JP4465987B2 - Decolorization method and decolorization device for colored beverage drainage - Google Patents

Decolorization method and decolorization device for colored beverage drainage Download PDF

Info

Publication number
JP4465987B2
JP4465987B2 JP2003162525A JP2003162525A JP4465987B2 JP 4465987 B2 JP4465987 B2 JP 4465987B2 JP 2003162525 A JP2003162525 A JP 2003162525A JP 2003162525 A JP2003162525 A JP 2003162525A JP 4465987 B2 JP4465987 B2 JP 4465987B2
Authority
JP
Japan
Prior art keywords
water
catalyst
colored beverage
colored
adjustment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003162525A
Other languages
Japanese (ja)
Other versions
JP2004358421A (en
Inventor
恵一 横山
寿夫 ▼登▲美川
尚希 西川
光臣 成田
卓哉 市川
良弘 恵藤
奨吾 安財
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Suntory Holdings Ltd
Original Assignee
Kurita Water Industries Ltd
Suntory Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Suntory Holdings Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003162525A priority Critical patent/JP4465987B2/en
Publication of JP2004358421A publication Critical patent/JP2004358421A/en
Application granted granted Critical
Publication of JP4465987B2 publication Critical patent/JP4465987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有色飲料排水の脱色方法及び装置に関し、詳細には、従来の脱色工程において行われていた凝集剤使用による汚泥等の廃棄物を生成することなく、有色飲料排水を効率的に脱色する方法及び装置に関する。
【0002】
【従来の技術】
飲料の製造工程で発生する排水(以下「飲料排水」と称す。)は、安全性、環境に配慮して種々の処理を施した後に河川等に放出される。飲料排水が有色である場合には、排水処理は脱色処理をもその対象としている。
【0003】
従来の有色飲料排水の脱色方法は、排水中の有色成分を凝集剤により凝集して沈澱分離するものである。即ち、図8に示されるように、まず有色飲料排水を反応槽a内に導入すると共にその反応槽a内に所定量の無機凝集剤、例えば塩化第2鉄を投入して有色成分とを反応させ、粒子の表面電荷を電気的に中和させて凝集物を形成させる。また、同時にpH調整剤、例えば苛性ソーダを投入して凝集物のpHを適正域とする。次に、反応が進んだ排水を凝集槽bに導入してその排水中に高分子凝集剤を投入して有色成分の凝集物の強度、粒径を増加させ、凝集物を含んだ排水を沈澱槽cに導入して、沈澱槽c内で凝集物dを沈澱させて分離する。有色成分が沈澱分離された沈澱槽cの上澄水は、次いで消毒工程で消毒された後に放流される。一方、沈澱した有色成分を含む凝集物dは沈澱槽cから定期的に取り出され、汚泥として別途処理された後に廃棄される。
【0004】
【発明が解決しようとする課題】
かかる従来の脱色方法は、飲料排水中の有色成分を無機凝集剤及び高分子凝集剤により凝集して沈澱分離するものであり、沈澱槽から汚泥が排出されるため、その処理のための費用と労力の問題がある。また、自然環境の保護の点からは廃棄物の発生の削減が強く求められている。
【0005】
本発明は上記従来の脱色方法の問題点を解決し、汚泥を発生させずに有色飲料排水を効率的に脱色する方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の有色飲料排水の脱色方法は、有色飲料排水を酸化剤の存在下に触媒と接触させる脱色工程を備える有色飲料排水の脱色方法であって、該脱色工程は、有色飲料排水に酸化剤を添加して混合する混合工程と、酸化剤が混合された有色飲料排水を触媒と接触させる接触工程とを含み、有色飲料排水の通水を停止する時に、酸化剤の濃度が通常運転時よりも高い水を前記触媒と接触させて、該触媒に付着残留している被酸化性物質を分解除去することを特徴とする。
【0007】
本発明の有色飲料排水の脱色装置は、槽内液の混合手段を備える調整槽と、該調整槽に有色飲料排水を導入する手段と、該調整槽に導入される有色飲料排水及び/又は該調整槽に酸化剤を添加する酸化剤添加手段と、該調整槽からの流出水が導入される金属酸化物触媒が充填された触媒塔と、該触媒塔の流出水を該調整槽に戻す循環ラインと、該調整槽に市水又は工水を導入する手段とを備える有色飲料排水の脱色装置であって、有色飲料排水の通水を停止する時に、該調整槽に有色飲料排水の代りに市水又は工水が導入すると共に酸化剤を添加し、該市水又は工水に酸化剤を添加した調整槽内の水を該触媒塔に通水し、該触媒塔からの流出水を該調整槽に戻し、循環させることを特徴とする。
【0008】
本発明によれば、有色飲料排水に酸化剤を添加して混合することにより、有色飲料排水中の有色成分を酸化脱色し、その後、触媒と接触させることにより、脱色を促進して、有色飲料排水を高度に脱色し、良好な水質の処理水を安定かつ効率的に得ることができる。
【0009】
本発明によれば、有色成分の凝集による汚泥を発生させることなく、かつ極めて効率的に、従来と同レベル或いはそれ以上の脱色を行うことが可能であり、環境保護の点からも優れている。しかも、本発明によれば、有色飲料排水中の難分解成分の除去も可能であり、処理水の水質の向上に有効である。
【0010】
本発明においては、脱色処理水を更に活性炭で処理しても良い。従って、本発明の有色飲料排水の脱色装置においては、触媒塔の流出水が導入される活性炭塔を設けても良い。これにより、例えば、塩素系酸化剤を用いた脱色処理によって発生した塩素を活性炭により除去することができ、また、残留する難分解成分を活性炭により吸着して除去することも可能である。また、更に、脱色処理に先立ち、有色飲料排水を濾過して飲料排水中の異物を除去しても良い。
【0011】
更に、本発明において、酸化剤として塩素系酸化剤を用いる場合において、脱色処理直後に脱色処理水の残留塩素濃度を計測しても良い。従って、本発明の有色飲料排水の脱色装置において、触媒塔の流出水の残留塩素濃度を測定する測定手段を設けても良い。このようにすることにより、吸光度測定等により脱色処理水の色度を計測する煩雑な操作を必要とすることなく、計測された残留塩素濃度から、容易に脱色処理水の色度を算定することが可能となる。更に、本発明においては、この計測された残留塩素濃度に基いて塩素系酸化剤の添加量を制御することも可能であり、これにより、有色飲料排水に適正量の塩素系酸化剤を添加して、脱色処理水の色度を効率的に所定の設定値に近づけることが可能となる。
【0012】
本発明において、酸化剤としては、好ましくは、次亜塩素酸ナトリウムが挙げられる。また、触媒としては、好ましくは過酸化ニッケル担持触媒が挙げられる。
【0013】
本発明において、有色飲料排水と酸化剤との混合工程は、有色飲料排水と酸化剤との混合液の色度が所定の色度に達するまでの時間行うことが好ましい。該混合時間は、有色飲料排水の色度、酸化剤の添加量、目的とする色度等に応じて適宜設定されるが、混合を撹拌により行う場合、この混合時間は例えば10分以上行うことができる。
【0014】
また、この混合液と触媒との接触工程についても、得られる脱色処理水の色度が所定の色度に達するまでの時間行うことが好ましい。該接触時間も、有色飲料排水の水質及び処理量、酸化剤の添加量、触媒使用量、目的とする色度等に応じて適宜決定されるが、触媒塔への通水処理の場合、触媒塔内滞留時間(触媒塔を通り抜ける時間)で例えば6分以上とすることが好ましい。
【0015】
本発明においては、更に脱色処理水の一部を脱色工程へ戻して循環処理するようにしても良い。即ち、本発明の有色飲料排水の脱色装置において、触媒塔の流出水の一部を調整槽に戻す循環ラインを設けても良い。このようにして循環処理を行うことにより、色度が基準値以上の処理水を循環させて再度処理することが可能となり、確実な脱色処理を行うことができる。また、このように残留酸化剤を含む水を循環させることによって、触媒に付着している被酸化性物質の一部又は全部が除去され、通水停止期間中における金属酸化物と被酸化性物質との反応による金属成分の溶出を防止する効果により触媒の耐久性を向上させることが可能となる。
【0016】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0017】
図1は、本発明の有色飲料排水の脱色装置(以下単に「脱色装置」と言う。)10の実施の形態を示す系統図である。このような脱色装置は、例えば、図2に示す有色飲料排水の処理システムの脱色処理部4に組み込まれる。図2に示す有色飲料排水の処理システム1は、生物処理部2と、濾過処理部3と、脱色処理部4と、消毒処理部5とを備えており、有色飲料排水はこれらの処理部で処理された後放流される。生物処理部2、濾過処理部3及び消毒処理部5は従来の処理システムにおけるものと同様の構造及び機能のものを採用することが可能であり、これらの詳細な説明は省略する。
【0018】
図1に示す脱色装置10は、原水槽3Aと濾過器3Bとを備える濾過処理部3から導管20により処理すべき有色飲料排水が導入され、これを収容する調整槽11と、調整槽11に供給する酸化剤を貯える酸化剤貯槽12と、調整槽11より下流側(排水の流れ方向で見て)に、導管21を介して調整槽11に接続された触媒塔13と、触媒塔13より下流側(排水の流れ方向で見て)に、バルブ41付きの導管22を介して触媒塔13に接続された活性炭塔14とを備えている。酸化剤貯槽12には、少なくとも1本の供給パイプ24が接続され、酸化剤貯槽12内に貯えられた酸化剤をポンプ33により供給パイプ24を介して調整槽11内に供給するようになっている。従って、この実施の形態では酸化剤貯槽12とポンプ33及び供給パイプ24が酸化剤添加手段を構成している。酸化剤としては、本実施の形態では、液状の次亜塩素酸ナトリウムを使用しているが、その他の塩素系化合物を用いた酸化剤を使用することもできる。調整槽11には少なくとも1基(この実施の形態では2基)の攪拌機31が設けられ、有色飲料排水と酸化剤とを攪拌により混合することができるようになっている。
【0019】
調整槽11に接続された導管21には調整槽11に隣接してポンプ32が接続され、そのポンプ32により調整槽11から導管21を介して所望の流量で触媒塔13に酸化脱色した飲料排水と酸化剤との混合液を送るようになっている。触媒塔13内には所望量の金属酸化物触媒が公知の方法で充填されており、触媒塔13内において調整槽11内で酸化脱色された飲料排水と酸化剤との混合液がその金属酸化物触媒と接触できるようになっている。このような金属酸化物触媒の一例として本実施の形態では、過酸化ニッケル担持触媒を使用しているが、金属の酸化還元反応を促す他の触媒を使用することも可能である。活性炭塔14内には公知の活性炭が充填され、触媒塔13から送られてきた脱色処理水と接触してその水中の塩素及び難分解成分を除去するようになっている。活性炭塔14の出口側にはバルブ42が設けられた導管23が接続され、活性炭塔14で処理された水を消毒処理部5に送るようになっている。導管23には活性炭塔14とバルブ42との間で、バルブ43が設けられた戻り導管25の一端が接続され、その戻り導管25は戻り流を調整槽11内に戻すようになっている。触媒塔13の出口側に接続された導管22にはバルブ44が設けられた分岐管26の一端が接続され、分岐管26の他端は戻り導管25に接続されている。また、導管22の触媒塔13側には、塩素濃度計測器47が設けられている。
【0020】
なお、27は、触媒塔13から送られてきた脱色処理水を用いて活性炭塔14を逆洗するための導管であり、45はこの導管27に設けられたバルブである。29は、活性炭塔14の逆洗排水を雑排水槽15へ送液するための導管であり、46は、この導管29に設けられたバルブである。また、触媒塔13及び活性炭塔14にはバルブ付きのエア抜きライン28が接続されている。
【0021】
なお、本実施例においては、触媒塔13及び活性炭塔14を各々1基設けているが、有色飲料排水の処理条件に応じて、これらをそれぞれ複数直列及び/又は並列に設けるようにしても構わない。
【0022】
次に、この脱色装置10の動作について説明する。
【0023】
濾過処理部3から送られてきた濾過済みの有色飲料排水は調整槽11に導入される。調整槽11内には酸化剤貯槽12より導管24を介して液状の酸化剤として例えば次亜塩素酸ナトリウム水溶液が供給される。調整槽11内では飲料排水と酸化剤とが攪拌機31により攪拌され、酸化剤と飲料排水とが混合される。液状酸化剤の添加量は、飲料排水の種類及びその色度によって異なり、例えば飲料排水1リットル当たり次亜塩素酸ナトリウムとして10〜800mg−Cl/Lであり、調整槽11内で飲料排水と次亜塩素酸ナトリウムとが攪拌機31により、所望時間、例えば10分以上、望ましくは10〜20分間攪拌されるようにする。調整槽11内において、飲料排水は酸化されて有色成分が部分的に脱色された後、ポンプ32により導管21を介して触媒塔13内に送られる。触媒塔13内では酸化された飲料排水が触媒(この実施例では過酸化ニッケル担持触媒)と接触することにより有色成分の脱色が促進される。触媒塔13内での調整槽11からの流入水と触媒との必要接触時間は、飲料排水の種類、量、色度、酸化剤及び触媒の種類及び量等によって異なるが、調整槽内での酸化剤による酸化によって脱色できなかった有色成分を許容可能な値まで脱色できる範囲であり、本実施例においては6分間以上、例えば6〜30分接触させるのが望ましい。
【0024】
触媒塔13内での触媒との接触により許容可能な範囲内に脱色された水は、活性炭塔14に送られ、その中に充填された活性炭と接触され、残留する酸化剤成分、例えば残留塩素及び難分解成分が除去される。この活性炭塔14の流出水は、消毒処理部5に送られる。
【0025】
活性炭塔14の流出水の一部を調整槽11に戻す場合には、バルブ43を開いて戻り導管25を介して戻す。
【0026】
また、塩素濃度計測器47は触媒塔13の出口に設置され、触媒塔13で処理された脱色処理水の残留塩素濃度を計測し、所定の濃度より低い場合は、バルブ44を開き、触媒塔13の流出水を戻り導管25を通して調整槽11に戻して、または、異物の調整槽11への混入を防止するためバルブ42を閉じ、バルブ43を開いて、活性炭塔14の流出水を戻り導管25を通して調整槽11に戻して再び酸化脱色処理するように構成されている。また、この残留塩素濃度の計測値に基いて、酸化剤貯槽12のポンプ33を制御して、酸化剤添加量を調整することもできる。
【0027】
なお、図1において、48及び49は触媒塔13内の触媒の洗浄のために使用するバルブである。触媒の洗浄においては、バルブ44及びバルブ49を開き、バルブ48を閉じて触媒塔13内に洗浄水を通し、触媒を洗浄して、洗浄後の洗浄水は原水槽に排出する。
【0028】
ところで、図1に示すような脱色装置において、金属酸化物触媒を充填した触媒塔に、酸化剤を添加した飲料排水を通水して処理する場合、水量変動や、休日、装置の保守点検等のために、装置の運転を停止することがある。この場合、所定時間運転を停止した後、再び触媒塔への飲料排水の通水を再開すると、得られる脱色処理水中に金属酸化物触媒の金属成分が溶出し、これにより、運転再開時の処理水の水質が低下すると共に、金属成分の溶出で触媒塔内の金属酸化物触媒が劣化し、触媒性能が低下することがある。
【0029】
この原因は、触媒塔への飲料排水の通水を停止したときに、触媒塔内で酸化剤が分解除去され、触媒表面の金属酸化物の酸素と、触媒に吸着して残留している飲料排水中の有色成分等の被酸化性物質とが反応することにより、触媒の金属酸化物が還元されて金属成分が溶出するためである。
【0030】
従って、本発明においては、このような金属酸化物触媒からの金属成分の溶出を防止するために、装置の運転停止時の通水停止に先立って、触媒塔に通水される水中の酸化剤濃度を高めるようにする。このようにすることにより、触媒に付着している被酸化性物質の一部又は全部が除去され、通水停止期間中における金属酸化物と被酸化性物質との反応による金属成分の溶出を防止することができる。
【0031】
触媒塔に通水される水中の酸化剤濃度を増大させるには、有色飲料排水への酸化剤の添加量を増大させるだけでも良いが、有色飲料排水中の有色成分との反応により酸化剤濃度が低減することなどから、酸化剤の濃度管理が難しい。そこで、有色飲料排水の代わりに、市水や工水など被酸化性物質濃度の低い水を用い、この市水や工水に酸化剤を添加して触媒塔に通水しても良い。また、触媒塔に導入される水中の酸化剤濃度を増大させると共に、触媒塔からの流出水を再度触媒塔に通水させるように循環させても良い。
【0032】
具体的には、図1の脱色装置において、通水を停止するに際しては、調整槽11に有色飲料排水の代りに市水又は工水を導入し、且つ酸化剤の濃度が通常運転時よりも高くなるようにする。そして、バルブ43を閉、バルブ44,48を開として、この調整槽11内の水を触媒塔13に通水し、触媒塔13からの流出水の全量を該調整槽11に戻し、循環させる。これにより、酸化剤濃度の高い水が触媒塔13に循環流通されるようになり、触媒塔13内の触媒に付着残留していた有色成分等の被酸化性物質が分解除去されるようになる。この場合、循環中に酸化剤濃度の高い水が系外に流出しないので、そのための処理コストが抑制されると共に、触媒塔13から流出した酸化剤が再利用されるので、酸化剤薬剤コストを低減できる。
【0033】
なお、高酸化剤濃度の水を循環させる場合、触媒に付着した有色成分等の被酸化性物質が分解し尽くされた後もさらに酸化剤含有水の循環を継続しても良く、運転停止の全期間中にわたり循環を継続しても良い。このようにすれば、この循環中に触媒作用等によって酸化剤が徐々に自己分解し、触媒塔内の水中の酸化剤濃度が低下するようになる。この結果、運転再開時に触媒塔から流出する水中の酸化剤濃度が低いものとなり、触媒塔初期流出水に対し酸化剤除去処理を施すことが不要となったり、あるいはその処理が簡単なもので足りるようになる。
【0034】
通水停止に際して水中の酸化剤濃度を増大させる場合、触媒塔流入水中の酸化剤濃度が通常運転時の触媒塔流入水中の酸化剤濃度の1.0〜40倍特に2.0〜10倍となるようにすることが好ましい。また、この高酸化剤濃度の水を触媒塔に対し触媒塔容積の30倍以上の量、特に50倍以上通水し、付着した有色成分等の被酸化性物質を十分に分解することが望ましい。
【0035】
運転停止期間が終了した後、運転を再開する際には、有色飲料排水の通水を再開するのであるが、運転の再開初期には、触媒塔からの流出水中に酸化剤が多く含まれることがある。図1の装置では、残留する酸化剤が活性炭塔14で除去されるが、通水再開初期の触媒塔流出水を調整槽11へ返送して希釈したり、他の処理系統へ移送して処理しても良い。
【0036】
本発明において、有色飲料排水に添加する酸化剤としては、塩素系酸化剤が好ましい。塩素系酸化剤には特に制限はなく、前述の如く次亜塩素酸ナトリウムの他、例えば、塩素、次亜塩素酸カリウム、次亜塩素酸カルシウムなどの次亜塩素酸塩、亜塩素酸ナトリウム、亜塩素酸カリウムなどの亜塩素酸塩、塩素酸ナトリウム、塩素酸カリウム、塩素酸カルシウムなどの塩素酸塩、過塩素酸ナトリウム、過塩素酸カルシウムなどの過塩素酸塩などを挙げることができる。これらの中で、次亜塩素酸ナトリウム等の次亜塩素酸塩は適度の酸化性を有するので、好適に使用することができる。
【0037】
有色飲料排水への酸化剤の添加量は、少な過ぎると脱色処理が不十分となり、多過ぎると、処理水中に酸化剤が多量に残留するおそれがある。酸化剤が塩素系酸化剤である場合には、該塩素系酸化剤を有色飲料排水の残留塩素濃度が10〜400mg−Cl/Lとなるように添加することが好ましい。なお、「mg−Cl/L」とは、処理水中に残留する塩素系酸化剤を塩素に換算して示される水中の残留塩素濃度である。
【0038】
また、本発明において、触媒としては、金属酸化物触媒が好ましく、金属酸化物触媒としては、触媒成分の金属酸化物を担体に担持したものが好ましい。この担体としては各種タイプのゼオライトやアルミナ等の1種又は2種以上を用いることができる。
【0039】
触媒成分の金属としては、ニッケル、コバルト、銅、銀等、好ましくはニッケル、コバルトが挙げられ、特にニッケルが好ましい。これらの触媒金属も1種を単独で用いても良く、2種以上を混合して用いても良い。
【0040】
本発明で用いる金属酸化物触媒は、これらの触媒金属を金属酸化物、好ましくは金属過酸化物として担体に担持したものであることが好ましく、担体への金属酸化物担持量は、ニッケル、コバルト等の触媒金属換算の担持量で、0.1〜100g−金属/1000g−dry担体であることが好ましい。この担持量よりも少ないと、金属酸化物の触媒作用を十分に得ることができず、これよりも多量に担持させることは、触媒の調製上困難である。
【0041】
本発明に好適な金属過酸化物担持触媒は、例えば、次のようにして、ニッケル等の触媒金属を担体に担持させた後、酸化剤と反応させて調製することができる。
【0042】
まず、ニッケル等の触媒金属の硫酸塩、硝酸塩、塩化物等の水溶液、或いはこれらの混合物の水溶液を調製し、この触媒金属水溶液に担体を浸漬する。或いは、担体を充填したカラムに触媒金属水溶液を一過式又は循環式にて通水して接触させる。この触媒金属水溶液の濃度や接触時間は、調製する金属過酸化物担持触媒の金属担持量に応じて適宜設定される。このようにしてニッケル等の触媒金属をイオン交換により担持した担体を水洗した後、酸化剤を含むアルカリ水溶液と接触させる。この接触方法は、上述の担持法と同様、浸漬又はカラムへの通水等により行うことができる。この触媒担持のための酸化剤としては、次亜塩素酸ナトリウム等の次亜塩素酸塩や塩素ガス等を用いることができる。触媒担持のためのアルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム等の水溶液を用いることができる。この酸化剤を含むアルカリ水溶液の酸化剤濃度やアルカリ濃度については特に制限はないが、通常、酸化剤濃度0.5〜10重量%、特に1〜5重量%で、アルカリ濃度0.1〜10重量%、特に0.5〜2.5重量%の水溶液であることが好ましい。
【0043】
このようにしてニッケル等の触媒金属を担持した担体を、酸化剤を含むアルカリ水溶液に接触された後、水洗することにより、本発明に好適な金属過酸化物担持触媒を得ることができる。
【0044】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。
【0045】
有色飲料排水を生物処理部2において、従来と同様に生物処理した後、濾過処理部3にて濾過処理を行った。濾過処理後の飲料排水の色度は1200であった。この飲料排水を図8に示す従来の凝集剤を用いた脱色方法で処理した場合、処理水の色度は100〜200であった。
【0046】
このような色度を有する飲料排水の脱色試験を図3に示す試験装置50を用いて行った。
【0047】
原水槽51内の上記飲料排水をポンプPにより調整槽53内に180トン/hの流量で導入し、酸化剤貯槽52内の次亜塩素酸ナトリウム水溶液をポンプPにより所定の割合で調整槽53内に添加した。そして、調整槽53内で飲料排水と次亜塩素酸ナトリウムとを攪拌機53Aで所定の時間攪拌混合して脱色処理した。この混合液をポンプPにより触媒塔54内に、混合液と触媒とが所定の時間連続して接触するような流速で通して触媒脱色処理した後、活性炭塔55内に通した。触媒としては、過酸化ニッケル担持触媒を使用した。
【0048】
この試験において、調整槽53内での飲料排水と次亜塩素酸ナトリウムとの反応による脱色の状態を、次亜塩素酸ナトリウムの添加量を、100、200、400又は800mg−Cl/Lの割合で変化させ、また、調整槽53内での攪拌時間を10分から1080分の間で種々変えて行った場合の、攪拌時間と酸化脱色処理水(調整槽53の流出水)の色度との関係を求めたところ、図4に示す結果が得られた。また、酸化脱色処理水の残留塩素濃度と攪拌時間との関係は図5に示す通りであった。
【0049】
図4からも明らかなように、次亜塩素酸ナトリウムの添加量を種々変化させた場合でも、約10分間の攪拌により被処理水である飲料排水の色度が200〜400まで急激に低下し、一定時間攪拌した後は攪拌を続けても色度が殆ど変化しないことがわかる。また、従来の脱色方法の処理能力と同じレベルである飲料排水の色度を100まで脱色するには、攪拌時間を1080分とらなければならなかった。一方、酸化脱色処理水中の残留塩素濃度も、図5から明らかなように数分間の攪拌までは減少していくが、その後は殆ど減少しないことがわかる。また、残留塩素濃度は次亜塩素酸ナトリウムの添加量が多くなればそれに応じて多くなることも分かる。
【0050】
これらの結果から、酸化剤による脱色の程度は添加する酸化剤濃度毎に所定の攪拌時間を設定することで決定することができ、この制御は、残留塩素濃度を測定することにより可能であることがわかる。
【0051】
同様の試験を、次亜塩素酸ナトリウムの添加量を150、300、470mg−Cl/Lの割合で変化させ、色度が1193の飲料排水(テスト1)、色度が780の飲料排水(テスト2)、色度が1183の飲料排水(テスト3)、色度が1272の飲料排水(テスト4)について、各々行い、攪拌時間が20分のときの酸化脱色処理水の色度と次亜塩素酸ナトリウム添加量との関係を調べたところ、図6に示す通りであった。この結果から、次亜塩素酸ナトリウムの添加量が所定量(約150mg−Cl/L)を超えると、その添加量が多くなっても脱色後の色度に殆ど変化が無いこと、従って、添加する酸化剤の濃度は、目的とする色度に応じて決定することができることが分かる。
【0052】
更に、次亜塩素酸ナトリウムを470mg−Cl/L添加して、20分攪拌混合することにより酸化脱色した後の水と触媒塔54内の触媒との接触時間と接触後の脱色処理水(触媒塔出口の水)の色度との関係を調べたところ、図7に示す通りであった。図7から、触媒と酸化脱色処理水との接触時間を6分以上にすることにより、色度80近くの排水を色度50程度まで低下させることができることがわかる。接触時間をそれより長くすると色度も低くすることができるが6分以上では顕著な減少効果はみられない。
【0053】
本実施例では、次亜塩素酸ナトリウムの添加量を180mg−Cl/Lとして、調整槽53内での攪拌時間を10分として酸化脱色後、酸化脱色処理水と触媒塔54内の触媒との接触時間を6分とすることで、色度が100以下、平均で70の脱色処理水を得ることができた。
【0054】
【発明の効果】
以上詳述した通り、本発明の有色飲料排水の脱色方法及び脱色装置によれば、以下のような効果を得ることが可能である。
(イ) 有色飲料排水を酸化脱色した後触媒処理により脱色を促進するものであり、従来法のように汚泥が発生せず、汚泥処理の問題を解消した上で、従来法と同等以上の脱色効果を得ることができる。
(ロ) 触媒処理を行って脱色を促進させることにより、極めて効率的に高度な脱色を行うことができ、高水質の処理水を安定に得ることができる。また、難分解成分の除去も可能となる。
【図面の簡単な説明】
【図1】本発明の有色飲料排水の脱色装置の実施の形態を示す系統図である。
【図2】有色飲料排水の処理システムの系統図である。
【図3】実施例で用いた試験装置を示す系統図である。
【図4】攪拌時間と色度との関係を示すグラフ図である。
【図5】攪拌時間と残留塩素濃度との関係を示すグラフ図である。
【図6】次亜塩素酸ナトリウム添加量と色度との関係を示すグラフ図である。
【図7】触媒との接触時間と色度との関係を示すグラフ図である。
【図8】従来の有色飲料排水の脱色方法を説明する概略図である。
【符号の説明】
3 濾過処理部
5 消毒処理部
10 脱色装置
11 調整槽
12 酸化剤貯槽
13 触媒塔
14 活性炭塔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for decolorizing colored beverage wastewater, and more specifically, efficiently decolorizes colored beverage wastewater without generating waste such as sludge using a flocculant used in a conventional decolorization step. The present invention relates to a method and an apparatus.
[0002]
[Prior art]
Wastewater generated in the beverage manufacturing process (hereinafter referred to as “beverage wastewater”) is discharged into rivers and the like after various treatments in consideration of safety and the environment. In the case where the drinking water is colored, the waste water treatment is also targeted for the decoloring treatment.
[0003]
A conventional method for decoloring colored beverage wastewater is to aggregate and separate colored components in the wastewater by a flocculant. That is, as shown in FIG. 8, first, the colored beverage wastewater is introduced into the reaction tank a, and a predetermined amount of an inorganic flocculant such as ferric chloride is introduced into the reaction tank a to react with the colored components. And the surface charge of the particles is electrically neutralized to form aggregates. At the same time, a pH adjusting agent such as caustic soda is added to bring the pH of the aggregate to an appropriate range. Next, the wastewater that has been reacted is introduced into the agglomeration tank b, and a polymer flocculant is introduced into the wastewater to increase the strength and particle size of the colored component agglomerates, and the wastewater containing the agglomerates is precipitated. It introduce | transduces into the tank c, the aggregate d is settled in the precipitation tank c, and is isolate | separated. The supernatant water of the precipitation tank c from which the colored components have been separated is then discharged after being sterilized in the sterilization process. On the other hand, the agglomerates d containing the colored components that have precipitated are periodically taken out from the precipitation tank c, and are separately treated as sludge and discarded.
[0004]
[Problems to be solved by the invention]
Such a conventional decolorization method is a method in which colored components in drinking water are agglomerated and separated by an inorganic flocculant and a polymer flocculant, and sludge is discharged from the sedimentation tank. There is a problem of labor. In addition, from the viewpoint of protecting the natural environment, reduction of waste generation is strongly demanded.
[0005]
An object of the present invention is to solve the problems of the conventional decoloring method and to provide a method and an apparatus for efficiently decolorizing colored beverage wastewater without generating sludge.
[0006]
[Means for Solving the Problems]
The method for decolorizing colored beverage wastewater according to the present invention is a method for decolorizing colored beverage wastewater comprising a decolorizing step of bringing colored beverage wastewater into contact with a catalyst in the presence of an oxidizing agent. A mixing step of adding and mixing a colored beverage drainage mixed with an oxidizer with a catalyst, and the concentration of the oxidant is higher than that during normal operation when stopping the flow of the colored beverage drainage. Further, high water is brought into contact with the catalyst to decompose and remove oxidizable substances remaining on the catalyst.
[0007]
The decolorizing device for colored beverage drainage of the present invention comprises an adjustment tank provided with a means for mixing the liquid in the tank, a means for introducing the colored beverage drainage into the adjustment tank, the colored beverage drainage introduced into the adjustment tank and / or the An oxidizing agent adding means for adding an oxidizing agent to the adjustment tank, a catalyst tower filled with a metal oxide catalyst into which the outflow water from the adjustment tank is introduced, and a circulation for returning the outflow water of the catalyst tower to the adjustment tank and line, a bleaching system colored beverage wastewater and means for introducing city water or industrial water to the conditioning tank, sometimes stops water flow colored beverage wastewater instead of colored beverage wastewater in the conditioning tank City water or industrial water is introduced and an oxidizing agent is added, and water in the adjustment tank in which the oxidizing water is added to the city water or industrial water is passed through the catalyst tower, and effluent water from the catalyst tower is It is characterized by being returned to the adjustment tank and circulated.
[0008]
According to the present invention, an oxidant is added to and mixed with colored beverage effluent to oxidize and decolorize colored components in the colored beverage effluent, and then contact with a catalyst to promote decolorization, thereby providing a colored beverage. The waste water can be highly decolorized, and treated water with good water quality can be obtained stably and efficiently.
[0009]
According to the present invention, it is possible to perform decolorization at the same level or higher as before without generating sludge due to aggregation of colored components, and it is also excellent in terms of environmental protection. . Moreover, according to the present invention, it is possible to remove hardly decomposed components in the colored beverage wastewater, which is effective for improving the quality of the treated water.
[0010]
In the present invention, the decolorized water may be further treated with activated carbon. Therefore, the colored beverage waste water decoloring apparatus of the present invention may be provided with an activated carbon tower into which the outflow water of the catalyst tower is introduced. Thereby, for example, chlorine generated by decoloring treatment using a chlorine-based oxidizing agent can be removed by activated carbon, and the remaining hardly decomposed components can be adsorbed and removed by activated carbon. Further, prior to the decolorization treatment, the colored beverage wastewater may be filtered to remove foreign matters in the beverage wastewater.
[0011]
Furthermore, in the present invention, when a chlorine-based oxidizing agent is used as the oxidizing agent, the residual chlorine concentration of the decolorized water may be measured immediately after the decolorizing process. Therefore, in the decolorizing apparatus for colored beverage drainage of the present invention, a measuring means for measuring the residual chlorine concentration of the effluent of the catalyst tower may be provided. By doing so, the chromaticity of the decolorized water can be easily calculated from the measured residual chlorine concentration without requiring a complicated operation of measuring the chromaticity of the decolorized water by measuring absorbance or the like. Is possible. Furthermore, in the present invention, it is also possible to control the addition amount of the chlorine-based oxidant based on the measured residual chlorine concentration, thereby adding an appropriate amount of the chlorine-based oxidant to the colored beverage drainage. Thus, the chromaticity of the decolorized water can be efficiently brought close to a predetermined set value.
[0012]
In the present invention, the oxidizing agent is preferably sodium hypochlorite. The catalyst is preferably a nickel peroxide supported catalyst.
[0013]
In the present invention, the mixing step of the colored beverage drainage and the oxidizing agent is preferably performed for a time until the chromaticity of the mixed solution of the colored beverage drainage and the oxidizing agent reaches a predetermined chromaticity. The mixing time is appropriately set according to the chromaticity of the colored beverage drainage, the added amount of the oxidizing agent, the target chromaticity, etc., and when mixing is performed by stirring, the mixing time is, for example, 10 minutes or more. Can do.
[0014]
Moreover, it is preferable to perform also the contact process of this liquid mixture and a catalyst for the time until the chromaticity of the decoloring process water obtained reaches predetermined chromaticity. The contact time is also appropriately determined according to the water quality and treatment amount of the colored beverage wastewater, the addition amount of the oxidizing agent, the amount of the catalyst used, the target chromaticity, etc. In the case of water flow treatment to the catalyst tower, It is preferable that the residence time in the tower (time to pass through the catalyst tower) is, for example, 6 minutes or more.
[0015]
In the present invention, a part of the decolorized water may be returned to the decoloring step and circulated. That is, in the decolorizing apparatus for colored beverage drainage of the present invention, a circulation line for returning a part of the effluent of the catalyst tower to the adjustment tank may be provided. By performing the circulation process in this manner, it becomes possible to circulate the treated water having a chromaticity equal to or higher than the reference value and perform the process again, and a reliable decoloring process can be performed. Further, by circulating the water containing the residual oxidant in this way, part or all of the oxidizable substance adhering to the catalyst is removed, and the metal oxide and the oxidizable substance during the period when the water flow is stopped The durability of the catalyst can be improved by the effect of preventing the elution of the metal component due to the reaction with the catalyst.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 is a system diagram showing an embodiment of a decoloring device for colored beverage drainage (hereinafter simply referred to as “decoloring device”) 10 of the present invention. Such a decoloring apparatus is incorporated in, for example, the decoloring processing unit 4 of the colored beverage drainage processing system shown in FIG. The colored beverage wastewater treatment system 1 shown in FIG. 2 includes a biological treatment unit 2, a filtration treatment unit 3, a decolorization treatment unit 4, and a disinfection treatment unit 5, and the colored beverage wastewater is treated by these treatment units. It is discharged after being processed. The biological processing unit 2, the filtration processing unit 3 and the disinfection processing unit 5 can adopt the same structure and function as those in the conventional processing system, and detailed description thereof will be omitted.
[0018]
A decolorizing apparatus 10 shown in FIG. 1 is supplied with a colored beverage drainage to be treated by a conduit 20 from a filtration processing unit 3 including a raw water tank 3A and a filter 3B. From the oxidant storage tank 12 for storing the oxidant to be supplied, the catalyst tower 13 connected to the adjustment tank 11 via the conduit 21 on the downstream side (as viewed in the flow direction of the waste water) from the adjustment tank 11, and from the catalyst tower 13 An activated carbon tower 14 connected to the catalyst tower 13 via a conduit 22 with a valve 41 is provided on the downstream side (as viewed in the flow direction of the waste water). At least one supply pipe 24 is connected to the oxidant storage tank 12, and the oxidant stored in the oxidant storage tank 12 is supplied into the adjustment tank 11 through the supply pipe 24 by the pump 33. Yes. Therefore, in this embodiment, the oxidant storage tank 12, the pump 33, and the supply pipe 24 constitute an oxidant addition means. In this embodiment, liquid sodium hypochlorite is used as the oxidizing agent, but oxidizing agents using other chlorine-based compounds can also be used. The adjustment tank 11 is provided with at least one stirrer 31 (two in this embodiment) so that the colored beverage drainage and the oxidizing agent can be mixed by stirring.
[0019]
A pump 32 is connected to the conduit 21 connected to the adjustment tank 11 adjacent to the adjustment tank 11, and the beverage drainage is oxidatively decolorized to the catalyst tower 13 from the adjustment tank 11 through the conduit 21 to the catalyst tower 13 by the pump 32. It is designed to send a mixture of oxidant and oxidant. The catalyst tower 13 is filled with a desired amount of a metal oxide catalyst by a known method, and a mixed liquid of beverage wastewater and oxidant which has been oxidatively decolorized in the adjustment tank 11 in the catalyst tower 13 is oxidized into the metal. It can come into contact with the product catalyst. In this embodiment, a nickel peroxide-supported catalyst is used as an example of such a metal oxide catalyst. However, other catalysts that promote a metal oxidation-reduction reaction may be used. The activated carbon tower 14 is filled with known activated carbon, and comes into contact with the decolorized water sent from the catalyst tower 13 to remove chlorine and hardly decomposed components in the water. A conduit 23 provided with a valve 42 is connected to the outlet side of the activated carbon tower 14 so that the water treated in the activated carbon tower 14 is sent to the disinfection treatment unit 5. One end of a return conduit 25 provided with a valve 43 is connected to the conduit 23 between the activated carbon tower 14 and the valve 42, and the return conduit 25 returns the return flow into the regulating tank 11. One end of a branch pipe 26 provided with a valve 44 is connected to the conduit 22 connected to the outlet side of the catalyst tower 13, and the other end of the branch pipe 26 is connected to the return conduit 25. In addition, a chlorine concentration measuring device 47 is provided on the side of the catalyst tower 13 of the conduit 22.
[0020]
Reference numeral 27 denotes a conduit for backwashing the activated carbon tower 14 using decolorized water sent from the catalyst tower 13, and 45 is a valve provided in the conduit 27. 29 is a conduit for sending backwash waste water from the activated carbon tower 14 to the miscellaneous drainage tank 15, and 46 is a valve provided in the conduit 29. An air vent line 28 with a valve is connected to the catalyst tower 13 and the activated carbon tower 14.
[0021]
In the present embodiment, one catalyst tower 13 and one activated carbon tower 14 are provided, but a plurality of them may be provided in series and / or in parallel depending on the processing conditions of the colored beverage wastewater. Absent.
[0022]
Next, operation | movement of this decoloring apparatus 10 is demonstrated.
[0023]
The filtered colored beverage wastewater sent from the filtration processing unit 3 is introduced into the adjustment tank 11. For example, a sodium hypochlorite aqueous solution is supplied as a liquid oxidant from the oxidant storage tank 12 through the conduit 24 into the adjustment tank 11. In the adjustment tank 11, the beverage drainage and the oxidant are agitated by the stirrer 31, and the oxidant and the beverage drainage are mixed. The amount of liquid oxidant added varies depending on the type and color of the beverage drainage, and is, for example, 10 to 800 mg-Cl / L as sodium hypochlorite per liter of beverage wastewater. Sodium chlorite is stirred by the stirrer 31 for a desired time, for example, 10 minutes or longer, preferably 10-20 minutes. In the adjustment tank 11, the beverage wastewater is oxidized and the colored components are partially decolored, and then sent to the catalyst tower 13 via the conduit 21 by the pump 32. In the catalyst tower 13, the oxidized beverage wastewater comes into contact with the catalyst (in this embodiment, the nickel peroxide-supported catalyst), thereby facilitating the decolorization of the colored components. The required contact time between the inflow water from the adjustment tank 11 and the catalyst in the catalyst tower 13 varies depending on the type, amount, color, type and amount of the oxidizer and catalyst of the drinking water, The color components that could not be decolored by oxidation with an oxidant are within a range where the color components can be decolored to an acceptable value. In this embodiment, it is desirable to contact for 6 minutes or more, for example, 6 to 30 minutes.
[0024]
The water decolorized to an acceptable range by contact with the catalyst in the catalyst tower 13 is sent to the activated carbon tower 14 where it is contacted with the activated carbon filled therein, and residual oxidant components such as residual chlorine. And hardly decomposed components are removed. The effluent water from the activated carbon tower 14 is sent to the disinfection treatment unit 5.
[0025]
When returning a part of the effluent water of the activated carbon tower 14 to the adjustment tank 11, the valve 43 is opened and returned via the return conduit 25.
[0026]
A chlorine concentration measuring device 47 is installed at the outlet of the catalyst tower 13 and measures the residual chlorine concentration of the decolorized water treated by the catalyst tower 13. If the concentration is lower than the predetermined concentration, the valve 44 is opened to open the catalyst tower. 13 is returned to the adjustment tank 11 through the return conduit 25, or the valve 42 is closed and the valve 43 is opened to prevent foreign matter from entering the adjustment tank 11, and the effluent of the activated carbon tower 14 is returned to the return conduit. It is configured to return to the adjustment tank 11 through 25 and to perform oxidative decolorization again. Moreover, based on the measured value of the residual chlorine concentration, the oxidant addition amount can be adjusted by controlling the pump 33 of the oxidant storage tank 12.
[0027]
In FIG. 1, reference numerals 48 and 49 denote valves used for cleaning the catalyst in the catalyst tower 13. In the cleaning of the catalyst, the valve 44 and the valve 49 are opened, the valve 48 is closed, the cleaning water is passed through the catalyst tower 13, the catalyst is cleaned, and the cleaned cleaning water is discharged to the raw water tank.
[0028]
By the way, in the decoloring apparatus as shown in FIG. 1, when the drinking water drained with the oxidizing agent is passed through the catalyst tower filled with the metal oxide catalyst, the amount of water changes, holidays, equipment maintenance check, etc. For this reason, the operation of the apparatus may be stopped. In this case, after stopping the operation for a predetermined time, when the drinking water drainage to the catalyst tower is resumed, the metal component of the metal oxide catalyst is eluted in the decolorized water thus obtained, whereby the treatment at the time of restarting the operation is performed. In addition to the deterioration of water quality, the metal oxide catalyst in the catalyst tower may deteriorate due to the elution of the metal component, and the catalyst performance may decrease.
[0029]
This is because when the drinking water flow to the catalyst tower is stopped, the oxidant is decomposed and removed in the catalyst tower, the oxygen of the metal oxide on the catalyst surface, and the beverage remaining adsorbed on the catalyst. This is because the metal oxide of the catalyst is reduced and the metal component is eluted by a reaction with an oxidizable substance such as a colored component in the waste water.
[0030]
Therefore, in the present invention, in order to prevent the elution of the metal component from the metal oxide catalyst, the oxidizer in the water that is passed through the catalyst tower prior to the stoppage of the water flow when the apparatus is shut down. to increase the concentration. In this way, part or all of the oxidizable substance adhering to the catalyst is removed, and elution of the metal component due to the reaction between the metal oxide and the oxidizable substance during the period when water flow is stopped is prevented can do.
[0031]
In order to increase the oxidant concentration in the water passed through the catalyst tower, it is only necessary to increase the amount of oxidant added to the colored beverage effluent, but the oxidant concentration by reaction with the colored component in the colored beverage effluent. It is difficult to control the concentration of the oxidant because of the reduction of oxidant. Therefore, instead of colored beverage wastewater, water having a low concentration of oxidizable substances such as city water and industrial water may be used, and an oxidant may be added to the city water and industrial water and passed through the catalyst tower. Further, the oxidant concentration in the water introduced into the catalyst tower may be increased, and the effluent water from the catalyst tower may be circulated so as to pass through the catalyst tower again.
[0032]
Specifically, in the decoloring apparatus of FIG. 1, when water flow is stopped, city water or industrial water is introduced into the adjustment tank 11 instead of colored beverage wastewater, and the concentration of the oxidizing agent is higher than that during normal operation. Try to be high. Then, the valve 43 is closed, the valves 44 and 48 are opened, the water in the adjustment tank 11 is passed through the catalyst tower 13, and the total amount of the outflow water from the catalyst tower 13 is returned to the adjustment tank 11 for circulation. . As a result, water having a high oxidant concentration is circulated through the catalyst tower 13, and oxidizable substances such as colored components remaining on the catalyst in the catalyst tower 13 are decomposed and removed. . In this case, since water with a high oxidant concentration does not flow out of the system during the circulation, the processing cost for that purpose is suppressed, and the oxidant flowing out from the catalyst tower 13 is reused. Can be reduced.
[0033]
When water with a high oxidant concentration is circulated, the oxidant-containing water may continue to circulate even after the oxidizable substances such as colored components attached to the catalyst have been completely decomposed. Circulation may continue throughout the entire period. In this way, the oxidant gradually self-decomposes during the circulation due to catalytic action and the like, and the oxidant concentration in the water in the catalyst tower decreases. As a result, the oxidant concentration in the water flowing out from the catalyst tower at the time of restarting operation becomes low, and it becomes unnecessary to perform the oxidant removal treatment on the initial effluent water from the catalyst tower, or the treatment can be simple. It becomes like this.
[0034]
When increasing the oxidant concentration in the water when the water flow is stopped, the oxidant concentration in the catalyst tower inflow water is 1.0 to 40 times, particularly 2.0 to 10 times the oxidant concentration in the catalyst tower inflow water during normal operation. It is preferable to do so. Further, it is desirable that water with a high oxidant concentration is passed through the catalyst tower in an amount of 30 times or more, particularly 50 times or more of the catalyst tower volume, to sufficiently decompose oxidizable substances such as attached colored components. .
[0035]
When the operation is resumed after the operation stop period is over, the colored beverage drainage is resumed. At the beginning of the operation, the effluent from the catalyst tower contains a large amount of oxidant. There is. In the apparatus of FIG. 1, the remaining oxidant is removed by the activated carbon tower 14, but the catalyst tower effluent at the initial stage of resuming water flow is returned to the adjustment tank 11 for dilution, or transferred to another treatment system for treatment. You may do it.
[0036]
In the present invention, the oxidant added to the colored beverage wastewater is preferably a chlorine-based oxidant. There is no particular limitation on the chlorinated oxidant, as described above, in addition to sodium hypochlorite, for example, hypochlorite such as chlorine, potassium hypochlorite, calcium hypochlorite, sodium chlorite, Examples thereof include chlorites such as potassium chlorite, chlorates such as sodium chlorate, potassium chlorate and calcium chlorate, and perchlorates such as sodium perchlorate and calcium perchlorate. Among these, hypochlorites such as sodium hypochlorite have moderate oxidation properties and can be used preferably.
[0037]
If the amount of the oxidizing agent added to the colored beverage wastewater is too small, the decolorization treatment becomes insufficient, and if it is too large, there is a possibility that a large amount of the oxidizing agent remains in the treated water. When the oxidizing agent is a chlorine-based oxidizing agent, it is preferable to add the chlorine-based oxidizing agent so that the residual chlorine concentration in the colored beverage wastewater is 10 to 400 mg-Cl / L. “Mg-Cl / L” is the residual chlorine concentration in water indicated by converting the chlorine-based oxidant remaining in the treated water into chlorine.
[0038]
In the present invention, the catalyst is preferably a metal oxide catalyst, and the metal oxide catalyst is preferably a catalyst in which a metal oxide as a catalyst component is supported on a carrier. As this carrier, one type or two or more types of various types of zeolite and alumina can be used.
[0039]
Examples of the metal of the catalyst component include nickel, cobalt, copper, silver and the like, preferably nickel and cobalt, and nickel is particularly preferable. These catalyst metals may be used alone or in a combination of two or more.
[0040]
The metal oxide catalyst used in the present invention is preferably a catalyst in which these catalyst metals are supported on a carrier as a metal oxide, preferably a metal peroxide. The amount of the metal oxide supported on the carrier is nickel, cobalt. It is preferable that it is 0.1-100g-metal / 1000g-dry support | carrier by the load of catalyst metal conversion, such as. If the amount is less than this, the catalytic action of the metal oxide cannot be sufficiently obtained, and it is difficult to prepare a larger amount than this in terms of preparation of the catalyst.
[0041]
A metal peroxide-supported catalyst suitable for the present invention can be prepared by, for example, carrying a catalyst metal such as nickel on a support and reacting with an oxidizing agent as follows.
[0042]
First, an aqueous solution of sulfate, nitrate, chloride or the like of a catalyst metal such as nickel or a mixture thereof is prepared, and the carrier is immersed in the aqueous catalyst metal solution. Alternatively, a catalytic metal aqueous solution is passed through a column packed with a carrier in a transient or circulating manner to make contact. The concentration of the catalytic metal aqueous solution and the contact time are appropriately set according to the amount of metal supported on the metal peroxide-supported catalyst to be prepared. Thus, after the carrier carrying the catalyst metal such as nickel by ion exchange is washed with water, it is brought into contact with an alkaline aqueous solution containing an oxidizing agent. This contact method can be carried out by dipping or passing water through the column, as in the above-described supporting method. As the oxidizing agent for supporting the catalyst, hypochlorites such as sodium hypochlorite, chlorine gas, and the like can be used. As the aqueous alkali solution for supporting the catalyst, an aqueous solution of sodium hydroxide, potassium hydroxide or the like can be used. Although there is no restriction | limiting in particular about the oxidizing agent density | concentration of an aqueous alkali solution containing this oxidizing agent, or an alkali density | concentration, Usually, an oxidizing agent density | concentration of 0.5 to 10 weight%, especially 1 to 5 weight%, alkali concentration 0.1-10 The aqueous solution is preferably 0.5% by weight, particularly 0.5 to 2.5% by weight.
[0043]
Thus, the support | carrier which carry | supported catalyst metals, such as nickel, is contacted with the alkaline aqueous solution containing an oxidizing agent, Then, the metal peroxide carrying | support catalyst suitable for this invention can be obtained by washing with water.
[0044]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0045]
The colored beverage wastewater was biologically treated in the biological treatment unit 2 in the same manner as before, and then filtered in the filtration processing unit 3. The chromaticity of the beverage drainage after the filtration treatment was 1200. When this drinking water was processed by the conventional decoloring method using a flocculant shown in FIG. 8, the chromaticity of the treated water was 100 to 200.
[0046]
A decolorization test of beverage wastewater having such chromaticity was performed using a test apparatus 50 shown in FIG.
[0047]
The beverage draining in the raw water tank 51 is introduced at a flow rate of 180 t / h in the adjusting tank 53 by a pump P 1, adjusted at a predetermined rate by a pump P 2 sodium hypochlorite solution in the oxidizer storage tank 52 It added in the tank 53. And in the adjustment tank 53, the drinking water and sodium hypochlorite were stirred and mixed with the stirrer 53A for a predetermined time, and decolorized. The mixture in the catalyst tower 54 by a pump P 3, after the mixture and the catalyst has catalytic decolorization treatment through at a flow rate such that continuous contact with a predetermined time was passed through the activated carbon tower 55. As the catalyst, a nickel peroxide supported catalyst was used.
[0048]
In this test, the state of decolorization caused by the reaction between the drinking water in the adjustment tank 53 and sodium hypochlorite, the amount of sodium hypochlorite added, the ratio of 100, 200, 400 or 800 mg-Cl / L. In addition, when the stirring time in the adjustment tank 53 is variously changed between 10 minutes and 1080 minutes, the stirring time and the chromaticity of the oxidative decoloring water (outflow water of the adjustment tank 53) When the relationship was obtained, the result shown in FIG. 4 was obtained. Further, the relationship between the residual chlorine concentration in the oxidized decolorized water and the stirring time was as shown in FIG.
[0049]
As is apparent from FIG. 4, even when the amount of sodium hypochlorite added is variously changed, the chromaticity of the beverage drainage, which is the water to be treated, rapidly decreases to 200 to 400 by stirring for about 10 minutes. It can be seen that after stirring for a certain time, the chromaticity hardly changes even if stirring is continued. Moreover, in order to decolorize the chromaticity of the drinking water which is the same level as the processing capacity of the conventional decoloring method up to 100, the stirring time had to be 1080 minutes. On the other hand, the residual chlorine concentration in the oxidative decolorized water also decreases until stirring for several minutes as is apparent from FIG. It can also be seen that the residual chlorine concentration increases as the amount of sodium hypochlorite added increases.
[0050]
From these results, the degree of decolorization by the oxidant can be determined by setting a predetermined stirring time for each oxidant concentration to be added, and this control can be performed by measuring the residual chlorine concentration. I understand.
[0051]
The same test was conducted by changing the amount of sodium hypochlorite added at a rate of 150, 300, 470 mg-Cl / L, and drinking effluent having a chromaticity of 1193 (test 1) and drinking effluent having a chromaticity of 780 (test 2) The chromaticity and hypochlorous acid of the oxidative decolorized water when the agitation time is 20 minutes for the drinking effluent (test 3) with a chromaticity of 1183 and the drinking effluent (test 4) with a chromaticity of 1272, respectively. When the relationship with the amount of sodium acid added was examined, it was as shown in FIG. From this result, when the amount of sodium hypochlorite added exceeds a predetermined amount (about 150 mg-Cl / L), there is almost no change in the chromaticity after decolorization even if the amount added is increased. It can be seen that the concentration of the oxidizing agent to be determined can be determined according to the target chromaticity.
[0052]
Furthermore, 470 mg-Cl / L of sodium hypochlorite was added, and the contact time between the water after oxidative decoloration by stirring and mixing for 20 minutes and the catalyst in the catalyst tower 54 and the decolorized water after the contact (catalyst) When the relationship with the chromaticity of water at the tower outlet was examined, it was as shown in FIG. It can be seen from FIG. 7 that the waste water near chromaticity 80 can be reduced to about 50 chromaticity by setting the contact time between the catalyst and the oxidative decolorized water to 6 minutes or longer. If the contact time is longer than that, the chromaticity can be lowered. However, if the contact time is longer than 6 minutes, no remarkable reduction effect is observed.
[0053]
In this example, the amount of sodium hypochlorite added was 180 mg-Cl / L, the stirring time in the adjustment tank 53 was 10 minutes, and after oxidative decolorization, the oxidative decolorization treated water and the catalyst in the catalyst tower 54 By setting the contact time to 6 minutes, decolorized water having a chromaticity of 100 or less and an average of 70 could be obtained.
[0054]
【The invention's effect】
As described above in detail, according to the method and apparatus for decoloring colored beverage drainage of the present invention, the following effects can be obtained.
(Ii) Decolorization of colored beverage wastewater is promoted by catalytic treatment after oxidation and decolorization. Sludge is not generated as in the conventional method. An effect can be obtained.
(B) By carrying out a catalyst treatment to promote decolorization, highly efficient decolorization can be performed very efficiently, and high-quality treated water can be stably obtained. In addition, it is possible to remove hardly decomposed components.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a decoloring apparatus for colored beverage drainage according to the present invention.
FIG. 2 is a system diagram of a colored beverage wastewater treatment system.
FIG. 3 is a system diagram showing a test apparatus used in Examples.
FIG. 4 is a graph showing the relationship between stirring time and chromaticity.
FIG. 5 is a graph showing the relationship between stirring time and residual chlorine concentration.
FIG. 6 is a graph showing the relationship between the amount of sodium hypochlorite added and chromaticity.
FIG. 7 is a graph showing the relationship between contact time with a catalyst and chromaticity.
FIG. 8 is a schematic diagram for explaining a conventional method for decolorizing colored beverage wastewater.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 Filtration processing part 5 Disinfection processing part 10 Decoloring apparatus 11 Adjustment tank 12 Oxidant storage tank 13 Catalyst tower 14 Activated carbon tower

Claims (17)

有色飲料排水を酸化剤の存在下に触媒と接触させる脱色工程を備える有色飲料排水の脱色方法であって、
該脱色工程は、有色飲料排水に酸化剤を添加して混合する混合工程と、酸化剤が混合された有色飲料排水を触媒と接触させる接触工程とを含み、
有色飲料排水の通水を停止する時に、酸化剤の濃度が通常運転時よりも高い水を前記触媒と接触させて、該触媒に付着残留している被酸化性物質を分解除去することを特徴とする有色飲料排水の脱色方法。
A method for decolorizing colored beverage wastewater comprising a decolorizing step of contacting the colored beverage wastewater with a catalyst in the presence of an oxidizing agent,
The decoloring step includes a mixing step of adding and mixing an oxidizing agent to the colored beverage wastewater, and a contacting step of bringing the colored beverage wastewater mixed with the oxidizing agent into contact with the catalyst.
Sometimes stops water flow colored beverage wastewater, characterized in that the concentration of the oxidizing agent is a high water than during normal operation in contact with the catalyst to decompose and remove oxidizable substances adhering remaining on the catalyst Decolorizing method of colored beverage drainage.
請求項1に記載の有色飲料排水の脱色方法において、前記混合工程は、槽内液の混合手段を備える調整槽に有色飲料排水を導入すると共に酸化剤を添加して混合する工程であり、前記接触工程は、該調整槽の流出水を金属酸化物触媒が充填された触媒塔に通水する工程であり、
有色飲料排水の通水を停止する時に、該調整槽に有色飲料排水の代りに市水又は工水を導入すると共に酸化剤を添加し、該調整槽の流出水を該触媒塔に通水し、該触媒塔からの流出水を該調整槽に戻し、循環させることにより、酸化剤濃度の高い水を触媒と接触させることを特徴とする有色飲料排水の脱色方法。
The method for decoloring colored beverage wastewater according to claim 1, wherein the mixing step is a step of introducing the colored beverage wastewater into an adjustment tank equipped with a means for mixing the liquid in the tank, and adding and mixing an oxidant, The contact step is a step of passing the effluent water of the adjustment tank through a catalyst tower packed with a metal oxide catalyst,
Sometimes stops water flow colored beverage wastewater, adding an oxidizing agent is introduced the city water or industrial water instead of colored beverage wastewater in the conditioning tank, the effluent of the equalizing tank and passed through to the catalyst column A method for decolorizing colored beverage wastewater, characterized in that water having a high oxidant concentration is brought into contact with the catalyst by returning and circulating the effluent from the catalyst tower to the adjustment tank.
請求項1又は2に記載の飲料排水の脱色方法において、前記脱色工程の処理水を活性炭で処理する活性炭処理工程を備えることを特徴とする有色飲料排水の脱色方法。  3. The method for decolorizing beverage drainage according to claim 1 or 2, further comprising an activated carbon treatment step of treating the treated water of the decolorization step with activated carbon. 請求項1ないし3のいずれか1項に記載の有色飲料排水の脱色方法において、前記脱色工程に供給する有色飲料排水を濾過する濾過工程を備えることを特徴とする有色飲料排水の脱色方法。  4. The method for decoloring colored beverage wastewater according to claim 1, further comprising a filtration step of filtering the colored beverage wastewater supplied to the decolorization step. 請求項1ないし4のいずれかに記載の有色飲料排水の脱色方法において、前記酸化剤が塩素系酸化剤であり、前記脱色工程の処理水の残留塩素濃度を計測することを特徴とする有色飲料排水の脱色方法。  5. The colored beverage drainage decolorization method according to claim 1, wherein the oxidizing agent is a chlorine-based oxidizing agent, and the residual chlorine concentration of the treated water in the decoloring step is measured. Decolorization method of drainage. 請求項5に記載の有色飲料排水の脱色方法において、計測された残留塩素濃度に応じて、前記混合工程における塩素系酸化剤の添加量を制御することを特徴とする有色飲料排水の脱色方法。  6. The method for decoloring colored beverage wastewater according to claim 5, wherein the amount of the chlorine-based oxidant added in the mixing step is controlled according to the measured residual chlorine concentration. 請求項5又は6に記載の有色飲料排水の脱色方法において、計測された残留塩素濃度が所定の濃度よりも低い場合は、前記脱色工程の処理水を前記混合工程へ戻すことを特徴とする有色飲料排水の脱色方法。  7. The method for decolorizing colored beverage wastewater according to claim 5 or 6, wherein when the measured residual chlorine concentration is lower than a predetermined concentration, the treated water in the decoloring step is returned to the mixing step. Decolorization method for drinking water. 請求項5又は6に記載の飲料排水の脱色方法において、前記脱色工程の処理水を活性炭で処理する活性炭処理工程を備え、計測された残留塩素濃度が所定の濃度よりも低い場合は、該活性炭処理工程の処理水を前記混合工程へ戻すことを特徴とする有色飲料排水の脱色方法。  The method for decolorizing beverage wastewater according to claim 5 or 6, further comprising an activated carbon treatment step of treating the treated water of the decolorization step with activated carbon, and when the measured residual chlorine concentration is lower than a predetermined concentration, the activated carbon A method for decolorizing colored beverage wastewater, wherein the treated water in the treatment step is returned to the mixing step. 請求項1ないし8のいずれかに記載の有色飲料排水の脱色方法において、前記酸化剤が次亜塩素酸ナトリウムであることを特徴とする有色飲料排水の脱色方法。  The method for decolorizing colored beverage wastewater according to any one of claims 1 to 8, wherein the oxidizing agent is sodium hypochlorite. 請求項1ないし9のいずれかに記載の有色飲料排水の脱色方法において、前記混合工程は、有色飲料排水と酸化剤との混合液が所定の色度に達するまでの時間行うことを特徴とする有色飲料排水の脱色方法。  10. The method for decoloring colored beverage wastewater according to claim 1, wherein the mixing step is performed for a time until the mixed solution of the colored beverage wastewater and the oxidizing agent reaches a predetermined chromaticity. Decolorization method for colored beverage drainage. 請求項1ないし10のいずれかに記載の有色飲料排水の脱色方法において、前記触媒が過酸化ニッケル担持触媒であることを特徴とする有色飲料排水の脱色方法。  The method for decoloring colored beverage wastewater according to any one of claims 1 to 10, wherein the catalyst is a nickel peroxide-supported catalyst. 請求項1ないし11のいずれかに記載の有色飲料排水の脱色方法において、前記接触工程は、処理水の色度が所定の色度に達するまでの時間行うことを特徴とする有色飲料排水の脱色方法。  12. The method for decolorizing colored beverage wastewater according to claim 1, wherein the contacting step is performed until the chromaticity of the treated water reaches a predetermined chromaticity. Method. 槽内液の混合手段を備える調整槽と、
該調整槽に有色飲料排水を導入する手段と、
該調整槽に導入される有色飲料排水及び/又は該調整槽に酸化剤を添加する酸化剤添加手段と、
該調整槽からの流出水が導入される金属酸化物触媒が充填された触媒塔と、
該触媒塔の流出水を該調整槽に戻す循環ラインと、
該調整槽に市水又は工水を導入する手段と
を備える有色飲料排水の脱色装置であって、
有色飲料排水の通水を停止する時に、該調整槽に有色飲料排水の代りに市水又は工水を導入すると共に酸化剤を添加し、該市水又は工水に酸化剤を添加した調整槽内の水を該触媒塔に通水し、該触媒塔からの流出水を該調整槽に戻し、循環させることを特徴とする有色飲料排水の脱色装置。
An adjustment tank provided with a means for mixing the liquid in the tank;
Means for introducing colored beverage wastewater into the adjustment tank;
Colored beverage drainage introduced into the adjustment tank and / or an oxidant addition means for adding an oxidant to the adjustment tank;
A catalyst tower filled with a metal oxide catalyst into which effluent water from the adjustment tank is introduced;
A circulation line for returning the effluent of the catalyst tower to the adjustment tank;
A decolorizing device for colored beverage drainage, comprising means for introducing city water or industrial water into the adjustment tank,
An adjustment tank in which city water or industrial water is introduced into the adjustment tank instead of colored drink drainage and an oxidizing agent is added to the adjustment tank, and an oxidizing agent is added to the city water or industrial water when stopping the flow of colored beverage wastewater. An apparatus for decolorizing colored beverage wastewater, wherein water in the inside is passed through the catalyst tower, and the outflow water from the catalyst tower is returned to the adjustment tank and circulated.
請求項13に記載の有色飲料排水の脱色装置において、前記触媒塔の流出水が導入される活性炭塔を備えることを特徴とする有色飲料排水の脱色装置。  The decolorization apparatus for colored beverage wastewater according to claim 13, further comprising an activated carbon tower into which the outflow water of the catalyst tower is introduced. 請求項13又は14に記載の有色飲料排水の脱色装置において、前記酸化剤が塩素系酸化剤であり、前記触媒塔の流出水の残留塩素濃度を測定する測定手段を備えることを特徴とする有色飲料排水の脱色装置。  15. The decoloring apparatus for colored beverage wastewater according to claim 13 or 14, wherein the oxidant is a chlorinated oxidant, and comprises a measuring means for measuring the residual chlorine concentration of the effluent of the catalyst tower. Beverage drainage decolorization equipment. 請求項15に記載の有色飲料排水の脱色装置において、前記測定手段で測定された残留塩素濃度が所定の濃度より低い場合は、前記触媒塔の流出水が前記循環ラインにより前記調整槽に戻されることを特徴とする有色飲料排水の脱色装置。  The decolorization apparatus for colored beverage wastewater according to claim 15, wherein when the residual chlorine concentration measured by the measuring means is lower than a predetermined concentration, the effluent of the catalyst tower is returned to the adjustment tank by the circulation line. A device for decolorizing colored beverage wastewater. 請求項15に記載の有色飲料排水の脱色装置において、前記触媒塔の流出水が導入される活性炭塔と、該活性炭塔の流出水を前記調整槽に戻す循環ラインとを備え、前記測定手段で測定された残留塩素濃度が所定の濃度より低い場合は、該活性炭塔の流出水がこの循環ラインにより前記調整槽に戻されることを特徴とする有色飲料排水の脱色装置。  The decolorization apparatus for colored beverage wastewater according to claim 15, comprising: an activated carbon tower into which the effluent water of the catalyst tower is introduced; and a circulation line for returning the effluent water of the activated carbon tower to the adjustment tank; When the measured residual chlorine concentration is lower than a predetermined concentration, the effluent from the activated carbon tower is returned to the adjustment tank by this circulation line, and the decolorization device for colored beverage wastewater.
JP2003162525A 2003-06-06 2003-06-06 Decolorization method and decolorization device for colored beverage drainage Expired - Fee Related JP4465987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162525A JP4465987B2 (en) 2003-06-06 2003-06-06 Decolorization method and decolorization device for colored beverage drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162525A JP4465987B2 (en) 2003-06-06 2003-06-06 Decolorization method and decolorization device for colored beverage drainage

Publications (2)

Publication Number Publication Date
JP2004358421A JP2004358421A (en) 2004-12-24
JP4465987B2 true JP4465987B2 (en) 2010-05-26

Family

ID=34054649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162525A Expired - Fee Related JP4465987B2 (en) 2003-06-06 2003-06-06 Decolorization method and decolorization device for colored beverage drainage

Country Status (1)

Country Link
JP (1) JP4465987B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093135B2 (en) * 2008-12-22 2012-12-05 東ソー株式会社 COD removal method and COD cracking catalyst packed tower
JP6850190B2 (en) * 2017-04-26 2021-03-31 オルガノ株式会社 Method for reducing chromaticity of water to be treated and device for reducing chromaticity of water to be treated
CN113354064A (en) * 2021-06-22 2021-09-07 成都瀚江新材科技股份有限公司 Method for decoloring colored circulating water in production process of colored glass wool product

Also Published As

Publication number Publication date
JP2004358421A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
US11655171B2 (en) Apparatus and method for electrochemical treatment of wastewater
JP5124815B2 (en) Method for cleaning membranes and chemicals therefor
CA2053259C (en) Method of processing water, in particular bath water
AU2006217991B2 (en) A device and a method for purifying a liquid with ozone and recirculation
US4534867A (en) System for removing iron and/or other chemically reducing substances from potable water
US5573676A (en) Process and a device for the decomposition of free and complex cyanides, AOX, mineral oil, complexing agents, cod, nitrite, chromate, and separation of metals in waste waters
CN102781849A (en) Water treatment method and ultrapure water production method
JP4465987B2 (en) Decolorization method and decolorization device for colored beverage drainage
JP2009022940A (en) Method of decoloring livestock wastewater and colored wastewater containing hardly decomposable ingredient
KR101858028B1 (en) Rapid complex water treatment system
IL281874B1 (en) Systems for reducing hydrogen peroxide in wastewater
JP4650764B2 (en) Decolorization control method, decolorization control device and wastewater treatment system for dyeing wastewater
JP5003058B2 (en) Decolorization treatment method for colored beverage drainage
JPH119908A (en) Operation method of sand filtration/ozonation apparatus
JP2020037059A (en) Membrane filtration system, and membrane filtration method
Weng et al. Ozonation: an economic choice for water treatment
GB2592761A (en) Liquid treatment product and method
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant
GB2141119A (en) Apparatus and process for removing iron and/or other chemically reducing substances from potable water
JP3575504B2 (en) Treatment of colored wastewater
JP6650817B2 (en) Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter
JP2000263049A (en) Method and apparatus for cleaning barn effluent
JP4407165B2 (en) Treatment method for water containing oxidizable substances
JP7188942B2 (en) MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD
WO2020012786A1 (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4465987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees