JP4466366B2 - Human body detection method and human body detection apparatus using range image - Google Patents

Human body detection method and human body detection apparatus using range image Download PDF

Info

Publication number
JP4466366B2
JP4466366B2 JP2004377923A JP2004377923A JP4466366B2 JP 4466366 B2 JP4466366 B2 JP 4466366B2 JP 2004377923 A JP2004377923 A JP 2004377923A JP 2004377923 A JP2004377923 A JP 2004377923A JP 4466366 B2 JP4466366 B2 JP 4466366B2
Authority
JP
Japan
Prior art keywords
human body
pixel
charge
identifier
assigned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004377923A
Other languages
Japanese (ja)
Other versions
JP2006185166A (en
Inventor
淳之 広野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004377923A priority Critical patent/JP4466366B2/en
Publication of JP2006185166A publication Critical patent/JP2006185166A/en
Application granted granted Critical
Publication of JP4466366B2 publication Critical patent/JP4466366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Image Processing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Image Analysis (AREA)

Description

本発明は、距離画像を用いた人体検知方法および人体検知装置に関するものである。   The present invention relates to a human body detection method and a human body detection device using a distance image.

従来より、例えば通路の天井に取り付けて、下方の通路を通行する通行人の有無や人数を検出する人体検知装置が提供されている。   2. Description of the Related Art Conventionally, there has been provided a human body detecting device that is attached to, for example, a ceiling of a passage and detects the presence or the number of passers-by passing through a lower passage.

例えば、特許文献1に示される人体検知装置では、撮像手段により検知対象領域を撮像して得た距離画像を基に、撮像手段からの距離が略同じ画素同士を繋いで等高線を作成し、この等高線で囲まれる領域を単峰性の物体(すなわち人体)と判断している。
特開2003−57007号公報(段落番号[0021]〜[0023]、及び、第3図)
For example, in the human body detection device disclosed in Patent Document 1, a contour line is created by connecting pixels having substantially the same distance from the imaging unit based on a distance image obtained by imaging the detection target region by the imaging unit. The region surrounded by the contour lines is determined as a unimodal object (that is, a human body).
JP 2003-57007 A (paragraph numbers [0021] to [0023] and FIG. 3)

しかしながら、撮像領域に人物が存在したとしても、人物の姿勢によっては、撮像手段からの距離が略等しくなるような画素が存在しない場合もあり、また撮像手段からの距離が略同じ画素が存在したとしても、画素同士を結んでできる等高線が閉じない場合もあるので、上述の人体検知装置では検知対象領域にいる人物を確実に検知できない可能性があった。   However, even if there is a person in the imaging area, depending on the posture of the person, there may not be pixels that have substantially the same distance from the imaging means, and there are pixels that have substantially the same distance from the imaging means. However, since the contour lines formed by connecting the pixels may not close, the human body detection device described above may not be able to reliably detect a person in the detection target area.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、検知対象領域にいる人物を確実に検出することが可能な距離画像を用いた人体検知方法および人体検知装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a human body detection method and a human body detection device using a distance image that can reliably detect a person in a detection target region. Is to provide.

上記目的を達成するために、請求項の発明は、撮像手段から対象領域内の物体までの距離を画素値とする距離画像を用いて対象領域内の人体を検知する人体検知方法であって、対象領域の上方に設置された撮像手段により下方の対象領域を撮像することで距離画像を得た後に、該距離画像を構成する複数の画素から、画素値が閾値以下となる画素領域を抽出する領域抽出処理を、前記閾値を画素値が最短の画素の画素値から段階的に伸ばして複数回行う毎に、新たに抽出された画素領域が、既に抽出された画素領域と少なくとも一部が重複する場合、該複数の画素領域を同一の物体と判断して、前記複数の画素領域の全体に同一の識別子を割り当てる識別子割当処理を行い、前記距離画像の平面内で、一番最初に検出した画素領域の重心位置を通って、互いに直交する2つの直線を求めておき、同一の識別子を割り当てた複数の画素領域の内、新たに抽出した画素領域に、既に抽出された画素領域が包含される場合に、新たに抽出した画素領域から既に抽出された画素領域を除いた帯状部分において、前記2つの直線と重なる4箇所の幅の平均値を求め、この平均値が所定のしきい値以下になるという判定条件が成立すると、前記領域抽出処理および識別子割当処理を終了し、同一の識別子が割り当てられた画素領域を人体として抽出することを特徴とする。 In order to achieve the above object, the invention of claim 1 is a human body detection method for detecting a human body in a target area using a distance image having a pixel value as a distance from an imaging means to an object in the target area. After obtaining the distance image by imaging the lower target area with the imaging means installed above the target area, the pixel area whose pixel value is below the threshold is extracted from the plurality of pixels constituting the distance image Each time the region extraction processing is performed a plurality of times by gradually increasing the threshold value from the pixel value of the pixel having the shortest pixel value, the newly extracted pixel region is at least partially compared to the already extracted pixel region. In the case of overlapping, the plurality of pixel areas are determined to be the same object, and an identifier assignment process is performed to assign the same identifier to the whole of the plurality of pixel areas, and is detected first in the plane of the distance image. Center of gravity of the pixel area Through, keep asking the two straight lines perpendicular to each other, among the plurality of pixel areas assigned the same identifier, if the newly extracted pixel region, is already a pixel area extracted encompassed, new A determination condition that an average value of four widths overlapping the two straight lines is obtained in a band-like portion excluding the pixel region that has already been extracted from the pixel region that has been extracted, and the average value is equal to or less than a predetermined threshold value When is established, the region extraction processing and the identifier assignment processing are terminated, and a pixel region to which the same identifier is assigned is extracted as a human body.

ここで、対象領域の人体を上方から撮影した場合、撮像手段に近い側から順番に画素領域を抽出すると、頭部の水平断面が最大となる高さ位置に近付くにつれて、同一の識別子を割り当てた画素領域の追加分が少なくなる。請求項の発明によれば、同一の識別子を割り当てた複数の画素領域の内、新たに抽出した画素領域に、既に抽出された画素領域が包含される場合に、新たに抽出した画素領域において、既に抽出された画素領域の外側にある帯状部分の幅の平均値が所定のしきい値以下になるという判定条件が成立すれば、人体の頭部の形状を検出できたと判断でき、頭部の形状を検出することによって人体を確実に検知することが可能になり、且つ、従来の人体検知方法のように等高線が閉じないような場合でも確実に人体を検知できる。また判定条件が成立した段階で、その識別子を割り当てた画素領域について、領域抽出処理および識別子付与処理を終了しているので、閾値を床面まで伸ばして画素領域を抽出する場合に比べて、人の存在を短時間で検知することができ、また識別子を付与した画素領域を記憶させるメモリの容量も小さくて済むという利点がある。 Here, when the human body of the target area is photographed from above, when the pixel area is extracted in order from the side closer to the imaging means, the same identifier is assigned as the height of the horizontal section of the head approaches the maximum position. The added pixel area is reduced. According to the first aspect of the present invention, when a newly extracted pixel area is included in a newly extracted pixel area among a plurality of pixel areas assigned the same identifier, the newly extracted pixel area If the determination condition that the average value of the width of the strip-shaped portion outside the already extracted pixel region is equal to or less than a predetermined threshold is satisfied, it can be determined that the shape of the human head can be detected, By detecting the shape of the human body, the human body can be reliably detected, and the human body can be reliably detected even when the contour lines are not closed as in the conventional human body detection method. In addition, since the region extraction process and the identifier assignment process have been completed for the pixel area to which the identifier is assigned when the determination condition is satisfied, compared with the case where the pixel area is extracted by extending the threshold value to the floor surface. Therefore, there is an advantage that the memory capacity for storing the pixel region to which the identifier is added can be reduced.

請求項の発明は、請求項1記載の距離画像を用いた人体検知方法であって、上記判定条件と、同一の識別子を割り当てた複数の画素領域の画素数が人体の大きさに相当する画素数を超えるという判定条件とが両方共に成立すると、前記領域抽出処理および識別子割当処理を終了し、同一の識別子が割り当てられた画素領域を人体として抽出することを特徴とする。 The invention according to claim 2 is the human body detection method using the distance image according to claim 1, wherein the number of pixels in a plurality of pixel areas to which the same identifier is assigned corresponds to the size of the human body. When both of the determination conditions that the number of pixels is exceeded are satisfied, the region extraction processing and the identifier assignment processing are terminated, and a pixel region to which the same identifier is assigned is extracted as a human body.

この発明によれば、請求項1記載の人体検知方法において、同一の識別子を割り当てた複数の画素領域の画素数が人体の大きさに相当する画素数を超えるという判定条件が共に成立した場合のみ、同一の識別子が割り当てられた画素領域を人体として抽出するので、人体よりも大きさが小さいものを誤検出するのを防止できる。 According to this invention, in the human body detection method according to claim 1, only when the determination condition that the number of pixels in a plurality of pixel areas to which the same identifier is assigned exceeds the number of pixels corresponding to the size of the human body is satisfied. Since the pixel area to which the same identifier is assigned is extracted as a human body, it is possible to prevent erroneous detection of an area smaller than the human body.

請求項の発明は、請求項1又は2の何れか1項に記載の発明において、上記距離画像を構成する複数の画素の内、同一の識別子が割り当てられた画素領域の画素と、それ以外の画素とを2値化することを特徴とする。 The invention of claim 3 is the invention according to any one of claims 1 and 2, wherein a pixel in the pixel area to which the same identifier is assigned among the plurality of pixels constituting the distance image, and the others These pixels are binarized.

この発明によれば、距離画像を構成する画素を、同一の識別子が割り当てられた画素領域の画素と、それ以外の画素とに二値化しているので、人体に対応する画素領域を抽出する処理や、その画素領域を特定する処理が容易に行える。   According to the present invention, since the pixels constituting the distance image are binarized into the pixels in the pixel area to which the same identifier is assigned and the other pixels, the process of extracting the pixel area corresponding to the human body In addition, the process of specifying the pixel area can be easily performed.

請求項の発明は人体検知装置であって、撮像手段により撮像された距離画像を用い、請求項1乃至請求項の何れか1項に記載の人体検知方法を実行することで、対象領域内の人体を検知する人体検知手段を具備する。 According to a fourth aspect of the present invention, there is provided a human body detection device, wherein the target region is obtained by executing the human body detection method according to any one of the first to third aspects using the distance image captured by the imaging unit. A human body detecting means for detecting the human body inside.

この発明によれば、人体を確実に検知でき、且つ、検知時間を短くした人体検知装置を実現できる。   According to the present invention, it is possible to realize a human body detection device that can reliably detect a human body and shorten the detection time.

ところで、対象領域の人体を上方から撮影した場合、撮像手段に近い側から順番に画素領域を抽出すると、頭部の水平断面が最大となる高さ位置に近付くにつれて、同一の識別子を割り当てた画素領域の追加分が少なくなる。   By the way, when the human body of the target area is photographed from above, if the pixel area is extracted in order from the side closer to the imaging means, the pixels assigned the same identifier as the head approaches the height position where the horizontal cross section becomes maximum. Less space is added.

請求項1の発明によれば、同一の識別子を割り当てた複数の画素領域の内、新たに抽出した画素領域に、既に抽出された画素領域が包含される場合に、新たに抽出した画素領域において、既に抽出された画素領域の外側にある帯状部分の幅の平均値が所定のしきい値以下になるという判定条件が成立すれば、人体の頭部の形状を検出できたと判断でき、頭部の形状を検出することによって人体を確実に検知することが可能になり、且つ、従来の人体検知方法のように等高線が閉じないような場合でも確実に人体を検知できる。また判定条件が成立した段階で、その識別子を割り当てた画素領域について、領域抽出処理および識別子付与処理を終了しているので、閾値を床面まで伸ばして画素領域を抽出する場合に比べて、人の存在を短時間で検知することができ、また識別子を付与した画素領域を記憶させるメモリの容量も小さくて済むという利点がある。 According to the first aspect of the present invention, when a newly extracted pixel area is included in a newly extracted pixel area among a plurality of pixel areas assigned the same identifier, the newly extracted pixel area If the determination condition that the average value of the width of the strip-shaped portion outside the already extracted pixel region is equal to or less than a predetermined threshold is satisfied, it can be determined that the shape of the human head can be detected, By detecting the shape of the human body, the human body can be reliably detected, and the human body can be reliably detected even when the contour lines are not closed as in the conventional human body detection method. In addition, since the region extraction process and the identifier assignment process have been completed for the pixel area to which the identifier is assigned when the determination condition is satisfied, compared with the case where the pixel area is extracted by extending the threshold value to the floor surface. Therefore, there is an advantage that the memory capacity for storing the pixel region to which the identifier is added can be reduced.

請求項の発明によれば、請求項1記載の人体検知方法において、同一の識別子を割り当てた複数の画素領域の画素数が人体の大きさに相当する画素数を超えるという判定条件が共に成立した場合のみ、同一の識別子が割り当てられた画素領域を人体として抽出するので、人体よりも大きさが小さいものを誤検出するのを防止できる。 According to a second aspect of the present invention, in the human body detection method according to the first aspect, the determination condition that the number of pixels of a plurality of pixel areas to which the same identifier is assigned exceeds the number of pixels corresponding to the size of the human body is established. Only in this case, since the pixel area to which the same identifier is assigned is extracted as a human body, it is possible to prevent erroneous detection of a pixel having a size smaller than that of the human body.

請求項の発明によれば、距離画像を構成する画素を、同一の識別子が割り当てられた画素領域の画素と、それ以外の画素とに二値化しているので、人体に対応する画素領域を抽出する処理や、その画素領域を特定する処理が容易に行える。 According to the invention of claim 3 , since the pixels constituting the distance image are binarized into the pixels in the pixel region to which the same identifier is assigned and the other pixels, the pixel region corresponding to the human body is The extraction process and the process of specifying the pixel area can be easily performed.

また、請求項の発明によれば、人体を確実に検知でき、且つ、検知時間を短くした人体検知装置を実現できる。 According to the invention of claim 4 , it is possible to realize a human body detection device that can reliably detect a human body and shorten the detection time.

以下に、本発明に係る距離画像を用いた人体検知方法を実行する人体検知装置の一実施形態を説明するが、先ずこの人体検知装置に用いる距離画像センサの基本構成について図1を参照して説明する。   In the following, an embodiment of a human body detection apparatus that executes a human body detection method using a distance image according to the present invention will be described. First, a basic configuration of a distance image sensor used in the human body detection apparatus will be described with reference to FIG. explain.

距離画像センサ10は、図1に示すように、対象空間に光を照射する発光源2を備えるとともに、対象空間からの光を受光し受光光量を反映した出力値の電気出力が得られる光検出素子1を備える。対象空間に存在する対象物Obまでの距離は、発光源2から対象空間に光が照射されてから対象物Obでの反射光が光検出素子1に入射するまでの時間(「飛行時間」と呼ぶ)によって求める。ただし、飛行時間は非常に短いから、対象空間に照射する光の強度が一定周期で周期的に変化するように変調した強度変調光を用い、強度変調光を受光したときの位相を用いて飛行時間を求める。なお、本発明の技術思想は、距離画像センサ10として、飛行時間により距離画像を生成する構成のほか、三角測量法の原理によって距離画像を生成する構成においても採用可能である。ただし、以下に説明する構成の距離画像センサ10は、三角測量法の原理を用いる距離画像センサに比較して短時間(ほぼ実時間)で距離画像を生成できるから、三角測量法の原理を採用した距離画像センサよりも好ましい。   As shown in FIG. 1, the distance image sensor 10 includes a light emitting source 2 that irradiates light to a target space, and receives light from the target space and obtains an electrical output having an output value that reflects the amount of received light. Device 1 is provided. The distance to the object Ob existing in the object space is the time from when the light is emitted from the light source 2 to the object space until the reflected light from the object Ob enters the light detection element 1 (“flight time”). Call). However, since the flight time is very short, use the intensity-modulated light that is modulated so that the intensity of the light irradiating the target space changes periodically at a constant period, and use the phase when the intensity-modulated light is received. Ask for time. The technical idea of the present invention can be adopted not only in the configuration in which the distance image is generated by the time of flight, but also in the configuration in which the distance image is generated by the principle of triangulation method. However, the distance image sensor 10 having the configuration described below adopts the principle of triangulation because it can generate a distance image in a short time (almost real time) compared to the distance image sensor using the principle of triangulation. It is preferable to the distance image sensor.

図9(a)に示すように、発光源2から空間に放射する光の強度が曲線イのように変化し、光検出素子1で受光した受光光量が曲線ロのように変化するとすれば、位相差ψは飛行時間に相当するから、位相差ψを求めることにより対象物Obまでの距離を求めることができる。また、位相差ψは、曲線イの複数のタイミングで求めた曲線ロの受光光量を用いて計算することができる。たとえば、曲線イにおける位相が0度、90度、180度、270度の位相で求めた曲線ロの受光光量がそれぞれA0、A1、A2、A3であるとする(受光光量A0、A1、A2、A3を斜線部で示している)。ただし、各位相における受光光量A0、A1、A2、A3は、瞬時値ではなく所定の受光期間Twで積算した受光光量を用いる。いま、受光光量A0、A1、A2、A3を求める間に、位相差ψが変化せず(つまり、対象物Obまでの距離が変化せず)、かつ対象物Obの反射率にも変化がないものとする。また、発光源2から放射する光の強度を正弦波で変調し、時刻tにおいて光検出素子1で受光される光の強度がA・sin(ωt+δ)+Bで表されるものとする。ここに、Aは振幅、Bは直流成分(外光成分と反射光成分との平均値)、ωは角振動数、δは初期位相である。光検出素子1で受光する受光光量A0、A1、A2、A3を受光期間Twの積算値ではなく瞬時値とし、変調の周期に同期した時刻t=n/f(n=0、1、2、…、fは変調の周波数)における受光光量を、A0=A・sin(δ)+Bとすれば、受光光量A0、A1、A2、A3は、次のように表すことができる。なお、反射光成分とは、発光源2から放射され対象物Obにより反射された後に光検出素子1に入射する光の成分を意味する。   As shown in FIG. 9A, if the intensity of light radiated from the light source 2 into the space changes as shown by curve A, and the amount of received light received by the light detection element 1 changes as shown by curve B, Since the phase difference ψ corresponds to the flight time, the distance to the object Ob can be obtained by obtaining the phase difference ψ. Further, the phase difference ψ can be calculated using the received light quantity of the curve B obtained at a plurality of timings of the curve A. For example, it is assumed that the received light amounts of curve B obtained with the phases of curve A at 0, 90, 180, and 270 degrees are A0, A1, A2, and A3 (received light amounts A0, A1, A2,. A3 is indicated by hatching). However, the received light quantity A0, A1, A2, A3 in each phase is not an instantaneous value but a received light quantity integrated over a predetermined light receiving period Tw. Now, while obtaining the received light amounts A0, A1, A2, and A3, the phase difference ψ does not change (that is, the distance to the object Ob does not change), and the reflectance of the object Ob does not change. Shall. Further, it is assumed that the intensity of light emitted from the light emitting source 2 is modulated by a sine wave, and the intensity of light received by the light detection element 1 at time t is represented by A · sin (ωt + δ) + B. Here, A is the amplitude, B is the DC component (average value of the external light component and the reflected light component), ω is the angular frequency, and δ is the initial phase. The received light amounts A0, A1, A2, and A3 received by the light detection element 1 are instantaneous values, not integrated values of the light receiving period Tw, and time t = n / f (n = 0, 1, 2,. .., F is the modulation frequency), and the received light quantity A0 = A · sin (δ) + B, the received light quantity A0, A1, A2, A3 can be expressed as follows. The reflected light component means a component of light emitted from the light emitting source 2 and incident on the light detection element 1 after being reflected by the object Ob.

A0=A・sin(δ)+B
A1=A・sin(π/2+δ)+B
A2=A・sin(π+δ)+B
A3=A・sin(3π/2+δ)+B
図9では位相差がψであるから、光検出素子1の受光光量に関する波形の初期位相δ(時刻t=0の位相)は−ψになる。つまり、δ=−ψであるから、A0=−A・sin(ψ)+B、A1=A・cos(ψ)+B、A2=A・sin(ψ)+B、A3=−A・cos(ψ)+Bであり、結果的に、各受光光量A0、A1、A2、A3と位相差ψとの関係は、次式のようになる。
A0 = A · sin (δ) + B
A1 = A · sin (π / 2 + δ) + B
A2 = A · sin (π + δ) + B
A3 = A · sin (3π / 2 + δ) + B
In FIG. 9, since the phase difference is ψ, the initial phase δ (phase at time t = 0) of the waveform related to the amount of light received by the light detection element 1 is −ψ. That is, since δ = −ψ, A0 = −A · sin (ψ) + B, A1 = A · cos (ψ) + B, A2 = A · sin (ψ) + B, A3 = −A · cos (ψ) As a result, the relationship between each received light quantity A0, A1, A2, A3 and the phase difference ψ is expressed by the following equation.

ψ=tan−1{(A2−A0)/(A1−A3)} …(1)
(1)式では受光光量A0、A1、A2、A3の瞬時値を用いているが、受光光量A0、A1、A2、A3として受光期間Twにおける積算値を用いても(1)式で位相差ψを求めることができる。
ψ = tan −1 {(A2−A0) / (A1−A3)} (1)
In equation (1), the instantaneous values of the received light amounts A0, A1, A2, and A3 are used. However, even if the integrated values in the light receiving period Tw are used as the received light amounts A0, A1, A2, and A3, the phase difference in equation (1) ψ can be obtained.

また、光検出素子1で受光される光の強度をA・cos(ωt+δ)+Bとする場合、つまり変調の周期に同期した時刻t=n/f(n=0、1、2、…)における受光光量を、A0=A・cos(δ)+Bとすれば、位相差ψを次式で求めることができる。   Further, when the intensity of light received by the light detection element 1 is A · cos (ωt + δ) + B, that is, at time t = n / f (n = 0, 1, 2,...) Synchronized with the modulation period. If the received light quantity is A0 = A · cos (δ) + B, the phase difference ψ can be obtained by the following equation.

ψ=tan−1{(A1−A3)/(A0−A2)}
この関係は、変調の周期に同期させるタイミングを90度ずらした関係である。また、距離値の符号は正であるから、位相差ψを求めたときに符号が負になる場合には、tan−1の括弧内の分母または分子の各項の順序を入れ換えるか括弧内の絶対値を用いるようにしてもよい。
ψ = tan −1 {(A1−A3) / (A0−A2)}
This relationship is a relationship in which the timing synchronized with the modulation period is shifted by 90 degrees. In addition, since the sign of the distance value is positive, if the sign is negative when the phase difference ψ is obtained, the order of the denominator in the parenthesis of tan −1 or each term of the numerator is changed, or An absolute value may be used.

上述のように対象空間に照射する光の強度を変調するために、発光源2としては、たとえば多数個の発光ダイオードを一平面上に配列したものや半導体レーザと発散レンズとを組み合わせたものなどを用いる。また、発光源2は、制御回路部3から出力される所定の変調周波数である変調信号によって駆動され、発光源2から放射される光は変調信号により強度が変調される。制御回路部3では、たとえば20MHzの正弦波で発光源2から放射する光の強度を変調する。なお、発光源2から放射する光の強度は正弦波で変調する以外に、三角波、鋸歯状波などで変調してもよく、要するに、一定周期で強度を変調するのであれば、どのような構成を採用してもよい。   As described above, in order to modulate the intensity of the light irradiated to the target space, the light source 2 includes, for example, a structure in which a large number of light emitting diodes are arranged on one plane, a combination of a semiconductor laser and a diverging lens, or the like. Is used. The light source 2 is driven by a modulation signal having a predetermined modulation frequency output from the control circuit unit 3, and the intensity of the light emitted from the light source 2 is modulated by the modulation signal. The control circuit unit 3 modulates the intensity of light emitted from the light source 2 with, for example, a 20 MHz sine wave. The intensity of the light emitted from the light source 2 may be modulated by a triangular wave, a sawtooth wave or the like in addition to the modulation by a sine wave. In short, any configuration is acceptable as long as the intensity is modulated at a constant period. May be adopted.

光検出素子1は、規則的に配列された複数個の感光部11を備える。また、感光部11への光の入射経路には受光光学系19が配置される。感光部11は光検出素子1において対象空間からの光が受光光学系19を通して入射する部位であって、感光部11において受光光量に応じた量の電荷を生成する。また、感光部11は、平面格子の格子点上に配置され、たとえば垂直方向(つまり、縦方向)と水平方向(つまり、横方向)とにそれぞれ等間隔で複数個ずつ並べたマトリクス状に配列される。   The light detection element 1 includes a plurality of photosensitive portions 11 regularly arranged. A light receiving optical system 19 is disposed on the light incident path to the photosensitive portion 11. The photosensitive part 11 is a part where light from the target space enters through the light receiving optical system 19 in the light detection element 1, and the photosensitive part 11 generates an amount of electric charge corresponding to the amount of received light. Further, the photosensitive portions 11 are arranged on the lattice points of the planar lattice, and are arranged in a matrix in which, for example, a plurality are arranged at equal intervals in the vertical direction (that is, the vertical direction) and the horizontal direction (that is, the horizontal direction). Is done.

受光光学系19は、光検出素子1から対象空間を見るときの視線方向と各感光部11とを対応付ける。すなわち、受光光学系19を通して各感光部11に光が入射する範囲を、受光光学系19の中心を頂点とし各感光部11ごとに設定された頂角の小さい円錐状の視野とみなすことができる。したがって、発光源2から放射され対象空間に存在する対象物Obで反射された反射光が感光部11に入射すれば、反射光を受光した感光部11の位置により、受光光学系19の光軸を基準方向として対象物Obの存在する方向を知ることができる。   The light receiving optical system 19 associates the line-of-sight direction when viewing the target space from the light detection element 1 with each photosensitive portion 11. That is, the range in which light enters each photosensitive portion 11 through the light receiving optical system 19 can be regarded as a conical field of view having a small apex angle set for each photosensitive portion 11 with the center of the light receiving optical system 19 as the apex. . Therefore, if the reflected light emitted from the light emitting source 2 and reflected by the object Ob existing in the target space enters the photosensitive portion 11, the optical axis of the light receiving optical system 19 depends on the position of the photosensitive portion 11 that has received the reflected light. Can be known as the reference direction.

受光光学系19は一般に感光部11を配列した平面に光軸を直交させるように配置されるから、受光光学系19の中心を原点とし、感光部11を配列した平面の垂直方向と水平方向と受光光学系19の光軸とを3軸の方向とする直交座標系を設定すれば、対象空間に存在する対象物Obの位置を球座標で表したときの角度(いわゆる方位角と仰角)が各感光部11に対応する。なお、受光光学系19は、感光部11を配列した平面に対して光軸が90度以外の角度で交差するように配置することも可能である。   Since the light receiving optical system 19 is generally arranged so that the optical axis is orthogonal to the plane on which the photosensitive portion 11 is arranged, the center of the light receiving optical system 19 is the origin, and the vertical and horizontal directions of the plane on which the photosensitive portion 11 is arranged If an orthogonal coordinate system is set in which the optical axis of the light receiving optical system 19 is in the direction of the three axes, the angle (so-called azimuth and elevation angle) when the position of the object Ob existing in the target space is expressed in spherical coordinates. It corresponds to each photosensitive portion 11. The light receiving optical system 19 can also be arranged so that the optical axis intersects at an angle other than 90 degrees with respect to the plane on which the photosensitive portions 11 are arranged.

本実施形態では、上述のように、対象物Obまでの距離を求めるために、発光源2から対象空間に照射される光の強度変化に同期する4点のタイミングで受光光量A0、A1、A2、A3を求めている。したがって、目的の受光光量A0、A1、A2、A3を得るためのタイミングの制御が必要である。また、発光源2から対象空間に照射される光の強度変化の1周期において感光部11で発生する電荷の量は少ないから、複数周期に亘って電荷を集積することが望ましい。そこで、図1のように各感光部11で発生した電荷をそれぞれ集積する複数個の電荷集積部13を設けるとともに、各感光部11の感度をそれぞれ調節する複数個の感度制御部12を設けている。   In the present embodiment, as described above, in order to obtain the distance to the object Ob, the received light amounts A0, A1, and A2 are synchronized at four timings synchronized with the intensity change of the light emitted from the light source 2 to the target space. , A3. Therefore, it is necessary to control the timing to obtain the desired received light amount A0, A1, A2, A3. In addition, since the amount of charge generated in the photosensitive portion 11 is small in one cycle of the intensity change of light irradiated from the light source 2 to the target space, it is desirable to accumulate the charges over a plurality of cycles. Therefore, as shown in FIG. 1, a plurality of charge accumulating units 13 for accumulating charges generated in the respective photosensitive units 11 are provided, and a plurality of sensitivity control units 12 for adjusting the sensitivity of the respective photosensitive units 11 are provided. Yes.

各感度制御部12では、感度制御部12に対応する感光部11の感度を上述した4点のうちのいずれかのタイミングで高め、感度が高められた感光部11では当該タイミングの受光光量A0、A1、A2、A3に対応する電荷を主として生成するから、当該受光光量A0、A1、A2、A3に対応する電荷を当該感光部11に対応する電荷集積部13に集積させることができる。   In each sensitivity control unit 12, the sensitivity of the photosensitive unit 11 corresponding to the sensitivity control unit 12 is increased at any one of the four points described above, and in the photosensitive unit 11 with increased sensitivity, the received light amount A0, Since charges corresponding to A1, A2, and A3 are mainly generated, charges corresponding to the received light amounts A0, A1, A2, and A3 can be accumulated in the charge accumulating unit 13 corresponding to the photosensitive unit 11.

以下では、感度制御部12の具体的な構成として、感光部11で生成された電荷のうち電荷集積部13に与える電荷の割合を調節する技術と、実質的に感光部11として機能する部位の面積を変化させる技術とを示す。電荷集積部13に与える電荷の割合を調節する技術には、感光部11から電荷集積部13への通過率を調節する技術と、感光部11から電荷を廃棄する廃棄率を調節する技術と、通過率と廃棄率との両方を調節する技術とがある。   Hereinafter, as a specific configuration of the sensitivity control unit 12, a technique for adjusting a ratio of charges given to the charge accumulating unit 13 among charges generated by the photosensitive unit 11, and a part that substantially functions as the photosensitive unit 11 will be described. The technology to change the area. The technique for adjusting the ratio of charges given to the charge accumulating unit 13 includes a technique for adjusting the passing rate from the photosensitive unit 11 to the charge accumulating unit 13, a technique for adjusting a discard rate for discarding charges from the photosensitive unit 11, There is a technique for adjusting both the passing rate and the discarding rate.

感度制御部12において通過率と廃棄率とを調節する技術では、図10に示すように、感光部11と電荷集積部13との間にゲート電極12aを設け、ゲート電極12aに印加する通過電圧を変化させることにより、感光部11から電荷集積部13への電荷の移動(つまり、通過率)を制御する。また、電荷廃棄部12cを設け、電荷廃棄部12cに付設した廃棄電極12bに印加する廃棄電圧を変化させることにより、感光部11から電荷廃棄部12cへの電荷の移動(つまり、廃棄率)を制御する。電荷集積部13は感光部11ごとに一対一に対応するように設けられ、電荷廃棄部12cは複数個の感光部11に共通させて一対多に対応するように設けられる。図示例では、光検出素子1のすべての感光部11で1組の廃棄電極12bおよび電荷廃棄部12cを共用している。   In the technique of adjusting the pass rate and the discard rate in the sensitivity control unit 12, as shown in FIG. 10, a gate electrode 12a is provided between the photosensitive unit 11 and the charge accumulation unit 13, and the pass voltage applied to the gate electrode 12a. Is changed to control the movement of charges from the photosensitive portion 11 to the charge accumulating portion 13 (that is, the passing rate). Further, by providing the charge discarding part 12c and changing the discarding voltage applied to the disposal electrode 12b attached to the charge discarding part 12c, the movement of the charge from the photosensitive part 11 to the charge discarding part 12c (that is, the discard rate) is changed. Control. The charge accumulating units 13 are provided so as to correspond one-to-one for each photosensitive unit 11, and the charge discarding units 12c are provided so as to correspond to the plurality of photosensitive units 11 so as to correspond one-to-many. In the illustrated example, all of the photosensitive portions 11 of the photodetecting element 1 share a set of discarding electrode 12b and charge discarding portion 12c.

感度を制御するために、感光部11からの電荷の廃棄を行わずに感光部11から電荷集積部13への通過率の制御のみを行うことが考えられるが、電荷の廃棄を行わなければ感光部11において電荷が暫時残留するから、感光部11で生成された電荷のうち不要な残留電荷が、利用する電荷(以下、信号電荷という)に雑音成分として混入する。したがって、信号電荷への残留電荷の混入を防止するために、ゲート電極12aに印加する通過電圧だけでなく廃棄電極12bに印加する廃棄電圧を制御する。   In order to control the sensitivity, it is conceivable to control only the pass rate from the photosensitive unit 11 to the charge accumulating unit 13 without discarding the charge from the photosensitive unit 11. Since charges remain in the unit 11 for a while, unnecessary residual charges out of the charges generated in the photosensitive unit 11 are mixed as noise components in the used charges (hereinafter referred to as signal charges). Therefore, in order to prevent the residual charge from being mixed into the signal charge, not only the passing voltage applied to the gate electrode 12a but also the discard voltage applied to the discard electrode 12b is controlled.

ゲート電極12aと廃棄電極12bとを用いて感度を制御するには、ゲート電極12aに印加する通過電圧を一定電圧に保つことにより感光部11で生成された電荷を電荷集積部13に通過可能としておき、感光部11で生成された電荷のうち信号電荷に用いる電荷が生成される期間以外には感光部11から電荷廃棄部12cに電荷が移動するように廃棄電極12bに廃棄電圧を印加する。要するに、感光部11において信号電荷として用いる電荷が生成される期間にのみ電荷廃棄部12cへの電荷の廃棄を行わず、他の期間には電荷廃棄部12cに電荷を廃棄することにより、信号電荷として用いようとする期間に生成された電荷のみを電荷集積部13に集積する。   In order to control the sensitivity using the gate electrode 12a and the waste electrode 12b, the charge generated in the photosensitive portion 11 can pass through the charge accumulating portion 13 by keeping the passing voltage applied to the gate electrode 12a constant. In addition, a waste voltage is applied to the waste electrode 12b so that the charge moves from the photosensitive part 11 to the charge discarding part 12c except for a period in which the charge used for the signal charge among the charges generated by the photosensitive part 11 is generated. In short, the signal charge is not discarded to the charge discarding unit 12c only during the period in which the charge used as the signal charge is generated in the photosensitive unit 11, and the signal charge is discarded to the charge discarding unit 12c in the other period. Only the charges generated during the period to be used are accumulated in the charge accumulation unit 13.

