JP4466086B2 - Hot dip galvanizing equipment and control method thereof - Google Patents

Hot dip galvanizing equipment and control method thereof Download PDF

Info

Publication number
JP4466086B2
JP4466086B2 JP2004014737A JP2004014737A JP4466086B2 JP 4466086 B2 JP4466086 B2 JP 4466086B2 JP 2004014737 A JP2004014737 A JP 2004014737A JP 2004014737 A JP2004014737 A JP 2004014737A JP 4466086 B2 JP4466086 B2 JP 4466086B2
Authority
JP
Japan
Prior art keywords
alloying
metal plate
burner
direct
dip galvanizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004014737A
Other languages
Japanese (ja)
Other versions
JP2005206879A (en
Inventor
宏幸 中島
敏明 天笠
智之 岸浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004014737A priority Critical patent/JP4466086B2/en
Publication of JP2005206879A publication Critical patent/JP2005206879A/en
Application granted granted Critical
Publication of JP4466086B2 publication Critical patent/JP4466086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

本発明は、溶融亜鉛めっき設備およびその制御方法に関する。   The present invention relates to a hot dip galvanizing facility and a control method thereof.

直火式合金化炉を有する溶融亜鉛めっき設備では、溶解亜鉛浴に浸漬され、めっき付着量を調整された鋼板等の金属板(金属帯をも含む意味とする。以下、同じ)を、直火式合金化炉(以下、合金化炉)で、金属板温度400〜600℃の温度にて加熱することにより、金属板中の金属成分(鋼板の場合は鉄分)を亜鉛めっき層内に拡散させる熱処理を行う。この合金化炉におけるめっき層の合金化プロセスの模式図を図1に示す。   In a hot dip galvanizing facility having a direct-fired alloying furnace, a metal plate such as a steel plate (which also includes a metal strip, the same shall apply hereinafter) directly immersed in a molten zinc bath and adjusted in the amount of plating is directly applied. The metal component (iron in the case of a steel plate) in the metal plate is diffused into the galvanized layer by heating at a metal plate temperature of 400 to 600 ° C in a fire type alloying furnace (hereinafter referred to as an alloying furnace). Heat treatment is performed. A schematic diagram of the alloying process of the plating layer in this alloying furnace is shown in FIG.

図において、1はスナウト、2は亜鉛めっき浴、3は溶融亜鉛、4は付着量制御装置、5は合金化炉、10は溶融亜鉛めっき設備であり、Sがめっきされる金属板(図1の例では鋼板)、図中の矢印はその搬送方向である。   In the figure, 1 is a snout, 2 is a zinc plating bath, 3 is hot dip zinc, 4 is an adhesion amount control device, 5 is an alloying furnace, 10 is a hot dip galvanizing facility, and a metal plate on which S is plated (FIG. 1). In the example, a steel plate), the arrow in the figure is the conveying direction.

ところで、合金化が促進され、めっき層中の鉄等の金属成分含有率が高くなると、Γ相なる脆弱なめっき層が生成し、金属板をプレス等で変形させた場合、めっき層が剥がれるパウダリング不良を生じてしまう。また、逆に合金化度が不十分な場合、「焼けむら」と称される色調欠陥が生じてしまう。つまり、めっき層中の鉄等の金属成分含有率(合金化度)には適正範囲があるが、合金化速度は、材質、めっき厚、亜鉛浴成分等により異なる。このため溶融亜鉛めっき設備(溶融亜鉛めっきラインとも称する)10では、材質、めっき厚、板厚等が変更される先行金属板と後行金属板の継ぎ目(段付点)前後で合金化炉5内での金属板(S)の昇温速度を変更する必要がある。溶融亜鉛めっき設備のような連続式の設備の特性上、先行金属板と後行金属板の継ぎ目前後で同一の搬送速度で金属板を搬送せざるを得ないからである。   By the way, when alloying is promoted and the content of metal components such as iron in the plating layer increases, a fragile plating layer having a Γ phase is generated, and when the metal plate is deformed by a press or the like, the powder is peeled off. Ring failure will occur. On the other hand, when the degree of alloying is insufficient, a color defect called “burn-out unevenness” occurs. In other words, the metal component content (degree of alloying) such as iron in the plating layer has an appropriate range, but the alloying speed varies depending on the material, plating thickness, zinc bath component, and the like. For this reason, in the hot dip galvanizing equipment (also referred to as a hot dip galvanizing line) 10, the alloying furnace 5 before and after the joint (stepped point) of the preceding metal plate and the succeeding metal plate whose materials, plating thickness, plate thickness, etc. are changed. It is necessary to change the temperature rising rate of the metal plate (S) inside. This is because the metal plate must be transported at the same transport speed before and after the joint between the preceding metal plate and the succeeding metal plate due to the characteristics of a continuous facility such as a hot dip galvanizing facility.

一般に合金化炉の加熱手段には、(1)直火炉方式、(2)インダクションヒータ方式、及び(3)インダクションヒータ+直火炉方式が用いられている。(1)の方式は、図2に示す如く、短フレームのガスバーナ52の直火により炉壁を加熱し、炉壁からの輻射伝熱により金属板(S)を加熱する。このため、金属板の加熱速度は、炉壁温度に連動するが、直火式合金化炉では炉壁温度を変更するのに要する時間が長く、1〜2分はかかるため、制御応答性が悪く、段付点前後では、合金化度外れによる不良が生じてしまう場合が少なくない。   In general, (1) direct furnace method, (2) induction heater method, and (3) induction heater + direct furnace method are used as heating means of the alloying furnace. In the method (1), as shown in FIG. 2, the furnace wall is heated by a direct flame of a short frame gas burner 52, and the metal plate (S) is heated by radiant heat transfer from the furnace wall. For this reason, the heating rate of the metal plate is linked to the furnace wall temperature, but in a direct-fired alloying furnace, the time required to change the furnace wall temperature is long, and it takes 1 to 2 minutes. Unfortunately, before and after the stepping point, there are many cases where defects due to the loss of alloying occur.

一方(2)及び(3)の方式は、段付点前後で金属板の加熱速度を変更する際の制御応答性は十分であるものの、直火式合金化炉に比べ非常に設備費が高額になる問題がある。   On the other hand, the methods (2) and (3), although sufficient control responsiveness when changing the heating rate of the metal plate before and after the stepping point, are very expensive compared to the direct-fired alloying furnace. There is a problem to become.

この問題を解決するために、発明者らは先に、特許文献1(出願時未公開)にて、フレーム加熱式のバーナ52を、図2に示した如く、合金化炉5の下部に設置し、直火式合金化炉であっても安価で高応答の合金化制御が可能な方法を提案した。   In order to solve this problem, the inventors previously installed a flame heating type burner 52 in the lower part of the alloying furnace 5 as shown in FIG. In addition, an inexpensive and highly responsive alloying control method was proposed even for direct-fired alloying furnaces.

特願平2002−200781号公報Japanese Patent Application No. 2002-200781

しかし、従来のフレーム加熱式のバーナを用いた直火式合金化炉では、バーナの燃料及び空気の流量のコントロールで合金化制御を行うため、フレームの温度が急激に変化することがあり、合金化制御がハンチングする等、安定的に制御できない、という問題があった。   However, in the direct flame type alloying furnace using the conventional flame heating type burner, the alloy temperature is controlled by controlling the flow rate of fuel and air in the burner. There was a problem that stable control could not be performed, such as hunting of control.

本発明は、前記のような問題を解決する、高応答で安定した金属板の温度制御が可能な、溶融亜鉛めっき設備およびその制御方法を提供し、合金化度不良による金属板の表面欠陥が生じるのを抑制することを課題とする。   The present invention provides a hot-dip galvanizing facility and a control method thereof capable of controlling the temperature of a highly reliable and stable metal plate that solves the above-described problems, and the surface defects of the metal plate due to a poor degree of alloying are provided. It is an object to suppress the occurrence.

本発明は、直火式合金化炉のみで合金化を行う直火炉方式の溶融亜鉛めっき設備において、前記直火式合金化炉下部に、燃焼によって生ずるフレームを金属板に直接当てることにより、金属板を噴流加熱するフレーム加熱式のバーナを配置するとともに、該バーナを前記金属板に接近、離隔可能な移動手段と、該移動手段により前記金属板とバーナの間の距離を可変制御する制御装置とを設けて、前記金属板とバーナの間の距離を変更できる構造として、前記課題を解決したものである。 The present invention is directed to a direct-fired hot-dip galvanizing facility that performs alloying using only a direct-fired alloying furnace , by directly applying a flame generated by combustion to a metal plate at the lower part of the direct-fired alloying furnace. A frame heating type burner for jet heating the plate, a moving unit capable of approaching and separating the burner from the metal plate, and a control device for variably controlling the distance between the metal plate and the burner by the moving unit providing the door, a structure capable of changing the distance between the metal plate and the bar Na, is obtained by solving the above problems.

本発明は、又、前記の溶融亜鉛めっき設備を用いて、金属板と前記バーナの間の距離を制御することにより合金化制御を行うことを特徴とする溶融亜鉛めっき設備の制御方法を提供するものである。   The present invention also provides a control method for hot dip galvanizing equipment, wherein alloying control is performed by controlling the distance between the metal plate and the burner using the hot dip galvanizing equipment. Is.

本発明によれば、直火式合金化炉を有する溶融亜鉛めっき設備において、直火式の合金化炉の下部にフレーム加熱式のバーナを配置し、金属板とバーナの間の距離を制御することにより、高応答で安定した金属板の温度制御が可能となるため、合金化度不良による表面欠陥が生じるのを抑制できるようになる。   According to the present invention, in a hot dip galvanizing facility having a direct-fire type alloying furnace, a frame heating type burner is disposed at the lower part of the direct-fire type alloying furnace, and the distance between the metal plate and the burner is controlled. This makes it possible to control the temperature of the metal plate with high response and stability, thereby suppressing the occurrence of surface defects due to poor alloying.

以下、図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態は、先述の図1及び図2に模式的に示した、フレーム加熱式のバーナ52を設置した直火式合金化炉5を有する溶融亜鉛めっき設備10と、その中に設置した直火式合金化炉5の基本的な構成を踏襲する。   The present embodiment schematically shows a hot-dip galvanizing equipment 10 having a direct-fire type alloying furnace 5 provided with a flame heating burner 52 schematically shown in FIG. 1 and FIG. The basic structure of the fire-type alloying furnace 5 is followed.

ここで、フレーム加熱式のバーナ52は、直火式合金化炉5の耐火物製隔壁51より下側に設置してあり、煙突効果により炉下部から侵入してくる大量の空気に打ち勝ち、鋼板Sのフレーム(熱ガス)による噴流加熱が可能なよう、100m/s以上で吐出する空気に燃料ガスを混合させ、燃焼させる構造となっている。   Here, the flame heating type burner 52 is installed below the refractory partition wall 51 of the direct-fired alloying furnace 5 and overcomes a large amount of air entering from the lower part of the furnace due to the chimney effect. The fuel gas is mixed with the air discharged at 100 m / s or more and burned so that the jet heating with the S frame (hot gas) is possible.

本発明において、追加設置された部分は、破線で囲って示した部分である。54は油圧シリンダ等の、バーナ52を鋼板Sに接近、離隔可能な移動手段であり、56は各移動手段により鋼板Sとバーナ52の間の距離を可変制御する制御装置、58はプロセスコンピュータである。移動手段54は、油圧シリンダに限らず、サーボモータや電動機等、位置を断続的あるいは連続的に制御できるものであれば、何でもよく、ここに挙げたもの以外のものであってもよい。   In the present invention, the additionally installed portion is a portion surrounded by a broken line. 54 is a moving means such as a hydraulic cylinder that can move the burner 52 closer to and away from the steel sheet S, 56 is a control device that variably controls the distance between the steel sheet S and the burner 52 by each moving means, and 58 is a process computer. is there. The moving means 54 is not limited to a hydraulic cylinder, and may be anything such as a servo motor or an electric motor as long as the position can be controlled intermittently or continuously, and may be other than those listed here.

図3は、フレーム加熱式のバーナ52を拡大して示した(a)斜視図および(b)断面図であり、フレーム加熱式のバーナ52は、図3(a)に示すように、「Air」と記されているシャドウ着色の穴からは空気が、「fuel」と記されている白色の穴からは燃料ガスを噴射する仕組になっており、図3(b)に示すように、「Air」と記されている空気と、「fuel」と記されている燃料ガスを、別系統の配管から供給するとともに、燃焼によって生ずるフレームFを鋼板Sに当てることにより、鋼板Sを噴流加熱する仕組になっている。   3A and 3B are enlarged views of the frame heating type burner 52. FIG. 3A is a perspective view and FIG. 3B is a cross-sectional view of the frame heating type burner 52. As shown in FIG. ”Is a mechanism for injecting air from the shadow-colored holes labeled“, ”and fuel gas from the white holes labeled“ fuel ”. As shown in FIG. Air that is marked “Air” and fuel gas that is marked “fuel” are supplied from a separate piping system, and the flame F generated by combustion is applied to the steel sheet S to heat the steel sheet S by jet heating. It is a mechanism.

前記フレーム加熱式のバーナ52を設置した直火式合金化炉5を有する溶融亜鉛めっき設備10において、バーナの燃料及び空気の流量を変更した場合の鋼板の加熱能力の変化の様子を図4に示す。燃料流量を低減した場合、フレームFの長さの短縮の仕方が急激なため、燃料流量の低減率に比べ鋼板加熱能力の低減率は大きく、燃料流量(空気の流量でフレームFの長さを変更する場合もあるため、空気の流量の場合もある)のコントロールにて合金化制御を行うことは、制御のハンチングを誘発しやすい等の理由により、非常に困難といえる。その要因としては、燃料または空気の流量の減少によるフレームF(熱ガス)の速度の低下、フレームFの温度の低下に加え、フレームカーテンにて抑えられていた直火式合金化炉5の下部からの浸入空気の増加が挙げられる。   FIG. 4 shows a change in the heating capacity of the steel plate when the flow rate of the burner fuel and air is changed in the hot dip galvanizing equipment 10 having the direct flame type alloying furnace 5 in which the flame heating type burner 52 is installed. Show. When the fuel flow rate is reduced, the method of shortening the length of the frame F is abrupt. Therefore, the reduction rate of the steel sheet heating capacity is larger than the reduction rate of the fuel flow rate, and the fuel flow rate (the length of the frame F is set by the air flow rate). It can be said that it is very difficult to control the alloying by controlling the air flow rate because the air flow rate may be changed. The cause is that the flame F (hot gas) speed decreases due to a decrease in the flow rate of fuel or air, the temperature of the frame F decreases, and the lower part of the direct-fire type alloying furnace 5 that is suppressed by the frame curtain. Increase of intrusion air.

そこで、発明者らは、鋭意研究を重ねた結果、鋼板とバーナの間の距離を制御することで良好な合金化制御が可能なことに気付き、本発明をなすに至った。図5に鋼板とバーナの間の距離を変更した場合の鋼板の加熱能力の変化の様子を示す。鋼板とバーナの間の距離を、例えば100〜400mm、好ましくは200〜400mmに制御することで、鋼板加熱能力は緩やかにほぼ直線的に制御可能であり、また、燃料または空気の流量を一定にして、機械的な距離という制御しやすい対象のみを変更するため、ハンチング等の問題は著しく発生しにくくなり、制御の安定性も確保できる。   Thus, as a result of intensive studies, the inventors have realized that good alloying control can be achieved by controlling the distance between the steel plate and the burner, leading to the present invention. FIG. 5 shows a change in the heating capacity of the steel plate when the distance between the steel plate and the burner is changed. By controlling the distance between the steel plate and the burner to, for example, 100 to 400 mm, preferably 200 to 400 mm, the steel plate heating capacity can be controlled gently and almost linearly, and the flow rate of fuel or air is kept constant. Thus, since only the controllable object such as the mechanical distance is changed, problems such as hunting are hardly caused, and the stability of control can be ensured.

本発明の実施例を図6に示す。先行材(0.6t×1000w)を通板速度60mpmで通板し、後行材(1.2t×1000w)が通板されたときにおける操炉状況の比較を示す。尚、合金化炉の下部には急速加熱帯が3.5m設置してある。適正操業条件はプロセスコンピュータに入力されており、合金化炉をコイル段付点が通過した時に自動で操業条件が変更される。破線で示す従来のように燃料または空気の流量を制御する場合は、段付点通過後に大きく制御性が悪化し合金化不良(焼けむら)が発生していたが、実線で示す如く、本発明により高応答の鋼板Sの温度制御が可能となり適正な合金化度の鋼板が得られるようになったことがわかる。   An embodiment of the present invention is shown in FIG. A comparison of the operating conditions when a preceding material (0.6 t × 1000 w) is passed at a plate speed of 60 mpm and a succeeding material (1.2 t × 1000 w) is passed is shown. In addition, a rapid heating zone of 3.5 m is installed at the bottom of the alloying furnace. Appropriate operating conditions are input to the process computer, and the operating conditions are automatically changed when the coil stepping point passes through the alloying furnace. When the flow rate of the fuel or air is controlled as in the conventional case indicated by the broken line, the controllability is greatly deteriorated after passing through the stepped point and the alloying failure (burn-out unevenness) occurs. However, as shown by the solid line, the present invention Thus, it can be seen that the temperature of the highly responsive steel sheet S can be controlled, and a steel sheet having an appropriate degree of alloying can be obtained.

本発明の適用対象は鋼板に限定されず、金属板一般に適用できる。   The object of application of the present invention is not limited to steel plates, and can be applied to metal plates in general.

直火式合金化炉を有する溶融亜鉛めっき設備を模式的に示す略示断面図Schematic cross-sectional view schematically showing a hot-dip galvanizing facility with a direct-fired alloying furnace 図1の合金化炉部分を拡大して示す断面図Sectional drawing which expands and shows the alloying furnace part of FIG. フレーム加熱式のバーナを拡大して示す、(a)斜視図および(b)断面図(A) perspective view and (b) cross-sectional view showing an enlarged frame heating type burner. バーナの燃料及び空気の流量を変更した場合の鋼板の加熱能力の変化の様子を示す図The figure which shows the mode of the change of the heating capability of the steel plate at the time of changing the flow rate of the fuel and air of the burner 鋼板とバーナの間の距離を変更した場合の鋼板の加熱能力の変化の様子を示す図The figure which shows the mode of the change of the heating capacity of a steel plate when the distance between a steel plate and a burner is changed 本発明の実施例を示す図The figure which shows the Example of this invention

符号の説明Explanation of symbols

1…スナウト
2…亜鉛浴
3…亜鉛
4…付着量制御装置
5…合金化炉
10…溶融亜鉛めっき設備
52…フレーム加熱式のバーナ
54…移動手段
56…制御装置
58…プロセスコンピュータ
S…鋼板
F…フレーム
DESCRIPTION OF SYMBOLS 1 ... Snout 2 ... Zinc bath 3 ... Zinc 4 ... Adhesion amount control apparatus 5 ... Alloying furnace 10 ... Hot-dip galvanization equipment 52 ... Flame heating type burner 54 ... Moving means 56 ... Control apparatus 58 ... Process computer S ... Steel plate F …flame

Claims (2)

直火式合金化炉のみで合金化を行う直火炉方式の溶融亜鉛めっき設備において、
前記直火式合金化炉下部に、燃焼によって生ずるフレームを金属板に直接当てることにより、金属板を噴流加熱するフレーム加熱式のバーナを配置するとともに、
該バーナを前記金属板に接近、離隔可能な移動手段と、
該移動手段により前記金属板とバーナの間の距離を可変制御する制御装置とを設けて、
前記金属板とバーナの間の距離を変更できる構造としたことを特徴とする溶融亜鉛めっき設備。
In direct-fired furnace galvanizing equipment that performs alloying only with direct-fired alloying furnaces,
In the lower part of the direct-fired alloying furnace , by placing a flame generated by combustion directly on the metal plate, a flame heating type burner for jet-heating the metal plate is disposed,
Moving means capable of approaching and separating the burner from the metal plate;
A controller for variably controlling the distance between the metal plate and the burner by the moving means;
Galvanizing, characterized in that it has a structure capable of changing the distance between the metal plate and the bar burner.
前記請求項1の溶融亜鉛めっき設備を用いて、金属板と前記バーナの間の距離を制御することにより合金化制御を行うことを特徴とする溶融亜鉛めっき設備の制御方法。   A control method for a hot dip galvanizing facility, wherein alloying control is performed by controlling the distance between the metal plate and the burner using the hot dip galvanizing facility according to claim 1.
JP2004014737A 2004-01-22 2004-01-22 Hot dip galvanizing equipment and control method thereof Expired - Fee Related JP4466086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014737A JP4466086B2 (en) 2004-01-22 2004-01-22 Hot dip galvanizing equipment and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014737A JP4466086B2 (en) 2004-01-22 2004-01-22 Hot dip galvanizing equipment and control method thereof

Publications (2)

Publication Number Publication Date
JP2005206879A JP2005206879A (en) 2005-08-04
JP4466086B2 true JP4466086B2 (en) 2010-05-26

Family

ID=34900437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014737A Expired - Fee Related JP4466086B2 (en) 2004-01-22 2004-01-22 Hot dip galvanizing equipment and control method thereof

Country Status (1)

Country Link
JP (1) JP4466086B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100967055B1 (en) 2006-05-08 2010-06-29 주식회사 포스코 Heating apparatus for producing gi steel plate of spangle-free
KR100931167B1 (en) * 2006-12-26 2009-12-11 주식회사 포스코 Apparatus for instantaneous rapid heating and alloying of both edges of hot-dip steel sheet

Also Published As

Publication number Publication date
JP2005206879A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
US20030047255A1 (en) Process for the hot-dip galvanizing of metal strip made of high-strength steel
JP4466086B2 (en) Hot dip galvanizing equipment and control method thereof
BR8805642A (en) PROCESS TO CONTROL THE THICKNESS OF AN INTERMETAL LAYER IN A CONTINUOUS STEEL PRODUCT IN A CONTINUOUS HOT IMMERSION GALVANIZATION PROCESS
JP5167895B2 (en) Method for producing hot-dip steel strip
JP3024302B2 (en) Hot-dip bath temperature control method
JPH04329856A (en) Method for controlling infiltrating sheet temperature into galvanizing bath in continuous galvanizing for steel strip
JPH03188250A (en) Molten metal dipping vessel used for continuous hot-dipping
KR970043191A (en) Steel plate temperature control method in heat treatment furnace for hot dip galvanized steel sheet
JP4306471B2 (en) Method for controlling temperature of metal strip entering plate to hot dipping bath
JPH04333554A (en) Alloying apparatus for galvanized steel sheet
JP3099990B2 (en) Operating method of hot dip galvanizing alloying furnace
JPH0892712A (en) Control of temperature of steel strip immersing into galvanizing bath
JPH0215156A (en) Alloying treatment for metal hot dipped steel sheet
JP2972028B2 (en) Vertical alloying furnace for hot dip galvanizing and its operation method
JPH05171385A (en) Method and apparatus for continuous hot-dip galvanizing of steel strip
JP3114572B2 (en) Method for controlling alloying of galvannealed steel sheet
JP2795569B2 (en) Operating method of hot dip galvanizing alloying furnace
JP2907311B2 (en) Method and apparatus for controlling temperature of alloying furnace
JPS61207564A (en) Galvannealing device
JP3411712B2 (en) Alloying furnace for hot-dip galvanized steel sheet and its operation method
JP2617592B2 (en) Hot dip galvanizing alloying equipment
JP2846130B2 (en) Operating method of hot dip galvanizing alloying furnace
JP2005256060A (en) Method for controlling advancing sheet temperature of metallic band into hot-dip coating bath
JPH031472Y2 (en)
JP2795939B2 (en) Galvanizing steel strip alloying furnace.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees