JP4464804B2 - Thermal spraying material for industrial kiln repair - Google Patents

Thermal spraying material for industrial kiln repair Download PDF

Info

Publication number
JP4464804B2
JP4464804B2 JP2004347500A JP2004347500A JP4464804B2 JP 4464804 B2 JP4464804 B2 JP 4464804B2 JP 2004347500 A JP2004347500 A JP 2004347500A JP 2004347500 A JP2004347500 A JP 2004347500A JP 4464804 B2 JP4464804 B2 JP 4464804B2
Authority
JP
Japan
Prior art keywords
powder
less
calcia
metal
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004347500A
Other languages
Japanese (ja)
Other versions
JP2006151771A (en
Inventor
洋一 古田
和寛 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2004347500A priority Critical patent/JP4464804B2/en
Publication of JP2006151771A publication Critical patent/JP2006151771A/en
Application granted granted Critical
Publication of JP4464804B2 publication Critical patent/JP4464804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、工業窯炉の内張りの補修において、金属粉の燃焼発熱を利用した溶射方法に使用される溶射材に関するものである。   The present invention relates to a thermal spray material used in a thermal spraying method using combustion heat of metal powder in repairing the lining of an industrial kiln furnace.

工業用窯炉の炉壁補修として、耐火原料粉の溶射法がある。溶射法には火炎溶射、プラズマ溶射、レーザー溶射が知られているが、これらはいずれも大掛かりな装置を必要とし、設備費が高く、しかも操作が煩雑である。   As a furnace wall repair for industrial kilns, there is a thermal spraying method of refractory raw material powder. Flame spraying, plasma spraying, and laser spraying are known as thermal spraying methods, but all of these require a large apparatus, have high equipment costs, and are complicated in operation.

一方、耐火原料粉および金属粉を主材として含む溶射材を酸素による搬送ガスにて被施工面に吹付け、前記金属粉の燃焼発熱を利用して耐火原料を溶融付着させる方法がある。この方法は装置構造が比較的簡単であり、その操作も容易である。また、プラズマ溶射、レーザー溶射に比べて大容量の施工が可能であり、炉壁補修に適している。   On the other hand, there is a method in which a thermal spray material containing refractory raw material powder and metal powder as a main material is sprayed onto a work surface with a carrier gas using oxygen, and the refractory raw material is melted and adhered using the heat generated by combustion of the metal powder. This method has a relatively simple apparatus structure and is easy to operate. In addition, it can be applied with larger capacity than plasma spraying and laser spraying, and is suitable for furnace wall repair.

金属粉の燃焼発熱を利用したこの溶射方法において、それに使用される溶射材の一般的な材質は、シリカ粉よりなる耐火原料粉と発熱材の金属Si粉が主材である。発熱材は、他にAl−Mg合金、Ca−Si合金の使用が知られている。
特開2000−159579号公報 特開平5−330931号公報 特開平5−17237号公報
In this thermal spraying method using the combustion heat generation of metal powder, the general materials of the thermal spray material used for it are mainly refractory raw material powder made of silica powder and metal Si powder of the heat generating material. In addition, the use of Al—Mg alloy or Ca—Si alloy is known as the heat generating material.
JP 2000-159579 A JP-A-5-330931 Japanese Patent Laid-Open No. 5-17237

この金属粉の燃焼発熱を利用した溶射法は、吹付け開始時に種火または炉壁残熱で溶射材配合中の金属粉を燃焼させることで、溶射材に着火する。次いでこの燃焼による発熱が火種となり、順次吹付けられる溶射材が連続して燃焼し、溶融付着の施工体が形成される。   In the thermal spraying method using the heat generated by combustion of the metal powder, the thermal spray material is ignited by burning the metal powder in the thermal spray material mixture with a seed flame or residual heat from the furnace wall at the start of spraying. Next, the heat generated by this combustion becomes a fire type, and the sprayed material sprayed sequentially burns continuously, and a melt-adhered construction body is formed.

しかし、従来の溶射材は、被施工面が常温あるいは例えば炉口等の残存温度が低い箇所等では着火しても連続燃焼せず、施工能率が悪い。しかも、得られた施工体の溶融不足によって付着性、接着性、強度共に劣る。   However, the conventional thermal spray material does not continuously burn even if the surface to be worked is ignited at a room temperature or a location where the residual temperature is low, such as a furnace port, and the construction efficiency is poor. In addition, adhesion, adhesion, and strength are inferior due to insufficient melting of the obtained construction body.

発熱材として高発熱性のAl−Mg合金、Ca−Si合金等の金属粉を使用した場合は、接着性および付着性に改善が認められものの、その効果は格別なものではない。これは、溶射材自体の受熱面積が限られていることに加え、耐火性原料粉中で金属粉が分散状態にあるため、金属粉が高発熱性であったとしても、その発熱による熱量が溶射材組織全体に十分に伝播されないことによる。   When a metal powder such as a highly exothermic Al—Mg alloy or Ca—Si alloy is used as the heat generating material, although the adhesiveness and adhesion are improved, the effect is not exceptional. This is because the thermal spray material itself has a limited heat receiving area, and since the metal powder is in a dispersed state in the refractory raw material powder, even if the metal powder is highly exothermic, the amount of heat generated by the heat generation is small. This is because it is not sufficiently propagated throughout the sprayed material structure.

また、高発熱性の金属粉の使用は自然発火が懸念され、厳しい管理が必要となる。そこで作業安全性の配慮した設備、取り扱いの必要性から、結果として溶射材のコスト高を招く。   In addition, the use of highly exothermic metal powder is concerned about spontaneous ignition and requires strict management. As a result, the cost and cost of the thermal spray material are increased due to the necessity of equipment and handling with consideration for work safety.

金属Si粉の使用例でのその添加量を増すことにより、被施工体の温度が低くても安定した連続燃焼を示す。しかし、金属粉の量が増えることで施工時に金属粉の発塵が著しく、作業環境の悪化を招く。また、金属粉の酸化に伴う多量のガス発生が原因し、施工体が多孔質化による強度低下をきたす。   By increasing the amount of addition of the metal Si powder in the usage example, stable continuous combustion is exhibited even when the temperature of the workpiece is low. However, when the amount of the metal powder is increased, the dust generation of the metal powder is remarkable at the time of construction, and the working environment is deteriorated. In addition, due to the generation of a large amount of gas accompanying the oxidation of the metal powder, the construction body has a reduced strength due to the porous structure.

本発明は上記従来の問題を解決した溶射材を提供することを目的とする。その特長とするところは、以下のとおりである。   It is an object of the present invention to provide a thermal spray material that solves the above-mentioned conventional problems. The features are as follows.

(1)耐火原料粉および金属Si粉を主材とし、酸素を搬送ガスとして被施工面に吹付け、前記金属Si粉の燃焼発熱で被施工面に溶融付着させる溶射材であって、化学成分値でCaO含有量75質量%超のカルシア質粉2〜25質量%、金属Si粉5〜30質量%およびシリカ質粉50〜90質量%を含む工業窯炉補修用溶射材。 (1) A thermal spraying material containing a refractory raw material powder and a metal Si powder as a main material, spraying oxygen on a work surface as a carrier gas, and melting and adhering to the work surface by combustion heat generation of the metal Si powder. Thermal spraying material for repairing industrial kilns containing 2 to 25% by weight of calcia powder having a CaO content of more than 75% by weight, 5 to 30% by weight of metal Si powder, and 50 to 90% by weight of siliceous powder.

(2)カルシア質粉の粒度が0.5mm以下、シリカ質粉の粒度が2mm以下で且つ0.3mm以下の占める割合を0〜15質量%とした前記(1)項記載の工業窯炉補修用溶射材。 (2) Industrial kiln repair as described in (1) above, wherein the calcia powder has a particle size of 0.5 mm or less and the siliceous powder has a particle size of 2 mm or less and a ratio of 0.3 mm or less is 0 to 15% by mass. Thermal spray material.

(3)カルシア質粉が、カルシア粉、マグネシア−カルシア粉から選ばれる1種または2種以上である前記(1)または(2)項記載の工業窯炉補修用溶射材。 (3) The thermal spraying material for industrial kiln repair according to (1) or (2) above, wherein the calcia powder is one or more selected from calcia powder and magnesia-calcia powder.

本発明は金属Si粉および耐火原料粉を主材とした溶射材に、特定量のカルシア質粉を組み合わせたものである。施工時においては、金属Si粉が搬送ガスの酸素と反応してSiO成分を生成した後、さらにこのSiO成分とカルシア質粉との反応(3CaO+SiO→3CaO・SiO2 、2CaO+SiO→2CaO・SiO)によってシリカ質粉の溶融が促進され、付着性および接着性が向上する。しかも、前記反応で生成されたCaO・SiOの耐火ボンド組織によって、緻密且つ高強度の施工体組織を形成する。 In the present invention, a specific amount of calcia powder is combined with a thermal spray material mainly composed of metal Si powder and refractory raw material powder. During construction, after generating the SiO 2 component metal Si powder reacts with the oxygen of the carrier gas, further reaction of the SiO 2 component and calcia protein powder (3CaO + SiO 2 → 3CaO · SiO 2, 2CaO + SiO 2 → 2CaO · SiO 2) fused siliceous powder is promoted by the adhesion and adhesion are improved. In addition, a dense and high-strength construction structure is formed by the CaO.SiO 2 refractory bond structure produced by the reaction.

一般的に、溶射施工体は緻密である程、熱衝撃を受けると亀裂が生じやすい。これに対し本発明による溶射材は、耐熱衝撃性にも優れた効果を発揮する。これは、本発明の溶射材により生成される前記したCaO・SiO組織は、例えばCaO、MgO、MgO・SiOなどの組織にくらべて熱膨張が小さい事が考えられる。 In general, the denser the thermal sprayed body, the easier it is to crack when subjected to thermal shock. On the other hand, the thermal spray material according to the present invention exhibits an excellent effect in thermal shock resistance. This is considered that the CaO · SiO 2 structure produced by the thermal spray material of the present invention has a smaller thermal expansion than, for example, a structure such as CaO, MgO, MgO · SiO 2 .

シリカ質粉のみを耐火原料粉とした従来の溶射材は、施工体の成分はSiOである。これに対し、本発明材質で形成される施工体成分のCaO・SiOはSiOに比べて蓄熱性が格段に高い。本発明の溶射材は施工の際に、この高蓄熱のCaO・SiOの施工体上に順次吹付けられることで燃焼が安定し、常温あるいは比較的低温の被補修面に対する施工においても失火することなく、連続燃焼する。 In the conventional thermal spray material using only siliceous powder as a refractory raw material powder, the component of the construction body is SiO 2 . On the other hand, CaO.SiO 2 which is a construction body component formed of the material of the present invention has much higher heat storage than SiO 2 . The thermal spray material of the present invention is stably sprayed by being sequentially sprayed onto the construction body of CaO · SiO 2 with high heat storage during construction, and misfires even in construction on a repaired surface at room temperature or relatively low temperature. Without burning continuously.

また、本発明で使用する発熱材は金属Si粉であり、高発熱性金属粉の使用で見られる自然発火等の危惧もなく、作業安全性にも優れている。   In addition, the heat generating material used in the present invention is a metal Si powder, and there is no fear of spontaneous ignition or the like seen with the use of a highly exothermic metal powder, and it is excellent in work safety.

本発明の溶射材について、カルシア質粉の粒度は0.5mm以下が好ましい。これは、粒度が0.5mm以下においては金属Si粉から生成したSiO成分及びシリカ質粉と反応しやすくなってCaO・SiO質の液相の生成量が増し、成形体の緻密化が向上するためである。また、粒度は0.5mm以下であることで、カルシア質粉の吹付け時の跳ね返り損失が少なくなって付着性にも好ましい。 Regarding the thermal spray material of the present invention, the particle size of the calcia powder is preferably 0.5 mm or less. This is because when the particle size is 0.5 mm or less, it easily reacts with the SiO 2 component and siliceous powder generated from the metal Si powder, and the amount of CaO · SiO 2 liquid phase generated increases, and the compacted body becomes dense. It is for improving. Moreover, since the particle size is 0.5 mm or less, the rebound loss at the time of spraying calcia powder is reduced, which is preferable for adhesion.

シリカ質粉の粒度は2mm以下で且つ0.3mm以下の占める割合は0〜15質量%であることが好ましい。これは、粒度0.3mm以下のシリカ質粉はカルシア質粉と違って金属Si粉に付着しやすく、粒度0.3mm以下のシリカ質粉の割合が多くなると金属Si粉と酸素との接触面積が低減する。その結果、施工開始時に着火し難くなり、また、着火しても粉体供給量が僅かでも大きくなると連続燃焼がし難くなるためである。   The particle size of the siliceous powder is preferably 2 mm or less and the proportion of 0.3 mm or less is preferably 0 to 15% by mass. This is because, unlike calcia powder, siliceous powder with a particle size of 0.3 mm or less tends to adhere to the metal Si powder, and when the proportion of siliceous powder with a particle size of 0.3 mm or less increases, the contact area between the metal Si powder and oxygen Is reduced. As a result, it is difficult to ignite at the start of construction, and continuous combustion is difficult to occur if the powder supply amount is increased even if ignited.

本発明の溶射材は、金属粉の燃焼発熱を利用した溶射方法において、付着性および接着性に優れた効果を発揮する。しかも得られた施工体は、緻密且つ高強度であると共に耐熱衝撃性に優れている。また、施工体の蓄熱性が格段に高いことで、比較的低温の被補修面に対する溶射においても失火することなく、安定した施工が可能となる。   The thermal spray material of the present invention exhibits an excellent effect in adhesion and adhesiveness in a thermal spraying method using combustion heat generation of metal powder. In addition, the obtained construction body is dense and high in strength and excellent in thermal shock resistance. Further, since the heat storage property of the construction body is remarkably high, stable construction is possible without misfire even in thermal spraying on a relatively low temperature repaired surface.

本発明の溶射材に耐火性原料として使用するカルシア質原料粉の具体例は、カルシア粉、マグネシア−カルシア粉などから選ばれる1種または2種以上である。また、これらは焼結品、電融品のいずれでもよい。   The specific example of the calcia raw material powder used as a refractory raw material for the thermal spray material of the present invention is one or more selected from calcia powder, magnesia-calcia powder and the like. These may be either sintered products or electromelted products.

カルシア質原料粉のCaO含有量は75質量%超とする。CaO含有量がこれより少ないとカルシア質原料粉とSiOとの反応性に乏しく、CaO・SiOの生成量が少ないために施工体の蓄熱性が不足し、本発明による顕著な連続燃焼性と発熱が得られない。 The CaO content of the calcia raw material powder is more than 75% by mass. If the CaO content is less than this, the reactivity between the calcia raw material powder and SiO 2 is poor, and since the amount of CaO · SiO 2 produced is small, the heat storage property of the construction body is insufficient, and the remarkable continuous combustion property according to the present invention. I cannot get a fever.

カルシア質原料粉のCaO含有量のさらに好ましい範囲は88質量%以上である。88質量%以上では、特に耐熱衝撃性が更に顕著なものとなる。   A more preferable range of the CaO content of the calcia raw material powder is 88% by mass or more. When it is 88% by mass or more, the thermal shock resistance is particularly remarkable.

カルシア質原料粉の粒度はSiO成分と充分に反応させるために0.5mm以下にすることが好ましい。さらに好ましくは0.3mm以下である。なお、以下の各原料組成の記述も含め、粒度の表記は、JIS標準ふるい目開きに基づいたものである。 The particle size of the calcia raw material powder is preferably 0.5 mm or less in order to sufficiently react with the SiO 2 component. More preferably, it is 0.3 mm or less. In addition, the description of a particle size including the following description of each raw material composition is based on JIS standard sieve opening.

カルシア質粉の使用割合は2〜25質量%とする。2質量%未満では被施工体の温度が低い場合は連続燃焼が安定せず、付着性および接着性に劣る。25質量%を超えるとその分、金属Si粉あるいはシリカ質粉が減り、金属Si粉、シリカ質粉の各特性が損なわれる。   The proportion of calcia powder used is 2 to 25% by mass. If it is less than 2% by mass, the continuous combustion is not stable when the temperature of the workpiece is low, and the adhesion and adhesion are poor. If it exceeds 25% by mass, the amount of metal Si powder or siliceous powder is reduced by that amount, and the characteristics of metal Si powder and siliceous powder are impaired.

金属Si粉の使用量は、5質量%未満では燃焼発熱に劣り、付着性、接着性、施工体強度ともに劣る。30質量%を超えると施工時に金属粉の発塵が著しく、作業環境の悪化を招くだけでなく金属粉の酸化に伴うガスの発生が原因し、施工体を多孔質化する。また、この金属Si粉の粒度は充分な反応性を得るために平均粒径で75μm以下が好ましく、さらに好ましくは45μm以下である。   When the amount of metal Si powder used is less than 5% by mass, the heat generated by combustion is inferior, and the adhesion, adhesiveness, and construction strength are inferior. If it exceeds 30% by mass, the dust generation of the metal powder is remarkable at the time of construction, which not only causes the working environment to deteriorate, but also causes the generation of gas accompanying the oxidation of the metal powder, thereby making the construction body porous. The particle size of the metal Si powder is preferably 75 μm or less, more preferably 45 μm or less in terms of average particle size in order to obtain sufficient reactivity.

耐火原料粉の主材はシリカ質粉とする。シリカ質粉の具体例は珪石粉、珪砂、天然石英粉、溶融シリカ粉、あるいはこれらの成分を主体とした耐火物粉等が挙げられる。その使用割合は50質量%未満では溶射施工体の容積安定性に劣り、接着性が低下する。90質量%を超えると吹付け時の跳ね返り損失が大きくなり付着性が低下する。   The main material of the refractory raw material powder is siliceous powder. Specific examples of the siliceous powder include quartzite powder, quartz sand, natural quartz powder, fused silica powder, or refractory powder mainly composed of these components. If the use ratio is less than 50% by mass, the volume stability of the thermal sprayed body is inferior and the adhesiveness is lowered. When it exceeds 90 mass%, the rebound loss at the time of spraying will become large, and adhesiveness will fall.

このシリカ質粉の粒度は溶融性の面で2mm以下であることが好ましい。粒度2mm以下の範囲であれば、例えば1.5mm以下あるいは1mm以下に限定しても溶融において大差が無い。   The particle size of the siliceous powder is preferably 2 mm or less in terms of meltability. As long as the particle size is in the range of 2 mm or less, there is no great difference in melting even if the particle size is limited to 1.5 mm or less or 1 mm or less.

また、シリカ質粉は0.3mm以下粒度を0〜15質量%に調整することが好ましい。すなわち、窯業操作において耐火原料の粒度の調整は、粉砕した後に篩をもって行うため、篩下には自ずと一定量の微粒が存在する。例えば粒度2mmでの篩下には粒度0.3mm以下の粒子が20〜30質量%含まれるのが常である。ここではその篩下の粒度0.3mm以下の粒度の量を規制したものである。   Moreover, it is preferable that a siliceous powder adjusts 0.3 mm or less particle size to 0-15 mass%. That is, in the ceramic industry operation, the particle size of the refractory raw material is adjusted with a sieve after pulverization, so that a certain amount of fine particles are naturally present under the sieve. For example, a sieve having a particle size of 2 mm usually contains 20 to 30% by mass of particles having a particle size of 0.3 mm or less. Here, the amount of the particle size of 0.3 mm or less under the sieve is regulated.

ここで、シリカ質粉は0.3mm以下粒度を0〜15質量%の限定は、粒度調整の操作において例えば0.5mm以下あるいは0.1mm以下の粒度の粒子を除去した場合でも、結果としてシリカ質粉全体に占める粒度0.3mm以下の粒子が0〜15質量%であることを意味している。   Here, the siliceous powder has a particle size of 0.3 mm or less and a limitation of 0 to 15% by mass, even when particles having a particle size of 0.5 mm or less or 0.1 mm or less are removed in the particle size adjustment operation. It means that particles having a particle size of 0.3 mm or less in the whole powder are 0 to 15% by mass.

また、本発明の溶射材は、化学成分値で溶射材全体に占めるCaO成分の割合は2〜25質量%とすることが好ましい。なお、CaO成分はケイ石質等の天然のシリカ質原料にも含まれるがそこでの含有量がごく微量である。本発明でのCaO成分源は実質的にカルシア質粉からの供給である。   Moreover, it is preferable that the ratio of the CaO component which the thermal spray material of this invention occupies for the whole thermal spray material with a chemical component value shall be 2-25 mass%. The CaO component is also contained in natural siliceous raw materials such as siliceous, but its content is very small. The CaO component source in the present invention is substantially supplied from calcia powder.

溶射材全体に占めるCaO成分が2質量%未満では熱源の少ない補修箇所に対しての着火持続効果が不十分であり、失火あるいは接着不良等、安定した施工が困難となる傾向にある。CaO成分は熱膨張係数が大きいため、その割合が25質量%を超えると被施工体との熱膨張差によって被施工体面である炉壁内張り亀裂の発生が懸念される。   If the CaO component occupying the entire thermal spray material is less than 2% by mass, the effect of sustaining ignition to the repaired portion having a small heat source is insufficient, and stable construction such as misfire or poor adhesion tends to be difficult. Since the CaO component has a large coefficient of thermal expansion, if the proportion exceeds 25% by mass, there is a concern about the occurrence of cracks in the furnace wall lining, which is the surface of the workpiece, due to the difference in thermal expansion with the workpiece.

金属Si粉以外の金属粉の例としては、Al粉、Al−Mg合金粉等がある。これらの金属粉は高発熱性のために作業安全性から使用しないことが好ましいが、使用する場合でも作業安全性から5質量%未満、好ましくは3質量%以下に止めることが必要である。また、その使用量は、金属Si粉を含めた金属粉の合計量が30質量%を超えないことが必要である。   Examples of metal powders other than metal Si powder include Al powder and Al-Mg alloy powder. These metal powders are preferably not used from the viewpoint of work safety because of their high heat generation properties. However, even if they are used, it is necessary to keep them at less than 5% by weight, preferably 3% by weight or less from the viewpoint of work safety. Moreover, the usage-amount needs that the total amount of metal powder including metal Si powder does not exceed 30 mass%.

本発明による溶射材は、コークス炉を始めとする各種鉄鋼工業炉、非鉄金属工業炉、ガラス炉、鋼工業窯炉等の炉壁補修に使用される。   The thermal spray material according to the present invention is used for repairing furnace walls of various steel industry furnaces such as coke ovens, non-ferrous metal industry furnaces, glass furnaces, steel industry furnace furnaces and the like.

以下に本発明の実施例と比較例を示す。表1は各例で使用した耐火性原料の化学成分値、表2は本発明実施例、表3はその比較例である。また、第2表、第3表には各例の試験結果も併せて示す。

Figure 0004464804
Figure 0004464804
Figure 0004464804
Examples of the present invention and comparative examples are shown below. Table 1 shows chemical component values of the refractory raw materials used in each example, Table 2 shows examples of the present invention, and Table 3 shows comparative examples. Tables 2 and 3 also show the test results of each example.
Figure 0004464804
Figure 0004464804
Figure 0004464804

各例の溶射材の施工に使用した溶射装置は、ノズル先端等からの逆火による材料タンク内での溶射材の燃焼の危険性に備えるため、材料タンク内に不活性ガスである窒素ガスを導入した。溶射材は、タンクの底部に備え付けたテーブルフィーダーをもって切り出し、酸素で搬送した。その際、酸素には材料タンク内からの不活性ガスが混入するが、その量は僅かであり、溶射材の燃焼発火に支障はない。   In order to prepare for the risk of combustion of the thermal spray material in the material tank due to flashback from the nozzle tip, etc., the thermal spraying device used in the construction of the thermal spray material in each example is provided with nitrogen gas, which is an inert gas, in the material tank. Introduced. The thermal spray material was cut out with a table feeder provided at the bottom of the tank and transported with oxygen. At that time, the inert gas from the inside of the material tank is mixed in oxygen, but the amount thereof is small and there is no problem in the combustion and ignition of the thermal spray material.

各例は粉体供給速度50kg/h、被施工体とノズル先端の距離50〜70mmをもって、溶射材3kgを被施工体に吹付けた。被施工体はコークス炉の炉口耐火物の補修を想定してシャモット質れんがとした。   In each example, 3 kg of the thermal spray material was sprayed onto the workpiece with a powder supply rate of 50 kg / h and a distance between the workpiece and the nozzle tip of 50 to 70 mm. The work body was made of chamotte bricks assuming the repair of the furnace refractories of the coke oven.

常温と熱間(被施工体の表面温度500℃)のそれぞれの条件下で吹付け、評価した。常温施工はパイロットバーナーで溶射材に着火した。熱間施工では各例とも、パイロットバーナーを使用することなく被施工体の熱で溶射材を燃焼させた。   It sprayed and evaluated on each conditions of normal temperature and hot (surface temperature of a to-be-processed body 500 degreeC). In normal temperature construction, the sprayed material was ignited with a pilot burner. In each of the hot constructions, the thermal spray material was burned by the heat of the work piece without using a pilot burner.

連続着火性:溶射施工では、施工面積を広げるためノズルを被施工面上に沿って移動することが行われる。その際の連続着火性を試験した。◎…施工効率を上げるために被施工面上でのノズルの移動を速くしても失火の気配は全くなく、きわめて安定した燃焼を示した。△…被施工面上でのノズル移動が速いと燃焼が間断的になり不安定である。×…ノズルを早く移動させるとたちまち失火し、連続着火しない。   Continuous ignitability: In thermal spraying, the nozzle is moved along the work surface in order to expand the construction area. The continuous ignitability at that time was tested. ◎… Even if the nozzle was moved faster on the work surface in order to increase the construction efficiency, there was no sign of misfire, indicating extremely stable combustion. Δ: If the nozzle movement on the work surface is fast, combustion is intermittent and unstable. ×… If the nozzle is moved quickly, it will quickly misfire and will not ignite continuously.

付着性:常温下での溶射材のノズルからの吐出量と跳ね返り損失から、付着率を求めた。   Adhesiveness: The adhesion rate was determined from the amount of sprayed material sprayed from the nozzle and bounce loss at room temperature.

接着性:常温下での吹き付けにおいて溶射施工体の接着性の程度をも測定した。○…熱間、冷却後共に接着性良好、△…熱間時には接着しているが冷却時に剥離、×…熱間時に既に剥離。   Adhesiveness: The degree of adhesion of the thermal sprayed body was also measured during spraying at room temperature. ○: Adhesiveness is good both hot and after cooling, Δ: Adhesive when hot, but peeled off when cooled, ×: Already peeled when hot.

緻密性:前記溶射施工体から切り出した試料について、見掛気孔率を測定した。   Denseness: Apparent porosity was measured for the sample cut out from the thermal sprayed construction.

強度:前記溶射施工体から切り出した試料について圧縮強度を測定した。   Strength: Compressive strength was measured for a sample cut out from the thermal sprayed body.

耐熱衝撃性:放冷後の溶射施工体の亀裂発生状況を目視により確認した。◎…亀裂なし、○…亀裂微小、△…亀裂小、×…亀裂大。亀裂は施工体剥離の原因となり耐用性の低下を招く。   Thermal shock resistance: The state of occurrence of cracks in the thermal sprayed body after cooling was confirmed visually. A: No crack, B: Small crack, B: Small crack, X: Large crack. Cracks cause peeling of the construction body and cause a decrease in durability.

表2に示す試験結果の通り、本発明実施例の溶射材はいずれも付着性および接着性に優れており、しかも緻密且つ高強度な施工体を形成する。また、常温での被補修面に対する溶射においても安定した連続燃焼を示す。   As shown in the test results shown in Table 2, each of the thermal spray materials of the examples of the present invention is excellent in adhesion and adhesiveness, and forms a dense and high-strength construction body. In addition, stable continuous combustion is exhibited in thermal spraying on the repaired surface at room temperature.

実施例1〜6、及び実施例9、10はCaO含有量が96.97質量%とCaO純度の高いカルシア粉を使用したものであり、耐熱衝撃性向上の効果が顕著である。   Examples 1 to 6 and Examples 9 and 10 use calcia powder having a CaO content of 96.97% by mass and high CaO purity, and the effect of improving thermal shock resistance is remarkable.

これに対して比較例1はマグネシア−カルシア質粉を主材とした材質である。比較例2は前記比較例1の溶射材においてマグネシア−カルシア質粉の粒度を0.5mm以下と小さくしたものである。比較例3はマグネシア−カルシア質粉とシリカ質粉との組み合わせ材質である。比較例4は前記比較例3の材質において、マグネシア−カルシア質粉の粒度を0.5mm以下と小さくしたものである。いずれも、施工体組織が多孔質のために耐熱衝撃性に優れている。しかし、多孔質のために接着性、強度共に劣る。   On the other hand, Comparative Example 1 is a material mainly composed of magnesia-calcia powder. In Comparative Example 2, the particle size of the magnesia-calcia powder in the thermal spray material of Comparative Example 1 is reduced to 0.5 mm or less. Comparative Example 3 is a combination material of magnesia-calcia powder and siliceous powder. In Comparative Example 4, the particle size of the magnesia-calcia powder in the material of Comparative Example 3 is reduced to 0.5 mm or less. In either case, the construction body structure is porous, and thus has excellent thermal shock resistance. However, both adhesion and strength are inferior due to the porosity.

比較例5はカルシア粉の添加量が本発明の限定範囲より多い材質である。比較例6は前記比較例5の材質において、カルシア粉の添加量を更に多くしたものである。これらはいずれも耐熱衝撃性に劣る。また、被施工体との熱膨張差によって被施工体面である炉壁内張り亀裂の発生が懸念される。また、比較例1〜6のいずれも接着性に劣る。   Comparative Example 5 is a material in which the amount of calcia powder added is greater than the limited range of the present invention. In Comparative Example 6, the amount of calcia powder added is further increased in the material of Comparative Example 5. These are all inferior in thermal shock resistance. In addition, there is a concern that a furnace wall lining crack, which is the surface of the workpiece, may be generated due to a difference in thermal expansion from the workpiece. Moreover, all of Comparative Examples 1-6 are inferior to adhesiveness.

なお、本発明の実施例において例えばカルシア質粉の粒度は1mm以下、あるいは0.5mm以下としているが、これがさらに微細な例えば0.1mm以下ものであっても、本発明の効果が得られた。   In the examples of the present invention, for example, the particle size of the calcia powder is 1 mm or less, or 0.5 mm or less. However, even when the particle size is 0.1 mm or less, the effect of the present invention is obtained.

Claims (3)

耐火原料粉および金属Si粉を主材とし、酸素を搬送ガスとして被施工面に吹付け、前記金属Si粉の燃焼発熱で被施工面に溶融付着させる溶射材であって、化学成分値でCaO含有量75質量%超のカルシア質粉2〜25質量%、金属Si粉5〜30質量%およびシリカ質粉50〜90質量%を含む工業窯炉補修用溶射材。   It is a thermal spray material that uses refractory raw material powder and metal Si powder as the main materials, sprays oxygen on the work surface as a carrier gas, and melts and adheres to the work surface by the combustion heat of the metal Si powder. A thermal spray material for repairing industrial kiln furnaces containing 2 to 25% by mass of calcia powder having a content of more than 75% by mass, 5 to 30% by mass of metal Si powder and 50 to 90% by mass of siliceous powder. カルシア質粉の粒度が0.5mm以下、シリカ質粉の粒度が2mm以下で且つ0.3mm以下の占める割合を0〜15質量%とした請求項1記載の工業窯炉補修用溶射材。   The thermal spray material for industrial kiln repair according to claim 1, wherein the calcia powder has a particle size of 0.5 mm or less and the siliceous powder has a particle size of 2 mm or less and a ratio of 0.3 mm or less is 0 to 15 mass%. カルシア質粉が、カルシア粉、マグネシア−カルシア粉から選ばれる1種または2種以上である請求項1または2記載の工業窯炉補修用溶射材。   The thermal spray material for industrial furnace furnace repair according to claim 1 or 2, wherein the calcia powder is one or more selected from calcia powder and magnesia-calcia powder.
JP2004347500A 2004-11-30 2004-11-30 Thermal spraying material for industrial kiln repair Active JP4464804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004347500A JP4464804B2 (en) 2004-11-30 2004-11-30 Thermal spraying material for industrial kiln repair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347500A JP4464804B2 (en) 2004-11-30 2004-11-30 Thermal spraying material for industrial kiln repair

Publications (2)

Publication Number Publication Date
JP2006151771A JP2006151771A (en) 2006-06-15
JP4464804B2 true JP4464804B2 (en) 2010-05-19

Family

ID=36630506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347500A Active JP4464804B2 (en) 2004-11-30 2004-11-30 Thermal spraying material for industrial kiln repair

Country Status (1)

Country Link
JP (1) JP4464804B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781452B2 (en) * 2011-02-25 2015-09-24 品川リフラクトリーズ株式会社 Thermal spray material
CN102297596A (en) * 2011-08-07 2011-12-28 河南三兴热能技术有限公司 Application method for refractory fiber foaming technology in industrial kiln construction
JP6327744B2 (en) * 2014-02-24 2018-05-23 Jfeスチール株式会社 Repair method by thermal spraying
JP5671648B1 (en) * 2014-08-08 2015-02-18 黒崎播磨株式会社 Thermal spray material
JP6263208B2 (en) * 2016-02-17 2018-01-17 品川リフラクトリーズ株式会社 Thermal spray material
JP6372533B2 (en) * 2016-09-09 2018-08-15 品川リフラクトリーズ株式会社 Coke oven bottom repair material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE757466A (en) * 1969-11-04 1971-04-14 Glaverbel
JPS59156967A (en) * 1983-02-23 1984-09-06 品川白煉瓦株式会社 Sio2-cao-li2o low expansion flame spray material
JPS58172263A (en) * 1982-04-02 1983-10-11 品川白煉瓦株式会社 Sio2-cao low expansion flame spray material
JPS6158867A (en) * 1984-08-24 1986-03-26 住友金属工業株式会社 Flame spray material for furnace wall maintenance
JP3174179B2 (en) * 1992-12-28 2001-06-11 川崎炉材株式会社 Thermal spray material
JPH09278552A (en) * 1996-04-15 1997-10-28 Nippon Steel Corp Flame-spraying material for furnace
JP3024971B1 (en) * 1999-03-29 2000-03-27 黒崎窯業株式会社 Flame sprayed material containing coarse particles
JP4109663B2 (en) * 2004-09-30 2008-07-02 黒崎播磨株式会社 Thermal spraying material for industrial kiln repair

Also Published As

Publication number Publication date
JP2006151771A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
TWI555882B (en) Thermal spraying materials
JP5781452B2 (en) Thermal spray material
JP3173879B2 (en) Mixtures and methods for forming bonded refractory bodies on surfaces
JP2009120406A (en) Thermal spraying material
JP4464804B2 (en) Thermal spraying material for industrial kiln repair
JP4109663B2 (en) Thermal spraying material for industrial kiln repair
JP5493711B2 (en) Thermal spray repair material
JP6092172B2 (en) Thermal spray material
JP3174179B2 (en) Thermal spray material
JP3103523B2 (en) Thermal spray material
JP6372533B2 (en) Coke oven bottom repair material
JP6263208B2 (en) Thermal spray material
JP4493404B2 (en) Thermal spray material
JPH09132470A (en) Thermal spraying repairing material
JP6505797B2 (en) Thermal spray material
JP2009107865A (en) Thermal spraying material
JP2008150235A (en) Thermal spraying material
JP2004028504A (en) Hot repairing method for industrial furnace
JPH11199333A (en) Repairing material for thermal spraying
JP3716445B2 (en) Flame spray repair material and flame spray repair method
KR101633472B1 (en) Repairing materials for blast furnace body
JPH11209184A (en) Thermal spraying repairing material
JPH0791120B2 (en) Silica-based furnace wall repair spray material
JP2001099574A (en) Method for repairing by spraying curved wall of metal refining furnace steel outlet
JPH10246580A (en) Flame spray repairing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4464804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160226

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250