いま、図11(a)のような変調信号により発光源2から空間に照射される光の強度が変調されているとする。電荷集積部13には変調信号の複数周期(数万〜数十万周期)において変調信号に同期する特定の区間の受光光量A0,A1,A2,A3に相当する電荷を集積し、各区間の電荷の集積毎に集積した信号電荷を取り出して次の区間の電荷を集積する。たとえば、受光光量A0に相当する電荷を変調信号の数万周期について集積すると、この受光光量A0に相当する信号電荷を一旦外部に取り出し、その後、受光光量A1に相当する電荷を変調信号の数万周期について集積する。   Now, it is assumed that the intensity of light emitted from the light source 2 to the space is modulated by the modulation signal as shown in FIG. The charge accumulation unit 13 accumulates charges corresponding to the received light amounts A0, A1, A2, and A3 in a specific section synchronized with the modulation signal in a plurality of periods (tens of thousands to hundreds of thousands) of the modulation signal. The accumulated signal charge is taken out for each charge accumulation, and the charge in the next section is accumulated. For example, when charges corresponding to the received light quantity A0 are accumulated for tens of thousands of cycles of the modulation signal, the signal charges corresponding to the received light quantity A0 are once taken out to the outside, and thereafter, the charges corresponding to the received light quantity A1 are converted to tens of thousands of modulation signals. Accumulate about the period.

図11は受光光量A0に相当する電荷を集積している状態を示しており、図11(b)に示すようにゲート電極12aに印加する通過電圧を一定電圧に保っている。また、受光光量A0に相当する電荷としては、変調信号の位相が0〜90度の区間において感光部11で生成された電荷を採用している。つまり、廃棄電極12bには、図11(c)のように変調信号の位相が90〜360度の区間において、感光部11で生成される電荷を不要電荷とするように廃棄電圧を印加する。この制御により、図11(d)のように所望の区間の受光光量A0に対応した信号電荷を電荷集積部13に集積することが可能になる。図11に示す処理は変調信号の数万〜数十万周期について行われ、この期間に電荷集積部13に得られた信号電荷は受光光量A0に対応する受光出力として電荷取出部14により取り出される。   FIG. 11 shows a state in which charges corresponding to the received light quantity A0 are accumulated. As shown in FIG. 11B, the passing voltage applied to the gate electrode 12a is kept constant. Further, as the charge corresponding to the received light quantity A0, the charge generated by the photosensitive portion 11 in the interval where the phase of the modulation signal is 0 to 90 degrees is employed. In other words, a waste voltage is applied to the waste electrode 12b so that the charge generated by the photosensitive portion 11 is an unnecessary charge in a section where the phase of the modulation signal is 90 to 360 degrees as shown in FIG. This control makes it possible to accumulate signal charges corresponding to the received light quantity A0 in a desired section in the charge accumulating unit 13 as shown in FIG. The processing shown in FIG. 11 is performed for tens of thousands to hundreds of thousands of cycles of the modulation signal, and the signal charge obtained in the charge accumulating unit 13 during this period is taken out by the charge extracting unit 14 as a received light output corresponding to the received light amount A0. .

電荷取出部14から取り出された電荷は画像生成部4に画像信号として与えられ、画像生成部4において、対象空間内の対象物Obまでの距離が、上述した(1)式を用いて受光光量A0、A1、A2、A3に対応する受光出力から算出される。すなわち、画像生成部4では各感光部11に対応した各方向における対象物Obまでの距離が算出され、対象空間の三次元情報が算出される。この三次元情報を用いると、対象空間の各方向に一致する画素の画素値が距離値である距離画像を生成することができる。   The electric charge extracted from the electric charge extraction unit 14 is given to the image generation unit 4 as an image signal. In the image generation unit 4, the distance to the object Ob in the target space is determined by using the above-described equation (1). It is calculated from the received light output corresponding to A0, A1, A2, and A3. That is, the image generation unit 4 calculates the distance to the object Ob in each direction corresponding to each photosensitive unit 11, and calculates the three-dimensional information of the target space. By using this three-dimensional information, it is possible to generate a distance image in which the pixel values of the pixels matching each direction of the target space are distance values.

なお、上述の制御では、廃棄電極12bに廃棄電圧を印加している期間においてゲート電極12aにも一定電圧である通過電圧を印加しているが、廃棄電圧と通過電圧との大小関係を適宜に設定すれば、不要電荷を廃棄している期間には信号電荷がほとんど集積されないようにすることができる。また、変調信号の数万〜数十万周期について電荷を集積しているのは、集積する電荷量を多くすることによって高感度化するためであり、変調信号をたとえば20MHzと設定すれば、30フレーム/秒で信号電荷を取り出すとしても、数十万周期以上の集積が可能になる。   In the above-described control, a passing voltage that is a constant voltage is applied to the gate electrode 12a during the period in which the discarding voltage is applied to the discarding electrode 12b, but the magnitude relationship between the discarding voltage and the passing voltage is appropriately determined. If set, it is possible to prevent signal charges from being almost integrated during a period in which unnecessary charges are discarded. The reason why charges are accumulated for tens of thousands to hundreds of thousands of cycles of the modulation signal is to increase the sensitivity by increasing the amount of charges to be accumulated, and if the modulation signal is set to 20 MHz, for example, 30 Even if signal charges are taken out at a frame / second, integration of several hundred thousand cycles or more is possible.

上述したように、廃棄電極12bを備えた電荷廃棄部12cを設け、感光部11に生じた電荷のうち信号電荷として利用しない不要電荷を電荷廃棄部12cに積極的に廃棄しているから、感光部11において電荷集積部13に信号電荷を与えていない期間に感光部11で生成される電荷はほとんどが不要電荷として廃棄されることになり、信号電荷への雑音成分の混入が大幅に抑制される。   As described above, the charge discarding unit 12c including the disposal electrode 12b is provided, and unnecessary charges that are not used as signal charges among the charges generated in the photosensitive unit 11 are actively discarded to the charge discarding unit 12c. In the unit 11, most of the charge generated in the photosensitive unit 11 during the period when no signal charge is given to the charge accumulating unit 13 is discarded as unnecessary charge, and mixing of noise components into the signal charge is greatly suppressed. The

上述の例では、ゲート電極12aに一定電圧である通過電圧を印加している期間に廃棄電極12bに廃棄電圧を印加する期間と印加しない期間とを設けることによって、廃棄電圧が印加されていない期間において感光部11に生成された電荷を信号電荷として用いているが、図12に示すように、ゲート電極12aに通過電圧を印加する期間と廃棄電極12bに廃棄電圧を印加する期間とが重複しないように制御してもよい。   In the above-described example, a period in which the discard voltage is not applied by providing a period in which the discard voltage is applied to the discard electrode 12b and a period in which the discard voltage is not applied to the discard electrode 12b in the period in which the passing voltage that is a constant voltage is applied to the gate electrode 12a. In FIG. 12, the charge generated in the photosensitive portion 11 is used as a signal charge. As shown in FIG. 12, the period for applying the passing voltage to the gate electrode 12a and the period for applying the discard voltage to the discard electrode 12b do not overlap. You may control as follows.

図12は受光光量A0に対応する信号電荷を集積する場合の動作を示している。図12(a)は発光源2から空間に照射される光の強度を変調する変調信号を示しており、ゲート電極12aには、図12(b)のように、受光光量A0に対応するタイミングで通過電圧を印加する。ゲート電極12aに通過電圧を印加する期間は、変調信号の位相における0度から一定期間(図示例では0〜90度)に設定され、この期間において感光部11から電荷集積部13への電荷の移動が可能になる。一方、廃棄電極12bには、図12(c)のように、電荷集積部13に受光光量A0に相当する信号電荷を集積する期間以外において廃棄電圧を印加し、信号電荷を集積する期間以外では感光部11で生成した電荷を不要電荷として電荷廃棄部12cに廃棄する。このような制御によって、図12(d)のように受光光量A0に相当する信号電荷を取り出すことが可能になる。   FIG. 12 shows the operation when signal charges corresponding to the received light quantity A0 are integrated. FIG. 12A shows a modulation signal for modulating the intensity of light emitted to the space from the light emitting source 2, and the gate electrode 12a has a timing corresponding to the received light amount A0 as shown in FIG. 12B. Apply the passing voltage with. The period during which the passing voltage is applied to the gate electrode 12a is set from 0 degrees in the phase of the modulation signal to a certain period (0 to 90 degrees in the illustrated example). During this period, the charge from the photosensitive portion 11 to the charge accumulation portion 13 is transferred. It becomes possible to move. On the other hand, as shown in FIG. 12C, a discard voltage is applied to the waste electrode 12b in a period other than the period in which the signal charge corresponding to the received light amount A0 is accumulated in the charge accumulation unit 13, and the signal charge is accumulated in other periods. The charges generated in the photosensitive unit 11 are discarded as unnecessary charges in the charge discarding unit 12c. Such control makes it possible to take out signal charges corresponding to the received light amount A0 as shown in FIG.

図12に示す制御では、ゲート電極12aに通過電圧を印加している期間と廃棄電極12bに廃棄電圧を印加している期間とが異なるから、図11に示した制御例のように通過電圧と廃棄電圧との大小関係を考慮しなくとも通過電圧と廃棄電圧との大きさを独立して制御することができ、結果的に通過電圧および廃棄電圧の制御が容易になり、感光部11で受光した光量に対して信号電荷を取り込む割合である感度の制御が容易になるとともに、感光部11で生成された電荷のうち不要電荷として廃棄する割合の制御が容易になる。また、図12に示す制御例では、電荷集積部13に信号電荷を集積する期間はゲート電極12aに印加する通過電圧により規定されるから、廃棄電極12bに廃棄電圧を印加する期間を短縮することが可能であり、たとえば、ゲート電極12aに通過電圧を印加する直前の所定期間にのみ廃棄電極12bに廃棄電圧を印加することも可能である。   In the control shown in FIG. 12, the period during which the passing voltage is applied to the gate electrode 12a is different from the period during which the discarding voltage is applied to the discard electrode 12b. Therefore, as shown in the control example in FIG. The magnitude of the passing voltage and the discarding voltage can be controlled independently without considering the magnitude relationship with the discarding voltage. As a result, the passing voltage and the discarding voltage can be easily controlled, and the photosensitive unit 11 receives light. Control of the sensitivity, which is the ratio of taking in the signal charge with respect to the light quantity, is facilitated, and control of the ratio of discarding unnecessary charges out of the charges generated in the photosensitive portion 11 is facilitated. Further, in the control example shown in FIG. 12, the period during which signal charges are accumulated in the charge accumulating unit 13 is defined by the passing voltage applied to the gate electrode 12a, so the period during which the discard voltage is applied to the discard electrode 12b is shortened. For example, it is possible to apply the waste voltage to the waste electrode 12b only during a predetermined period immediately before applying the pass voltage to the gate electrode 12a.

図12に示す制御を行えば、感光部11で生成した電荷を電荷集積部13に信号電荷として集積していない期間において感光部11で生成される電荷をほとんど不要電荷として廃棄するから、信号電荷への雑音成分の混入が大幅に抑制されることになる。   When the control shown in FIG. 12 is performed, the charge generated in the photosensitive unit 11 is discarded as an unnecessary charge in a period in which the charge generated in the photosensitive unit 11 is not accumulated in the charge accumulating unit 13 as a signal charge. Mixing of noise components into is greatly suppressed.

通過電圧と廃棄電圧との制御例としては、図13に示すように、廃棄電極12bに印加する廃棄電圧を一定電圧に保って感光部11で生成された電荷の一部をつねに廃棄するようにしてもよい。図13の制御例では、ゲート電極12aに通過電圧を印加する期間と印加しない期間とを設け、通過電圧を印加する期間を電荷集積部13に信号電荷を集積する期間としている。   As an example of the control of the passing voltage and the discard voltage, as shown in FIG. 13, the discard voltage applied to the discard electrode 12b is maintained at a constant voltage so that a part of the charge generated in the photosensitive portion 11 is always discarded. May be. In the control example of FIG. 13, a period during which the passing voltage is applied to the gate electrode 12 a and a period during which the passing voltage is not applied are provided, and the period during which the passing voltage is applied is defined as a period during which signal charges are accumulated in the charge accumulation unit 13.

図13は受光光量A0に相当する信号電荷を集積する場合の動作を示している。図13(a)は発光源2から空間に照射される光の強度を変調する変調信号を示しており、電荷集積部13に設けたゲート電極12aには、図13(b)のように、受光光量A0に対応する期間に通過電圧が印加され、感光部11において生成された電荷を受光光量A0に相当する信号電荷として電荷集積部13に集積する。つまり、ゲート電極12aに通過電圧を印加する期間は、変調信号の位相における0度から一定期間(図示例では0〜90度)に設定され、この期間において感光部11から電荷集積部13への電荷の移動が可能になる。一方、廃棄電極12bには、図13(c)のように、直流電圧である一定電圧の廃棄電圧がつねに印加され、感光部11で生成された電荷の一部をつねに不要電荷として電荷廃棄部12cに廃棄する。上述の制御では、信号電荷を電荷集積部13に集積する期間にのみゲート電極12aに通過電圧を印加しているから、図13(d)のように受光光量A0に相当する信号電荷を取り出すことが可能になる。   FIG. 13 shows an operation when signal charges corresponding to the received light quantity A0 are integrated. FIG. 13A shows a modulation signal that modulates the intensity of light emitted from the light emitting source 2 to the space, and the gate electrode 12a provided in the charge accumulating unit 13 has a structure as shown in FIG. A passing voltage is applied during a period corresponding to the received light amount A0, and the charge generated in the photosensitive unit 11 is accumulated in the charge accumulating unit 13 as a signal charge corresponding to the received light amount A0. That is, the period during which the pass voltage is applied to the gate electrode 12a is set from 0 degree to a certain period (0 to 90 degrees in the illustrated example) in the phase of the modulation signal. Charge transfer is possible. On the other hand, as shown in FIG. 13C, a constant voltage discard voltage, which is a DC voltage, is always applied to the waste electrode 12b, and a part of the charge generated by the photosensitive portion 11 is always used as an unnecessary charge. Discard to 12c. In the above-described control, since the passing voltage is applied to the gate electrode 12a only during the period in which the signal charge is accumulated in the charge accumulation unit 13, the signal charge corresponding to the received light amount A0 is extracted as shown in FIG. Is possible.

図13に示す制御では、ゲート電極12aに通過電圧を印加しているか否かにかかわらず廃棄電極12bに一定電圧の廃棄電圧を印加しているから、感光部11において生成された電荷のうち電荷集積部13に信号電荷として集積されなかった不要電荷は、廃棄電荷として電荷廃棄部12cに廃棄される。ここで、感光部11で生成された電荷の一部を信号電荷として電荷集積部13に集積する期間においても感光部11から電荷廃棄部12cへの電荷の廃棄が継続しているから、信号電荷を電荷集積部13に適正に集積するために、通過電圧と廃棄電圧との大小関係を考慮する必要がある。ただし、廃棄電圧は一定電圧であって廃棄電極12bにつねに印加しているだけであるから、実際には通過電圧のみを制御すればよく、制御自体は容易である。   In the control shown in FIG. 13, a constant voltage discard voltage is applied to the waste electrode 12b regardless of whether or not a pass voltage is applied to the gate electrode 12a. Unnecessary charges that have not been accumulated as signal charges in the accumulation unit 13 are discarded as discard charges in the charge discard unit 12c. Here, the signal charge is continuously discarded from the photosensitive portion 11 to the charge discarding portion 12c even during a period in which a part of the charge generated in the photosensitive portion 11 is accumulated in the charge accumulating portion 13 as a signal charge. In order to properly integrate the voltage in the charge accumulation unit 13, it is necessary to consider the magnitude relationship between the passing voltage and the discard voltage. However, since the discard voltage is a constant voltage and is always applied to the discard electrode 12b, in practice, only the passing voltage needs to be controlled, and the control itself is easy.

図10に示した感度制御部12を備える光検出素子1は、オーバーフロードレインを備えたCCDイメージセンサにより実現することができる。CCDイメージセンサにおける電荷の転送方式はどのようなものでもよく、インターライントランスファ(IT)方式、フレームトランスファ(FT)方式、フレームインターライントランスファ(FIT)方式のいずれであってもよい。   The photodetecting element 1 including the sensitivity control unit 12 illustrated in FIG. 10 can be realized by a CCD image sensor including an overflow drain. Any charge transfer method may be used in the CCD image sensor, and any of an interline transfer (IT) method, a frame transfer (FT) method, and a frame interline transfer (FIT) method may be used.

図14に縦型オーバーフロードレインを備えるインターライントランスファ方式のCCDイメージセンサの構成を示す。図示例は、感光部11となるフォトダイオード41を水平方向と垂直方向とに複数個ずつ(図では3×4個)配列した2次元イメージセンサであって、垂直方向に配列したフォトダイオード41の各列の右側方にCCDからなる垂直転送レジスタ42を備え、フォトダイオード41および垂直転送レジスタ42が配列された領域の下方にCCDからなる水平転送レジスタ43を備える。垂直転送レジスタ42は各フォトダイオード41ごとに2個ずつの転送電極42a,42bを備え、水平転送レジスタ43は各垂直転送レジスタ42ごとに2個ずつの転送電極43a,43bを備える。   FIG. 14 shows a configuration of an interline transfer type CCD image sensor having a vertical overflow drain. The illustrated example is a two-dimensional image sensor in which a plurality of photodiodes 41 serving as the photosensitive portions 11 are arranged in a horizontal direction and a vertical direction (3 × 4 in the figure), and the photodiodes 41 arranged in the vertical direction are arranged. A vertical transfer register 42 made of a CCD is provided on the right side of each column, and a horizontal transfer register 43 made of a CCD is provided below the area where the photodiodes 41 and the vertical transfer registers 42 are arranged. The vertical transfer register 42 includes two transfer electrodes 42 a and 42 b for each photodiode 41, and the horizontal transfer register 43 includes two transfer electrodes 43 a and 43 b for each vertical transfer register 42.

フォトダイオード41と垂直転送レジスタ42と水平転送レジスタ43とは1枚の半導体基板40上に形成され、半導体基板40の主表面には、フォトダイオード41と垂直転送レジスタ42と水平転送レジスタ43との全体を囲む形でアルミニウム電極であるオーバーフロー電極44が、半導体基板40の全周に亘って絶縁膜を介さずに半導体基板40に直接接触するように設けられる。オーバーフロー電極44に半導体基板40に対して正極性になる適宜の廃棄電圧を印加すればフォトダイオード41で生成された電子(電荷)はオーバーフロー電極44を通して廃棄される。オーバーフロー電極44は、感光部11であるフォトダイオード41において生成した電荷のうち不要電荷を廃棄する際に廃棄電圧が印加されるから廃棄電極12bとして機能し、オーバーフロー電極44に廃棄電圧を印加する電源が感光部11で生成された電子(電荷)を廃棄する電荷廃棄部12cとして機能する。半導体基板40の表面はフォトダイオード41に対応する部位を除いて遮光膜46(図15参照)により覆われる。   The photodiode 41, the vertical transfer register 42, and the horizontal transfer register 43 are formed on one semiconductor substrate 40, and the photodiode 41, the vertical transfer register 42, and the horizontal transfer register 43 are formed on the main surface of the semiconductor substrate 40. An overflow electrode 44 which is an aluminum electrode is provided so as to directly contact the semiconductor substrate 40 without going through an insulating film over the entire circumference of the semiconductor substrate 40 so as to surround the whole. If an appropriate disposal voltage that is positive with respect to the semiconductor substrate 40 is applied to the overflow electrode 44, electrons (charges) generated by the photodiode 41 are discarded through the overflow electrode 44. The overflow electrode 44 functions as the discard electrode 12b because a discard voltage is applied when discarding unnecessary charges among the charges generated in the photodiode 41 which is the photosensitive portion 11, and the power supply for applying the discard voltage to the overflow electrode 44 Functions as a charge discarding unit 12c that discards electrons (charges) generated in the photosensitive unit 11. The surface of the semiconductor substrate 40 is covered with a light-shielding film 46 (see FIG. 15) except for the portion corresponding to the photodiode 41.

図14に示したCCDイメージセンサについて、1個のフォトダイオード41に関連する部分を切り出して図15に示す。半導体基板40にはn形半導体を用い、半導体基板40の主表面にはフォトダイオード41と垂直転送レジスタ42とに跨る領域にp形半導体からなるウェル領域31を形成している。ウェル領域31は、フォトダイオード41に対応する領域に比較して垂直転送レジスタ42に対応する領域の厚み寸法が大きくなるように形成してある。ウェル領域31のうちフォトダイオード41に対応する領域にはn+形半導体層32を重ねて設けてあり、ウェル領域31とn+形半導体層32とのpn接合によってフォトダイオード41が形成される。フォトダイオード41の表面にはp+形半導体からなる表面層33を積層してある。表面層33はフォトダイオード41で生成された電荷を垂直転送レジスタ42に移動させる際に、n+形半導体層32の表面付近が電荷の通過経路にならないように制御する目的で設けてある。このような構造は、埋込フォトダイオードとして知られている。   For the CCD image sensor shown in FIG. 14, a portion related to one photodiode 41 is cut out and shown in FIG. 15. An n-type semiconductor is used for the semiconductor substrate 40, and a well region 31 made of a p-type semiconductor is formed in a region straddling the photodiode 41 and the vertical transfer register 42 on the main surface of the semiconductor substrate 40. The well region 31 is formed so that the thickness dimension of the region corresponding to the vertical transfer register 42 is larger than the region corresponding to the photodiode 41. An n + -type semiconductor layer 32 is provided in a region corresponding to the photodiode 41 in the well region 31, and the photodiode 41 is formed by a pn junction between the well region 31 and the n + -type semiconductor layer 32. A surface layer 33 made of a p + type semiconductor is stacked on the surface of the photodiode 41. The surface layer 33 is provided for the purpose of controlling the vicinity of the surface of the n + -type semiconductor layer 32 so as not to be a passage path for charges when the charge generated by the photodiode 41 is moved to the vertical transfer register 42. Such a structure is known as a buried photodiode.

ウェル領域31のうち垂直転送レジスタ42に対応する領域にはn形半導体からなる蓄積転送層34を重ねて設けてある。蓄積転送層34の表面と表面層33の表面とは略同一平面であって、蓄積転送層34の厚み寸法は表面層33の厚み寸法よりも大きくしてある。蓄積転送層34は、表面層33とは接触しているが、n+形半導体層32との間には、表面層33と不純物濃度が等しいp+形半導体からなる分離層35が介在する。蓄積転送層34の表面には、絶縁膜45を介して転送電極42a,42bが配置される。転送電極42a,42bは1個のフォトダイオード41に対して2個ずつ設けられ、垂直方向において2個の転送電極42a,42bのうちの一方は他方よりも広幅に形成される。具体的には、図16のように、1個のフォトダイオード41に対応する2個の転送電極42a,42bのうち狭幅の転送電極42bは平板状に形成されており、広幅の転送電極42aは、幅狭の転送電極42bと同一平面上に配列され一対の転送電極42bの間に配置される平板状の部分と、平板状の部分の垂直方向(図16の左右方向)における両端部からそれぞれ延長され転送電極42bの上に重複する湾曲した部分とを備える。ここに、絶縁膜45はSiOにより形成され、また転送電極42a,42bはポリシリコンにより形成され、各転送電極42a,42bは絶縁膜45を介して互いに絶縁されている。さらに、フォトダイオード41に光を入射させる部位を除いて光検出素子1の表面は遮光膜46により覆われる。ウェル領域31において垂直転送レジスタ42に対応する領域および蓄積転送層34は垂直転送レジスタ42の全長に亘って形成され、したがって、蓄積転送層34には広幅の転送電極42aと狭幅の転送電極42bとが交互に配列される。 An accumulation transfer layer 34 made of an n-type semiconductor is overlaid in a region corresponding to the vertical transfer register 42 in the well region 31. The surface of the accumulation / transfer layer 34 and the surface of the surface layer 33 are substantially flush with each other, and the thickness dimension of the accumulation / transfer layer 34 is larger than the thickness dimension of the surface layer 33. The accumulation transfer layer 34 is in contact with the surface layer 33, but a separation layer 35 made of a p + type semiconductor having the same impurity concentration as that of the surface layer 33 is interposed between the storage layer 34 and the n + type semiconductor layer 32. Transfer electrodes 42 a and 42 b are disposed on the surface of the accumulation transfer layer 34 via an insulating film 45. Two transfer electrodes 42a and 42b are provided for each photodiode 41, and one of the two transfer electrodes 42a and 42b is formed wider than the other in the vertical direction. Specifically, as shown in FIG. 16, of the two transfer electrodes 42a and 42b corresponding to one photodiode 41, the narrow transfer electrode 42b is formed in a flat plate shape, and the wide transfer electrode 42a. Are arranged on the same plane as the narrow transfer electrode 42b and disposed between the pair of transfer electrodes 42b, and from both ends in the vertical direction (left and right direction in FIG. 16) of the flat plate portion. And a curved portion that extends and overlaps the transfer electrode 42b. Here, the insulating film 45 is formed of SiO 2 , the transfer electrodes 42 a and 42 b are formed of polysilicon, and the transfer electrodes 42 a and 42 b are insulated from each other through the insulating film 45. Further, the surface of the light detection element 1 is covered with a light shielding film 46 except for a portion where light is incident on the photodiode 41. In the well region 31, the region corresponding to the vertical transfer register 42 and the storage transfer layer 34 are formed over the entire length of the vertical transfer register 42. Therefore, the storage transfer layer 34 has a wide transfer electrode 42a and a narrow transfer electrode 42b. And are alternately arranged.

上述した光検出素子1では、フォトダイオード41が感光部11に相当し、転送電極42aが通過電極12aに相当し、オーバーフロー電極44が廃棄電極12bに相当し、垂直転送レジスタ42が電荷集積部13および電荷取出部14の一部として機能する。また、水平転送レジスタ43も電荷取出部14の一部になる。すなわち、フォトダイオード41に光が入射すれば電荷が生成され、フォトダイオード41で生成された電荷のうち垂直転送レジスタ42に信号電荷として引き渡される電荷の割合は転送電極42aに印加する通過電圧とオーバーフロー電極44に印加する廃棄電圧との関係によって決めることができる。転送電極42aに通過電圧を印加すると蓄積転送層34にポテンシャル井戸が形成され、通過電圧の制御によりポテンシャル井戸の深さを制御することができる。したがって、ポテンシャル井戸の深さおよび通過電圧を印加する時間とを制御すれば、フォトダイオード41から垂直転送レジスタ42に引き渡される電荷の割合を調節することができる。また、オーバーフロー電極44に印加する廃棄電圧を制御すれば、フォトダイオード41と半導体基板40との間の電位勾配を制御することができるから、電位勾配と廃棄電圧を印加する時間とを制御すれば、垂直転送レジスタ42に引き渡される電荷の割合を調節することができる。制御電圧と廃棄電圧とは図11ないし図13に示した制御例のように制御すればよい。   In the light detection element 1 described above, the photodiode 41 corresponds to the photosensitive portion 11, the transfer electrode 42 a corresponds to the passing electrode 12 a, the overflow electrode 44 corresponds to the discard electrode 12 b, and the vertical transfer register 42 corresponds to the charge accumulation portion 13. And functions as a part of the charge extraction unit 14. Further, the horizontal transfer register 43 also becomes a part of the charge extraction unit 14. That is, if light enters the photodiode 41, a charge is generated, and the ratio of the charge generated as a signal charge to the vertical transfer register 42 among the charges generated by the photodiode 41 is equal to the passing voltage applied to the transfer electrode 42a and the overflow. It can be determined according to the relationship with the waste voltage applied to the electrode 44. When a pass voltage is applied to the transfer electrode 42a, a potential well is formed in the storage transfer layer 34, and the depth of the potential well can be controlled by controlling the pass voltage. Therefore, by controlling the depth of the potential well and the time during which the passing voltage is applied, the ratio of charges delivered from the photodiode 41 to the vertical transfer register 42 can be adjusted. Further, if the discard voltage applied to the overflow electrode 44 is controlled, the potential gradient between the photodiode 41 and the semiconductor substrate 40 can be controlled. Therefore, if the potential gradient and the time for applying the discard voltage are controlled. The rate of charge delivered to the vertical transfer register 42 can be adjusted. The control voltage and the discard voltage may be controlled as in the control examples shown in FIGS.

フォトダイオード41から垂直転送レジスタ42に引き渡された信号電荷は、上述した4区間の受光光量A0,A1,A2,A3のうちの各1区間の受光光量A0,A1,A2,A3に相当する信号電荷が集積されるたびに読み出される。たとえば、受光光量A0に相当する信号電荷が各フォトダイオード41に対応して形成されるポテンシャル井戸に集積されると信号電荷を読み出し、次に受光光量A1に相当する信号電荷がポテンシャル井戸に集積されると再び信号電荷を読み出すという動作を繰り返す。なお、各受光光量A0,A1,A2,A3に相当する信号電荷を集積する期間は等しく設定しておく。   The signal charges delivered from the photodiode 41 to the vertical transfer register 42 are signals corresponding to the received light amounts A0, A1, A2, and A3 of each one of the four received light amounts A0, A1, A2, and A3 described above. It is read each time charge is accumulated. For example, when a signal charge corresponding to the received light quantity A0 is accumulated in a potential well formed corresponding to each photodiode 41, the signal charge is read, and then a signal charge corresponding to the received light quantity A1 is accumulated in the potential well. Then, the operation of reading the signal charge again is repeated. Note that the period during which signal charges corresponding to the received light amounts A0, A1, A2, and A3 are accumulated is set to be equal.

ところで、上述した制御例のうち、図11に示す制御例では、感光部11(フォトダイオード41)で生成された電荷(電子)を電荷集積部13(垂直転送レジスタ42)に対してつねに引き渡しているから、電荷集積部13に集積された電荷は必ずしも目的の受光光量A0、A1、A2、A3が得られる期間に生成された電荷だけではなく、目的外の期間に生成された電荷も混入することになる。いま、感度制御部12において、受光光量A0、A1、A2、A3に対応した電荷を生成する期間の感度をα、それ以外の期間の感度をβとし、感光部11は受光光量に比例する電荷を生成するものとする。この条件では、受光光量A0に対応した電荷を集積する電荷集積部13には、αA0+β(A1+A2+A3)+βAx(Axは受光光量A0、A1、A2、A3が得られる期間以外の受光光量)に比例する電荷が集積され、受光光量A2に対応した電荷を集積する電荷集積部13には、αA2+β(A0+A1+A3)+βAxに比例する電荷が集積される。上述したように、位相差ψを求める際には(A2−A0)を求めており、(A2−A0)に相当する値を電荷集積部13に集積した電荷から求めると(α−β)(A2−A0)になり、同様にして(A1−A3)に相当する値は(α−β)(A1−A3)になるから、(A2−A0)/(A1−A3)は電荷の混入の有無によらず理論上は同じ値になるのであって、電荷が混入しても求める位相差ψは同じ値になる。   Of the control examples described above, in the control example shown in FIG. 11, the charge (electrons) generated by the photosensitive unit 11 (photodiode 41) is always delivered to the charge accumulation unit 13 (vertical transfer register 42). Therefore, the charges accumulated in the charge accumulating unit 13 include not only the charges generated during the period in which the target received light amounts A0, A1, A2, and A3 are obtained, but also the charges generated during periods other than the target. It will be. Now, in the sensitivity control unit 12, the sensitivity in the period for generating the charges corresponding to the received light amounts A0, A1, A2, A3 is α, the sensitivity in the other periods is β, and the photosensitive unit 11 is a charge proportional to the received light amount. Is generated. Under this condition, the charge accumulating unit 13 that accumulates charges corresponding to the received light amount A0 is proportional to αA0 + β (A1 + A2 + A3) + βAx (Ax is the received light amount other than the period during which the received light amounts A0, A1, A2, and A3 are obtained). Charges proportional to αA2 + β (A0 + A1 + A3) + βAx are accumulated in the charge accumulation unit 13 that accumulates charges and accumulates charges corresponding to the received light amount A2. As described above, when obtaining the phase difference ψ, (A2−A0) is obtained, and when a value corresponding to (A2−A0) is obtained from the charge accumulated in the charge accumulation unit 13, (α−β) ( Similarly, since the value corresponding to (A1-A3) is (α-β) (A1-A3), (A2-A0) / (A1-A3) Theoretically the same value is obtained regardless of the presence or absence, and the obtained phase difference ψ is the same value even if charges are mixed.

上述した構成例では、CCDイメージセンサを光検出素子1に用い、電荷集積部13に通過させる電荷の量と、電荷廃棄部12cに廃棄する電荷の量との少なくとも一方を制御することにより感度制御部12を構成する例を示したが、以下に示す感度制御部12は、感光部11において利用できる電荷を生成する領域の面積(実質的な受光面積)を変化させるものである。   In the configuration example described above, a CCD image sensor is used for the photodetecting element 1, and sensitivity control is performed by controlling at least one of the amount of charge passed through the charge accumulating unit 13 and the amount of charge discarded into the charge discarding unit 12c. Although the example which comprises the part 12 was shown, the sensitivity control part 12 shown below changes the area (substantially light reception area) of the area | region which produces | generates the electric charge which can be utilized in the photosensitive part 11. FIG.

以下に光検出素子1の具体的構造例を説明する。図17に示す光検出素子1は、複数個(たとえば、100×100個)の感光部11をマトリクス状に配列したものであって、たとえば1枚の半導体基板上に形成される。1個の感光部11は不純物を添加した半導体層21に酸化膜からなる絶縁膜22を介して複数個(図では5個)の制御電極23を配列した構成を有する。図示例では電極が並ぶ方向(左右方向)が垂直方向であり、感光部11で生成した電荷(本実施形態では、電子を用いる)を取り出す際には、垂直転送レジスタにより電荷を垂直方向に転送した後、水平転送レジスタを用いて水平方向に転送される。つまり、垂直転送レジスタと水平転送レジスタとにより電荷取出部14が構成される。垂直転送レジスタおよび水平転送レジスタの構成には、CCDイメージセンサにおけるインターライントランスファ(IT)方式、フレームトランスファ(FT)方式、フレームインターライントランスファ(FIT)方式と同様の構成を採用することができる。   Hereinafter, a specific structural example of the light detection element 1 will be described. The photodetecting element 1 shown in FIG. 17 has a plurality of (for example, 100 × 100) photosensitive portions 11 arranged in a matrix, and is formed on, for example, a single semiconductor substrate. One photosensitive portion 11 has a configuration in which a plurality (five in the figure) of control electrodes 23 are arranged on a semiconductor layer 21 to which impurities are added via an insulating film 22 made of an oxide film. In the illustrated example, the direction in which the electrodes are arranged (left-right direction) is the vertical direction, and when taking out the charge generated by the photosensitive portion 11 (using electrons in this embodiment), the charge is transferred in the vertical direction by the vertical transfer register. After that, the data is transferred in the horizontal direction using a horizontal transfer register. That is, the charge extraction unit 14 is configured by the vertical transfer register and the horizontal transfer register. As the configuration of the vertical transfer register and the horizontal transfer register, the same configuration as the interline transfer (IT) method, the frame transfer (FT) method, and the frame interline transfer (FIT) method in the CCD image sensor can be adopted.

すなわち、垂直方向に並ぶ各感光部11が一体に連続する半導体層21を共用するとともに半導体層21を垂直転送レジスタに用いれば、半導体層21が感光部11と電荷の転送経路とに兼用された構造になり、FT方式のCCDイメージセンサと同様にして電荷を垂直方向に転送することができ、また、感光部11から転送ゲートを介して垂直転送レジスタに電荷を転送すれば、IT方式またはFIT方式のCCDイメージセンサと同様にして電荷を転送することができる。   That is, when the photosensitive portions 11 arranged in the vertical direction share the continuous semiconductor layer 21 and the semiconductor layer 21 is used as a vertical transfer register, the semiconductor layer 21 is used as both the photosensitive portion 11 and the charge transfer path. The structure allows the charge to be transferred in the vertical direction in the same manner as the FT type CCD image sensor, and if the charge is transferred from the photosensitive portion 11 to the vertical transfer register via the transfer gate, the IT type or FIT Charges can be transferred in the same manner as a CCD image sensor of the type.

上述のように、半導体層21は不純物が添加してあり、半導体層21の主表面は酸化膜からなる絶縁膜22により覆われ、半導体層21に絶縁膜22を介して複数個の制御電極23を配置している。この光検出素子1はMIS素子として知られた構造であるが、1個の光検出素子1として機能する領域に複数個(図示例では5個)の制御電極23を備える点が通常のMIS素子とは異なる。絶縁膜22および制御電極23は発光源2から対象空間に照射される光と同波長の光が透過するように材料が選択され、絶縁膜22を通して半導体層21に光が入射すると、半導体層21の内部に電荷が生成される。図示例の半導体層21の導電形はn形であり、光の照射により生成される電荷として電子eを利用する。図17は1個の感光部11に対応する領域のみを示したものであり、半導体基板(図示せず)には上述したように図17の構造を持つ領域が複数個配列されるとともに電荷取出部14となる構造が設けられる。電荷取出部14として設ける垂直転送レジスタは、図17の左右方向に電荷を転送することを想定しているが、図17の面に直交する方向に電荷を転送する構成を採用することも可能である。また、電荷を図の左右方向に転送する場合には、制御電極23の左右方向の幅寸法を1μm程度に設定するのが望ましい。   As described above, the semiconductor layer 21 is doped with impurities, the main surface of the semiconductor layer 21 is covered with the insulating film 22 made of an oxide film, and a plurality of control electrodes 23 are formed on the semiconductor layer 21 via the insulating film 22. Is arranged. This light detection element 1 has a structure known as a MIS element, but a normal MIS element is that a plurality of (five in the illustrated example) control electrodes 23 are provided in a region functioning as one light detection element 1. Is different. A material is selected for the insulating film 22 and the control electrode 23 so that light having the same wavelength as the light emitted from the light source 2 to the target space can be transmitted. When light enters the semiconductor layer 21 through the insulating film 22, the semiconductor layer 21. A charge is generated inside the. The conductivity type of the semiconductor layer 21 in the illustrated example is n-type, and electrons e are used as charges generated by light irradiation. FIG. 17 shows only a region corresponding to one photosensitive portion 11, and a plurality of regions having the structure shown in FIG. 17 are arranged on the semiconductor substrate (not shown) and the charge extraction is performed. A structure to be part 14 is provided. The vertical transfer register provided as the charge extraction unit 14 is assumed to transfer charges in the left-right direction in FIG. 17, but it is also possible to adopt a configuration in which charges are transferred in a direction orthogonal to the plane in FIG. is there. In addition, when transferring charges in the horizontal direction in the figure, it is desirable to set the width dimension of the control electrode 23 in the horizontal direction to about 1 μm.

この構造の光検出素子1では、制御電極23に正の制御電圧+Vを印加すると、半導体層21には制御電極23に対応する部位に電子eを集積するポテンシャル井戸(空乏層)24が形成される。つまり、半導体層21にポテンシャル井戸24を形成するように制御電極23に制御電圧を印加した状態で光が半導体層21に照射されると、ポテンシャル井戸24の近傍で生成された電子eの一部はポテンシャル井戸24に捕獲されてポテンシャル井戸24に集積され、残りの電子eは半導体層21の深部での再結合により消滅する。また、ポテンシャル井戸24から離れた場所で生成された電子eも半導体層21の深部での再結合により消滅する。   In the light detection element 1 having this structure, when a positive control voltage + V is applied to the control electrode 23, a potential well (depletion layer) 24 that accumulates electrons e in a portion corresponding to the control electrode 23 is formed in the semiconductor layer 21. The That is, when light is applied to the semiconductor layer 21 with a control voltage applied to the control electrode 23 so as to form the potential well 24 in the semiconductor layer 21, a part of the electrons e generated in the vicinity of the potential well 24. Are captured in the potential well 24 and accumulated in the potential well 24, and the remaining electrons e disappear due to recombination in the deep part of the semiconductor layer 21. Further, the electrons e generated at a location away from the potential well 24 are also extinguished by recombination in the deep part of the semiconductor layer 21.

ポテンシャル井戸24は制御電圧を印加した制御電極23に対応する部位に形成されるから、制御電圧を印加する制御電極23の個数を変化させることによって、半導体層21の主表面に沿ったポテンシャル井戸24の面積(言い換えると、受光面において利用できる電荷を生成する領域の面積)を変化させることができる。つまり、制御電圧を印加する制御電極23の個数を変化させることは感度制御部12における感度の調節を意味する。たとえば、図17(a)のように3個の制御電極23に制御電圧+Vを印加する場合と、図17(b)のように1個の制御電極23に制御電圧+Vを印加する場合とでは、ポテンシャル井戸24が受光面に占める面積が変化するのであって、図17(a)の状態のほうがポテンシャル井戸24の面積が大きいから、図17(b)の状態に比較して同光量に対して利用できる電荷の割合が多くなり、実質的に感光部11の感度を高めたことになる。このように、感光部11および感度制御部12は半導体層21と絶縁膜22と制御電極23とにより構成されていると言える。ポテンシャル井戸24は光照射により生成された電荷を保持するから電荷集積部13として機能する。   Since the potential well 24 is formed at a portion corresponding to the control electrode 23 to which the control voltage is applied, the potential well 24 along the main surface of the semiconductor layer 21 is changed by changing the number of the control electrodes 23 to which the control voltage is applied. (In other words, the area of a region that generates a charge that can be used on the light receiving surface) can be changed. That is, changing the number of control electrodes 23 to which the control voltage is applied means adjusting sensitivity in the sensitivity control unit 12. For example, when the control voltage + V is applied to three control electrodes 23 as shown in FIG. 17A and when the control voltage + V is applied to one control electrode 23 as shown in FIG. Since the area occupied by the potential well 24 on the light receiving surface changes, the area of the potential well 24 is larger in the state of FIG. 17A, so that the same amount of light is obtained as compared with the state of FIG. As a result, the ratio of the charge that can be used increases and the sensitivity of the photosensitive portion 11 is substantially increased. Thus, it can be said that the photosensitive portion 11 and the sensitivity control portion 12 are constituted by the semiconductor layer 21, the insulating film 22, and the control electrode 23. The potential well 24 functions as the charge accumulation unit 13 because it holds charges generated by light irradiation.

上述したように、ポテンシャル井戸24から電荷を取り出すには、CCDイメージセンサと同様の技術を採用する。たとえば感光部11を垂直転送レジスタとして用いる場合は、ポテンシャル井戸24に電子eが集積された後に、電荷の集積時とは異なる印加パターンの制御電圧を制御電極23に印加することによってポテンシャル井戸24に集積された電子eを一方向(たとえば、図の右方向)に転送することができる。あるいはまた、感光部11とは別に設けた垂直転送レジスタに転送ゲートを介して感光部11から電荷を転送する構成を採用することもできる。垂直転送レジスタからは水平転送レジスタに電荷を引き渡し、水平転送レジスタを転送された電荷は、半導体基板に設けた図示しない電極から光検出素子1の外部に取り出される。   As described above, in order to extract charges from the potential well 24, the same technique as that of the CCD image sensor is employed. For example, when the photosensitive portion 11 is used as a vertical transfer register, after the electrons e are accumulated in the potential well 24, a control voltage having a different application pattern from that at the time of charge accumulation is applied to the control electrode 23. The accumulated electrons e can be transferred in one direction (for example, in the right direction in the figure). Alternatively, it is possible to adopt a configuration in which charges are transferred from the photosensitive portion 11 via a transfer gate to a vertical transfer register provided separately from the photosensitive portion 11. Charge is transferred from the vertical transfer register to the horizontal transfer register, and the charge transferred to the horizontal transfer register is taken out of the photodetector 1 from an electrode (not shown) provided on the semiconductor substrate.

図17に示す構成における感度制御部12は、利用できる電荷を生成する面積を大小2段階に切り換えることにより感光部11の感度を高低2段階に切り換えるのであって、受光光量A0、A1、A2、A3のいずれかに対応する電荷を感光部11で生成しようとする期間にのみ高感度とし(電荷を生成する面積を大きくし)、他の期間には低感度にする。高感度にする期間と低感度にする期間とは、発光源2を駆動する変調信号に同期させて設定される。具体的には、変調信号に同期する特定の区間(特定位相の区間)において、電荷を生成する面積を大きくして感光部11で生成した電荷を集積し、上記特定区間以外の他の区間において、電荷を生成する面積を小さくして感光部11で生成した電荷を蓄積する。すなわち、感光部11において、電荷を集積する機能と蓄積する機能とが交互に実現される。ここで、集積とは電荷を集めることを意味し、蓄積とは電荷を保持することを意味する。言い換えると、図17に示す構成では、感光部11に設けた電荷集積部13の大きさ(面積)を変化させることにより、電荷を集積する期間には感光部11で生成された電荷の集積率を大きくし、電荷を蓄積する期間には感光部11で生成された電荷の集積率を小さくするのである。   The sensitivity control unit 12 in the configuration shown in FIG. 17 switches the sensitivity of the photosensitive unit 11 into two levels, high and low, by switching the area for generating available charges into two levels, the received light quantity A0, A1, A2, The sensitivity corresponding to any one of A3 is set to high sensitivity only during a period when the photosensitive portion 11 is to be generated (the area for generating charges is increased), and the sensitivity is set to be low during other periods. The period of high sensitivity and the period of low sensitivity are set in synchronization with the modulation signal that drives the light emitting source 2. Specifically, in a specific section (specific phase section) synchronized with the modulation signal, the charge generation area is increased to accumulate the charge generated by the photosensitive portion 11, and in other sections other than the specific section. The charge generated by the photosensitive portion 11 is accumulated by reducing the area for generating the charge. That is, in the photosensitive portion 11, the function of accumulating charges and the function of accumulating are realized alternately. Here, accumulation means collecting electric charges, and accumulation means holding electric charges. In other words, in the configuration shown in FIG. 17, by changing the size (area) of the charge accumulating unit 13 provided in the photosensitive unit 11, the integration rate of the charges generated in the photosensitive unit 11 during the period of accumulating charges. The charge accumulation rate generated in the photosensitive portion 11 is reduced during the period in which charges are accumulated.

また、変調信号の複数周期に亘ってポテンシャル井戸24に電荷を集積した後に電荷取出部14を通して光検出素子1の外部に電荷を取り出すようにしている。変調信号の複数周期に亘って電荷を集積しているのは、変調信号の1周期内では感光部11が利用可能な電荷を生成する期間が短く(たとえば、変調信号の周波数を20MHzとすれば50nsの4分の1以下)、生成される電荷が少ないからである。つまり、変調信号の複数周期分の電荷を集積することにより、信号電荷(発光源2から照射された光に対応する電荷)と不要電荷(主に外光成分および光検出素子1の内部で発生するショットノイズに対応する電荷)との比を大きくとることができ、大きなSN比が得られる。   In addition, after the charges are accumulated in the potential well 24 over a plurality of periods of the modulation signal, the charges are extracted to the outside of the light detection element 1 through the charge extraction unit 14. Charges are accumulated over a plurality of periods of the modulation signal because the period during which the photosensitive unit 11 generates usable charges within one period of the modulation signal is short (for example, if the frequency of the modulation signal is 20 MHz). This is because less than a quarter of 50 ns is generated. That is, by integrating charges for a plurality of periods of the modulation signal, signal charges (charges corresponding to light emitted from the light emission source 2) and unnecessary charges (mainly generated in the external light component and the light detection element 1). The charge corresponding to the shot noise) can be made large, and a large SN ratio can be obtained.

ところで、位相差ψを求めるのに必要な4区間の受光光量A0、A1、A2、A3に対応する電荷を1個の感光部11で生成するとすれば、視線方向に関する分解能は高くなるが、各受光光量A0、A1、A2、A3に対応する電荷を求める時間差が大きくなるという問題が生じる。一方、各受光光量A0、A1、A2、A3に対応する電荷を4個の感光部11でそれぞれ生成するとすれば、各受光光量A0、A1、A2、A3に対応する電荷を求める時間差は小さくなるが、4区間の電荷を求める視線方向にずれが生じ視線方向に関する分解能は低下する。そこで、2個の感光部11を用いることにより、変調信号の1周期内で受光光量A0、A1、A2、A3に対応する電荷を2種類ずつ生成する構成を採用してもよい。つまり、2個の感光部11を組にして用い、組になる2個の感光部11に同じ視線方向からの光が入射するようにしてもよい。   By the way, if the charges corresponding to the received light amounts A0, A1, A2, and A3 of the four sections necessary for obtaining the phase difference ψ are generated by one photosensitive portion 11, the resolution in the line-of-sight direction is increased. There arises a problem that the time difference for obtaining the charges corresponding to the received light amounts A0, A1, A2, A3 becomes large. On the other hand, if the charges corresponding to the received light amounts A0, A1, A2, A3 are generated by the four photosensitive portions 11, respectively, the time difference for obtaining the charges corresponding to the received light amounts A0, A1, A2, A3 becomes small. However, a shift occurs in the line-of-sight direction for obtaining the charges in the four sections, and the resolution in the line-of-sight direction decreases. Therefore, a configuration in which two types of charges corresponding to the received light amounts A0, A1, A2, and A3 are generated by using two photosensitive portions 11 within one cycle of the modulation signal may be employed. That is, two photosensitive portions 11 may be used as a set, and light from the same line-of-sight direction may be incident on the two photosensitive portions 11 in the set.

この構成を採用することにより、視線方向の分解能を比較的高くし、かつ受光光量A0、A1、A2、A3に対応する電荷を生成する時間差を少なくすることができる。つまり、受光光量A0、A1、A2、A3に対応する電荷を生成する時間差を少なくしていることにより、対象空間の中で移動している対象物Obについても距離の検出精度を比較的高く保つことができる。なお、この構成では、1個の感光部11で4種類の受光光量A0、A1、A2、A3に対応する電荷を生成する場合よりも視線方向の分解能が低下するが、視線方向の分解能については感光部11の小型化や受光光学系19の設計によって向上させることが可能である。   By adopting this configuration, the resolution in the line-of-sight direction can be made relatively high, and the time difference for generating charges corresponding to the received light amounts A0, A1, A2, and A3 can be reduced. That is, by reducing the time difference for generating charges corresponding to the received light amounts A0, A1, A2, and A3, the distance detection accuracy is kept relatively high even for the object Ob moving in the target space. be able to. In this configuration, the resolution in the line-of-sight direction is lower than that in the case where the charge corresponding to the four types of received light amounts A0, A1, A2, and A3 is generated by one photosensitive unit 11, but the resolution in the line-of-sight direction is as follows. This can be improved by downsizing the photosensitive unit 11 or designing the light receiving optical system 19.

以下に動作を具体的に説明する。図17に示した例では、1個の感光部11について5個の制御電極23を設けた例を示しているが、両側の2個の制御電極23は、感光部11で電荷(電子e)を生成している間に隣接する感光部11に電荷が流出するのを防止するための障壁を形成するものであって、2個の感光部11を組にして用いる場合には隣接する感光部11のポテンシャル井戸24の間には、いずれかの感光部11で障壁が形成されるから、各感光部11には3個ずつの制御電極23を設けるだけで足りることになる。この構成によって、感光部11の1個当たりの占有面積が小さくなり、2個の感光部11を組にして用いながらも視線方向の分解能の低下を抑制することが可能になる。   The operation will be specifically described below. In the example shown in FIG. 17, an example in which five control electrodes 23 are provided for one photosensitive portion 11 is shown. However, two control electrodes 23 on both sides are charged (electrons e) by the photosensitive portion 11. In the case where two photosensitive portions 11 are used as a pair, the adjacent photosensitive portions are formed. Since any one of the photosensitive portions 11 forms a barrier between the 11 potential wells 24, it is sufficient to provide three photosensitive electrodes 11 for each of the photosensitive portions 11. With this configuration, the occupation area per one photosensitive portion 11 is reduced, and it is possible to suppress a decrease in resolution in the line-of-sight direction while using the two photosensitive portions 11 as a set.

なお、上述した距離画像センサ10の構成例では、受光光量A0、A1、A2、A3に対応する4区間を変調信号の1周期内で位相の間隔が90度ずつになるように設定しているが、変調信号に対する位相が既知であれば4区間は90度以外の適宜の間隔で設定することが可能である。ただし、間隔が異なれば位相差ψを求める算式は異なる。また、4区間の受光光量に対応した電荷を取り出す周期は、対象物Obの反射率および外光成分が変化せず、かつ位相差ψも変化しない時間内であれば、変調信号の1周期内で4区間の信号電荷を取り出すことも必須ではない。さらに、太陽光や照明光のような外乱光の影響があるときには、発光源2から放射される光の波長のみを透過させる光学フィルタを感光部11の前に配置するのが望ましい。   In the configuration example of the distance image sensor 10 described above, four sections corresponding to the received light amounts A0, A1, A2, and A3 are set so that the phase interval is 90 degrees within one period of the modulation signal. However, if the phase with respect to the modulation signal is known, the four sections can be set at appropriate intervals other than 90 degrees. However, the formula for obtaining the phase difference ψ differs if the interval is different. In addition, the period of taking out the electric charge corresponding to the received light quantity of the four sections is within one period of the modulation signal as long as the reflectance and the external light component of the object Ob do not change and the phase difference ψ does not change. Thus, it is not essential to take out signal charges in four sections. Furthermore, when there is an influence of disturbance light such as sunlight or illumination light, it is desirable to dispose an optical filter that transmits only the wavelength of light emitted from the light source 2 in front of the photosensitive portion 11.

次に上述の距離画像センサ10を用いた人体検知装置の全体構成について説明する。本実施形態の人体検知装置は、図1に示すように上述の距離画像センサ10と、人体検知部20とを備えている。   Next, the overall configuration of the human body detection apparatus using the above-described distance image sensor 10 will be described. As shown in FIG. 1, the human body detection device of this embodiment includes the above-described distance image sensor 10 and a human body detection unit 20.

距離画像センサ10は、図2(a)に示すように対象領域30の上方に設置されており、対象領域30を上方から撮像する。すなわち、発光源2は下方の対象領域30に対して照射光を照射しており、制御回路部3によって発光源2からの照射光の強度が周期的に変化するように変調されるので、画像生成部4によって、発光源2からの照射光が対象領域30内の物体で反射されて感光部11で受光されるまでの光の位相差を物体までの距離に換算した距離値を画素値とする距離画像が生成される。尚、本実施形態ではTOF法により距離画像を得る距離画像センサ10を用いているが、互いに異なる方向から対象領域を撮影する複数台のカメラを設置し、各カメラで撮影された複数の画像から、三角測量の原理を用いて、所定の測定点から対象領域内の物体までの距離値を画素値とする距離画像を作成するようにしても良い。   The distance image sensor 10 is installed above the target area 30 as shown in FIG. 2A, and images the target area 30 from above. In other words, the light source 2 irradiates the lower target region 30 with irradiation light, and the control circuit unit 3 modulates the intensity of the irradiation light from the light source 2 so as to periodically change. A distance value obtained by converting the phase difference of light from the generation unit 4 until the irradiation light from the light source 2 is reflected by the object in the target region 30 and received by the photosensitive unit 11 into the distance to the object is defined as a pixel value. A distance image is generated. In this embodiment, the distance image sensor 10 that obtains the distance image by the TOF method is used. However, a plurality of cameras that capture the target region from different directions are installed, and the plurality of images captured by the cameras are used. Using the principle of triangulation, a distance image having a pixel value as a distance value from a predetermined measurement point to an object in the target region may be created.

人体検知部20は、距離画像センサ10により撮像された距離画像を用い、後述の人体検知方法を実行することで、対象領域30内の人体を検知するコンピュータからなり、以下にその人体検知方法を図面に基づいて説明する。ここでは、図2(a)に示すように対象領域30内に大人50と子供51が1人ずついる場合について説明する。   The human body detection unit 20 includes a computer that detects a human body in the target region 30 by executing a human body detection method described later using a distance image captured by the distance image sensor 10, and the human body detection method is described below. This will be described with reference to the drawings. Here, a case where there are one adult 50 and one child 51 in the target area 30 as shown in FIG.

人体検知部20は、画像生成部4から距離画像の画像データが入力されると、距離画像を構成する複数の画素から、画素値が閾値以下となる画素領域を抽出する領域抽出処理を、上記の閾値を画素値が最短の画素(以下、最短画素と言う。)の画素値から段階的に伸ばして複数回行う。例えば図3(a)に示すように上記の閾値を最短画素の画素値L1からL2、L3、L4、L5と段階的に伸ばした場合、距離画像センサ10から大人50の頭部までの距離になるので、距離値が閾値L1〜L5以下となる画素領域A1〜A5はそれぞれ略円形の領域となる(図3(b)参照)。なお、図3(b)中の曲線(画素値が閾値となる画素を結んでできる等高線)で囲まれた領域がそれぞれ画素領域A1〜A5となり、他の図でも同様である。また上記の閾値をL6、L7に伸ばした場合、距離画像センサ10から大人50の肩付近までの距離になるので、距離値が閾値L6,L7以下となる画素領域A6、A7は略楕円形の領域となる。一方、子供51は大人50に比べて背が低いので、図4(a)に示すように上記の閾値をL11(>L7)、L12、L13まで段階的に伸ばすと、距離画像センサ10から子供51の頭部までの距離となり、距離値が閾値L11、L12、L13以下となる画素領域A11、A12,A13は略円形の領域となる(図4(b)参照)。さらに上記の閾値をL14、L15まで段階的に伸ばすと、距離画像センサ10から子供51の肩付近までの距離になるので、距離値が閾値L14,L15以下となる画素領域A14、A15は略楕円形の領域となる。   When the image data of the distance image is input from the image generation unit 4, the human body detection unit 20 performs region extraction processing for extracting a pixel region having a pixel value equal to or less than a threshold from a plurality of pixels constituting the distance image. The threshold value is increased stepwise from the pixel value of the pixel with the shortest pixel value (hereinafter referred to as the shortest pixel), and is performed a plurality of times. For example, as shown in FIG. 3A, when the above threshold value is gradually increased from the pixel value L1 of the shortest pixel to L2, L3, L4, and L5, the distance from the distance image sensor 10 to the head of the adult 50 is increased. Therefore, the pixel areas A1 to A5 whose distance values are equal to or less than the threshold values L1 to L5 are substantially circular areas (see FIG. 3B). In addition, the area | region enclosed by the curve (Contour line formed by connecting the pixel whose pixel value becomes a threshold value) in FIG.3 (b) becomes pixel area A1-A5, respectively, and is the same also in another figure. Further, when the above threshold value is extended to L6 and L7, the distance from the distance image sensor 10 to the vicinity of the shoulder of the adult 50 is, so that the pixel areas A6 and A7 whose distance values are equal to or less than the threshold values L6 and L7 are substantially elliptical. It becomes an area. On the other hand, since the child 51 is shorter than the adult 50, as shown in FIG. 4A, when the above threshold value is gradually increased to L11 (> L7), L12, and L13, the child from the distance image sensor 10 The pixel areas A11, A12, and A13 whose distance values are equal to or smaller than the thresholds L11, L12, and L13 are substantially circular areas (see FIG. 4B). Further, when the above threshold value is extended stepwise to L14 and L15, the distance from the distance image sensor 10 to the vicinity of the shoulder of the child 51 is obtained, so that the pixel areas A14 and A15 having distance values equal to or less than the threshold values L14 and L15 are substantially elliptical. It becomes an area of shape.

ここで図2(b)は、距離画像G1を構成する複数の画素から、画素値が閾値以下となる画素領域を抽出する領域抽出処理を、上記の閾値L1〜L7、L11〜L15に段階的に伸ばして複数回行った結果を示しており、大人50および子供51にそれぞれ対応する画素領域A1〜A7、A11〜A15が抽出される。なお、子供51の頭部は大人50よりも小さく、また肩幅も狭いので、子供51の頭部に対応する画素領域A13は大人50の頭部の画素領域A5よりも狭く、また子供51の肩部に対応する画素領域A15も大人50の肩部の画素領域A7よりも狭くなっている。また上方に設置された距離画像センサ10から、略真下にいる大人50と子供51を撮影した場合、頭部の水平断面が最大となる高さ位置よりも下側の頭部は距離画像に現れなくなる。同様に大人50および子供51の胴体部分では、胴体の水平断面が最大となる高さ位置よりも下側の胴体部は距離画像に現れなくなる。   Here, FIG. 2B shows a step-by-step process for extracting the pixel region where the pixel value is equal to or smaller than the threshold value from the plurality of pixels constituting the distance image G1 to the threshold values L1 to L7 and L11 to L15. The pixel regions A1 to A7 and A11 to A15 corresponding to the adult 50 and the child 51, respectively, are extracted. Since the head of the child 51 is smaller than the adult 50 and the shoulder width is narrow, the pixel area A13 corresponding to the head of the child 51 is narrower than the pixel area A5 of the head of the adult 50, and the shoulder of the child 51 The pixel area A15 corresponding to the portion is also narrower than the pixel area A7 on the shoulder of the adult 50. Further, when the adult image 50 and the child 51 that are almost directly below are photographed from the distance image sensor 10 installed above, the head portion below the height position at which the horizontal cross section of the head portion becomes maximum appears in the distance image. Disappear. Similarly, in the body part of the adult 50 and the child 51, the body part below the height position where the horizontal cross section of the body is the maximum does not appear in the distance image.

人体検知部20は、上述のように閾値を段階的に伸ばして領域抽出処理を繰り返し行うのであるが、閾値を伸ばして領域抽出処理を行う毎に、新たに抽出された画素領域が、既に抽出されている画素領域と部分的に重複するか否かを判断し、部分的に重複する画素領域があれば、これらの画素領域が同一の物体を示していると判断して、重複する複数の画素領域の全体に同一の識別子を割り当てる識別子割当処理を実行する。   As described above, the human body detection unit 20 repeats the region extraction process by gradually increasing the threshold value, but each time the region extraction process is performed by increasing the threshold value, a newly extracted pixel region is already extracted. It is determined whether or not the pixel area partially overlaps, and if there are pixel areas that partially overlap, it is determined that these pixel areas indicate the same object, and a plurality of overlapping An identifier assignment process for assigning the same identifier to the entire pixel area is executed.

例えば画素値が上記の閾値L1以下となる画素領域を抽出した段階では、画素領域が1つだけなので、この画素領域A1に対して個別の識別子LB1を割り当てる。図5(b)は識別子LB1が割り当てられた画素領域を示しており、識別子LB1を割り当てた画素領域にはハッチングを施してある。その後、閾値をL3まで伸ばして画素領域A3を抽出すると、新たに抽出した画素領域A3に、前回までの抽出処理で抽出された画素領域A1,A2が包含されているので、複数の画素領域A1〜A3の全体に同一の識別子LB1を割り当てる(図6(a)参照)。つまり識別子LB1を割り当てた画素領域に新たに画素領域A3を追加する。さらに、閾値をL4まで伸ばして画素領域A4を抽出すると、新たに抽出した画素領域A4に、既に抽出された画素領域A1〜A3が全て包含されているので、複数の画素領域A1〜A4の全体に同一の識別子LB1を割り当てる(図6(b)参照)。   For example, when a pixel area having a pixel value equal to or less than the threshold value L1 is extracted, there is only one pixel area, and therefore an individual identifier LB1 is assigned to the pixel area A1. FIG. 5B shows a pixel area to which the identifier LB1 is assigned, and the pixel area to which the identifier LB1 is assigned is hatched. Thereafter, when the pixel area A3 is extracted by extending the threshold value to L3, the newly extracted pixel area A3 includes the pixel areas A1 and A2 extracted in the previous extraction process. -A3 is assigned the same identifier LB1 (see FIG. 6A). That is, the pixel area A3 is newly added to the pixel area to which the identifier LB1 is assigned. Further, when the pixel area A4 is extracted by extending the threshold value to L4, the newly extracted pixel area A4 includes all the already extracted pixel areas A1 to A3. Are assigned the same identifier LB1 (see FIG. 6B).

なお、対象領域30内の人物が直立列姿勢を保っている場合は、距離画像センサ10に近い側から順番に複数の画素領域A1…を抽出すると、距離画像センサ10からの距離値が少し遠い画素領域に、距離値がより短い画素領域が包含されるのであるが、図6(c)(d)に示すように対象領域30内の人物が前傾姿勢をとっている場合は距離値が少し遠い画素領域に、距離値がより短い画素領域が包含されず、部分的に重複するだけの場合がある。すなわち、画素値が閾値となる画素を結んでできる等高線が途切れてしまう場合がある。   When a person in the target area 30 maintains an upright posture, when a plurality of pixel areas A1,... Are extracted in order from the side closer to the distance image sensor 10, the distance value from the distance image sensor 10 is slightly far. The pixel area includes a pixel area with a shorter distance value. However, as shown in FIGS. 6C and 6D, when the person in the target area 30 takes a forward leaning posture, the distance value is There is a case where a pixel region having a shorter distance value is not included in a pixel region that is a little far away and only partially overlaps. That is, the contour line formed by connecting pixels whose pixel values are threshold values may be interrupted.

すなわち、対象領域30内の人物が前傾姿勢をとっている場合に、距離画像センサ10に近い側から順番に複数の画素領域を抽出すると、人体の頭部に対応する画素領域A1〜A5では、距離値が少し遠い画素領域に、距離値がより短い画素領域が包含されるので、図6(c)に示すように閾値をL5まで伸ばして画素領域A5を抽出した段階では、人体検知部20は、画素領域A5に包含される画素領域A1〜A4を同一の物体と判断し、これらの画素領域A1〜A5の全体、すなわち画素領域A5に識別子LB1を割り当てる。   That is, when a plurality of pixel areas are extracted in order from the side closer to the distance image sensor 10 when a person in the target area 30 is in a forward leaning posture, the pixel areas A1 to A5 corresponding to the head of the human body Since the pixel region having a short distance value is included in the pixel region having a slightly far distance value, the human body detection unit is in a stage where the threshold value is extended to L5 and the pixel region A5 is extracted as shown in FIG. 20 determines that the pixel areas A1 to A4 included in the pixel area A5 are the same object, and assigns the identifier LB1 to the whole of these pixel areas A1 to A5, that is, the pixel area A5.

一方、人体の肩付近に対応する画素領域A6、A7では、この人物が前傾姿勢を保っているために、距離値が少し遠い画素領域に、距離値がより短い画素領域が包含されなくなって、部分的に重複するだけなので、図6(d)に示すように閾値をL6まで伸ばして画素領域A6を抽出した段階では、人体検知部20は、部分的に重複する画素領域A5、A6の全体を同一の物体と判断し、これらの画素領域A1〜A6の全体、すなわち画素領域A5、A6の和集合に識別子LB1を割り当てる。   On the other hand, in the pixel areas A6 and A7 corresponding to the vicinity of the shoulder of the human body, since this person maintains a forward leaning posture, the pixel area having a shorter distance value is not included in the pixel area having a slightly longer distance value. Since the pixel region A6 is extracted by extending the threshold value to L6 as shown in FIG. 6 (d), the human body detection unit 20 detects the partially overlapping pixel regions A5 and A6. The entirety is determined to be the same object, and the identifier LB1 is assigned to the whole of these pixel areas A1 to A6, that is, the union of the pixel areas A5 and A6.

そして、人体検知部20では、同一の識別子を割り当てた画素領域の画素数が、人体の大きさに相当する画素数を超えるという判定条件Z1が成立すると、上述の領域抽出処理と識別子割当処理を終了し、同一の識別子が割り当てられた画素領域を人体として抽出する。図8(a)は上記の判定条件Z1が成立した状態を示しており、人体検知部20は上述の領域抽出処理と識別子割当処理とを実行した結果、大人50に対応する画素領域A1…に識別子LB1を割り当て、子供51に対応する画素領域A11…には別個の識別子LB2を割り当てたものとする。そして、人体検知部20では、識別子LB1を割り当てた画素領域A1…の画素数が所定の画素数を超えると、この識別子LB1の画素領域について領域抽出処理および識別子割当処理を終了し、識別子LB1が割り当てられた画素領域A1〜A5を人体として抽出する。また人体検知部20では、識別子LB2を割り当てた画素領域A11…の画素数が所定の画素数を超えると、この識別子LB2の画素領域について領域抽出処理および識別子割当処理を終了し、識別子LB2が割り当てられた画素領域A11〜A14を人体として抽出する。なお、大人50に比べて子供51は体格が小さいので、大人50の場合は頭部に対応する画素領域A1〜A5を抽出した段階で判定条件Z1が成立するが、子供51の場合は頭部に加えて肩に対応する画素領域A11〜A14を抽出した段階で判定条件Z1が成立する。   When the determination condition Z1 that the number of pixels in the pixel area to which the same identifier is assigned exceeds the number of pixels corresponding to the size of the human body is satisfied, the human body detection unit 20 performs the above-described area extraction processing and identifier assignment processing. When finished, the pixel area to which the same identifier is assigned is extracted as a human body. FIG. 8A shows a state in which the above-described determination condition Z1 is satisfied. As a result of the above-described region extraction processing and identifier assignment processing, the human body detection unit 20 generates pixel regions A1,. Assume that an identifier LB1 is assigned and a separate identifier LB2 is assigned to the pixel region A11... Corresponding to the child 51. When the number of pixels in the pixel area A1... To which the identifier LB1 is assigned exceeds a predetermined number of pixels, the human body detection unit 20 ends the area extraction process and the identifier assignment process for the pixel area of the identifier LB1. The assigned pixel areas A1 to A5 are extracted as a human body. In addition, when the number of pixels in the pixel area A11... To which the identifier LB2 is assigned exceeds a predetermined number of pixels, the human body detection unit 20 ends the area extraction process and the identifier assignment process for the pixel area of the identifier LB2, and assigns the identifier LB2. The obtained pixel areas A11 to A14 are extracted as a human body. Since the child 51 is smaller in size than the adult 50, the determination condition Z1 is established at the stage where the pixel areas A1 to A5 corresponding to the head are extracted in the case of the adult 50. In addition to the above, the determination condition Z1 is established when the pixel areas A11 to A14 corresponding to the shoulder are extracted.

このように、距離画像センサ10に近い側から順番に画素領域を抽出し、新たに抽出した画素領域が、既に抽出された画素領域と重複する場合は、重複する複数の画素領域を同一の物体と判断して、これらの画素領域の全体に同一の識別子を付与しており、同一の識別子を付与した画素領域の画素数が人体の大きさに相当する画素数を超えるという判定条件Z1が成立すれば、同一の識別子を付与した画素領域を人体として抽出しているので、従来の人体検知方法のように等高線が閉じないような場合でも確実に人体を検知できる。また判定条件Z1が成立した段階で、その識別子を割り当てた画素領域について、領域抽出処理および識別子付与処理を終了しているので、閾値を床面まで伸ばして画素領域を抽出する場合に比べて、人の存在を短時間で検知することができ、また識別子を付与した画素領域を記憶させるメモリの容量も小さくて済むという利点がある。 As described above , when the pixel area is extracted in order from the side closer to the distance image sensor 10 and the newly extracted pixel area overlaps with the already extracted pixel area, the plurality of overlapping pixel areas are regarded as the same object. Therefore, the same identifier is assigned to all of these pixel areas, and the determination condition Z1 is established that the number of pixels in the pixel area to which the same identifier is assigned exceeds the number of pixels corresponding to the size of the human body. Then, since the pixel area | region which provided the same identifier is extracted as a human body, even when a contour line does not close like the conventional human body detection method, a human body can be detected reliably. In addition, since the region extraction process and the identifier assigning process have been completed for the pixel area to which the identifier is assigned when the determination condition Z1 is satisfied, compared with the case where the pixel area is extracted by extending the threshold value to the floor surface, There is an advantage that the presence of a person can be detected in a short time, and the capacity of the memory for storing the pixel region to which the identifier is added can be reduced.

なお、距離画像センサ10上方に設置されて、下方の対象領域30を撮像しているが、対象領域30の側方に取り付けて、対象領域30内の人物を横方向から撮影しても良いし、距離画像センサ10を天井の隅に設置して、対象領域30内の人物を斜め上方から撮影するようにしても良く、このようにして撮影された距離画像を用いても、上述の人体検知方法により対象領域30内の人体を検知することが可能である。 Incidentally, the distance image sensor 10 is disposed above, but by capturing the lower target region 30, is attached to the side of the target area 30, after taking a person target region 30 from the side Alternatively, the distance image sensor 10 may be installed in the corner of the ceiling so that the person in the target area 30 can be photographed from obliquely above. Even if the distance image photographed in this way is used, It is possible to detect the human body in the target area 30 by the human body detection method.

また、人体検知部20では、同一の識別子を割り当てた画素領域の画素数が、人体の大きさに相当する画素数を超えるという判定条件Z1を用いているが、この判定条件Z1の代わりに、上記閾値を、最短画素の画素値から一定距離まで伸ばした場合に、同一の識別子を割り当てた複数の画素領域が単峰状の物体となるという判定条件Z2が成立すれば、領域抽出処理および識別子割当処理を終了し、同一の識別子が割り当てられた画素領域を Also, the human body detection unit 20, the number of pixels of the pixel region assigned the same identifier, but using a determination condition Z1 that exceeds the number of pixels corresponding to the body size, in place of the determination condition Z1 If the determination condition Z2 that the plurality of pixel areas to which the same identifier is assigned becomes a single peak object when the threshold value is extended from the pixel value of the shortest pixel to a certain distance, the area extraction process and End the identifier assignment process, and select the pixel area to which the same identifier is assigned.

ここで、人体検知部20が、大人50に対応する画素領域A1…に識別子LB1を割り当て、子供51に対応する画素領域A11…には別個の識別子LB2を割り当てたものとする。そして、人体検知部20が、上記の閾値を最短画素の画素値から一定距離(例えば10cm)まで伸ばした場合、識別子LB1が割り当てられた画素領域は領域A1〜A3となり、識別子LB2が割り当てられた画素領域は領域A11〜A13となる(図8(b)参照)。上記の一定距離を人間の頭部の長さよりも短い距離(例えば10cm)に設定した場合、識別子LB1が割り当てられた画素領域A1〜A3、および、識別子LB2が割り当てられた画素領域A11〜A13が人間の頭部であれば、これらの画素領域A1〜A3、A11〜A13は共に単峰状の物体となる。したがって、上記の閾値を一定距離まで伸ばした時に同一の識別子が割り当てられた画素領域の全体が単峰状の物体となっていれば、人体検知部20は同一の識別子が割り当てられた画素領域を人体と判断して、抽出することが可能になる。この判定条件Z2を用いた場合は、対象領域内の人物の背丈が異なる場合でも、人間の頭部の形状を検出することで、人体を確実に検出することが可能になる。また判定条件Z2が成立した段階で、その識別子を割り当てた画素領域について、領域抽出処理および識別子付与処理を終了しているので、閾値を床面まで伸ばして画素領域を抽出する場合に比べて、人の存在を短時間で検知することができ、また識別子を付与した画素領域を記憶させるメモリの容量も小さくて済むという利点がある。なお判定条件Z2に加えて、上述の判定条件Z1が両方共に成立すれば、領域抽出処理および識別子割当処理を終了し、同一の識別子が割り当てられた画素領域を人体と抽出するようにしても良く、人体よりも小さい大きさのものを誤検出することがなく、より確実に人体を抽出できる。   Here, it is assumed that the human body detection unit 20 assigns the identifier LB1 to the pixel region A1 corresponding to the adult 50, and assigns a separate identifier LB2 to the pixel region A11 corresponding to the child 51. When the human body detection unit 20 extends the above threshold from the pixel value of the shortest pixel to a certain distance (for example, 10 cm), the pixel areas to which the identifier LB1 is assigned are areas A1 to A3, and the identifier LB2 is assigned. The pixel areas are areas A11 to A13 (see FIG. 8B). When the fixed distance is set to a distance (for example, 10 cm) shorter than the length of the human head, the pixel areas A1 to A3 to which the identifier LB1 is assigned and the pixel areas A11 to A13 to which the identifier LB2 is assigned are In the case of a human head, these pixel areas A1 to A3 and A11 to A13 are all unimodal objects. Therefore, if the entire pixel area to which the same identifier is assigned when the above threshold is extended to a certain distance is a unimodal object, the human body detection unit 20 determines the pixel area to which the same identifier is assigned. It can be extracted by judging the human body. When this determination condition Z2 is used, it is possible to reliably detect the human body by detecting the shape of the human head even if the height of the person in the target region is different. Further, since the region extraction process and the identifier assigning process have been completed for the pixel region to which the identifier is assigned at the stage where the determination condition Z2 is satisfied, compared with the case where the pixel region is extracted by extending the threshold value to the floor surface, There is an advantage that the presence of a person can be detected in a short time, and the capacity of the memory for storing the pixel region to which the identifier is added can be reduced. If both of the above-described determination conditions Z1 are satisfied in addition to the determination condition Z2, the region extraction process and the identifier assignment process may be terminated, and the pixel area to which the same identifier is assigned may be extracted from the human body. Therefore, it is possible to extract the human body more reliably without erroneously detecting an object having a size smaller than that of the human body.

また、人体検知部20が、上述の判定条件Z1の代わりに、同一の識別子を割り当てた複数の画素領域の内、新たに抽出した画素領域中の画素で、既に抽出した画素領域の画素と重複していない画素の画素数が所定のしきい値以下になるという判定条件Z3が成立すれば、領域抽出処理および識別子割当処理を終了し、同一の識別子が割り当てられた画素領域を人体と抽出するようにしても良い。   In addition, the human body detection unit 20 overlaps the pixels in the pixel area that has already been extracted among the plurality of pixel areas to which the same identifier is assigned instead of the above-described determination condition Z1. If the determination condition Z3 that the number of pixels that have not been processed is equal to or less than a predetermined threshold is satisfied, the region extraction processing and the identifier assignment processing are terminated, and the pixel region to which the same identifier is assigned is extracted from the human body. You may do it.

ここで、人体検知部20が、大人50に対応する画素領域A1…に識別子LB1を割り当て、子供51に対応する画素領域A11…には別個の識別子LB2を割り当てたものとする。大人50の場合は頭頂部から閾値L4付近までは、識別子LB1を割り当てた画素領域に新たな画素領域が追加される毎に、この画素領域の画素数が大きく増加するものの、頭部の水平断面が最大となる高さ位置に近付くにつれて水平断面の増加分が減少してくるため、閾値をL4からL6の間で変化させても、識別子LB1を割り当てた画素領域の画素数は殆ど増加しなくなる。同様に子供51の場合も、頭頂部から閾値A12付近までは、識別子LB2を割り当てた画素領域に新たな画素領域が追加される毎に、この画素領域の画素数が大きく増加するものの、頭部の水平断面が最大となる高さ位置に近付くにつれて水平断面の増加分が減少してくるため、閾値をL12からL14の間で変化させても、識別子LB2を割り当てた画素領域の画素数は殆ど増加しなくなる。   Here, it is assumed that the human body detection unit 20 assigns the identifier LB1 to the pixel region A1 corresponding to the adult 50, and assigns a separate identifier LB2 to the pixel region A11 corresponding to the child 51. In the case of an adult 50, from the top of the head to the vicinity of the threshold L4, each time a new pixel area is added to the pixel area to which the identifier LB1 is assigned, the number of pixels in this pixel area increases greatly, but the horizontal section of the head Since the increase in the horizontal cross section decreases as the height approaches the maximum height, the number of pixels in the pixel area to which the identifier LB1 is assigned hardly increases even when the threshold is changed between L4 and L6. . Similarly, in the case of the child 51, from the top of the head to the vicinity of the threshold A12, the number of pixels in the pixel area increases greatly each time a new pixel area is added to the pixel area to which the identifier LB2 is assigned. Since the increase in the horizontal section decreases as the horizontal section approaches the maximum height, the number of pixels in the pixel area to which the identifier LB2 is assigned is almost the same even if the threshold is changed between L12 and L14. Does not increase.

したがって、図8(c)に示すように大人50の場合には、閾値をL1、L2…L5と伸ばして識別子LB1が割り当てられた画素領域A1〜A5を抽出した段階で、新たに抽出された画素領域A5中の画素で、既に抽出した画素領域A1〜A4の画素と重複していない画素の画素数が所定のしきい値以下になるという判定条件Z3が成立するので、人体検知部20では、この判定条件Z3の成立により頭部の形状を安定に抽出できたと判断し、識別子LB1が割り当てられた画素領域A1〜A5を人体と判断する。同様に子供51の場合には、閾値をL11、L12、L13と伸ばして識別子LB2が割り当てられた画素領域A11〜A13を抽出した段階で、新たに抽出された画素領域A13中の画素で、既に抽出した画素領域A11、A12の画素と重複していない画素の画素数が所定のしきい値以下になるという判定条件Z3が成立するので、人体検知部20では、この判定条件Z3の成立により頭部の形状を安定に抽出できたと判断し、識別子LB2が割り当てられた画素領域A11〜A13を人体と判断して抽出することが可能になる。この判定条件Z3を用いた場合でも、人体の頭部の形状を検出することで人体と判断しているので、確実に人体を検知することが可能になる。また判定条件Z3が成立した段階で、その識別子を割り当てた画素領域について、領域抽出処理および識別子付与処理を終了しているので、閾値を床面まで伸ばして画素領域を抽出する場合に比べて、人の存在を短時間で検知することができ、また識別子を付与した画素領域を記憶させるメモリの容量も小さくて済むという利点がある。   Accordingly, as shown in FIG. 8C, in the case of an adult 50, the threshold values are increased to L1, L2,... L5, and the pixel regions A1 to A5 to which the identifier LB1 is assigned are newly extracted. Since the determination condition Z3 that the number of pixels in the pixel area A5 that do not overlap with the pixels of the pixel areas A1 to A4 that have already been extracted is equal to or less than a predetermined threshold value is satisfied, the human body detection unit 20 Therefore, it is determined that the shape of the head can be stably extracted by satisfying the determination condition Z3, and the pixel areas A1 to A5 to which the identifier LB1 is assigned are determined to be human bodies. Similarly, in the case of the child 51, when the pixel areas A11 to A13 to which the threshold value is increased to L11, L12, and L13 and the identifier LB2 is assigned are extracted, the pixels in the newly extracted pixel area A13 are already Since the determination condition Z3 that the number of pixels that do not overlap with the pixels of the extracted pixel areas A11 and A12 is equal to or less than a predetermined threshold is satisfied, the human body detection unit 20 recognizes that the determination condition Z3 satisfies the determination condition Z3. It can be determined that the shape of the part has been stably extracted, and the pixel areas A11 to A13 to which the identifier LB2 is assigned can be determined as the human body and extracted. Even when this determination condition Z3 is used, since the human body is determined by detecting the shape of the head of the human body, the human body can be reliably detected. In addition, since the region extraction process and the identifier assigning process have been completed for the pixel area to which the identifier is assigned at the stage where the determination condition Z3 is satisfied, compared with the case where the pixel area is extracted by extending the threshold value to the floor surface, There is an advantage that the presence of a person can be detected in a short time, and the capacity of the memory for storing the pixel region to which the identifier is added can be reduced.

なお人体検知部20が、同一の識別子を割り当てた画素領域の画素数が人体の大きさに相当する画素数を超えるという判定条件Z1と、同一の識別子を割り当てた複数の画素領域の内、新たに抽出した画素領域中の画素で、既に抽出した画素領域の画素と重複していない画素の画素数が所定のしきい値以下になるという判定条件Z3が両方共に成立すれば、領域抽出処理および識別子割当処理を終了して、同一の識別子が割り当てられた画素領域を人体と抽出するようにしても良く、この場合には図8(d)に示すように、人体検知部20が、肩部分まで抽出した段階で、識別子LB1、LB2を割り当てた画素領域を人体と判断する。   It should be noted that the human body detection unit 20 determines that the number of pixels in the pixel area to which the same identifier is assigned exceeds the number of pixels corresponding to the size of the human body, and a new one of the plurality of pixel areas to which the same identifier is assigned. If both of the determination conditions Z3 that the number of pixels that are not overlapped with the pixels in the already extracted pixel area are equal to or less than the predetermined threshold among the pixels in the extracted pixel area are satisfied, The identifier assigning process may be terminated, and the pixel region to which the same identifier is assigned may be extracted as a human body. In this case, as shown in FIG. At the stage of extraction, the pixel area to which the identifiers LB1 and LB2 are assigned is determined as a human body.

ところで、本実施形態の人体検知部20は、上述の判定条件Z1の代わりに、同一の識別子を割り当てた複数の画素領域の内、新たに抽出した画素領域に、既に抽出された画素領域が包含される場合に、新たに抽出した画素領域において、既に抽出された画素領域の外側にある帯状部分の幅の平均値が所定のしきい値以下になるという判定条件Z4が成立すれば、領域抽出処理および識別子割当処理を終了し、同一の識別子が割り当てられた画素領域を人体と抽出する Meanwhile, the human body detection unit 20 of the present embodiment, instead of the above-described determination conditions Z1, among the plurality of pixel areas assigned the same identifier, the newly extracted pixel region, is already a pixel area extracted If included in the newly extracted pixel area, if the determination condition Z4 that the average value of the widths of the strip-like portions outside the already extracted pixel area is equal to or smaller than a predetermined threshold is satisfied, The extraction process and the identifier assignment process are finished, and the pixel region to which the same identifier is assigned is extracted as a human body .

人体検知部20は、閾値を段階的に伸ばして、画素値が閾値以下となる画素領域を抽出する領域抽出処理を行うとともに、部分的に重複する画素領域を同一の物体と判断して、重複する画素領域の全体に同一の識別子を割り付ける識別子割付処理を実行するのであるが、対象領域30内の人体が直立している場合は、同一の識別子が割り当てられる複数の画素領域の内、先に抽出された画素領域は、閾値を少し遠くして抽出した画素領域に包含されることになる。特に人体の頭部では同一の識別子を割り当てた複数の画素領域が同心円状になっている。また、頭頂部から頭部の水平断面が最大となる高さ位置に近付くにつれて水平断面の増加分が減少してくるため、同一の識別子が割り当てられた複数の画素領域の内、新たに抽出された画素領域において、既に抽出された画素領域の外側にある帯状部分の幅の平均値が所定のしきい値以下になるという判定条件Z4が成立すれば、頭部の形状を確実に検出できたと判断でき、同一の識別子が割り当てられた画素領域を人体として抽出するのである。   The human body detection unit 20 performs a region extraction process for extracting a pixel region whose pixel value is equal to or smaller than the threshold value by gradually increasing the threshold value, and determines a partially overlapping pixel region as the same object, In the case where the human body in the target area 30 is upright, the first of the plurality of pixel areas to which the same identifier is assigned is first executed. The extracted pixel area is included in the extracted pixel area with a little threshold. In particular, in the human head, a plurality of pixel regions to which the same identifier is assigned are concentric. In addition, since the increase in the horizontal cross section decreases from the top of the head toward the height position at which the horizontal cross section of the head reaches the maximum, a newly extracted pixel area to which the same identifier is assigned is newly extracted. If the determination condition Z4 that the average value of the width of the band-shaped portion outside the already extracted pixel area is equal to or less than a predetermined threshold is satisfied in the pixel area, the shape of the head can be detected reliably. The pixel area to which the same identifier can be determined is extracted as a human body.

ここで、同一の識別子が割り当てられた複数の画素領域の内、新たに抽出された画素領域において、既に抽出された画素領域の外側にある帯状部分の幅は以下のような方法で測定できる。図7に示すように、人体検知部20は一番最初に検出した画素領域A1の重心位置Oを通って、互いに直交する2つの直線PQ、RSを規定する。次に、人体検知部20は、上記の帯状部分(例えば画素領域A5から画素領域A4を除いた部分)と線分OPとが交差する2つの点T1、T2を求めて、2点T1,T2間の距離を求めるとともに、上記の帯状部分と他の3つの線分OQ、OR、OSとがそれぞれ交差する6つの点T3〜T8を求め、2点T3、T4間、T5,T6間、T7,T8間の距離を求め、これら4つの距離の平均を求めることで、上記帯状部分の幅の平均値を簡易的に求めることができる。而して、この判定条件Z4を用いた場合でも、人体の頭部の形状を検出することで人体と判断しているので、人体を確実に検知することができる。また判定条件Z4が成立した段階で、その識別子を割り当てた画素領域について、領域抽出処理および識別子付与処理を終了しているので、閾値を床面まで伸ばして画素領域を抽出する場合に比べて、人の存在を短時間で検知することができ、また識別子を付与した画素領域を記憶させるメモリの容量も小さくて済むという利点がある。なお、判定条件Z4に加えて、上述の判定条件Z1が両方共に成立すれば、領域抽出処理および識別子割当処理を終了し、同一の識別子が割り当てられた画素領域を人体と抽出するようにしても良く、人体よりも小さい大きさのものを誤検出することがなく、より確実に人体を抽出できる。   Here, in the newly extracted pixel area among the plurality of pixel areas to which the same identifier is assigned, the width of the strip-shaped portion outside the already extracted pixel area can be measured by the following method. As shown in FIG. 7, the human body detection unit 20 defines two straight lines PQ and RS that are orthogonal to each other through the barycentric position O of the pixel area A1 detected first. Next, the human body detection unit 20 obtains two points T1 and T2 at which the above-described band-like part (for example, a part obtained by removing the pixel area A4 from the pixel area A5) and the line segment OP, and obtains two points T1 and T2. In addition to obtaining the distance between them, six points T3 to T8 at which the above-mentioned band-like portion intersects with the other three line segments OQ, OR, and OS are obtained, and between two points T3 and T4, between T5 and T6, and T7. , T8, and the average of these four distances, the average value of the width of the band-like portion can be easily determined. Thus, even when this determination condition Z4 is used, since the human body is determined by detecting the shape of the head of the human body, the human body can be reliably detected. In addition, since the region extraction process and the identifier assigning process have been completed for the pixel region to which the identifier is assigned at the stage where the determination condition Z4 is satisfied, compared with the case where the pixel region is extracted by extending the threshold value to the floor surface, There is an advantage that the presence of a person can be detected in a short time, and the capacity of the memory for storing the pixel region to which the identifier is added can be reduced. If both of the above-described determination conditions Z1 are satisfied in addition to the determination condition Z4, the region extraction process and the identifier assignment process are terminated, and the pixel region to which the same identifier is assigned is extracted from the human body. The human body can be extracted more reliably without erroneously detecting a size smaller than the human body.

また上述の各検知方法において、人体検知部20が、領域抽出処理および識別子割当処理を行った後に、同一の識別子を付与した画素領域内の画素の画素値を「1」、それ以外の画素の画素値を「0」とした二値化画像を作成しても良く、峰状物体(人体)と背景部分とを分離した画像を作成することで、その後の峰状物体の抽出処理や容易になり、また峰状物体が複数存在する場合は個々の峰状物体を容易に特定することができる。   In each of the detection methods described above, after the human body detection unit 20 performs the region extraction process and the identifier assignment process, the pixel value of the pixel in the pixel region to which the same identifier is assigned is set to “1”, A binarized image with a pixel value of “0” may be created. By creating an image in which the peak object (human body) and the background portion are separated, the subsequent peak object extraction process and easy When there are a plurality of ridged objects, it is possible to easily identify individual ridged objects.

本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. (a)(b)は同上の検知動作を説明する説明図である。(A) (b) is explanatory drawing explaining a detection operation same as the above. (a)(b)は大人を検知する場合の説明図である。(A) (b) is explanatory drawing in the case of detecting an adult. (a)(b)は子供を検知する場合の説明図である。(A) (b) is explanatory drawing in the case of detecting a child. (a)(b)は同上の検知動作を説明する説明図である。(A) (b) is explanatory drawing explaining a detection operation same as the above. (a)〜(d)は同上の検知動作を説明する説明図である。(A)-(d) is explanatory drawing explaining the detection operation same as the above. 同上の検知動作を説明する説明図である。It is explanatory drawing explaining the detection operation same as the above. (a)〜(d)は同上の検知動作を説明する説明図である。(A)-(d) is explanatory drawing explaining the detection operation same as the above. (a)〜(c)は同上の動作説明図である。(A)-(c) is operation | movement explanatory drawing same as the above. 同上における感度制御部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the sensitivity control part in the same as the above. (a)〜(d)は同上の動作例を示す説明図である。(A)-(d) is explanatory drawing which shows the operation example same as the above. (a)〜(d)は同上の他の動作例を示す説明図である。(A)-(d) is explanatory drawing which shows the other operation example same as the above. (a)〜(d)は同上のさらに他の動作例を示す説明図である。(A)-(d) is explanatory drawing which shows the other operation example of the same as the above. 同上に用いる光検出素子の構成例を示す平面図である。It is a top view which shows the structural example of the photon detection element used for the same as the above. 図14に示した光検出素子の要部分解斜視図である。It is a principal part disassembled perspective view of the photon detection element shown in FIG. 図15のA−A線断面図である。It is AA sectional view taken on the line of FIG. 同上に用いる光検出素子の要部の動作説明図である。It is operation | movement explanatory drawing of the principal part of the photon detection element used for the same as the above.

符号の説明Explanation of symbols

1 光検出素子
2 発光源
3 制御回路部
4 画像生成部
10 距離画像センサ
20 人体検知部
DESCRIPTION OF SYMBOLS 1 Photodetection element 2 Light emission source 3 Control circuit part 4 Image generation part 10 Distance image sensor 20 Human body detection part

Claims (4)

撮像手段から対象領域内の物体までの距離を画素値とする距離画像を用いて対象領域内の人体を検知する人体検知方法であって、
対象領域の上方に設置された撮像手段により下方の対象領域を撮像することで距離画像を得た後に、
該距離画像を構成する複数の画素から、画素値が閾値以下となる画素領域を抽出する領域抽出処理を、前記閾値を画素値が最短の画素の画素値から段階的に伸ばして複数回行う毎に、
新たに抽出された画素領域が、既に抽出された画素領域と少なくとも一部が重複する場合、該重複する複数の画素領域を同一の物体と判断して、前記複数の画素領域の全体に同一の識別子を割り当てる識別子割当処理を行い、
前記距離画像の平面内で、一番最初に検出した画素領域の重心位置を通って、互いに直交する2つの直線を求めておき、
同一の識別子を割り当てた複数の画素領域の内、新たに抽出した画素領域に、既に抽出された画素領域が包含される場合に、新たに抽出した画素領域から既に抽出された画素領域を除いた帯状部分において、前記2つの直線と重なる4箇所の幅の平均値を求め、この平均値が所定のしきい値以下になるという判定条件が成立すると、前記領域抽出処理および識別子割当処理を終了し、同一の識別子が割り当てられた画素領域を人体として抽出することを特徴とする距離画像を用いた人体検知方法。
A human body detection method for detecting a human body in a target area using a distance image having a pixel value as a distance from an imaging means to an object in the target area,
After obtaining the distance image by imaging the lower target area by the imaging means installed above the target area,
Every time a region extraction process for extracting a pixel region having a pixel value equal to or smaller than a threshold value from a plurality of pixels constituting the distance image is performed a plurality of times by gradually extending the threshold value from the pixel value of the pixel having the shortest pixel value. In addition,
When the newly extracted pixel area overlaps at least partly with the already extracted pixel area, the plurality of overlapping pixel areas are determined to be the same object, and the same as the whole of the plurality of pixel areas Perform identifier assignment processing to assign identifiers,
In the plane of the distance image, two straight lines orthogonal to each other are obtained through the barycentric position of the pixel area detected first.
When a newly extracted pixel area is included in a newly extracted pixel area among a plurality of pixel areas assigned with the same identifier , the already extracted pixel area is excluded from the newly extracted pixel area. In the belt-like portion, the average value of the widths of the four locations that overlap the two straight lines is obtained, and when the determination condition that this average value is equal to or less than a predetermined threshold is satisfied, the region extraction process and the identifier assignment process are terminated. A human body detection method using a distance image, wherein a pixel region to which the same identifier is assigned is extracted as a human body.
上記判定条件と、同一の識別子を割り当てた複数の画素領域の画素数が人体の大きさに相当する画素数を超えるという判定条件とが両方共に成立すると、前記領域抽出処理および識別子割当処理を終了し、同一の識別子が割り当てられた画素領域を人体として抽出することを特徴とする請求項1記載の距離画像を用いた人体検知方法。 When both the determination condition and the determination condition that the number of pixels of a plurality of pixel areas to which the same identifier is assigned exceed the number of pixels corresponding to the size of the human body are satisfied, the area extraction process and the identifier assignment process are terminated. 2. The human body detection method using a distance image according to claim 1, wherein a pixel region to which the same identifier is assigned is extracted as a human body. 上記距離画像を構成する複数の画素の内、同一の識別子が割り当てられた画素領域の画素と、それ以外の画素とを2値化することを特徴とする請求項1又は2の何れか1項に記載の距離画像を用いた人体検知方法。 Among the plurality of pixels constituting the distance image, and pixels of the same identifier pixel region assigned to any one of claims 1 or 2, characterized in that binarizing the other pixels A human body detection method using the distance image described in 1 . 前記撮像手段により撮像された距離画像を用い、請求項1乃至請求項3の何れか1項に記載の人体検知方法を実行することで、対象領域内の人体を検知する人体検知手段を具備することを特徴とする人体検知装置。A human body detection unit that detects a human body in a target region by executing the human body detection method according to any one of claims 1 to 3 using a distance image captured by the imaging unit. A human body detection device characterized by that.
JP2004377923A 2004-12-27 2004-12-27 Human body detection method and human body detection apparatus using range image Expired - Fee Related JP4466366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004377923A JP4466366B2 (en) 2004-12-27 2004-12-27 Human body detection method and human body detection apparatus using range image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004377923A JP4466366B2 (en) 2004-12-27 2004-12-27 Human body detection method and human body detection apparatus using range image

Publications (2)

Publication Number Publication Date
JP2006185166A JP2006185166A (en) 2006-07-13
JP4466366B2 true JP4466366B2 (en) 2010-05-26

Family

ID=36738238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004377923A Expired - Fee Related JP4466366B2 (en) 2004-12-27 2004-12-27 Human body detection method and human body detection apparatus using range image

Country Status (1)

Country Link
JP (1) JP4466366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110135382A (en) * 2019-05-22 2019-08-16 北京华捷艾米科技有限公司 A kind of human body detecting method and device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448617B2 (en) * 2008-08-19 2014-03-19 パナソニック株式会社 Distance estimation device, distance estimation method, program, integrated circuit, and camera
JP2010165183A (en) * 2009-01-15 2010-07-29 Panasonic Electric Works Co Ltd Human body detection device
JP2011080965A (en) * 2009-10-09 2011-04-21 Panasonic Electric Works Co Ltd Three-dimensional shape measuring device
JP5771778B2 (en) * 2010-06-30 2015-09-02 パナソニックIpマネジメント株式会社 Monitoring device, program
KR101203478B1 (en) 2010-08-30 2012-11-21 전자부품연구원 Method for extracting available object according to available section auto setup
JP5953484B2 (en) * 2011-03-30 2016-07-20 株式会社国際電気通信基礎技術研究所 Measuring device, measuring method and measuring program
KR101227569B1 (en) 2011-05-26 2013-01-29 한국과학기술연구원 Body Segments Localization Device and Method for Analyzing Motion of Golf Swing
JP5879877B2 (en) * 2011-09-28 2016-03-08 沖電気工業株式会社 Image processing apparatus, image processing method, program, and image processing system
KR101763778B1 (en) 2011-09-30 2017-08-01 인텔 코포레이션 Human head detection in depth images
JP5917327B2 (en) * 2012-07-31 2016-05-11 西日本旅客鉄道株式会社 Escalator monitoring system
CN103871042B (en) * 2012-12-12 2016-12-07 株式会社理光 Continuous object detecting method and device in parallax directions based on disparity map
JP6328966B2 (en) * 2014-03-17 2018-05-23 スタンレー電気株式会社 Distance image generation device, object detection device, and object detection method
JP6313617B2 (en) * 2014-03-17 2018-04-18 スタンレー電気株式会社 Distance image generation device, object detection device, and object detection method
JP2015216518A (en) * 2014-05-12 2015-12-03 富士通株式会社 Information processing method, program, and information processing apparatus
US9638791B2 (en) * 2015-06-25 2017-05-02 Qualcomm Incorporated Methods and apparatus for performing exposure estimation using a time-of-flight sensor
JP7079466B2 (en) * 2017-11-09 2022-06-02 株式会社国際電気通信基礎技術研究所 Human attribute recognition system and program
JP7463254B2 (en) * 2020-11-13 2024-04-08 三菱重工業株式会社 Laser irradiation system, image generating device, and program
JP7304603B2 (en) * 2021-02-22 2023-07-07 パナソニックIpマネジメント株式会社 Human detection system, human detection method and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108078A (en) * 1989-09-20 1991-05-08 Fujitsu Ltd Area division system for image information
JP2002024986A (en) * 2000-07-06 2002-01-25 Nippon Signal Co Ltd:The Pedestrian detector
JP4644992B2 (en) * 2001-08-10 2011-03-09 パナソニック電工株式会社 Human body detection method using range image

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110135382A (en) * 2019-05-22 2019-08-16 北京华捷艾米科技有限公司 A kind of human body detecting method and device
CN110135382B (en) * 2019-05-22 2021-07-27 北京华捷艾米科技有限公司 Human body detection method and device

Also Published As

Publication number Publication date
JP2006185166A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4466366B2 (en) Human body detection method and human body detection apparatus using range image
JP4692159B2 (en) Gesture switch
JP4466260B2 (en) Image processing device
KR100820261B1 (en) Image processing device
JP4363296B2 (en) Distance image sensor
US20110198481A1 (en) Image sensor and operating method
US9516248B2 (en) Photosensor having enhanced sensitivity
US20090224139A1 (en) Drift Field Demodulation Pixel with Pinned Photo Diode
JP2009008537A (en) Range image device and imaging device
JP2004309310A (en) Sensitivity control method for photo detector and detection device of space information using intensity modulation light
JP3906859B2 (en) Distance image sensor
JP2011112614A (en) Distance sensor and distance image sensor
JP4757779B2 (en) Distance image sensor
WO2019026606A1 (en) Imaging device
JP4543904B2 (en) Distance image sensor
JP3906858B2 (en) Distance image sensor
KR102342233B1 (en) distance sensor and distance image sensor
JP2007095849A (en) Photodetector and control method thereof, and space information detector
JP4259418B2 (en) Image processing device
US11435452B2 (en) Pixel for time-of-flight applications
JP4432744B2 (en) Image processing device
JP4961035B2 (en) Gesture switch
JP5122728B2 (en) Photodetector, photodetector control method, and spatial information detector
JP2006048156A (en) Image processor
JP4385384B2 (en) Photosensitive element sensitivity control method, spatial information detection device using intensity-modulated light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees