〜20%程度の電気出力増加が図れる有効な原子力システムとなる。   As described above, if the existing water supply nozzle of BWR is replaced with the water supply nozzle of the present invention and the increased output operation is performed by the thermal balance shift method, even if the water supply temperature is lower than the conventional water supply nozzle, Therefore, it becomes an effective nuclear system capable of increasing the electric output by about 10 to 20% compared with the current plant operation.

なお、本実施例は沸騰水型軽水炉プラントを例に示したが、本発明は加圧水型軽水炉の二次系やその他の形式の原子力発電システムにも適用可能である。   In addition, although the present Example showed the boiling water type light water reactor plant as an example, this invention is applicable also to the secondary system of a pressurized water type light water reactor, and other types of nuclear power generation systems.

このように、本発明のある実施例では、本発明の目的を達成する為に、第1には、給水ノズルとサーマルスリーブの間の環状流路内ギャップを、自然対流熱伝達率が900W/m2K 以下になるように小さくする。これにより、例え低温の給水と高温炉水との間の熱成層化が生じても給水ノズル内面への熱伝達率が小さく、給水ノズル内表面での温度変動が小さくなる。それにより、温度変動による熱疲労での材料健全性を確保することができる。 Thus, in an embodiment of the present invention, in order to achieve the object of the present invention, first, the gap in the annular flow path between the water supply nozzle and the thermal sleeve is set to a natural convection heat transfer coefficient of 900 W / Reduce to less than m 2 K. Thereby, even if thermal stratification occurs between the low-temperature feed water and the high-temperature reactor water, the heat transfer rate to the inner surface of the feed water nozzle is small, and the temperature fluctuation on the inner surface of the feed water nozzle is small. Thereby, material soundness due to thermal fatigue due to temperature fluctuation can be ensured.

又、ある実施例では、給水ノズルとサーマルスリーブの間の環状流路内ギャップを確保した上で、サーマルスリーブ内外表面上へ少なくとも周方向に1つ以上の軸方向に伸びたリブ機構を設置する。これにより、局部的に給水ノズル内面とサーマルスリーブ外面が接触するほど狭い部分が形成され、このギャップ部位においては自然対流熱伝達から熱伝導に変化し、例え低温の給水と高温炉水との間でも熱成層化が生じない。もし熱成層化が生じたとしても、自然対流熱伝達が小さくなり、その結果として流体の温度変動は給水ノズル内面で急激に減衰することになるため、熱疲労の懸念は少なくなる。   Further, in an embodiment, after securing a gap in the annular flow path between the water supply nozzle and the thermal sleeve, one or more axially extending rib mechanisms are installed on the inner and outer surfaces of the thermal sleeve. . As a result, a narrower portion is formed so that the inner surface of the water supply nozzle and the outer surface of the thermal sleeve are in contact with each other. In this gap portion, natural convection heat transfer is changed to heat conduction, for example, between low-temperature water supply and high-temperature reactor water. But thermal stratification does not occur. Even if thermal stratification occurs, natural convection heat transfer is reduced, and as a result, the temperature fluctuation of the fluid is abruptly attenuated on the inner surface of the water supply nozzle, thereby reducing the fear of thermal fatigue.

本発明の実施例では、新設の原子炉においてあらかじめ給水温度を低下させる機能を備えておくことで、高圧系のプラント機器に過剰な設計余裕を持たせることなく、運転中または運転サイクルごとに電気出力を変更できることを可能とする原子力発電システムを提供することができる。   In an embodiment of the present invention, a new reactor is provided with a function of lowering the feed water temperature in advance, so that an electric power supply can be operated during operation or every operation cycle without giving excessive design margin to the high-pressure plant equipment. It is possible to provide a nuclear power generation system that makes it possible to change the output.

その上、既設沸騰水型原子炉あるいは改良型沸騰水型原子炉の熱バランスシフトによる原子炉運転法を採用するに際しても、上記の各実施例による給水ノズルを原子炉の給水系統の原子炉圧力容器への接続に用いる給水ノズルとして組み込んで増出力式原子力発電システムとすることで、その運転による給水ノズル部の健全性悪化を克服でき、その運転方を採用することを許容できるに至る。   In addition, when adopting the reactor operation method based on the thermal balance shift of the existing boiling water reactor or the improved boiling water reactor, the water supply nozzle according to each of the above embodiments is connected to the reactor pressure of the reactor water supply system. By incorporating it as a water supply nozzle used for connection to the container to form an increased power nuclear power generation system, it is possible to overcome the deterioration of the soundness of the water supply nozzle part due to its operation, and to allow the operation method to be adopted.

さらに本発明の実施例では、既設の原子炉の増出力に対して原子炉システムの大幅な変更をせずに従来の給水ノズル内のサーマルスリーブの径を大きくし、当該ギャップを小さくすることで、通常運転時から増出力時運転に変更した場合でも、給水ノズルへ流入する給水温度が低下しても熱疲労上問題のない構造で、しかもコンパクトな給水ノズル及びスリーブを設置することにより、高圧タービンの設計余裕を維持するとともに給水系および炉内構造物への影響を軽減しつつ、他のプラント機器への影響が無く、低圧タービンに入る蒸気流量を増加させることで、プラントの増出力を可能とする原子力発電システムを提供することができる。   Further, in the embodiment of the present invention, the diameter of the thermal sleeve in the conventional water supply nozzle is increased without significantly changing the reactor system with respect to the increased output of the existing reactor, and the gap is reduced. Even when the operation is changed from normal operation to operation at increased output, the structure is such that there is no problem with thermal fatigue even if the temperature of the water supply flowing into the water supply nozzle decreases, and by installing a compact water supply nozzle and sleeve, While maintaining the design margin of the turbine and reducing the impact on the water supply system and the reactor internal structure, there is no impact on other plant equipment, and the steam flow into the low-pressure turbine is increased, thereby increasing the plant output. A possible nuclear power generation system can be provided.

本発明は、原子力発電システムの給水系統の原子炉圧力容器へ接続する給水ノズルに用途がある。   The present invention has application to a water supply nozzle connected to a reactor pressure vessel of a water supply system of a nuclear power generation system.

本発明の実施例である熱バランスシフト法を採用できる原子炉設備(原子力発電システム)のシステム系統図。1 is a system diagram of a reactor facility (nuclear power generation system) that can employ a thermal balance shift method according to an embodiment of the present invention. 本発明の好適な実施例である給水ノズルの断面図であり、右図が給水ノズルの長手方向の断面を示す図、左図が右図のA−A断面図である。It is sectional drawing of the water supply nozzle which is a suitable Example of this invention, the right figure is a figure which shows the cross section of the longitudinal direction of a water supply nozzle, and the left figure is AA sectional drawing of a right figure. 本発明の実施例である給水ノズル部の温度分布と、その温度分布を示す給水ノズル部位の対応図である。It is a correspondence diagram of the temperature distribution of the water supply nozzle part which is an Example of this invention, and the water supply nozzle site | part which shows the temperature distribution. 本発明の実施例である給水ノズル部の温度変動現象を解説する図であり、上図は給水ノズル部の断面図であり、下図は上図のA−A断面における温度変動現象を示す図にして下図の右側の図が給水停止時を同じく左側の図が原子炉の定格運転時における給水時を表している。It is a figure explaining the temperature fluctuation phenomenon of the water supply nozzle part which is an Example of this invention, the upper figure is sectional drawing of a water supply nozzle part, and the lower figure is a figure which shows the temperature fluctuation phenomenon in the AA cross section of the upper figure. The figure on the right side of the figure below shows when the water supply is stopped, and the figure on the left side shows the time of water supply during the rated operation of the reactor. 本発明の実施例である給水ノズル部の熱伝達率に対する温度変動減衰特性図である。It is a temperature fluctuation attenuation characteristic figure with respect to the heat transfer rate of the water supply nozzle part which is an Example of this invention. 本発明の実施例である給水ノズルの評価フローの図である。It is a figure of the evaluation flow of the water supply nozzle which is an Example of this invention. 本発明の実施例である給水ノズルの累積損傷係数の比較図である。It is a comparison figure of the cumulative damage coefficient of the water supply nozzle which is an Example of the present invention. 本発明の他の実施例である給水ノズルの断面図であり、右図が給水ノズルの長手方向の断面を示す図、左図が右図のA−A断面図である。It is sectional drawing of the water supply nozzle which is the other Example of this invention, the right figure is a figure which shows the cross section of the longitudinal direction of a water supply nozzle, and the left figure is AA sectional drawing of a right figure. 本発明のさらに他の実施例である給水ノズルの断面図であり、右図が給水ノズルの長手方向の断面を示す図、左図が右図のA−A断面図である。It is sectional drawing of the water supply nozzle which is further another Example of this invention, the right figure is a figure which shows the cross section of the longitudinal direction of a water supply nozzle, and the left figure is AA sectional drawing of a right figure. 本発明のさらに一層他の実施例である給水ノズルの断面図であり、右図が給水ノズルの長手方向の断面を示す図、左図が右図のA−A断面図である。It is sectional drawing of the water supply nozzle which is further another Example of this invention, The right figure is a figure which shows the cross section of the longitudinal direction of a water supply nozzle, The left figure is AA sectional drawing of a right figure. 本発明のなお一層他の実施例である給水ノズルの断面図であり、右図が給水ノズルの長手方向の断面を示す図、左図が右図のA−A断面図である。It is sectional drawing of the water supply nozzle which is still another Example of this invention, the right figure is a figure which shows the cross section of the longitudinal direction of a water supply nozzle, and the left figure is AA sectional drawing of a right figure. 本発明のさらになお一層他の実施例である給水ノズルの概略図である。It is the schematic of the water supply nozzle which is still another Example of this invention. 本発明のさらに他の実施例である給水ノズルの概略図である。It is the schematic of the water supply nozzle which is another Example of this invention. 本発明のさらに一層他の実施例である給水ノズルの概略断面図である。It is a schematic sectional drawing of the water supply nozzle which is further another Example of this invention.

符号の説明Explanation of symbols

1…原子炉圧力容器、2…主蒸気管、3…高圧タービン、4…湿分分離器、5…低圧タービン、6…復水器、7…低圧給水加熱器、8…主給水ポンプ、9…高圧給水加熱器、
10…抽気流量調整弁、11…給水バイパス管、12…給水配管、13…給水ノズル、
13a…給水ノズル内面、13b…給水ノズル上部、13c…給水ノズル下部、14…サーマルスリーブ、14a…サーマルスリーブ外面、14b…サーマルスリーブ内面、14c…管外リブ、14d…管内リブ、14e…サーマルスリーブB、14f…管外リブB、
15…給水スパージャ、16…環状流路(ギャップ)、17…給水、18…炉水、19…熱成層界面、20a…環状流路内の自然対流渦、20b…サーマルスリーブ内の自然対流渦、21…入熱、22…温度変動発生箇所、23…螺旋状突起機構、24…スクリュー状突起機構、25…ガイド機構。
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Main steam pipe, 3 ... High pressure turbine, 4 ... Moisture separator, 5 ... Low pressure turbine, 6 ... Condenser, 7 ... Low pressure feed water heater, 8 ... Main feed water pump, 9 ... high-pressure feed water heater,
DESCRIPTION OF SYMBOLS 10 ... Extraction flow adjustment valve, 11 ... Feed water bypass pipe, 12 ... Feed water piping, 13 ... Feed water nozzle,
13a: Water supply nozzle inner surface, 13b: Water supply nozzle upper portion, 13c: Water supply nozzle lower portion, 14 ... Thermal sleeve, 14a ... Thermal sleeve outer surface, 14b ... Thermal sleeve inner surface, 14c ... Tube outer rib, 14d ... Tube inner rib, 14e ... Thermal sleeve B, 14f ... tube outer rib B,
DESCRIPTION OF SYMBOLS 15 ... Water supply sparger, 16 ... Annular flow path (gap), 17 ... Water supply, 18 ... Reactor water, 19 ... Thermal stratification interface, 20a ... Natural convection vortex in the annular flow path, 20b ... Natural convection vortex in the thermal sleeve, 21 ... heat input, 22 ... temperature fluctuation occurrence location, 23 ... spiral projection mechanism, 24 ... screw projection mechanism, 25 ... guide mechanism.

Claims (5)

内部にサーマルスリーブを備えた給水ノズルにおいて、
前記給水ノズルの内面と前記サーマルスリーブの外面との間に形成される環状流路の間隔をδとし、前記給水ノズルの内径をDiとし、前記間隔と前記内径との関係がδ/Di≦0.03であることを特徴とする給水ノズル。
In the water supply nozzle with a thermal sleeve inside,
The interval between the annular flow paths formed between the inner surface of the water supply nozzle and the outer surface of the thermal sleeve is δ, the inner diameter of the water supply nozzle is D i , and the relationship between the interval and the inner diameter is δ / D i. A water supply nozzle, wherein ≦ 0.03.
内部にサーマルスリーブを備えた給水ノズルにおいて、
前記給水ノズルの内面と前記サーマルスリーブの外面との間、及び/又は前記サーマルスリーブの内面に前記給水ノズルや前記サーマルスリーブの長手方向に長手方向が向けられたリブを備えていることを特徴とする給水ノズル。
In the water supply nozzle with a thermal sleeve inside,
A rib having a longitudinal direction in the longitudinal direction of the water supply nozzle or the thermal sleeve is provided between the inner surface of the water supply nozzle and the outer surface of the thermal sleeve and / or the inner surface of the thermal sleeve. Water nozzle to be used.
請求項2において、前記サーマルスリーブが内側のサーマルスリーブと、その内側のサーマルスリーブの外周囲を囲うように配備された外側のサーマルスリーブとによる二重構造を備えていることを特徴とする給水ノズル。   3. The water supply nozzle according to claim 2, wherein the thermal sleeve has a double structure including an inner thermal sleeve and an outer thermal sleeve arranged so as to surround an outer periphery of the inner thermal sleeve. . 請求項2又は請求項3において、前記給水ノズルの内面と前記リブの前記給水ノズルの内面側へ突き出された突端との間の流路の間隔をδとし、前記給水ノズルの内径をDiとし、前記間隔と前記内径との関係がδ/Di≦0.03であることを特徴とする給水ノズル。 According to claim 2 or claim 3, the distance between the flow path between the tip which protrudes into the inner surface side of the water supply nozzle of the inner surface and the ribs of the water supply nozzle and [delta], the inner diameter of the water supply nozzles and D i The water supply nozzle is characterized in that the relationship between the interval and the inner diameter is δ / D i ≦ 0.03. 内部にサーマルスリーブを備えた給水ノズルにおいて、
前記給水ノズルの内面と前記サーマルスリーブの外面との間に環状又は螺旋状の部材を備え、
前記給水ノズルの内面と前記環状又は螺旋状の部材の間の流路の間隔をδとし、前記給水ノズルの内径をD i とし、前記間隔と前記内径との関係がδ/D i ≦0.03であることを特徴とする給水ノズル。
In the water supply nozzle with a thermal sleeve inside,
Bei example annular or helical member between the inner surface and the outer surface of the thermal sleeve of the water supply nozzles,
The interval of the flow path between the inner surface of the water supply nozzle and the annular or spiral member is δ, the inner diameter of the water supply nozzle is D i , and the relationship between the interval and the inner diameter is δ / D i ≦ 0. A water supply nozzle characterized by being 03 .
JP2004313221A 2004-10-28 2004-10-28 Water supply nozzle and nuclear reactor equipment using the water supply nozzle Expired - Lifetime JP4396482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313221A JP4396482B2 (en) 2004-10-28 2004-10-28 Water supply nozzle and nuclear reactor equipment using the water supply nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004313221A JP4396482B2 (en) 2004-10-28 2004-10-28 Water supply nozzle and nuclear reactor equipment using the water supply nozzle

Publications (2)

Publication Number Publication Date
JP2006125950A JP2006125950A (en) 2006-05-18
JP4396482B2 true JP4396482B2 (en) 2010-01-13

Family

ID=36720841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313221A Expired - Lifetime JP4396482B2 (en) 2004-10-28 2004-10-28 Water supply nozzle and nuclear reactor equipment using the water supply nozzle

Country Status (1)

Country Link
JP (1) JP4396482B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705066B2 (en) * 2007-03-30 2011-06-22 株式会社日立製作所 Nuclear power plant, method for monitoring thermal fatigue of water supply nozzle, and method for operating nuclear power plant
JP2011133216A (en) 2009-11-27 2011-07-07 Toshiba Corp Heat exchanger
CN108711458B (en) * 2018-07-18 2024-03-22 中广核研究院有限公司 Reactor pressure vessel and support device for pressure vessel outlet nozzle

Also Published As

Publication number Publication date
JP2006125950A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP2014510897A (en) Small nuclear reactor with integrated steam generator
US9715948B2 (en) Reactor system with a lead-cooled fast reactor
JP4636906B2 (en) Nuclear power generation system
JP2007232505A (en) Natural circulation type boiling water reactor
KR100837688B1 (en) A startup cooling system for an integral reactor and the heatup operation method of the secondary coolant system using the same
JP4396482B2 (en) Water supply nozzle and nuclear reactor equipment using the water supply nozzle
Chen et al. Preliminary thermal-hydraulic design and analysis of china lead alloy cooled research reactor (CLEAR-I)
Kumar et al. Supercritical water flow in heated wire wrapped rod bundle channels: A review
Yi et al. Startup thermal analysis of a high-temperature supercritical-pressure light water reactor
US3507747A (en) Heat exchange apparatus for extracting heat from a nuclear fuel heat producer
JP4449620B2 (en) Nuclear power plant and operation method thereof
JP4349133B2 (en) Nuclear power plant and operation method thereof
JP4399381B2 (en) Operation method of nuclear power plant
JP2007278814A (en) Reactor water supply nozzle
JP4516438B2 (en) Operation method of nuclear power plant
JP2009243924A (en) Fast breeder reactor type nuclear power generation system
JP4466545B2 (en) Reactor water supply equipment
Kim et al. High temperature design and evaluation of forced draft sodium-to-air heat exchanger in PGSFR
RU229754U1 (en) Reactor plant with natural circulation in the second circuit
Wang et al. Research on once-through steam generator steam pressure response characteristics
JP6869062B2 (en) Vibration damping connector device
Choi et al. Analyses of UTOP events for the design of control rod stop system in PGSFR using MARS-LMR
JP2009133820A (en) Nuclear power generation system of fast breeder reactor type
Dragunov et al. Pressure drop analysis of a pressure-channel type supercritical water-cooled reactor
Tong et al. Model-Based Load Following Control for Helical-Coiled Supercritical Steam Generator of MHTGR

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4396482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4