JP4465558B2 - Method for sorting spent nuclear fuel assemblies by cask heat load - Google Patents

Method for sorting spent nuclear fuel assemblies by cask heat load Download PDF

Info

Publication number
JP4465558B2
JP4465558B2 JP2007324217A JP2007324217A JP4465558B2 JP 4465558 B2 JP4465558 B2 JP 4465558B2 JP 2007324217 A JP2007324217 A JP 2007324217A JP 2007324217 A JP2007324217 A JP 2007324217A JP 4465558 B2 JP4465558 B2 JP 4465558B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
spent nuclear
decay heat
cask
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007324217A
Other languages
Japanese (ja)
Other versions
JP2009145249A (en
Inventor
▲とう▼永宏
蘇家▲き▼
Original Assignee
行政院原子能委員会核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員会核能研究所 filed Critical 行政院原子能委員会核能研究所
Priority to JP2007324217A priority Critical patent/JP4465558B2/en
Publication of JP2009145249A publication Critical patent/JP2009145249A/en
Application granted granted Critical
Publication of JP4465558B2 publication Critical patent/JP4465558B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、使用済み核燃料集合体をキャスク熱負荷で選別して配置する方法に関し、特に、各キャスク(Cask)の熱負荷(Heat Load)値が全てのキャスクの熱負荷平均値付近に分布するように使用済み核燃料集合体をキャスク熱負荷で選別して配置する方法に関する。 The present invention relates to a method of selecting and arranging spent nuclear fuel assemblies by cask heat load, and in particular, the heat load value of each cask (Cask) is distributed in the vicinity of the average heat load value of all the casks. Thus, the present invention relates to a method for selecting and arranging spent nuclear fuel assemblies by cask heat load.

従来の使用済み核燃料集合体は、キャスク熱負荷について、所定の選別や配置方法がないため、キャスクの配置効率が悪くて資源の無駄を来たす。故に、一般の従来のものは実用的とは言えない。 Since the conventional spent nuclear fuel assembly does not have a predetermined sorting and arrangement method for the cask heat load, the arrangement efficiency of the cask is poor and wastes resources. Therefore, it cannot be said that the general conventional one is practical.

本発明の主な目的は、各キャスクの熱負荷値が、全てのキャスクの熱負荷平均値付近に分布できるように使用済み核燃料集合体をキャスク熱負荷で選別する方法を提供する。 The main object of the present invention is to provide a method for sorting spent nuclear fuel assemblies by cask thermal load so that the thermal load value of each cask can be distributed in the vicinity of the average thermal load value of all caskes.

本発明の他の目的は、各キャスクの熱負荷値が合理的に達成できる限り低いとの原則満足するように、キャスク内に、使用済み核燃料集合体を配置できる使用済み核燃料集合体をキャスク熱負荷で選別する方法を提供する。 Another object of the present invention is to provide a spent nuclear fuel assembly in which the spent nuclear fuel assembly can be placed in the cask so as to satisfy the principle that the thermal load value of each cask is as low as reasonably achievable. Provide a method for sorting by heat load.

本発明は、上記目的を達成するため、使用済み核燃料集合体をキャスク熱負荷で選別して配置する方法であり、まず、各使用済み核燃料集合体(Spent Nuclear Fuel)の崩壊熱(Decay Heat)について並べ替えた後、崩壊熱が許容される最大崩壊熱より大きい使用済み核燃料集合体を除去し、残った使用済み核燃料集合体の崩壊熱から使用済み核燃料集合体全体の平均崩壊熱を算出し、また、単一のキャスク内の燃料貯蔵位置合計を考慮し、奇数であれば予めにキャスク数と同じ数の使用済み核燃料集合体を保留し、上記の残った使用済み核燃料集合体合計が偶数である判断すると、使用済み核燃料集合体に対してマッチングして、各マッチング組の崩壊熱の和を算出し、また、2で割り、各マッチング組の崩壊熱平均値を取得し、そして、該値で改めて各マッチング組を並べ替えた後、該使用済み核燃料集合体全体の平均崩壊熱を引いて、各マッチング組の崩壊熱平均値の偏差値を取得し、また、該キャスクの貯蔵位置合計が奇数か偶数により、対応するマッチングを選別し、続いて、該キャスクの総熱負荷(Heat Load)値が最大設計熱負荷値より小さいことを判断すると本発明の選別流れが終了し、また、該選別流れが終了した後、続いて、本発明の配置流れを行い、まず、崩壊熱について使用済み核燃料集合体を大から小へ並べ替え、各キャスクに使用済み核燃料集合体を配分し、また、該キャスクの中心から、崩壊熱が大である使用済み核燃料集合体を充填し、その崩壊熱が対角線に対して対称状態になるように、また、該キャスクの中心を原点とする四つの象限内において、各象限内の熱負荷が均一に維持されるように配置する。これにより配置が終了するIn order to achieve the above object, the present invention is a method of selecting and arranging spent nuclear fuel assemblies by cask heat load. First, decay heat of each spent nuclear fuel assembly (Decay Heat) After sorting, the spent nuclear fuel assemblies whose decay heat is larger than the maximum allowed decay heat are removed, and the average decay heat of the entire spent nuclear fuel assembly is calculated from the decay heat of the remaining spent nuclear fuel assemblies. In addition, considering the total fuel storage position in a single cask, if the number is odd, the same number of spent nuclear fuel assemblies as the number of casks are reserved in advance, and the remaining spent nuclear fuel assemblies total If it is determined to be an even number, it is matched against the spent nuclear fuel assembly, the sum of decay heats of each matching set is calculated, and divided by 2, to obtain the decay heat average value of each matching set, and Revised at this value After reordering each matching group, the average decay heat of the entire spent nuclear fuel assembly is subtracted to obtain a deviation value of the decay heat average value of each matching group, and the total storage position of the cask is Screening the corresponding match by odd or even, and then determining that the total heat load value of the cask is less than the maximum design heat load value, the screening flow of the present invention is terminated, and the After the sorting flow is completed, the arrangement flow of the present invention is subsequently performed. First, the spent nuclear fuel assemblies are rearranged from large to small for decay heat, and the spent nuclear fuel assemblies are allocated to each cask. From the center of the cask, the four nuclear quadrants are filled so that the spent nuclear fuel assembly having a large decay heat is filled so that the decay heat is symmetric with respect to the diagonal line, and the center of the cask is the origin. at the inner, each elephant Heat load of the inner is arranged to be uniformly maintained. This completes the arrangement.

図1と図2は、それぞれ、本発明の選別流れの概念図と本発明の配置流れの概念図である。図のように、本発明は、使用済み核燃料集合体をキャスク熱負荷で選別して配置する方法であり、その選別流れは、少なくとも、
(A)各使用済み核燃料集合体の崩壊熱を並べ替えるステップ11:運搬されて貯蔵される各使用済み核燃料(Spent Nuclear Fuel)について、その崩壊熱(Decay Heat)に基づいて、各使用済み核燃料集合体の崩壊熱が小さいものから大きなものへ並べ替えるステップと、
(B)崩壊熱が、最大崩壊熱より大きい使用済み核燃料集合体を除去するステップ12:キャスク(Cask)が許容された各使用済み核燃料集合体(Fuel Assembly)の最大崩壊熱を基準とし、その崩壊熱が設計仕様に従う最大崩壊熱より大きい使用済み核燃料集合体を除去するステップと、
(C)使用済み核燃料集合体の平均崩壊熱を算出するステップ13:ステップ(B)を経て残った使用済み核燃料集合体について、その崩壊熱の平均値を算出し、使用済み核燃料集合体全体の平均崩壊熱を取得するステップと、
(D)単一のキャスク内の燃料貯蔵位置合計を判断するステップ14:該キャスクに対して、使用済み核燃料集合体の貯蔵位置の合計が奇数か偶数であるかを判断し、偶数でなければ、
(a)予めに該キャスク数と同じ数の使用済み核燃料集合体を保留するステップ141:貯蔵するキャスクの数を仮定した後、まず、残った使用済み核燃料集合体から、ステップ(C)で算出された使用済み核燃料集合体全体の平均崩壊熱に最も接近する使用済み核燃料集合体を選択するステップと、
(E)残った使用済み核燃料集合体の合計を判断するステップ15:ステップ(D)を経て残った使用済み核燃料集合体の合計が奇数か偶数であるかを判断し、偶数でなければ、
(b)使用済み核燃料集合体を除去するステップ151:崩壊熱最大の使用済み核燃料集合体を除去するステップと、
(F)マッチングを行って、各マッチング組の崩壊熱の和を算出するステップ16:ステップ(E)で判断されて残った使用済み核燃料集合体について、その崩壊熱に基づいて、各使用済み核燃料集合体の崩壊熱が小さいものから大きなものへ並べ替えてマッチングし、崩壊熱が最小の使用済み核燃料集合体と崩壊熱が最大の使用済み核燃料集合体を第一対とし、崩壊熱が次に小さいものと崩壊熱が次に大きい使用済み核燃料集合体を第二対とし、上記のように、順にマッチングして、また、各マッチング組の崩壊熱の和を算出するステップと、
(G)各マッチング組の崩壊熱平均値を算出して改めて並べ替えるステップ17:各マッチング組の崩壊熱の和を2で割り、各マッチング組の崩壊熱の平均値が得られ、更に、各マッチング組の崩壊熱の平均値に基づいて、崩壊熱の平均値が小から大へ、各マッチング組を改めて並べ替えるステップと、
(H)各マッチング組の崩壊熱平均値の偏差値を算出するステップ18:各マッチング組の崩壊熱の平均値からステップ(C)で算出された全体使用済み核燃料集合体の平均崩壊熱を引いて、各マッチング組の崩壊熱の平均値と全体平均値の偏差値を取得するステップと、
(I)マッチング選別を行うステップ19:該ステップ(D)で判断したキャスク内の燃料貯蔵位置の合計が奇数か偶数であることに対応して、
(c)キャスク内の貯蔵位置の合計が奇数であるステップ191:該ステップ(D)において、キャスク内の使用済み核燃料集合体の貯蔵位置合計が奇数である場合、まず、上記のステップ(a)で予めに保留された使用済み核燃料集合体を該キャスクに配分し、各キャスクに一つだけの使用済み核燃料集合体が含まれ、その後、それぞれ、各予めに保留した使用済み核燃料集合体の崩壊熱から、ステップ(C)で算出した使用済み核燃料集合体全体の平均崩壊熱を引いて、各予めに保留した使用済み核燃料集合体の崩壊熱の偏差値を取得し、続いて、貯蔵位置合計から1を引いてから2で割り、各キャスクのマッチング選別の合計になり、各キャスクの全てのマッチングの崩壊熱偏差値(ステップ18のように)の総和と、該キャスクに配分された予めに保留した使用済み核燃料集合体の崩壊熱偏差値との両者の和が0に接近すること、或いは、
(d)キャスク内の貯蔵位置合計が偶数であるステップ192:該ステップ(D)において、キャスク内の使用済み核燃料集合体の貯蔵位置合計が偶数である場合、その貯蔵位置合計を2で割り、各キャスクのマッチング選別の数とし、各キャスクの全てのマッチングの崩壊熱偏差値の総和が0に接近することとの2種類から、マッチング選別を行うステップと、
(J)該キャスクの総熱負荷(Heat
Load)値が閾値に満足するかを判断するステップ20:該キャスクの総熱負荷(Heat Load)の値が、最大設計熱負荷値より小さいかを判断し、キャスクの設計仕様に従う最大熱負荷値より小さくなければ、ステップ(B)へ戻り、キャスクの許容する各使用済み核燃料集合体の最大崩壊熱を調整した後、改めて、ステップ(B)〜(J)を実行するステップが含有される。
1 and 2 are a conceptual diagram of the sorting flow of the present invention and a conceptual diagram of the arrangement flow of the present invention, respectively. As shown in the figure, the present invention is a method of sorting and arranging spent nuclear fuel assemblies by cask heat load, and the sorting flow is at least:
(A) Reorder decay heat of each spent nuclear fuel assembly Step 11: For each spent nuclear fuel that is transported and stored, each spent nuclear fuel based on its decay heat (Decay Heat) Reordering the aggregate from the smallest decay heat to the largest ,
(B) Remove spent nuclear fuel assemblies whose decay heat is greater than the maximum decay heat Step 12: Based on the maximum decay heat of each spent nuclear fuel assembly (Cask) allowed, Removing spent nuclear fuel assemblies whose decay heat is greater than the maximum decay heat according to design specifications;
(C) Calculate the average decay heat of the spent nuclear fuel assemblies Step 13: Calculate the average decay heat of the spent nuclear fuel assemblies remaining after step (B), and calculate the total spent nuclear fuel assemblies. Obtaining an average decay heat;
(D) Determining the total fuel storage position in a single cask 14: Determine whether the total storage position of spent nuclear fuel assemblies is odd or even for the cask, if not ,
(A) Preserving the same number of spent nuclear fuel assemblies as the number of the cask in advance 141: After assuming the number of stored casks, first, the remaining nuclear fuel assemblies are calculated in step (C). Selecting a spent nuclear fuel assembly that is closest to the average decay heat of the entire spent spent fuel assembly,
(E) Determining the total amount of spent nuclear fuel assemblies remaining Step 15: Determining whether the total number of spent nuclear fuel assemblies remaining after step (D) is odd or even,
(B) removing the spent nuclear fuel assemblies 151: removing the spent nuclear fuel assemblies with the greatest decay heat;
(F) Performing matching and calculating the sum of decay heat of each matching set Step 16: For the spent nuclear fuel assemblies remaining in step (E), each spent nuclear fuel is determined based on the decay heat . Sort and match from the smallest decay heat of the assembly to the larger one . The spent nuclear fuel assembly with the least decay heat and the spent nuclear fuel assembly with the greatest decay heat are the first pair. a step smaller as the decay heat is the next largest spent fuel assemblies and the second pair, as described above, sequentially matching, also, to calculate the sum of the matching sets of decay heat,
(G) Calculate the decay heat average value of each matching group and rearrange it again Step 17: Divide the sum of decay heats of each matching group by 2 to obtain the average value of decay heat of each matching group, Reordering each matching group from a small to a large decay heat based on the average decay heat of the matching group;
(H) The deviation value of the decay heat average value of each matching set is calculated. Step 18: The average decay heat of the entire spent nuclear fuel assembly calculated in step (C) is subtracted from the average decay heat value of each matching set. Obtaining a deviation value between the average value of decay heat and the overall average value of each matching group;
(I) Step 19 of matching selection: In response to the sum of the fuel storage positions in the cask determined in step (D) being odd or even,
(C) The total storage position in the cask is an odd number Step 191: In the step (D), when the total storage position of the spent nuclear fuel assemblies in the cask is an odd number, first, the above step (a) The spent nuclear fuel assemblies that have been reserved in advance are allocated to the casks, and each cask contains only one used nuclear fuel assembly, and then the collapse of each previously reserved spent nuclear fuel assembly. The average decay heat of the entire spent nuclear fuel assembly calculated in step (C) is subtracted from the heat to obtain a deviation value of decay heat of each spent nuclear fuel assembly reserved in advance, and then the total storage position Subtract 1 and divide by 2 to get the total of the matching selections for each cask, and add up the total decay heat deviation value (as in step 18) for all matches for each cask and distribute to that cask. The sum of the decay heat deviation value of the spent nuclear fuel assembly reserved in advance approaches 0, or
(D) The total storage position in the cask is an even number Step 192: In the step (D), when the total storage position of the spent nuclear fuel assemblies in the cask is an even number, the total storage position is divided by two; The number of matching selections for each cask, and the step of matching selection from two types: the sum of decay heat deviation values of all matching of each cask approaching zero,
(J) Total heat load of the cask (Heat
Step 20 for determining whether or not the load value satisfies the threshold value: It is determined whether or not the value of the total heat load (Heat Load) of the cask is smaller than the maximum design heat load value, and the maximum heat load value according to the design specification of the cask If it is not smaller, the process includes returning to step (B), adjusting the maximum decay heat of each spent nuclear fuel assembly allowed by the cask, and then performing steps (B) to (J) again.

本発明の選別流れが終了された後、続いて、本発明の配置流れを行い、該配置流れは、少なくとも、
(K)各キャスク内の使用済み核燃料集合体を並べ替えるステップ21:各キャスクに配分された使用済み核燃料集合体について、その崩壊熱に基づいて、大から小へ並べ替えるステップと、
(L)該キャスクの中心から充填するステップ22:該崩壊熱に基づいて、大から小へ並べ替えられたものを、該使用済み核燃料集合体が該キャスクに充填される時、対角線上に位置する使用済み核燃料集合体の崩壊熱が対称となり、また、該キャスクの中心を原点とする四つの象限内において、各象限内の熱負荷が均一に維持されるように、該キャスクの中心から充填し、外周になるほど崩壊熱が小さい使用済み核燃料集合体が充填されるステップが含有される。
After the sorting flow of the present invention is finished, the arrangement flow of the present invention is subsequently performed, and the arrangement flow is at least
(K) Reordering spent nuclear fuel assemblies in each cask 21: Reordering spent nuclear fuel assemblies allocated to each cask from large to small based on their decay heat;
(L) Filling from the center of the cask 22: When the spent nuclear fuel assemblies are filled into the cask, the ones arranged from large to small based on the decay heat are positioned diagonally. decay heat symmetric next spent fuel assemblies to, and in the four quadrants of the origin at the center of the cask, as the thermal load in each quadrant is uniformly maintained, filling the center of the cask In addition, a step of filling a spent nuclear fuel assembly having a decay heat that becomes smaller toward the outer periphery is included.

図3〜図10は、それぞれ、本発明の使用済み核燃料集合体の崩壊熱の並べ替え結果の概念図と本発明の使用済み核燃料集合体のマッチングとその崩壊熱和結果の概念図、本発明の各マッチング組の崩壊熱平均値とその並べ替え結果の概念図、本発明の各マッチングの崩壊熱平均値の偏差値の概念図、本発明の第1のキャスクのマッチング選別結果の概念図、本発明の第2のキャスクのマッチング選別結果の概念図、本発明の第1のキャスクの使用済み核燃料集合体を崩壊熱に基づく並べ替え結果の概念図、本発明の第1のキャスクの使用済み核燃料集合体の配置結果の概念図及び本発明の第1のキャスクの四つの象限の各象限内の熱負荷値の概念図である。図のように、貯蔵する第1、2のキャスクの実施例において、単一のキャスク内に、56個の貯蔵位置があり、該キャスクの最大熱負荷が13キロワット(kW)で、単一の使用済み核燃料の許容される最大崩壊熱が232.14ワット(W)であると仮定すると、また、初期に選別できる使用済み核燃料集合体が150集合体である條件下で、本発明の使用済み核燃料集合体をキャスク熱負荷で選別して配置する方法を利用すれば、図1と図2の選別と配置流れにより、上記の実施例の設定條件について、選別と配置を行い、本発明の配置は、各キャスクの熱負荷値が合理的に達成できる限り低く(As Low As Reasonably Achievable、ALARA)原則満足するように、キャスク内に、使用済み核燃料集合体を配置でき、また、各キャスクの熱負荷値が、全てのキャスクの熱負荷平均値付近に分布できる。 3 to 10 are respectively a conceptual diagram of a rearrangement result of decay heat of a spent nuclear fuel assembly of the present invention, a matching diagram of a spent nuclear fuel assembly of the present invention, and a conceptual diagram of a result of the decay heat sum of the present invention. The conceptual diagram of the decay heat average value of each matching group and the rearrangement result thereof, the conceptual diagram of the deviation value of the decay heat average value of each matching of the present invention, the conceptual diagram of the matching selection result of the first cask of the present invention, The conceptual diagram of the matching selection result of the second cask of the present invention, the conceptual diagram of the rearrangement result based on the decay heat of the spent nuclear fuel assembly of the first cask of the present invention, the used of the first cask of the present invention It is the conceptual diagram of the arrangement result of a nuclear fuel assembly, and the conceptual diagram of the thermal load value in each quadrant of the four quadrants of the 1st cask of this invention. As shown, in the first and second cask embodiments for storage, there are 56 storage locations within a single cask, the maximum heat load of the cask being 13 kilowatts (kW), Assuming that the maximum allowable decay heat of spent nuclear fuel is 232.14 watts (W), the spent nuclear fuel assembly of the present invention is also subject to the situation where there are 150 assemblies of spent nuclear fuel assemblies that can be initially sorted. If the method of selecting and arranging the body by cask heat load is used, the selection and arrangement flow of the above embodiment is selected and arranged according to the selection and arrangement flow of FIGS. 1 and 2, and the arrangement of the present invention is as follows. as the heat load value of each cask satisfies the principle of reasonably low as achievable (as low as reasonably achievable, ALARA ), in the cask, to place the spent fuel assemblies, also for each cask heat Load value is negative for all caskes It can be distributed near the load average value.

以上のように、本発明に係わる使用済み核燃料集合体をキャスク熱負荷で選別して配置する方法は、使用済み核燃料集合体について、選別して、また、各キャスクの熱負荷値が合理的に達成できる限り低く原則満足できるように配置でき、各キャスクの熱負荷値が全てのキャスクの熱負荷平均値付近に分布でき、そのため、本発明はより進歩的かつより実用的で法に従って特許請求を出願する。 As described above, the method of selecting and arranging the spent nuclear fuel assemblies according to the present invention with the cask heat load selects the used nuclear fuel assemblies, and the thermal load value of each cask is rational. principles of as low as can be achieved can be arranged so as to be able to satisfy the thermal load value of each cask can be distributed near the thermal load mean value of all of the cask, therefore, the present invention patent according more progressive and more practical legal Apply for a claim.

以上は、ただ、本発明のより良い実施例であり、本発明はそれによって制限されることが無く、本発明に係わる特許請求の範囲や明細書の内容に基づいて行った等価の変更や修正は、全てが本発明の特許請求の範囲内に含まれる。 The above are merely preferred embodiments of the present invention, and the present invention is not limited thereby. Are all within the scope of the claims of the present invention.

本発明の選別流れの概念図Conceptual diagram of sorting flow of the present invention 本発明の配置流れの概念図Conceptual diagram of arrangement flow of the present invention 本発明の使用済み核燃料集合体の崩壊熱の並べ替え結果の概念図Conceptual diagram of results of rearrangement of decay heat of spent nuclear fuel assemblies of the present invention 本発明の使用済み核燃料集合体のマッチングとその崩壊熱和結果の概念図Conceptual diagram of matching of spent nuclear fuel assemblies of the present invention and their decay heat sum results 本発明の各マッチング組の崩壊熱平均値との並べ替え結果の概念図The conceptual diagram of the rearrangement result with the decay heat average value of each matching set of the present invention 本発明の各マッチングの崩壊熱平均値の偏差値の概念図The conceptual diagram of the deviation value of the decay heat average value of each matching of this invention 本発明の第1のキャスクのマッチング選別結果の概念図The conceptual diagram of the matching selection result of the 1st cask of this invention 本発明の第2のキャスクのマッチング選別結果の概念図The conceptual diagram of the matching selection result of the 2nd cask of this invention 本発明の第1のキャスクの使用済み核燃料集合体を崩壊熱に基づく並べ替え結果の概念図The conceptual diagram of the rearrangement result based on decay heat of the spent nuclear fuel assembly of the 1st cask of this invention 本発明の第1のキャスクの使用済み核燃料集合体の配置結果の概念図The conceptual diagram of the arrangement result of the spent nuclear fuel assembly of the 1st cask of this invention 本発明の第1のキャスクの四つの象限の局部の熱負荷値の概念図Conceptual diagram of the thermal load values of the four quadrants of the first cask of the present invention

11 ステップ(A)
12 ステップ(B)
13 ステップ(C)
14 ステップ(D)
15 ステップ(E)
16 ステップ(F)
17 ステップ(G)
18 ステップ(H)
19 ステップ(I)
20 ステップ(J)
21 ステップ(K)
22 ステップ(L)
141 ステップ(a)
151 ステップ(b)
191 ステップ(c)
192 ステップ(d)
11 Step (A)
12 steps (B)
13 Step (C)
14 Step (D)
15 steps (E)
16 steps (F)
17 steps (G)
18 steps (H)
19 Step (I)
20 steps (J)
21 steps (K)
22 steps (L)
141 Step (a)
151 Step (b)
191 Step (c)
192 step (d)

Claims (4)

(A)運搬されて貯蔵される各使用済み核燃料について、その崩壊熱に基づいて、各使用済み核燃料集合体の崩壊熱が小から大へ並べ替えるステップと、
(B)キャスクに収容されるのに許容された各使用済み核燃料集合体の最大崩壊熱を基準とし、その崩壊熱が該最大崩壊熱より大きい使用済み核燃料集合体を除去するステップと、
(C)ステップ(B)を経て残った使用済み核燃料集合体について、その崩壊熱の平均値を算出し、使用済み核燃料集合体全体の平均崩壊熱を取得するステップと、
(D)該キャスクに対して、使用済み核燃料集合体の貯蔵位置の合計が奇数か偶数であるかを判断し、奇数の場合には、平均崩壊熱に最も近い使用済み核燃料集合体を選択して保留するステップと、
(E)ステップ(D)を経て残った使用済み核燃料集合体の合計が奇数か偶数であるかを判断し、奇数の場合には、崩壊熱が最大の使用済み核燃料集合体を除去するステップと、
(F)ステップ(E)で判断されて最終的に残った使用済み核燃料集合体について、その崩壊熱に基づいて、崩壊熱の小から大へ並べ替えて、崩壊熱が最小の使用済み核燃料集合体と崩壊熱が最大の使用済み核燃料集合体を第一対とし、崩壊熱が次に小さい使用済み核燃料集合体と崩壊熱が次に大きい使用済み核燃料集合体を第二対とし、上記のように順にマッチングして、また、各マッチング組の崩壊熱の和を算出するステップと、
(G)各マッチング組の崩壊熱の和を2で割り、各マッチング組の崩壊熱の平均値が得られ、更に、各マッチング組の崩壊熱の平均値に基づいて、崩壊熱の平均値が小から大へなるように各マッチング組を改めて並べ替えるステップと、
(H)各マッチング組の崩壊熱の平均値からステップ(C)で算出された全体使用済み核燃料集合体の平均崩壊熱を引いて、各マッチング組の崩壊熱の平均値と全体平均値の偏差値を取得するステップと、
(I)該ステップ(D)で判断したキャスク内の燃料貯蔵位置の合計が奇数か偶数であることに対応して、燃料貯蔵位置の合計が奇数の場合には、該ステップ(D)で保留した使用済み核燃料集合体で1つの位置を確保し、残る偶数の位置、または、燃料貯蔵位置の合計が偶数の場合にはそれらの位置に、使用済み核燃料集合体をキャスクに収容したときに、それぞれのキャスクでの崩壊熱偏差値の総和が0に近くなるようにマッチング選別を行うステップと、
(J)該キャスクにおいて、崩壊熱の総和である総熱負荷の値が、キャスクに許容される最大設計熱負荷値より小さいかを判断し、キャスクに許容される最大熱負荷値より小さくなければ、ステップ(B)へ戻るステップが含有されることを特徴とする、使用済み核燃料集合体をキャスク熱負荷で選別する方法。
(A) for each spent nuclear fuel transported and stored, the decay heat of each spent nuclear fuel assembly is rearranged from small to large based on its decay heat;
(B) removing spent nuclear fuel assemblies whose decay heat is greater than the maximum decay heat based on the maximum decay heat of each spent nuclear fuel assembly allowed to be accommodated in the cask;
(C) calculating the average decay heat of the spent nuclear fuel assemblies remaining after step (B) and obtaining the average decay heat of the entire spent nuclear fuel assemblies;
(D) For the cask, it is determined whether the total storage position of the spent nuclear fuel assemblies is an odd number or an even number, and in the case of an odd number, a spent nuclear fuel assembly closest to the average decay heat is selected. Step to hold and
(E) determining whether the total number of spent nuclear fuel assemblies remaining after step (D) is odd or even, and if so, removing the spent nuclear fuel assemblies with the largest decay heat; ,
(F) The spent nuclear fuel assemblies that are finally left after the judgment in step (E) are rearranged from the decay heat to the large based on the decay heat, and the spent nuclear fuel assemblies with the least decay heat are arranged. The spent nuclear fuel assembly with the largest body and decay heat is the first pair, the spent nuclear fuel assembly with the second smallest decay heat and the spent nuclear fuel assembly with the next largest decay heat is the second pair, and And sequentially calculating the sum of decay heat of each matching set,
(G) Divide the sum of decay heat of each matching group by 2 to obtain the average value of decay heat of each matching group, and further, based on the average value of decay heat of each matching group, the average value of decay heat is and again sort step each matching pair to be from small to large,
(H) The average decay heat of the entire spent nuclear fuel assembly calculated in step (C) is subtracted from the average decay heat value of each matching group, and the deviation between the average decay heat value and the overall average value of each matching group Obtaining a value;
(I) In response to the sum of the fuel storage positions in the cask determined in the step (D) being odd or even, if the sum of the fuel storage positions is odd, the sum is held in the step (D). When the spent nuclear fuel assembly is accommodated in the cask, the position is secured in the spent nuclear fuel assembly and the remaining even number, or the total number of the fuel storage positions is even in those positions. Performing matching selection so that the sum of decay heat deviation values in each cask is close to 0 ;
In (J) said cask, the value of the total thermal load is the sum of the decay heat, it is determined whether less than the maximum design heat load value allowed in the cask, is not less than the maximum heat load value allowed in cask A method for sorting spent nuclear fuel assemblies by cask heat load, comprising the step of returning to step (B).
前記各キャスクの総熱負荷の値は、全てのキャスクの総熱負荷の値の平均値の付近に分布することを特徴とする、請求項1に記載の使用済み核燃料集合体をキャスク熱負荷で選別する方法。 The spent nuclear fuel assembly according to claim 1, wherein the total heat load value of each cask is distributed in the vicinity of an average value of the total heat load value of all the casks. How to sort. (K)請求項1記載の各キャスクに配分された使用済み核燃料集合体について、その崩壊熱に基づいて、崩壊熱が大から小へ並べ替えるステップと、
(L)該崩壊熱に基づいて、大から小へ並べ替えられた使用済み核燃料集合体を、該キャスクの中心から、崩壊熱が大きいものから充填し、外周になるほど崩壊熱が小さい使用済み核燃料集合体が充填されるステップが含有されることを特徴とする、使用済み核燃料集合体をキャスク熱負荷で選別する方法。
(K) reordering the decay heat from large to small based on the decay heat of the spent nuclear fuel assemblies allocated to each cask according to claim 1;
(L) The spent nuclear fuel assemblies sorted from large to small on the basis of the decay heat are filled from the center of the cask from the largest decay heat , and the spent nuclear fuel has a smaller decay heat toward the outer periphery. A method for sorting spent nuclear fuel assemblies with a cask heat load, comprising the step of filling the assemblies.
前記使用済み核燃料集合体が前記キャスクに充填される時、キャスクの対角線上に位置する使用済み核燃料集合体の崩壊熱が対称となり、また、該キャスクの中心を原点とする四つの象限内において、各象限内のキャスクに対する熱負荷が均一に維持されることを特徴とする、請求項3に記載の使用済み核燃料集合体をキャスク熱負荷で選別する方法。 When the spent nuclear fuel assembly is filled into the cask, the decay heat of the spent nuclear fuel assembly located on the diagonal of the cask becomes symmetric, and within four quadrants with the center of the cask as the origin, The method for sorting spent nuclear fuel assemblies according to claim 3 , wherein the heat load on the cask in each quadrant is kept uniform.
JP2007324217A 2007-12-17 2007-12-17 Method for sorting spent nuclear fuel assemblies by cask heat load Expired - Fee Related JP4465558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007324217A JP4465558B2 (en) 2007-12-17 2007-12-17 Method for sorting spent nuclear fuel assemblies by cask heat load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007324217A JP4465558B2 (en) 2007-12-17 2007-12-17 Method for sorting spent nuclear fuel assemblies by cask heat load

Publications (2)

Publication Number Publication Date
JP2009145249A JP2009145249A (en) 2009-07-02
JP4465558B2 true JP4465558B2 (en) 2010-05-19

Family

ID=40915997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007324217A Expired - Fee Related JP4465558B2 (en) 2007-12-17 2007-12-17 Method for sorting spent nuclear fuel assemblies by cask heat load

Country Status (1)

Country Link
JP (1) JP4465558B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667802B2 (en) * 2010-07-07 2015-02-12 日立Geニュークリア・エナジー株式会社 Storage support method for spent fuel assembly, storage support device for spent fuel assembly, and storage method for spent fuel assembly in cask
JP7249877B2 (en) * 2019-05-24 2023-03-31 三菱重工業株式会社 Fuel placement method and fuel placement optimization device

Also Published As

Publication number Publication date
JP2009145249A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
CN103369042B (en) A kind of data processing method and device
JP4465558B2 (en) Method for sorting spent nuclear fuel assemblies by cask heat load
CN107766159A (en) A kind of metadata management method, device and computer-readable recording medium
CN107368359A (en) A kind of asynchronous task performs method and its storage medium, device
CN108122055A (en) The resource regulating method and device of a kind of Flow Shop
WO2018201832A1 (en) Data migration method and system for distributed cache database
CN103312825A (en) Method and device for data distribution and storage
CN107729514A (en) A kind of Replica placement node based on hadoop determines method and device
CN106326222A (en) Data processing method and device
JP2021083304A (en) Battery system and method and control device for operating battery system
WO2017106765A1 (en) Log fragmentation method and apparatus
US11694014B2 (en) Logical node layout method and apparatus, computer device, and storage medium
CN104219163B (en) The load-balancing method that a kind of node based on dynamic copies method and dummy node method dynamically moves forward
JP2006317450A5 (en)
CN105843689A (en) Virtual machine deployment method and system
CN108846480A (en) A kind of one-dimensional nesting method of more specifications and device based on genetic algorithm
CN108920574A (en) The efficient neighborhood search method of extensive three dimensional point cloud
CN105763636B (en) The selection method and system of optimal host in a kind of distributed system
CN105897828A (en) Node cache mechanism determining method and system
CN108563649B (en) Offline duplicate removal method based on GlusterFS distributed file system
CN106599184B (en) Hadoop system optimization method
CN105354319A (en) Database connection pool management method and system for SN-structured MPP database cluster
CN106897137A (en) A kind of physical machine based on live migration of virtual machine and virtual machine mapping conversion method
CN114911621A (en) Automatic optimization method for distributed training calculation stage
CN109597650A (en) A kind of method, apparatus, equipment and the storage medium of multiple operating system starting

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees