JP4464762B2 - Al alloy member for liquefied gas vaporizer with excellent corrosion resistance and liquefied gas vaporizer - Google Patents

Al alloy member for liquefied gas vaporizer with excellent corrosion resistance and liquefied gas vaporizer Download PDF

Info

Publication number
JP4464762B2
JP4464762B2 JP2004234758A JP2004234758A JP4464762B2 JP 4464762 B2 JP4464762 B2 JP 4464762B2 JP 2004234758 A JP2004234758 A JP 2004234758A JP 2004234758 A JP2004234758 A JP 2004234758A JP 4464762 B2 JP4464762 B2 JP 4464762B2
Authority
JP
Japan
Prior art keywords
composition
alloy
layer
liquefied gas
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004234758A
Other languages
Japanese (ja)
Other versions
JP2006052788A (en
Inventor
龍哉 安永
真司 阪下
季弘 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004234758A priority Critical patent/JP4464762B2/en
Publication of JP2006052788A publication Critical patent/JP2006052788A/en
Application granted granted Critical
Publication of JP4464762B2 publication Critical patent/JP4464762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、オープンラックベーパライザーなどの液化ガス気化器用の構成材料(伝熱管など)として適用される耐食性に優れたアルミニウム系合金部材及びこのアルミニウム系合金部材を用いた液化ガス気化器に関するものである。   The present invention relates to an aluminum alloy member excellent in corrosion resistance and applied to a liquefied gas vaporizer using the aluminum alloy member, which is applied as a constituent material (such as a heat transfer tube) for a liquefied gas vaporizer such as an open rack vaporizer. is there.

各種燃料用の液化ガスとして汎用されている液化天然ガス( 以下LNG と言う) は、通常低温高圧の液体状態で移送、貯蔵され、使用時には事前に気化される。この大量のLNG を気化させるために、従来からオープンラックベーパライザー( 以下ORV と言う) が用いられている。このORV は熱交換器の一種であり、海水との熱交換により、LNG を加熱・気化させるものである。即ち、海水は散水ノズルからトラフに溜められ、その両側縁部からパネル(伝熱管)の外側を濡らしながら垂下し、一方、前記パネル(伝熱管)に送られたLNG は前記海水との熱交換によって加熱され、前記パネル(伝熱管)内で気化される。   Liquefied natural gas (hereinafter referred to as LNG), which is widely used as a liquefied gas for various fuels, is usually transferred and stored in a liquid state at a low temperature and high pressure, and is vaporized in advance when used. In order to vaporize this large amount of LNG, an open rack vaporizer (hereinafter referred to as ORV) has been conventionally used. This ORV is a kind of heat exchanger, and heats and vaporizes LNG by heat exchange with seawater. That is, the seawater is stored in the trough from the watering nozzle, and droops while wetting the outside of the panel (heat transfer tube) from both side edges, while the LNG sent to the panel (heat transfer tube) exchanges heat with the seawater. And is vaporized in the panel (heat transfer tube).

このORV用部材、特にパネル(伝熱管)用部材には、熱伝導性が良く、伝熱面積をかせぐための複雑形状に加工しやすく、溶接性も良いJIS 3203などのAl合金が用いられている。しかし、元来Al合金は海水に浸漬された状態では腐食しやすく、一旦浸食が始まると、浸食部分が集中的に侵され、孔のあく、いわゆる孔食を受けやすいという欠点がある。   This ORV member, particularly a panel (heat transfer tube) member, is made of an Al alloy such as JIS 3203, which has good thermal conductivity, can be easily processed into a complicated shape for increasing the heat transfer area, and has good weldability. Yes. However, the Al alloy originally has a drawback that it is easily corroded when immersed in seawater, and once erosion starts, the eroded portion is intensively eroded, and there is a drawback that it is susceptible to so-called pitting corrosion.

このため、従来から前記用途に用いられるAl合金を対象として、防食処理が盛んに研究され、現在では犠牲防食作用を利用した防食方法がその主流を占めている。この犠牲防食は、Al合金からなる母材合金の表面を、母材合金よりも腐食しやすい、即ち母材合金よりも海水中の腐食電位が卑なイオン化傾向の高い合金で被覆するものである。このことにより、当初は被覆合金の被覆作用により母材合金が海水と直接接触ぜずに耐食性が保たれ、また被覆合金の一部が剥がれて母材合金が露出し海水と直接接触するようになっても、残った被覆合金の前記犠牲防食作用により、母材合金の長期耐食性を保証するものである。   For this reason, anti-corrosion treatment has been actively studied for Al alloys used in the above-mentioned applications, and currently, anti-corrosion methods using sacrificial anti-corrosive action occupy the mainstream. In this sacrificial anticorrosion, the surface of a base material alloy made of an Al alloy is coated with an alloy that is more easily corroded than the base material alloy, that is, has a higher ionization tendency and has a lower corrosion potential in seawater than the base material alloy. . As a result, the corrosion resistance of the base alloy does not directly contact the seawater due to the coating action of the coating alloy at the beginning, and the corrosion resistance is maintained. Even so, the sacrificial anticorrosive action of the remaining coating alloy ensures the long-term corrosion resistance of the base alloy.

従来、この犠牲防食作用を有する被覆合金として、AlとZnとの合金が公知であり、Al−2%Zn、Al-3%Znなどの合金が使用されている。この合金の母材合金への被覆の仕方としては、例えば、溶射法などにより、Al-Zn 合金をクラッドし、表面保護の長期間化を図る方法(特許文献1など)も提案されている。   Conventionally, an alloy of Al and Zn is known as a coating alloy having the sacrificial anticorrosive action, and alloys such as Al-2% Zn and Al-3% Zn are used. As a method for coating the base material alloy with this alloy, for example, a method (for example, Patent Document 1) is proposed in which an Al—Zn alloy is clad by a thermal spraying method or the like to extend the surface protection.

また、犠牲防食作用を更に強化する目的で、更に微量のHg、Sn、In、Ga、Cdなどを含有したAl−Zn 被覆合金あるいはZn含有量を3.5〜85.0% としたAl-Zn被覆合金(特許文献2など)を用いるものが提案されている。この技術は、Zn含有量を高めるとともに、前記微量元素を加えているため、前記Al-2%Zn 、Al−3%Zn などの被覆合金よりも、犠牲防食作用を更に強化することができる。   Further, for the purpose of further enhancing the sacrificial anticorrosive action, an Al—Zn-coated alloy containing a trace amount of Hg, Sn, In, Ga, Cd or the like or Al—Zn content of 3.5 to 85.0% is used. An alloy using a Zn-coated alloy (such as Patent Document 2) has been proposed. This technique can further enhance the sacrificial anticorrosive action as compared with the coating alloy such as Al-2% Zn, Al-3% Zn, etc., since the Zn content is increased and the trace element is added.

しかし、前記ORV は、近年益々高効率化が図られており、装置的に大型化乃至連続長時間運転化する傾向にある。このため、ORVを構成する部材の大型化による落下海水の流速増大や、連続長時間化の運転に耐える、より長時間の耐食性などの耐久性や信頼性が必要となる。この点、本発明者らが知見したところによれば、前記Al−2%Zn 、Al−3%Zn などの被覆合金や、前記Zn含有量を3.5 〜85.0% としたAl−Zn 被覆合金などを被覆したAl合金部材でも、下記の2つの問題が起こることが認められている。   However, the ORV has been improved in efficiency in recent years, and tends to be large in size or continuously operated for a long time. For this reason, durability and reliability, such as an increase in the flow velocity of the fall seawater by the enlargement of the member which comprises ORV, and the long-time corrosion resistance which endures the driving | running for continuous prolonged time are required. In this regard, the present inventors have found that the coating alloys such as Al-2% Zn and Al-3% Zn and Al- in which the Zn content is 3.5 to 85.0%. It is recognized that the following two problems occur even in an Al alloy member coated with a Zn coating alloy or the like.

[1] 先ず、Al−Zn溶射皮膜のZn組成が低い場合は、溶射皮膜表面が不働態化しやすいため、自然電位が高くなり、犠牲防食効果が十分に得られなくなる。このようなAl−Zn溶射膜表面の不働態化により、図3に示すように、Al合金部材との界面欠陥部に水が浸入した場合は、溶存酸素が不足して電位が低くなる界面欠陥付近の活性面と、電位が高くなる溶射皮膜最表面の不働態部との間で電位の逆転が生じて界面部が優先溶解して界面破壊に至る。不働態化しはじめるZn組成は環境により変化する。   [1] First, when the Zn composition of the Al—Zn sprayed coating is low, the surface of the sprayed coating is easily passivated, so that the natural potential is increased and the sacrificial anticorrosive effect cannot be sufficiently obtained. Due to the passivation of the surface of the Al—Zn sprayed film, as shown in FIG. 3, when water enters the interface defect portion with the Al alloy member, the interface defect becomes low in potential due to lack of dissolved oxygen. The reversal of the potential occurs between the active surface in the vicinity and the passive state portion on the outermost surface of the sprayed coating where the potential becomes high, and the interface portion is preferentially dissolved, leading to interface destruction. The Zn composition that begins to passivate changes depending on the environment.

[2] 次に、Al−Zn溶射皮膜のZn組成が高い場合は、溶射皮膜表面が不働態化しないため上記[1]の問題は生じないが、図4に示すように、溶射皮膜が溶出してAl母材が露出した際、溶射膜に近いAl母材表面が過度にカソード分極され、Al母材表面での溶存酸素の過剰な還元反応によりOH−イオンが多量に発生してpH上昇が起きる。また、図5に示すようにAlの不働態領域は25℃においてpH4〜8の範囲となり、pHが8を超えて高くなると不働態膜が消失してしまうため、常温の海水ではカソード腐食が発生することが示されている。このようなカソード腐食が発生する電位は、海水の温度や流速の諸条件により変化するものであるが、悪条件が揃うと、Al−Zn皮膜によるアルミ母材露出部のカソード分極状況でも、Al合金母材の優先的損傷が発生するようになる。
特開平5−164496号公報 特開平4−60393号公報 特開平6−317392号公報
[2] Next, when the Al-Zn sprayed coating has a high Zn composition, the surface of the sprayed coating is not passivated, so the problem [1] does not occur. However, as shown in FIG. When the Al base material is exposed, the surface of the Al base material near the sprayed film is excessively cathode-polarized, and a large amount of OH-ion is generated due to excessive reduction reaction of dissolved oxygen on the surface of the Al base material. Happens. In addition, as shown in FIG. 5, the passive region of Al is in the range of pH 4 to 8 at 25 ° C., and the passive film disappears when the pH exceeds 8 and therefore cathodic corrosion occurs in seawater at room temperature. Has been shown to do. The potential at which such cathode corrosion occurs varies depending on various conditions such as seawater temperature and flow velocity. Preferential damage to the alloy base material will occur.
Japanese Patent Laid-Open No. 5-16496 JP-A-4-60393 JP-A-6-317392

本発明は上記[1]、[2]の問題を解決するものであり、その目的は、特に、海水などの腐食環境下にあっても、長期の耐食性を保証できる液化ガス気化器用のAl合金部材を提供しようとするものである。   The present invention solves the above-mentioned problems [1] and [2], and its purpose is an Al alloy for a liquefied gas vaporizer that can guarantee long-term corrosion resistance even in a corrosive environment such as seawater. The member is to be provided.

本発明はこのような目的達成のために完成されたものであって、その要旨とする特徴は以下の通りである。   The present invention has been completed to achieve such an object, and the gist of the present invention is as follows.

(1)厚さ100μm以上のAl−Zn合金皮膜を表面に形成した液化ガス気化器用Al合金部材であって、前記Al−Zn合金皮膜のAl合金材との界面から厚さ50μmまでの領域(以下、界面層という)の平均Zn組成が0.3〜10%、前記Al−Zn合金皮膜の最表面から深さ50μmまでの領域(以下、表面層という)の平均Zn組成が3.3%〜85%、前記表面層のZn組成が前記界面層のZn組成よりも3%以上大きいものであること、を特徴とする耐食性に優れた液化ガス気化器用Al合金部材。 (1) An Al alloy member for a liquefied gas vaporizer having an Al—Zn alloy film having a thickness of 100 μm or more formed on a surface thereof, wherein the Al—Zn alloy film has a region from the interface with the Al alloy material to a thickness of 50 μm ( Hereinafter, the average Zn composition of the interface layer) is 0.3 to 10%, and the average Zn composition of the region from the outermost surface of the Al—Zn alloy film to a depth of 50 μm (hereinafter referred to as the surface layer) is 3.3%. An Al alloy member for a liquefied gas vaporizer excellent in corrosion resistance, characterized in that the Zn composition of the surface layer is 3% or more larger than the Zn composition of the interface layer.

(2)Al−Zn合金皮膜の前記界面層の平均Zn組成が0.3〜5%、Al−Zn合金皮膜の前記表面層の平均Zn組成が10〜85%、前記表面層のZn組成が前記界面層のZn組成よりも5%以上大きいものである、上記(1)に記載の耐食性に優れた液化ガス気化器用Al合金部材。 (2) Average Zn composition from 0.3 to 5% of the interfacial layer of Al-Zn alloy coating, the average Zn composition of the surface layer of the Al-Zn alloy coating 10 to 85%, and Zn composition of the surface layer The Al alloy member for a liquefied gas vaporizer having excellent corrosion resistance according to the above (1) , which is 5% or more larger than the Zn composition of the interface layer.

(3)液化ガス気化器がオープンラックベーパライザーである上記(1)又は(2)に記載の耐食性に優れたAl合金部材。   (3) The Al alloy member excellent in corrosion resistance according to the above (1) or (2), wherein the liquefied gas vaporizer is an open rack vaporizer.

(4)上記(1)〜(3)のいずれかに記載のAl合金部材を備えた液化ガス気化器。   (4) A liquefied gas vaporizer comprising the Al alloy member according to any one of (1) to (3) above.

本発明によれば、前記解決手段に記載した特異な構成のAl−Zn合金皮膜をAl合金部材に形成することにより、その有効且つ安定した犠牲防食作用を維持、継続させることが可能となり、因って海水と接触する腐食環境下においてORVなどの液化ガス気化器用の構成材として優れた耐食性を発揮し、その長期にわたる使用を保証することができる。   According to the present invention, it is possible to maintain and continue the effective and stable sacrificial anticorrosive action by forming the Al—Zn alloy film having the unique configuration described in the above solution on the Al alloy member. Therefore, it exhibits excellent corrosion resistance as a constituent material for a liquefied gas vaporizer such as ORV in a corrosive environment in contact with seawater, and can guarantee its long-term use.

本発明者らは、前記問題を解決すべく、鋭意実験、検討を重ねた結果、厚さ100μm以上のAl−Zn合金溶射皮膜を表面に形成したAl合金部材であって、Al−Zn合金皮膜のAl合金部材との界面から厚さ50μmまでの領域(界面層)の平均Zn組成が0.3〜10%、より好ましくは0.3〜5%、Al−Zn合金皮膜の最表面から深さ50μmまでの領域(表面層)の平均Zn組成が3.3〜85%、より好ましくは10〜85%、及び前記表面層のZn組成が前記界面層のZn組成よりも3%以上、より好ましくは5%以上大きいAl合金部材をORVなどの液化ガス気化器の構成材として適用することにより、海水と接触する腐食環境下においても優れた耐食性を発揮し、同気化器の耐用寿命を延長し得ることを確認した。 As a result of intensive experiments and studies to solve the above problems, the inventors of the present invention are Al alloy members having an Al—Zn alloy sprayed coating having a thickness of 100 μm or more formed on the surface, the Al—Zn alloy coating. The average Zn composition in the region (interface layer) from the interface with the Al alloy member to 50 μm in thickness is 0.3 to 10%, more preferably 0.3 to 5%. The average Zn composition in the region (surface layer) up to 50 μm is 3.3 to 85%, more preferably 10 to 85%, and the Zn composition of the surface layer is 3% or more than the Zn composition of the interface layer. By applying an Al alloy member that is preferably 5% or larger as a constituent material of a liquefied gas vaporizer such as ORV, it exhibits excellent corrosion resistance even in a corrosive environment in contact with seawater and extends the useful life of the vaporizer. Confirmed that it could be.

図1は本発明に係るAl合金部材の構成を説明する断面図である。ここにおいて1はAl合金母材であり、この母材1の表面には溶射などの皮膜形成手段により形成された厚さ100μm以上のAl−Zn合金皮膜2が形成されている。この合金皮膜2は、Al合金母材との界面側に位置し、その界面から厚さ50μmまでの範囲の領域すなわちAl−Zn界面層Aと、最表面側に位置し、その最表面から深さ50μmまでの範囲の領域すなわちAl−Zn表面層Bと、これら界面層Aと表面層Bとの間に位置するAl−Zn中間層Cとからなっている。

FIG. 1 is a cross-sectional view illustrating the configuration of an Al alloy member according to the present invention. Here, 1 is an Al alloy base material, and an Al—Zn alloy film 2 having a thickness of 100 μm or more formed by a film forming means such as thermal spraying is formed on the surface of the base material 1. This alloy film 2 is located on the interface side with the Al alloy base material, and is located in the region in the range from the interface to a thickness of 50 μm, that is, the Al—Zn interface layer A, on the outermost surface side, and deeper from the outermost surface. A region in the range of up to 50 μm, that is, an Al—Zn surface layer B, and an Al—Zn intermediate layer C located between the interface layer A and the surface layer B.

そして、本発明では、上記Al−Zn界面層Aの平均Zn組成を0.3〜10%とし、且つ上記Al−Zn表面層Bの平均Zn組成を3.3〜85%とし、さらに上記Al−Zn表面層Bの平均Zn組成が、上記Al−Zn界面層Aの平均Zn組成よりも3%以上の高い濃度となるように両層のZn組成を調整、維持するものである。   In the present invention, the average Zn composition of the Al—Zn interface layer A is 0.3 to 10%, the average Zn composition of the Al—Zn surface layer B is 3.3 to 85%, and the Al The Zn composition of both layers is adjusted and maintained so that the average Zn composition of the -Zn surface layer B is 3% or more higher than the average Zn composition of the Al-Zn interface layer A.

このように、Al−Zn合金皮膜2のAl−Zn表面層Bの組成をAl−Zn界面層AのZn組成よりも3%以上高くすることにより、皮膜2の最表面の電位が、界面部の電位よりも過剰に高くなること(=界面部の優先溶解)を防止することができる。   Thus, by making the composition of the Al—Zn surface layer B of the Al—Zn alloy film 2 3% or more higher than the Zn composition of the Al—Zn interface layer A, the potential of the outermost surface of the film 2 becomes the interface portion. It is possible to prevent the potential from becoming excessively higher than the potential (= preferential dissolution of the interface portion).

また、Al合金母材1に接する領域は、界面層AのZn組成を10%以下にすることにより、Al合金母材1の電位が低下しすぎることによるカソード腐食を抑制することができる。このようなAl−Zn合金皮膜2の防食効果が発揮されるためには、界面層Aと表面層Bの厚みがそれぞれ50μm以上必要であり、トータルの厚みとしては100μm以上であることが必要である。上限は特に定めないが、厚すぎるとフクレや割れが生じやすくなるため、1mmが上限の目安となる。   Moreover, the area | region which touches Al alloy base material 1 can suppress the cathode corrosion by the electric potential of Al alloy base material 1 falling too much by making Zn composition of the interface layer A 10% or less. In order to exhibit such an anticorrosive effect of the Al—Zn alloy film 2, the thickness of the interface layer A and the surface layer B must be 50 μm or more, respectively, and the total thickness must be 100 μm or more. is there. There is no particular upper limit, but if it is too thick, blisters and cracks are likely to occur, so 1 mm is a guide for the upper limit.

本発明のAl合金部材を組み込んだ気化器は、ヘッダー部の腐食よる被膜2の剥離損傷を抑制し、また万一剥離した場合、Al合金母材1の侵食が抑制されるという効果を得ることができる。   The vaporizer incorporating the Al alloy member of the present invention suppresses the peeling damage of the coating 2 due to corrosion of the header part, and in the event of peeling, obtains the effect that the erosion of the Al alloy base material 1 is suppressed. Can do.

カソード腐食が生起する可能性があるAl合金母材1側はZn組成を低くしてこれを抑制し、不働態化により、皮膜2界面の優先溶解・剥離を助長する可能性がある皮膜最表面の表面層BはZn組成を高くすることによりこれを抑制する。この時、母材側皮膜中の界面層AのZn組成は、母材より腐食電位を低くして犠牲防食作用を発揮させるため下限値を0.3%とする。また、表面層BのZn濃度は、母材側の界面層AのZn濃度より3%以上高くする必要があるが、Znが多すぎると表面側層の溶出速度が速くなり、皮膜が短時間で消失してしまうことから、上限を85%とする。   On the Al alloy base material 1 side where cathode corrosion may occur, the Zn composition is lowered to suppress this, and the outermost surface of the film may promote preferential dissolution and peeling at the interface of the film 2 by passivation. This surface layer B suppresses this by increasing the Zn composition. At this time, the lower limit of the Zn composition of the interface layer A in the base material side film is set to 0.3% in order to make the corrosion potential lower than that of the base material to exert the sacrificial anticorrosive action. In addition, the Zn concentration of the surface layer B needs to be 3% or more higher than the Zn concentration of the interface layer A on the base material side. However, if there is too much Zn, the elution rate of the surface side layer increases, and the coating takes a short time. Therefore, the upper limit is set to 85%.

どのZn組成でカソード腐食が生起し、どの組成で不働態化による剥離助長が起きるかは、海水の成分・流速・温度で異なる値をとるため、界面層Aと表層層Bの組成範囲の最適値を一律に決定できないが、種々の実験により表層部のZn組成が界面部よりも3%以上高く設定することにより、本効果がどのような環境でも達成できることを見出した。   Which Zn composition causes cathodic corrosion and which composition promotes delamination due to passivation takes different values depending on seawater components, flow velocity, and temperature, so the composition range of interface layer A and surface layer B is optimal. Although the values could not be determined uniformly, it was found by various experiments that this effect can be achieved in any environment by setting the Zn composition of the surface layer part to be 3% or more higher than the interface part.

ところで、図1のそれぞれ50μmの厚さ(又は深さ)を有するAl−Zn合金皮膜2の界面層Aと表層部Bに挟まれた中間層Cについては、Znの組成は上記両層A、Bの中間組成範囲にあるのが望ましい。しかし、このAl−Zn組成に限らず、別種の組成を有する独立層が中間層Cとして挿入されていたとしても、それが導電性の材料で、界面層Aと表層層Bの中間の電気化学的特性を示すものならば本発明の効果を得ることができるため、本発明の技術的範囲に含まれる。   By the way, for the intermediate layer C sandwiched between the interface layer A and the surface layer portion B of the Al—Zn alloy film 2 having a thickness (or depth) of 50 μm in FIG. It is desirable to be in the intermediate composition range of B. However, the present invention is not limited to this Al—Zn composition, and even if an independent layer having a different type of composition is inserted as the intermediate layer C, it is a conductive material, and is an electrochemical layer between the interface layer A and the surface layer B. Since the effect of the present invention can be obtained as long as it exhibits the desired characteristics, it is included in the technical scope of the present invention.

ここで、電気化学的特性とは、海水中での自然電位であり、例えば、Al−Zn合金に、Mg、Ti等他の元素を添加する場合は、界面層Aと表面層Bの中間の電位になるようにその中間層Cの組成を調整すれば良い。このことを直接確認するには溶射膜の断面を切り出して、走査型振動電極(SVET)やケルビンプローブにより自然電位の面内分布を直接測定した際に、アルミ合金母材1−界面層A−中間層C−表層層Bにかけて電位が順次低くなっていくならば、必要要件が満たされていることになる。   Here, the electrochemical characteristics are natural potentials in seawater. For example, when other elements such as Mg and Ti are added to an Al—Zn alloy, the electrochemical characteristics are intermediate between the interface layer A and the surface layer B. What is necessary is just to adjust the composition of the intermediate | middle layer C so that it may become an electric potential. In order to directly confirm this, when the in-plane distribution of the natural potential is directly measured using a scanning vibration electrode (SVET) or a Kelvin probe by cutting a cross section of the sprayed film, the aluminum alloy base material 1-interface layer A- If the potential gradually decreases from the intermediate layer C to the surface layer B, the necessary requirements are satisfied.

また、この中間層Cは本発明において必ずしも必須ではなく、前記界面層Aと表面層Bのみから構成されている場合も、本発明の範囲内であることは言うまでもない。   Further, the intermediate layer C is not necessarily essential in the present invention, and it is needless to say that the intermediate layer C is composed only of the interface layer A and the surface layer B within the scope of the present invention.

以下、本発明の優れた効果を実証するために実施例を挙げる。なお、下記実施例はあくまでも特定の海水成分、流速、温度での結果であり、本発明の技術的範囲を何ら制限するものではない。   Examples are given below to demonstrate the excellent effects of the present invention. In addition, the following Example is a result by a specific seawater component, flow velocity, and temperature to the last, and does not restrict | limit the technical scope of this invention at all.

(実施例)
Al合金A5083基材に界面部に厚さ100μmでZn組成を変化させた溶射膜、その上に厚さ100μmでZn組成を変化させた溶射膜を積層した。界面側の溶射膜の界面から厚さ50μmの部分までの領域即ち前記界面層、表層部は溶射膜最表面から深さ50μmまでの領域即ち前記表面層をSEM−EDX断面観察で組成分析し、各々の領域の平均Zn組成を確認した。視野は300μm四方が好ましく、厚さの測定は、SEM-EDX断面観察の像上で判定するが、界面部で基板に凹凸がある場合は、図2の模式図に示すように、顕微鏡視野において、伝熱管基材と犠牲防食金属被膜層との界面凹凸の中間線(A−A')から表面方向に50μm離れたところまでを範囲とし、表層部で表面凹凸がある場合は、表面凹凸の中心線(A−A')から内部方向に50μm離れたところまでを範囲とする。このときの、界面層と表面層の間の中間層の組成は、その界面層側は界面層と同じ組成に、またその表面層側は表面層と同じ組成になる傾斜組成となるように作製した。
(Example)
On the Al alloy A5083 base material, a sprayed film with a Zn composition changed at a thickness of 100 μm was laminated at the interface, and a sprayed film with a Zn composition changed at a thickness of 100 μm was laminated thereon. The region from the interface of the sprayed film on the interface side to the 50 μm thick portion, that is, the interface layer, and the surface layer portion, the region from the outermost surface of the sprayed film to the depth of 50 μm, that is, the surface layer is analyzed by SEM-EDX cross-sectional observation The average Zn composition in each region was confirmed. The field of view is preferably 300 μm square, and the thickness is measured on the SEM-EDX cross-sectional image, but if the substrate has irregularities at the interface, as shown in the schematic diagram of FIG. When the surface unevenness is in the range from the intermediate line (AA ′) of the uneven surface of the interface between the heat transfer tube substrate and the sacrificial anticorrosive metal coating layer to the surface direction by 50 μm, The range extends from the center line (AA ′) to a position 50 μm away from the center line. At this time, the composition of the intermediate layer between the interface layer and the surface layer is prepared so that the interface layer side has the same composition as the interface layer, and the surface layer side has the gradient composition that is the same composition as the surface layer. did.

暴露試験1
溶射膜被覆サンプルを0℃、ph8.2、流速3m/秒の人工海水に3ヶ月間浸漬した。得られた結果を表1及び表2の各サンプルの上段に記号(◎、○、△及び×)で示す。ここで、各記号は、試験後の溶射界面剥離発生面積率が下記の範囲であることを表す。
◎:0% ○:10%以下 △:10~30% ×:30%以上
Exposure test 1
The spray coating sample was immersed in artificial seawater at 0 ° C., ph 8.2, and a flow rate of 3 m / sec for 3 months. The obtained results are indicated by symbols (◎, ○, Δ, and x) in the upper part of each sample in Tables 1 and 2. Here, each symbol represents that the thermal spray interface peeling occurrence area ratio after the test is in the following range.
◎: 0% ○: 10% or less △: 10-30% ×: 30% or more

Figure 0004464762
Figure 0004464762

Figure 0004464762
Figure 0004464762

表1、2から、溶射膜の表面層のZn組成は界面層よりも3%以上、好ましくは4%以上、さらに好ましくは5%以上高いのが有効であることが分る。尚、表面層のZnが90%のときは膜溶解速度が著しく高く、表層膜が剥離して消失したので、Znは85%以下が良い。   Tables 1 and 2 show that it is effective that the Zn composition of the surface layer of the sprayed film is 3% or more, preferably 4% or more, more preferably 5% or more higher than the interface layer. When the surface layer Zn is 90%, the film dissolution rate is remarkably high and the surface layer film peels off and disappears. Therefore, Zn is preferably 85% or less.

暴露試験2
溶射膜にその表層層及び界面層の2層を貫通してアルミ母材表面まで達する直径2mmの孔を1種類のサンプル当たり100個空けておいて、0℃、pH8.2、流速3m/秒の人工海水に3ヶ月間浸漬した後、アルミ母材内部まで深さ0.5mm以上進行したピットが発生した孔の数を調べた。得られた結果を表1及び表2の各サンプルの下段に記号(◎、○、△及び×)で示す。ここで、各記号は、試験後のアルミ母材内部まで深さ0.5mm以上進行した孔の数が下記の範囲であることを表す。
◎:無し ○ 10個以下 △:10~30個 ×:30個以上
表1、2からZn組成が15%ではカソード腐食により、母材の溶解が進むので、界面層のZn組成は10%以下、好ましくは5%以下、さらに好ましくは2%以下が有効である。但し、Zn組成が0.3%以下では、溶射膜の犠牲防食効果が得られなくなるため、母材の溶解が進む。従って、界面層のZn組成は0.3%以上、好ましくは0.5%以上が良い。
Exposure test 2
100 holes with a diameter of 2 mm reaching the surface of the aluminum base material through the surface layer and the interface layer are formed in the sprayed film at 0 ° C., pH 8.2, flow rate 3 m / sec. After being immersed in the artificial seawater for 3 months, the number of holes in which pits proceeding to a depth of 0.5 mm or more into the aluminum base material was examined. The obtained results are indicated by symbols (◎, ○, Δ, and x) at the bottom of each sample in Tables 1 and 2. Here, each symbol represents that the number of holes having a depth of 0.5 mm or more to the inside of the aluminum base material after the test is in the following range.
◎: None ○ 10 or less △: 10 to 30 ×: 30 or more From Tables 1 and 2, when the Zn composition is 15%, the dissolution of the base material proceeds due to cathodic corrosion, so the Zn composition of the interface layer is 10% or less. Preferably, 5% or less, more preferably 2% or less is effective. However, if the Zn composition is 0.3% or less, the sacrificial anticorrosive effect of the sprayed film cannot be obtained, so that the base material is dissolved. Therefore, the Zn composition of the interface layer is 0.3% or more, preferably 0.5% or more.

尚、本発明はZn組成が10%以下の界面層とZn組成が界面層よりも3%Zn以上大きい表層層の各々の厚さは50μmにわたって確保されないと効果が得られない。   In the present invention, the effect cannot be obtained unless the thicknesses of the interface layer having a Zn composition of 10% or less and the surface layer having a Zn composition of 3% Zn or more larger than the interface layer are ensured over 50 μm.

次に、表3に示すように、平均Zn組成が2%を維持させる界面層の厚さを40μm、30μm、20μmとした場合は、この厚みよりも表面層のZn組成が2%を超えた部分が母材に近づくため、母材への電気化学的影響のため、母材損傷抑制効果が低下する。   Next, as shown in Table 3, when the thickness of the interface layer maintaining the average Zn composition at 2% is 40 μm, 30 μm, and 20 μm, the Zn composition of the surface layer exceeds 2% than this thickness. Since the portion approaches the base material, the effect of suppressing damage to the base material is reduced due to the electrochemical influence on the base material.

Figure 0004464762
Figure 0004464762

一方、表3に示すように、界面層のZn組成2%よりも5%大きいZn7%組成を維持させる表面層の厚さを40μm、30μm、20μmとした場合は、一時的に最表面の不働態化を防止できるものの、溶射皮膜の剥離が問題となる腐食段階において既に表層層のZn組成が高い部分が早期に損耗してしまうことから、耐剥離性の効果を発揮できなくなってしまう。   On the other hand, as shown in Table 3, when the thickness of the surface layer that maintains the Zn 7% composition 5% larger than the Zn composition 2% of the interface layer is 40 μm, 30 μm, and 20 μm, Although the activation can be prevented, the portion having a high Zn composition of the surface layer is worn out at an early stage in the corrosion stage where the peeling of the sprayed coating becomes a problem, so that the peeling resistance effect cannot be exhibited.

本発明にかかるAl合金部材の構成を説明する断面図である。It is sectional drawing explaining the structure of the Al alloy member concerning this invention. 本発明の実施例における各層の厚さの測定に当って、凹凸がある場合の測定基準を説明するための模式図である。In the measurement of the thickness of each layer in the Example of this invention, it is a schematic diagram for demonstrating the measurement reference | standard when there exists an unevenness | corrugation. Al合金母材にZn組成濃度の低い溶射皮膜を形成した部材における腐食のメカニズムを説明する模式図である。It is a schematic diagram explaining the mechanism of corrosion in the member which formed the thermal spray coating with low Zn composition concentration in Al alloy base material. Al合金母材にZn組成濃度の高い溶射皮膜を形成した部材における腐食のメカニズムを説明する模式図である。It is a schematic diagram explaining the mechanism of corrosion in the member which formed the thermal spray coating with high Zn composition concentration on Al alloy base material. Al−H2O系の電位とpHの関係を示したグラフ図である。Is a graph showing the relationship between potential and pH of the al-H 2 O system.

符号の説明Explanation of symbols

1:Al合金母材 2:Al−Zn合金皮膜
A:Al−Zn界面層 B:Al−Zn表面層 C:Al−Zn中間層
1: Al alloy base material 2: Al—Zn alloy film A: Al—Zn interface layer B: Al—Zn surface layer C: Al—Zn intermediate layer

Claims (4)

厚さ100μm以上のAl−Zn合金皮膜を表面に形成した液化ガス気化器用Al合金部材であって、前記Al−Zn合金皮膜のAl合金材との界面から厚さ50μmまでの領域(以下、界面層という)の平均Zn組成が0.3〜10%、前記Al−Zn合金皮膜の最表面から深さ50μmまでの領域(以下、表面層という)の平均Zn組成が3.3%〜85%、前記表面層のZn組成が前記界面層のZn組成よりも3%以上大きいものであること、を特徴とする耐食性に優れた液化ガス気化器用Al合金部材。 An Al alloy member for a liquefied gas vaporizer having an Al—Zn alloy film having a thickness of 100 μm or more formed on a surface thereof, wherein the Al—Zn alloy film has a region from the interface with the Al alloy material to a thickness of 50 μm (hereinafter referred to as an interface). The average Zn composition of the layer is 0.3 to 10%, and the average Zn composition in the region from the outermost surface of the Al—Zn alloy film to a depth of 50 μm (hereinafter referred to as the surface layer) is 3.3% to 85%. An Al alloy member for a liquefied gas vaporizer excellent in corrosion resistance, wherein the Zn composition of the surface layer is 3% or more larger than the Zn composition of the interface layer. Al−Zn合金皮膜の前記界面層の平均Zn組成が0.3〜5%、Al−Zn合金皮膜の前記表面層の平均Zn組成が10〜85%、前記表面層のZn組成が前記界面層のZn組成よりも5%以上大きいものである、請求項1記載の耐食性に優れた液化ガス気化器用Al合金部材。 Al-Zn average Zn composition of the interfacial layer of the alloy film is 0.3 to 5%, Al-Zn average Zn composition of the surface layer of the alloy coating is 10 to 85%, Zn composition the interface layer of the surface layer of those 5% or more greater than the Zn composition, corrosion resistance superior liquefied gas vaporizing dexterity Al alloy member according to claim 1. 液化ガス気化器がオープンラックベーパライザーである請求項1又は2に記載の耐食性に優れたAl合金部材。   The Al alloy member excellent in corrosion resistance according to claim 1 or 2, wherein the liquefied gas vaporizer is an open rack vaporizer. 請求項1〜3のいずれかに記載のAl合金部材を備えた液化ガス気化器。   The liquefied gas vaporizer provided with the Al alloy member in any one of Claims 1-3.
JP2004234758A 2004-08-11 2004-08-11 Al alloy member for liquefied gas vaporizer with excellent corrosion resistance and liquefied gas vaporizer Expired - Fee Related JP4464762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234758A JP4464762B2 (en) 2004-08-11 2004-08-11 Al alloy member for liquefied gas vaporizer with excellent corrosion resistance and liquefied gas vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234758A JP4464762B2 (en) 2004-08-11 2004-08-11 Al alloy member for liquefied gas vaporizer with excellent corrosion resistance and liquefied gas vaporizer

Publications (2)

Publication Number Publication Date
JP2006052788A JP2006052788A (en) 2006-02-23
JP4464762B2 true JP4464762B2 (en) 2010-05-19

Family

ID=36030407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234758A Expired - Fee Related JP4464762B2 (en) 2004-08-11 2004-08-11 Al alloy member for liquefied gas vaporizer with excellent corrosion resistance and liquefied gas vaporizer

Country Status (1)

Country Link
JP (1) JP4464762B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6793467B2 (en) * 2016-05-25 2020-12-02 株式会社神戸製鋼所 Aluminum alloy parts and LNG vaporizer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071157B2 (en) * 1990-06-26 1995-01-11 株式会社神戸製鋼所 Heat transfer tube for LNG vaporizer
JPH05164496A (en) * 1991-12-17 1993-06-29 Tokyo Gas Co Ltd Fin tube for open rack type carburetor
JP3041159B2 (en) * 1993-05-07 2000-05-15 株式会社神戸製鋼所 Heat transfer tube for LNG vaporizer
JPH1088266A (en) * 1996-09-06 1998-04-07 Sky Alum Co Ltd Brazing sheet made of aluminum alloy
JPH11106889A (en) * 1997-10-02 1999-04-20 Kobe Steel Ltd Aluminum alloy member excellent in low temperature erosion and corrosion resistances
JP2003214796A (en) * 2002-01-25 2003-07-30 Sumitomo Precision Prod Co Ltd Corrosion resistant structure for lng carburetor

Also Published As

Publication number Publication date
JP2006052788A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP4796362B2 (en) Heat transfer tube for LNG vaporizer and method for manufacturing the same
US10774429B2 (en) Anti-corrosion nanoparticle compositions
CN101871062A (en) Aluminum alloy clad sheet for heat exchangers
CN108118218B (en) A kind of hot-dip coated steel sheet and its manufacturing method that anti-cut mouth corrosive nature is excellent
CN101871063A (en) Aluminum alloy clad sheet for heat exchangers and method of producing the same
TW200538585A (en) Titanium stripping solution
BR112018067413B1 (en) CATHODIC PROTECTION SYSTEM AND METHOD FOR A METAL COMPONENT OR SUBSTRATE AND COMPONENT DESIGNED FOR SUBSEA USE
WO2000050664A1 (en) Article exhibiting improved resistance to galvanic corrosion
JP6838864B2 (en) Aluminum alloy LNG vaporizer member and LNG vaporizer
JP4464762B2 (en) Al alloy member for liquefied gas vaporizer with excellent corrosion resistance and liquefied gas vaporizer
JP5144629B2 (en) Heat transfer tube and header tube of open rack type vaporizer
WO2017203805A1 (en) Member formed from aluminum alloy and lng vaporizer
JP4773780B2 (en) Heat transfer tube for LNG vaporizer and LNG vaporizer using the same
JP5383981B2 (en) Surface protection method for open rack type vaporizer
JP5206964B2 (en) Surface protection method for open rack type vaporizer
JP5336797B2 (en) Manufacturing method of heat transfer tube and header tube of open rack type vaporizer
Liu et al. Corrosion behaviour of Mg-rich Al coatings in the protection of Al alloys
JP4418361B2 (en) Al-Zn alloy sprayed coating Al alloy member, manufacturing method thereof, and open rack vaporizer type liquefied natural gas vaporizer
JP2011094170A (en) Heat exchange member
JP2004293811A (en) Heat transfer pipe or header pipe for open rack type carburetor
JP5088747B2 (en) Durable member
JP6771749B2 (en) Multi-layer plated steel sheet and its manufacturing method
JP6151228B2 (en) Heat transfer tube for open rack type vaporizer and manufacturing method thereof
RU2085608C1 (en) Anticorrosive protector coating
KR100865212B1 (en) Heat transfer tube for lng vaporizer, its production method, and lng vaporizer using such heat transfer tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4464762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees