JP2009145249A - Method of screening and arranging spent nuclear fuel assembly with cask thermal load - Google Patents
Method of screening and arranging spent nuclear fuel assembly with cask thermal load Download PDFInfo
- Publication number
- JP2009145249A JP2009145249A JP2007324217A JP2007324217A JP2009145249A JP 2009145249 A JP2009145249 A JP 2009145249A JP 2007324217 A JP2007324217 A JP 2007324217A JP 2007324217 A JP2007324217 A JP 2007324217A JP 2009145249 A JP2009145249 A JP 2009145249A
- Authority
- JP
- Japan
- Prior art keywords
- nuclear fuel
- spent nuclear
- cask
- decay heat
- fuel assemblies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
本発明は、使用済み核燃料集合体をキャスク熱負荷で選別と配置方法に関し、特に、各キャスク(Cask)の熱負荷(Heat Load)値が全てのキャスクの熱負荷平均値付近に分布する使用済み核燃料集合体をキャスク熱負荷で選別と配置方法に関する。 The present invention relates to a method for selecting and arranging spent nuclear fuel assemblies by cask heat load, and in particular, used heat load values of each cask (Cask) are distributed in the vicinity of the average heat load value of all casks. The present invention relates to a method for sorting and arranging nuclear fuel assemblies by cask heat load.
従来の使用済み核燃料集合体は、キャスク熱負荷について、所定の選別や配置方法がないため、キャスクの配置効率が悪くて資源の無駄を来たす。故に、一般の従来のものは実用的とは言えない。 Since the conventional spent nuclear fuel assembly does not have a predetermined sorting and arrangement method for the cask heat load, the arrangement efficiency of the cask is poor and wastes resources. Therefore, it cannot be said that the general conventional one is practical.
本発明の主な目的は、各キャスクの熱負荷値が、全てのキャスクの熱負荷平均値付近に分布できる使用済み核燃料集合体をキャスク熱負荷で選別する方法を提供する。 The main object of the present invention is to provide a method for selecting spent nuclear fuel assemblies by the cask heat load, in which the heat load value of each cask can be distributed in the vicinity of the average heat load value of all the caskes.
本発明の他の目的は、合理的に達成できる限り低い原則に満足するように、キャスク内に、使用済み核燃料集合体を配置できる使用済み核燃料集合体をキャスク熱負荷で選別する方法を提供する。 Another object of the present invention is to provide a method for sorting spent nuclear fuel assemblies by cask heat load that can place spent nuclear fuel assemblies in the cask so as to satisfy the lowest possible reasonably achievable. .
本発明は、上記目的を達成するため、使用済み核燃料集合体をキャスク熱負荷で選別と配置方法であり、まず、各使用済み核燃料集合体(Spent Nuclear Fuel)の崩壊熱(Decay Heat)について並べ替えた後、崩壊熱が許容される最大崩壊熱より大きい使用済み核燃料集合体を除去し、残った使用済み核燃料集合体の崩壊熱から使用済み核燃料集合体全体の平均崩壊熱を算出し、また、単一のキャスク内の燃料貯蔵位置合計を考慮し、奇数であれば予めにキャスク数と同じ数の使用済み核燃料集合体を保留し、残った使用済み核燃料集合体合計が偶数である判断すると、使用済み核燃料集合体に対してマッチングして、各マッチング組の崩壊熱の和を算出し、また、2で割り、各マッチング組の崩壊熱平均値を取得し、そして、該値で改めて各マッチング組を並べ替えた後、該使用済み核燃料集合体全体の平均崩壊熱を引いて、各マッチング組の崩壊熱平均値の偏差値を取得し、また、該キャスクの貯蔵位置合計が奇数か偶数により、対応するマッチングを選別し、続いて、該キャスクの総熱負荷(Heat Load)値が最大設計熱負荷値より小さいことを判断すると本発明の選別流れが終了し、また、該選別流れが終了した後、続いて、本発明の配置流れを行い、まず、崩壊熱について大から小へ並べ替え、各キャスクに使用済み核燃料集合体を配分し、また、該キャスクの中心から、崩壊熱が大である使用済み核燃料集合体を充填し、その崩壊熱が対角線に対して対称する状態になるように、また、該キャスクの中心を原点とする四つの象限内において、局部の熱負荷が均一に維持され、これにより配置が終了される。 In order to achieve the above object, the present invention is a method for selecting and arranging spent nuclear fuel assemblies by cask heat load. First, the decay heat of each spent nuclear fuel assembly (Decay Heat) is arranged. After the replacement, spent nuclear fuel assemblies whose decay heat is larger than the maximum allowed decay heat are removed, and the average decay heat of the entire spent nuclear fuel assembly is calculated from the decay heat of the remaining spent nuclear fuel assemblies, and Considering the total fuel storage position in a single cask, if it is an odd number, the same number of spent nuclear fuel assemblies as the number of casks are reserved in advance, and the remaining spent nuclear fuel assembly total is determined to be an even number. , Match the spent nuclear fuel assembly, calculate the sum of decay heat of each matching set, and divide by 2 to obtain the average decay heat value of each matching set, Machin Then, the average decay heat of the entire spent nuclear fuel assembly is subtracted to obtain the deviation value of the decay heat average value of each matching set, and the total storage position of the cask is odd or even. To select the corresponding matching, and then to determine that the total heat load value of the cask is less than the maximum design heat load value, the sorting flow of the present invention is terminated, and the sorting flow is After the completion, the arrangement flow of the present invention is subsequently performed. First, the decay heat is rearranged from large to small, the spent nuclear fuel assembly is allocated to each cask, and the decay heat is generated from the center of the cask. A large spent nuclear fuel assembly is filled so that its decay heat is symmetric with respect to the diagonal, and the local heat load is uniform in four quadrants with the center of the cask as the origin. Maintained by this Arrangement is terminated.
図1と図2は、それぞれ、本発明の選別流れの概念図と本発明の配置流れの概念図である。図のように、本発明は、使用済み核燃料集合体をキャスク熱負荷で選別と配置方法であり、その選別流れは、少なくとも、
(A)各使用済み核燃料集合体の崩壊熱を並べ替えるステップ11:運搬されて貯蔵される各使用済み核燃料(Spent Nuclear Fuel)について、その崩壊熱(Decay Heat)に基づいて、小から大へ並べ替えるステップと、
(B)崩壊熱が、最大崩壊熱より大きい使用済み核燃料集合体を除去するステップ12:キャスク(Cask)が許容された各使用済み核燃料集合体(Fuel Assembly)の最大崩壊熱を基準とし、その崩壊熱が設計仕様に従う最大崩壊熱より大きい使用済み核燃料集合体を除去するステップと、
(C)使用済み核燃料集合体の平均崩壊熱を算出するステップ13:ステップ(B)を経て残った使用済み核燃料集合体について、その崩壊熱の平均値を算出し、使用済み核燃料集合体全体の平均崩壊熱を取得するステップと、
(D)単一のキャスク内の燃料貯蔵位置合計を判断するステップ14:該キャスクに対して、使用済み核燃料集合体の貯蔵位置の合計が奇数か偶数であるかを判断し、偶数でなければ、
(a)予めに該キャスク数と同じ数の使用済み核燃料集合体を保留するステップ141:貯蔵するキャスクの数を仮定した後、まず、残った使用済み核燃料集合体から、ステップ(C)で算出された使用済み核燃料集合体全体の平均崩壊熱に最も接近する使用済み核燃料集合体を選択するステップと、
(E)残った使用済み核燃料集合体の合計を判断するステップ15:ステップ(D)を経て残った使用済み核燃料集合体の合計が奇数か偶数であるかを判断し、偶数でなければ、残った使用済み核燃料集合体の合計を判断するステップと、
(b)使用済み核燃料集合体を除去するステップ151:崩壊熱最大の使用済み核燃料集合体を除去するステップと、
(F)マッチングを行って、各マッチング組の崩壊熱の和を算出するステップ16:ステップ(E)で判断されて残った使用済み核燃料集合体について、その崩壊熱に基づいて、小から大へ並べ替えてマッチングし、崩壊熱が最小と崩壊熱が最大の使用済み核燃料集合体を第一対とし、崩壊熱が次に小さいと崩壊熱が次に大きい使用済み核燃料集合体を第二対とし、上記のように、順にマッチングして、また、各マッチング組の崩壊熱の和を算出するステップと、
(G)各マッチング組の崩壊熱平均値を算出して改めて並べ替えるステップ17:各マッチング組の崩壊熱の和を2で割り、各マッチング組の崩壊熱の平均値が得られ、更に、各マッチング組の崩壊熱の平均値に基づいて、小から大へ、各マッチング組を改めて並べ替えるステップと、
(H)各マッチング組の崩壊熱平均値の偏差値を算出するステップ18:各マッチング組の崩壊熱の平均値からステップ(C)で算出された全体使用済み核燃料集合体の平均崩壊熱を引いて、各マッチング組の崩壊熱の平均値と全体平均値の偏差値を取得するステップと、
(I)マッチング選別を行うステップ19:該ステップ(D)で判断したキャスク内の燃料貯蔵位置の合計が奇数か偶数であることに対応して、
(c)キャスク内の貯蔵位置の合計が奇数であるステップ191:該ステップ(D)において、キャスク内の使用済み核燃料集合体の貯蔵位置合計が奇数である場合、まず、ステップ(a)で予めに保留された使用済み核燃料集合体を該キャスクに配分し、各キャスクに一つだけの使用済み核燃料集合体が含まれ、その後、それぞれ、各予めに保留した使用済み核燃料集合体の崩壊熱から、ステップ(C)で算出した使用済み核燃料集合体全体の平均崩壊熱を引いて、各予めに保留した使用済み核燃料集合体の崩壊熱の偏差値を取得し、続いて、貯蔵位置合計から1を引いてから2で割り、各キャスクのマッチング選別の合計になり、各キャスクの全てのマッチングの崩壊熱偏差値(ステップ18のように)の総和と、該キャスクに配分された予めに保留した使用済み核燃料集合体の崩壊熱偏差値との両者の和が0に接近すること、或いは、
(d)キャスク内の貯蔵位置合計が偶数であるステップ192:該ステップ(D)において、キャスク内の使用済み核燃料集合体の貯蔵位置合計が偶数である場合、その貯蔵位置合計を2で割り、各キャスクのマッチング選別の数とし、各キャスクの全てのマッチングの崩壊熱偏差値の総和が0に接近することとの2種類から、マッチング選別を行うステップと、
(J)該キャスクの総熱負荷(Heat Load)値が閾値に満足するかを判断するステップ20:該キャスクの総熱負荷(Heat Load)の値が、最大設計熱負荷値より小さいかを判断し、キャスクの設計仕様に従う最大熱負荷値より小さくなければ、ステップ(B)へ戻り、キャスクの許容する各使用済み核燃料集合体の最大崩壊熱を調整した後、改めて、ステップ(B)〜(J)を実行するステップが含有される。
1 and 2 are a conceptual diagram of the sorting flow of the present invention and a conceptual diagram of the arrangement flow of the present invention, respectively. As shown in the figure, the present invention is a method for sorting and arranging spent nuclear fuel assemblies by cask heat load, and the sorting flow is at least:
(A) Reordering decay heat of each spent nuclear fuel assembly Step 11: For each spent nuclear fuel transported and stored, from small to large based on its decay heat (Decay Heat) Reordering steps,
(B) Remove spent nuclear fuel assemblies whose decay heat is greater than the maximum decay heat Step 12: Based on the maximum decay heat of each spent nuclear fuel assembly (Cask) allowed, Removing spent nuclear fuel assemblies whose decay heat is greater than the maximum decay heat according to design specifications;
(C) Calculate the average decay heat of the spent nuclear fuel assemblies Step 13: Calculate the average decay heat of the spent nuclear fuel assemblies remaining after step (B), and calculate the total spent nuclear fuel assemblies. Obtaining an average decay heat;
(D) Determining the total fuel storage position in a single cask 14: Determine whether the total storage position of spent nuclear fuel assemblies is odd or even for the cask, if not ,
(A) Preserving the same number of spent nuclear fuel assemblies as the number of the cask in advance 141: After assuming the number of stored casks, first, the remaining nuclear fuel assemblies are calculated in step (C). Selecting a spent nuclear fuel assembly that is closest to the average decay heat of the entire spent spent fuel assembly,
(E) Determining the total of spent nuclear fuel assemblies remaining Step 15: Determine whether the total of spent nuclear fuel assemblies remaining after step (D) is odd or even. Determining the total spent nuclear fuel assemblies,
(B) removing the spent nuclear fuel assemblies 151: removing the spent nuclear fuel assemblies with the greatest decay heat;
(F) Matching and calculating the sum of decay heat of each matching set Step 16: From spent small fuel assemblies remaining in step (E), from small to large based on the decay heat Reordering and matching the spent nuclear fuel assemblies with the least decay heat and the largest decay heat as the first pair, and the spent nuclear fuel assemblies with the second smallest decay heat and the second largest decay heat as the second pair , Matching in order as described above, and calculating the sum of decay heat of each matching set;
(G) Calculate the decay heat average value of each matching group and rearrange it again Step 17: Divide the sum of decay heats of each matching group by 2 to obtain the average value of decay heat of each matching group, Reordering each matching set from small to large based on the average decay heat of the matching set;
(H) The deviation value of the decay heat average value of each matching set is calculated. Step 18: The average decay heat of the entire spent nuclear fuel assembly calculated in step (C) is subtracted from the average decay heat value of each matching set. Obtaining a deviation value between the average value of decay heat and the overall average value of each matching group;
(I) Step 19 of matching selection: In response to the sum of the fuel storage positions in the cask determined in step (D) being odd or even,
(C) The total storage position in the cask is an odd number Step 191: In the step (D), when the total storage position of the spent nuclear fuel assemblies in the cask is an odd number, first, in step (a), Is allocated to the cask, and each cask contains only one spent nuclear fuel assembly, and then, from the decay heat of each previously reserved spent nuclear fuel assembly. The average decay heat of the whole spent nuclear fuel assembly calculated in step (C) is subtracted to obtain the deviation value of decay heat of each spent nuclear fuel assembly reserved in advance. Is subtracted and divided by 2 to obtain the total of the matching selections for each cask, the sum of the decay heat deviation values (as in step 18) of all matchings for each cask, and the pre-allocated to that cask. The sum of the decay heat deviation value of the spent nuclear fuel assembly held at 0 close to 0, or
(D) The total storage position in the cask is an even number Step 192: In the step (D), when the total storage position of the spent nuclear fuel assemblies in the cask is an even number, the total storage position is divided by two; The number of matching selections for each cask, and the step of matching selection from two types: the sum of decay heat deviation values of all matching of each cask approaching zero,
(J) Determining whether the total heat load value of the cask satisfies the threshold value Step 20: Determining whether the total heat load value of the cask is smaller than the maximum design heat load value If it is not smaller than the maximum heat load value according to the design specification of the cask, the process returns to step (B), and after adjusting the maximum decay heat of each spent nuclear fuel assembly allowed by the cask, steps (B) to ( The step of performing J) is included.
本発明の選別流れが終了された後、続いて、本発明の配置流れを行い、該配置流れは、少なくとも、
(K)各キャスク内の使用済み核燃料集合体を並べ替えるステップ21:各キャスクに配分された使用済み核燃料集合体について、その崩壊熱に基づいて、大から小へ並べ替えるステップと、
(L)該キャスクの中心から充填するステップ22:該崩壊熱に基づいて、大から小へ並べ替えられたものを、該使用済み核燃料集合体が該キャスクに充填される時、対角線上に位置する使用済み核燃料集合体の崩壊熱が対称し、また、該キャスクの中心を原点とする四つの象限内において、局部の熱負荷が均一に維持されるように、該キャスクの中心から充填し、外周になるほど崩壊熱が小さい使用済み核燃料集合体が充填されるステップが含有される。
After the sorting flow of the present invention is finished, the arrangement flow of the present invention is subsequently performed, and the arrangement flow is at least:
(K) Reordering spent nuclear fuel assemblies in each cask 21: Reordering spent nuclear fuel assemblies allocated to each cask from large to small based on their decay heat;
(L) Filling from the center of the cask 22: When the spent nuclear fuel assemblies are filled into the cask, the ones arranged from large to small based on the decay heat are positioned diagonally. The decay heat of the spent nuclear fuel assembly is symmetric and is charged from the center of the cask so that the local heat load is uniformly maintained in the four quadrants with the center of the cask as the origin. A step of filling a spent nuclear fuel assembly having a smaller decay heat toward the outer periphery is included.
図3〜図10は、それぞれ、本発明の使用済み核燃料集合体の崩壊熱の並べ替え結果の概念図と本発明の使用済み核燃料集合体のマッチングとその崩壊熱和結果の概念図、本発明の各マッチング組の崩壊熱平均値とその並べ替え結果の概念図、本発明の各マッチングの崩壊熱平均値の偏差値の概念図、本発明の第1のキャスクのマッチング選別結果の概念図、本発明の第2のキャスクのマッチング選別結果の概念図、本発明の第1のキャスクの使用済み核燃料集合体を崩壊熱に基づく並べ替え結果の概念図、本発明の第1のキャスクの使用済み核燃料集合体の配置結果の概念図及び本発明の第1のキャスクの四つの象限の局部の熱負荷値の概念図である。図のように、貯蔵する第1、2のキャスクの実施例において、単一のキャスク内に、56個の貯蔵位置があり、該キャスクの最大熱負荷が13キロワット(kW)で、単一の使用済み核燃料の許容される最大崩壊熱が232.14ワット(W)であると仮定すると、また、初期に選別できる使用済み核燃料集合体が150集合体である條件下で、本発明の使用済み核燃料集合体をキャスク熱負荷で選別と配置方法を利用すれば、図1と図2の選別と配置流れにより、上記の実施例の設定條件について、選別と配置を行い、本発明の配置は、合理的に達成できる限り低く(As Low As Reasonably Achievable、ALARA)原則に満足するように、キャスク内に、使用済み核燃料集合体を配置でき、また、各キャスクの熱負荷値が、全てのキャスクの熱負荷平均値付近に分布できる。 3 to 10 are respectively a conceptual diagram of a rearrangement result of decay heat of a spent nuclear fuel assembly of the present invention, a matching diagram of a spent nuclear fuel assembly of the present invention, and a conceptual diagram of a result of the decay heat sum of the present invention. The conceptual diagram of the decay heat average value of each matching group and the rearrangement result thereof, the conceptual diagram of the deviation value of the decay heat average value of each matching of the present invention, the conceptual diagram of the matching selection result of the first cask of the present invention, The conceptual diagram of the matching selection result of the second cask of the present invention, the conceptual diagram of the rearrangement result based on the decay heat of the spent nuclear fuel assembly of the first cask of the present invention, the used of the first cask of the present invention It is the conceptual diagram of the arrangement result of a nuclear fuel assembly, and the conceptual diagram of the heat load value of the local of four quadrants of the 1st cask of this invention. As shown, in the first and second cask embodiments for storage, there are 56 storage locations within a single cask, the maximum heat load of the cask being 13 kilowatts (kW), Assuming that the maximum allowable decay heat of spent nuclear fuel is 232.14 watts (W), the spent nuclear fuel assembly of the present invention is also subject to the situation where there are 150 assemblies of spent nuclear fuel assemblies that can be initially sorted. If the body is sorted and placed by cask heat load, the sorting and placement of the above embodiment will be sorted and placed according to the sorting and placement flow of FIGS. 1 and 2, and the arrangement of the present invention is reasonable. The spent nuclear fuel assemblies can be placed in the cask to satisfy the As Low As Reasonably Achievable (ALARA) principle, and the heat load value of each cask is the heat load of all the caskes. It can be distributed around the average value.
以上のように、本発明に係わる使用済み核燃料集合体をキャスク熱負荷で選別と配置方法は、使用済み核燃料集合体について、選別して、また、合理的に達成できる限り低く原則に満足できるように配置でき、各キャスクの熱負荷値が全てのキャスクの熱負荷平均値付近に分布でき、そのため、本発明はより進歩的かつより実用的で法に従って特許請求を出願する。 As described above, the method for sorting and arranging spent nuclear fuel assemblies according to the present invention by cask heat load can be used to sort spent nuclear fuel assemblies and satisfy the principle as low as can be reasonably achieved. And the heat load value of each cask can be distributed around the average heat load value of all the casks, so that the present invention is more progressive and more practical and filed claims according to the law.
以上は、ただ、本発明のより良い実施例であり、本発明はそれによって制限されることが無く、本発明に係わる特許請求の範囲や明細書の内容に基づいて行った等価の変更や修正は、全てが本発明の特許請求の範囲内に含まれる。 The above are merely preferred embodiments of the present invention, and the present invention is not limited thereby, and equivalent changes and modifications made based on the scope of claims and the description of the present invention. Are all within the scope of the claims of the present invention.
11 ステップ(A)
12 ステップ(B)
13 ステップ(C)
14 ステップ(D)
15 ステップ(E)
16 ステップ(F)
17 ステップ(G)
18 ステップ(H)
19 ステップ(I)
20 ステップ(J)
21 ステップ(K)
22 ステップ(L)
141 ステップ(a)
151 ステップ(b)
191 ステップ(c)
192 ステップ(d)
11 Step (A)
12 steps (B)
13 Step (C)
14 steps (D)
15 steps (E)
16 steps (F)
17 steps (G)
18 steps (H)
19 Step (I)
20 steps (J)
21 steps (K)
22 steps (L)
141 Step (a)
151 Step (b)
191 Step (c)
192 step (d)
Claims (8)
(B)キャスクが許容された各使用済み核燃料集合体の最大崩壊熱を基準とし、その崩壊熱が該最大崩壊熱より大きい使用済み核燃料集合体を除去するステップと、
(C)ステップ(B)を経て残った使用済み核燃料集合体について、その崩壊熱の平均値を算出し、使用済み核燃料集合体全体の平均崩壊熱を取得するステップと、
(D)該キャスクに対して、使用済み核燃料集合体の貯蔵位置の合計が奇数か偶数であるかを判断するステップと、
(E)ステップ(D)を経て残った使用済み核燃料集合体の合計が奇数か偶数であるかを判断するステップと、
(F)ステップ(E)で判断されて残った使用済み核燃料集合体について、その崩壊熱に基づいて、小から大へ並べ替えてマッチングし、崩壊熱が最小と崩壊熱が最大の使用済み核燃料集合体を第一対とし、崩壊熱が次に小さいと崩壊熱が次に大きい使用済み核燃料集合体を第二対とし、上記のように順にマッチングして、また、各マッチング組の崩壊熱の和を算出するステップと、
(G)各マッチング組の崩壊熱の和を2で割り、各マッチング組の崩壊熱の平均値が得られ、更に、各マッチング組の崩壊熱の平均値に基づいて、小から大へ各マッチング組を改めて並べ替えるステップと、
(H)各マッチング組の崩壊熱の平均値からステップ(C)で算出された全体使用済み核燃料集合体の平均崩壊熱を引いて、各マッチング組の崩壊熱の平均値と全体平均値の偏差値を取得するステップと、
(I)該ステップ(D)で判断したキャスク内の燃料貯蔵位置の合計が奇数か偶数であることに対応して、マッチング選別を行うステップと、
(J)該キャスクの総熱負荷の値が、最大設計熱負荷値より小さいかを判断し、最大熱負荷値より小さくなければ、ステップ(B)へ戻るステップが含有されることを特徴とする、使用済み核燃料集合体をキャスク熱負荷で選別する方法。 (A) reordering each spent nuclear fuel transported and stored based on its decay heat from small to large;
(B) removing spent nuclear fuel assemblies whose decay heat is greater than the maximum decay heat with reference to the maximum decay heat of each spent nuclear fuel assembly allowed to have a cask;
(C) calculating the average decay heat of the spent nuclear fuel assemblies remaining after step (B) and obtaining the average decay heat of the entire spent nuclear fuel assemblies;
(D) determining whether the total storage position of spent nuclear fuel assemblies is odd or even for the cask;
(E) determining whether the sum of spent nuclear fuel assemblies remaining after step (D) is odd or even;
(F) The spent nuclear fuel assemblies remaining after the determination in step (E) are sorted from small to large on the basis of their decay heat and matched, and the spent nuclear fuel with the least decay heat and the largest decay heat is matched. Assume that the assembly is the first pair, and the spent nuclear fuel assemblies that have the second largest decay heat when the decay heat is the second, and the second pair, match in order as described above. Calculating a sum;
(G) Divide the sum of decay heat of each matching group by 2 to obtain the average value of decay heat of each matching group. Furthermore, each matching from small to large based on the average value of decay heat of each matching group Reordering pairs, and
(H) The average decay heat of the entire spent nuclear fuel assembly calculated in step (C) is subtracted from the average decay heat value of each matching group, and the deviation between the average decay heat value and the overall average value of each matching group Obtaining a value;
(I) performing matching selection in response to the sum of the fuel storage positions in the cask determined in step (D) being odd or even;
(J) It is determined whether the value of the total heat load of the cask is smaller than the maximum design heat load value. , A method of sorting spent nuclear fuel assemblies by cask heat load.
(a)前記ステップ(D)において、キャスク内の使用済み核燃料集合体の貯蔵位置合計が奇数である場合、まず、予めに保留した使用済み核燃料集合体をキャスクに配分し、各キャスクに一つだけの使用済み核燃料集合体が含まれ、その後、それぞれ、各予めに保留した使用済み核燃料集合体の崩壊熱から、ステップ(C)で算出した使用済み核燃料集合体全体の平均崩壊熱を引いて、各予めに保留した使用済み核燃料集合体の崩壊熱の偏差値を取得し、続いて、貯蔵位置合計から1を引いてから2で割り、各キャスクのマッチング選別の合計になり、各キャスクの全てのマッチングの崩壊熱偏差値の総和と、該キャスクに配分された予めに保留した使用済み核燃料集合体の崩壊熱偏差値との両者の和が0に接近すること、或いは、
(b)前記ステップ(D)において、キャスク内の使用済み核燃料集合体の貯蔵位置合計が偶数である場合、その貯蔵位置合計を2で割り、各キャスクのマッチング選別の数とし、各キャスクの全てのマッチングの崩壊熱偏差値の総和が0に接近することの二つであることを特徴とする、請求項1に記載の使用済み核燃料集合体をキャスク熱負荷で選別する方法。 The selection method of step (I) is as follows:
(A) In the step (D), when the total storage position of the spent nuclear fuel assemblies in the cask is an odd number, the spent nuclear fuel assemblies reserved in advance are first allocated to the cask, and one is assigned to each cask. Each of the spent nuclear fuel assemblies, and then subtracting the average decay heat of the entire spent nuclear fuel assemblies calculated in step (C) from the decay heat of each previously reserved spent nuclear fuel assembly. , Obtain the deviation value of decay heat of each pre-held spent nuclear fuel assembly, then subtract 1 from the total storage position and divide by 2 to get the total of the matching selection of each cask, The sum of the decay heat deviation values of all matchings and the decay heat deviation values of the previously held spent nuclear fuel assemblies allocated to the cask approach zero, or
(B) In the step (D), when the total storage position of the spent nuclear fuel assemblies in the cask is an even number, the total storage position is divided by 2 to obtain the number of matching selections for each cask. 2. The method for sorting spent nuclear fuel assemblies according to claim 1 by cask heat load, wherein the sum of the decay heat deviation values of matching approaches two.
(L)該崩壊熱に基づいて、大から小へ並べ替えられたものを、該キャスクの中心から充填し、外周になるほど崩壊熱が小さい使用済み核燃料集合体が充填されるステップが含有されることを特徴とする、使用済み核燃料集合体をキャスク熱負荷で選別する方法。 (K) reordering spent nuclear fuel assemblies allocated to each cask from large to small based on the decay heat;
(L) The step of filling from the center of the cask with those sorted from the large to the small based on the decay heat and filling the spent nuclear fuel assembly with a decay heat that becomes smaller toward the outer periphery is included. A method for sorting spent nuclear fuel assemblies by cask heat load.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007324217A JP4465558B2 (en) | 2007-12-17 | 2007-12-17 | Method for sorting spent nuclear fuel assemblies by cask heat load |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007324217A JP4465558B2 (en) | 2007-12-17 | 2007-12-17 | Method for sorting spent nuclear fuel assemblies by cask heat load |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009145249A true JP2009145249A (en) | 2009-07-02 |
JP4465558B2 JP4465558B2 (en) | 2010-05-19 |
Family
ID=40915997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007324217A Expired - Fee Related JP4465558B2 (en) | 2007-12-17 | 2007-12-17 | Method for sorting spent nuclear fuel assemblies by cask heat load |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4465558B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012018023A (en) * | 2010-07-07 | 2012-01-26 | Hitachi-Ge Nuclear Energy Ltd | Spent fuel assembly storage support method, spent fuel assembly storage support apparatus, and method for storing spent fuel assembly in cask |
JP2020193818A (en) * | 2019-05-24 | 2020-12-03 | 三菱重工業株式会社 | Fuel arrangement method and device for optimizing fuel arrangement |
-
2007
- 2007-12-17 JP JP2007324217A patent/JP4465558B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012018023A (en) * | 2010-07-07 | 2012-01-26 | Hitachi-Ge Nuclear Energy Ltd | Spent fuel assembly storage support method, spent fuel assembly storage support apparatus, and method for storing spent fuel assembly in cask |
JP2020193818A (en) * | 2019-05-24 | 2020-12-03 | 三菱重工業株式会社 | Fuel arrangement method and device for optimizing fuel arrangement |
JP7249877B2 (en) | 2019-05-24 | 2023-03-31 | 三菱重工業株式会社 | Fuel placement method and fuel placement optimization device |
Also Published As
Publication number | Publication date |
---|---|
JP4465558B2 (en) | 2010-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6327694B1 (en) | Cell placement apparatus and method, and computer readable record medium having cell placement program recorded thereon | |
US6526559B2 (en) | Method for creating circuit redundancy in programmable logic devices | |
CN110797071B (en) | Method for repairing defects of multi-subblock NAND flash memory | |
CN102880667B (en) | Test task scheduling method based on critical paths and tabu search | |
US6813754B2 (en) | Placement processing for programmable logic devices | |
CN107368359A (en) | A kind of asynchronous task performs method and its storage medium, device | |
US20160239302A1 (en) | Dynamic wavefront creation for processing units using a hybrid compactor | |
CN107729514A (en) | A kind of Replica placement node based on hadoop determines method and device | |
CN108122055A (en) | The resource regulating method and device of a kind of Flow Shop | |
CN107133228A (en) | A kind of method and device of fast resampling | |
JP2009145249A (en) | Method of screening and arranging spent nuclear fuel assembly with cask thermal load | |
CN108241531A (en) | A kind of method and apparatus for distributing resource for virtual machine in the cluster | |
US10628071B2 (en) | Method of storage allocation, electronic device, storage system and computer program product | |
Mallikarjuna et al. | A new meta-heuristics for optimum design of loop layout in flexible manufacturing system with integrated scheduling | |
US11694014B2 (en) | Logical node layout method and apparatus, computer device, and storage medium | |
CN105681414A (en) | Method and system for avoiding data hotspot of Hbase | |
Vodopija et al. | Ensemble-based constraint handling in multiobjective optimization | |
CN107239326A (en) | Accept insurance multithreading batch processing method and system | |
JP2007316700A (en) | Operation object management device and operation object management method, its program, and recording medium | |
CN108596455A (en) | A kind of automobile chassis blanking Job-Shop method based on material allocation | |
CN107104829B (en) | Physical equipment matching distribution method and device based on network topology data | |
CN105897828A (en) | Node cache mechanism determining method and system | |
JP7249877B2 (en) | Fuel placement method and fuel placement optimization device | |
TWI355002B (en) | ||
CN103593240B (en) | The dispatching method of a kind of optimization and management equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100209 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |