JP4462739B2 - Railcar body support structure - Google Patents

Railcar body support structure Download PDF

Info

Publication number
JP4462739B2
JP4462739B2 JP2000283573A JP2000283573A JP4462739B2 JP 4462739 B2 JP4462739 B2 JP 4462739B2 JP 2000283573 A JP2000283573 A JP 2000283573A JP 2000283573 A JP2000283573 A JP 2000283573A JP 4462739 B2 JP4462739 B2 JP 4462739B2
Authority
JP
Japan
Prior art keywords
vehicle body
vehicle
double
actuator
air cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000283573A
Other languages
Japanese (ja)
Other versions
JP2002087258A (en
Inventor
裕輔 田中
Original Assignee
新潟トランシス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新潟トランシス株式会社 filed Critical 新潟トランシス株式会社
Priority to JP2000283573A priority Critical patent/JP4462739B2/en
Publication of JP2002087258A publication Critical patent/JP2002087258A/en
Application granted granted Critical
Publication of JP4462739B2 publication Critical patent/JP4462739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道車両の車体支持構造に関する。
【0002】
【従来技術】
鉄道車両、特に鉄道旅客車両において乗客の乗降は、一般に車両の床面或いは乗降ステップ面と略同じ高さのプラットフォームに横付けして行われる。この横付け方法は、レール上を走行する車両がプラットフォームの手前でブレーキ操作を行い、プラットフォームの位置と車両及び乗降口位置を一致させて停止させる。この場合に走行振動による車両の振動で車両とプラットフォームとが接触しないように、車両とプラットフォームとの間には隙間を設けなければならない。即ち車両限界と建築限界を最大に設定しても車両とプラットフォームとは例えば50mmの隙間が生じてしまう。特に車体を傾斜させる振子式車両の場合には、車体の裾が絞られていることから、更に車体とプラットフォームとの隙間が大きくなり、特に子供や車椅子による乗降を困難にすることが懸念される。
【0003】
この対策として、車体側面から迫り出すステップ装置を設けたものがある。このステップ装置は、例えば図9(a)に使用状態及び(b)に格納状態の概要を示すように、乗降口の床面101に前後方向に延在するヒンジを介してステップ102を支持し、床面101の下方に配設したエアシリンダ103とステップ102とをリンク104で連結し、使用時にはエアシリンダ103の収縮によって車体側面から床面101と同じ高さに迫り出し、また、不使用時にはエアシリンダ103の伸長により車体側面と略同一面となるようにステップ102を格納するように構成されている。
【0004】
【発明が解決しようとする課題】
上記ステップ装置によると、車体側面からステップ102を迫り出すことによって、車体とプラットフォームとの間の隙間が減少して、乗降性及び安全性が向上する。
【0005】
しかし、各乗降口に各々にステップ装置を設け、各エアシリンダ103にエアを供給するためのエア供給源からの長大で複雑に配設されるエア配管や作動制御系の敷設を必要とし、構造の複雑化及び製造コストやメンテナンスコストの増大を招くことが懸念される。
【0006】
従って、かかる点に鑑みなされた本発明の目的は、簡単な構造で乗降性及び安全性が確保でき、かつ製造及びメンテナンスのコスト削減が得られる鉄道車両の車体支持構造を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成する請求項1に記載の鉄道車両の車体支持構造の発明は、台車上に枕ばねを介して車体が搭載された鉄道車両の車体支持構造において、上記台車と車体の間に架設されて台車に対して車体を車幅方向に横移動させるアクチュエータを備え、車両を停止させた状態で上記アクチュエータにより台車に対して車体を車幅方向に横移動させることを特徴とする。
【0008】
請求項1に記載の発明によると、停車駅にてプラットフォームの位置と車両及び乗降口位置を一致させて停止させた状態で、アクチュエータにより車体を横移動することによって、乗降口とプラットフォームとの隙間が減少して乗降性及び乗降の際の安全性が向上する。一方、アクチュエータによる横移動を解除すると、枕ばねの横剛性によって車体が中立位置に戻り、プラットフォームから車体が離れてプラットフォームと車体との間の隙間が確保されて通常走行状態に復帰する。
【0009】
また、台車と車体との間に車体を横移動させるアクチュエータを架設することから、従来の各乗降口に各々ステップ装置を設ける構造に対しエア配管や作動制御系の敷設の簡素化が可能になり、製造コストやメンテナンスコストの削減が得られ、かつ台車と車体との間にアクチュエータを架設する簡単な構造であることから、既存の車両にも大きな変更を要することなく追加的に取り付けることができる。
【0010】
請求項2に記載の発明は、請求項1の鉄道車両の車体支持構造において、上記枕ばねは、上記台車の台車枠と車体との間に配設され、上記アクチュエータは、上記台車枠と車体との間に架設されて車幅方向に伸縮する複動空気シリンダと、該複動空気シリンダの各シリンダ室への圧搾エアの供給及び排気を制御する供給切換手段とを備えたことを特徴とする。
【0011】
請求項2の発明は、台車枠上に枕ばねを介して車体が支持されたボルスタレス台車において、台車枠と車体との間に複動空気シリンダを架設し、供給切換手段により一方のシリンダ室に圧搾エアを供給し、かつ他方のシリンダ室を大気開放することによって複動空気シリンダが収縮或いは伸長して車体が横移動し、停車駅にて乗降口とプラットフォームとの隙間を減少できて乗降性及び安全性が向上する一方、供給切換手段により各シリンダ室を大気開放することによって枕ばねの横剛性によって車体が中立位置に戻り、プラットフォームから車体が離れて隙間が確保されて通常走行状態に復帰する。従って、簡単な複動空気シリンダ及び供給切換手段等によってアクチュエータが構成でき、製造コストやメンテナンスコストの削減が得らる。
【0012】
請求項3に記載の発明は、請求項1の鉄道車両の車体支持構造において、上記枕ばねは、上記台車の台車枠上に配置された枕梁と車体との間に配置され、上記アクチュエータは、上記枕梁と車体との間に架設されて車幅方向に伸縮する複動空気シリンダと、該複動空気シリンダの各シリンダ室への圧搾エアの供給及び排気を制御する供給切換手段とを備えたことを特徴とする。
【0013】
請求項3の発明は、台車枠上に配置された枕梁上に枕ばねを介して車体が支持されたダイレクトマウント式の車両において、枕梁と車体との間に複動空気シリンダを架設し、供給切換手段により一方のシリンダ室に圧搾エアを供給し、かつ他方のシリンダ室を大気開放することによって複動空気シリンダが収縮或いは伸長して車体が横移動し、停車駅にて乗降口とプラットフォームとの隙間が減少できて乗降性及び安全性が向上する。また、供給切換手段により各シリンダ室を大気開放することによって枕ばねの横剛性によって車体が中立位置に戻り、プラットフォームから車体が離れて隙間が確保されて通常走行状態に復帰する。従って、簡単な複動空気シリンダ及び供給切換手段等によってアクチュエータが得られ、製造コストやメンテナンスコストの削減が得らる。
【0014】
請求項4に記載の鉄道車両の車体支持構造の発明は、台車の台車枠上に枕ばねを介して枕梁が支持され、該枕梁上に車体が搭載された鉄道車両の車体支持構造において、上記台車枠と枕梁の間に架設されて台車枠に対して枕梁を車幅方向に横移動させるアクチュエータを備え、車両を停止させた状態で上記アクチュエータにより台車枠に対して枕梁を車幅方向に横移動させることを特徴とする。
【0015】
請求項4の発明は、台車の台車枠上に枕ばねを介して枕梁が支持され、枕梁上に車体が搭載されたインダイレクト式の車両において、台車枠と枕梁との間に枕梁を横移動させるアクチュエータを架設し、アクチュエータにより枕梁を横移動することによって、枕梁上に搭載された車体が横移動し、乗降口とプラットフォームとの隙間が減少して乗降性及び安全性が向上する。一方、アクチュエータによる横移動を解除すると、枕ばねの横剛性によって枕梁が中立位置に戻り、かつ枕梁に搭載された車体が中立位置に戻りプラットフォームから車体が離れて隙間が確保されて通常走行状態に復帰する。
【0016】
また、台車枠と枕梁との間に横移動させるアクチュエータを架設することから、従来の各乗降口に各々ステップ装置を設ける構造に対しエア配管や作動制御系の敷設の簡素化が可能になり、製造コストやメンテナンスコストの削減が得らる。
【0017】
請求項5に記載の発明は、請求項4の鉄道車両の車体支持構造において、上記アクチュエータは、上記台車枠と枕梁との間に架設されて車幅方向に伸縮する複動空気シリンダと、該複動空気シリンダの各シリンダ室への圧搾エアの供給及び排気を制御する供給切換手段とを備えたことを特徴とする。
【0018】
請求項5の発明によると、台車枠と枕梁との間に複動空気シリンダを架設し、供給切換手段により一方のシリンダ室に圧搾エアを供給し、かつ他方のシリンダ室を大気開放することによって複動空気シリンダが収縮或いは伸長して枕梁に搭載された車体が横移動し、停車駅にて乗降口とプラットフォームとの隙間が減少できて乗降性及び安全性が向上する一方、供給切換手段により各シリンダ室を大気開放することによって枕ばねの横剛性によって枕梁及び枕梁に搭載された車体が中立位置に戻り、プラットフォームから車体が離れて隙間が確保されて通常走行状態に復帰する。従って、簡単な複動空気シリンダ及び供給切換手段等によってアクチュエータが得られ、製造コストやメンテナンスコストの削減が得らる。
【0019】
請求項6に記載の発明は、請求項2、3、5のいずれか1項の鉄道車両の車体支持構造において、更に、上記アクチュエータは、複動空気シリンダの各シリンダ室が直列配置された開閉弁及びオリフィスを介して連通させるバイパス通路を備えたことを特徴とする。
【0020】
請求項6の発明によると、供給切換手段により複動空気シリンダの各シリンダ室の給排気を停止し、開閉弁を開放することによって各シリンダ室がオリフィスを介して連通する閉回路が形成されて走行状態における左右振動の減衰力が得られ、車体の左右振動の減衰がもたらされて乗心地の向上が確保される。
【0021】
【発明の実施の形態】
以下、本発明による鉄道車両の車体支持構造の実施の形態を図によって説明する。
【0022】
(第1実施の形態)
本発明の第1実施の形態をボルスタレス台車を用いた鉄道車両を例に図1乃至図5によって説明する。
【0023】
図1は、車体支持部の構造の概要を示す要部断面図、図2はその詳細を示す断面図、図3は図2のI−I線断面図である。
【0024】
符号10は台車であって、台車10は両側に沿って前後方向に延在する一対の側梁12と、左右の側梁12の略中央部を連結する横梁13とを備えた平面視略H形の台車枠11を有し、側梁12の前後方向中央部の外側にばね支持部14が突設され、ばね支持部14の上面に車体25を支持する枕ばねとして機能する空気ばね21を支持するばね座15が形成されている。
【0025】
空気ばね21による車体25の支持は、上下方向には空気ばね21の空気圧によって剛性が変化したり、上下の変移に対する自動高さ調整弁の作用によるオートレベリング機構を有し、また空気ばね21の横剛性により左右振動の緩衝を行っている。この空気ばね21による横揺れ式の車体支持装置では中立位置に対し40mm程度の横動が可能である。
【0026】
また、図1に模式的に示すように台車枠11の前部及び後部には、一対の車輪16を有する車軸17の両側を支える軸受を収めている軸箱18が、軸ばね19によって支持されて設けられている。更に、横梁13の中央部に下心皿22が設けられている。
【0027】
一方、空気ばね21を介して搭載支持される車体25の床面26には、下心皿22に係合して荷重を分担すると共に、回転中心となり前後方向の推力を伝達する上心皿、即ち中心ピン27が垂下形成されている。なお、28は中心ピン27と台車枠11との間に架設されて横揺れを緩和する緩衝部材である。
【0028】
台車10と車体25との間に車体25を車幅方向に駆動するアクチュエータ30が配設されている。
【0029】
図4は、アクチュエータ30の作動回路を示すブロック図である。アクチュエータ30は、台車10と車体25との間に架設されて台車10に対して車体25を車幅方向に横移動させるアクチュエータ手段、本実施の形態では台車枠11と中心ピン27との間に球面軸受や緩衝ゴム等を介して揺動自在に架設されて車幅方向に延在し、かつ左動室31a及び右動室31bの各シリンダ室を有する複動空気シリンダ31を備え、エア供給源、例えばエアポンプPから供給される圧搾エアを供給切換手段である供給切換電磁弁32によって複動空気シリンダ31の左動室31aに供給すると共に右動室31bから排出し、かつ右動室31bに供給及び左動室31aから排出とに切り換えられる。なお、供給切換電磁弁32からの排気はサイレンサ33を介して消音される。
【0030】
供給切換電磁弁32を図5(a)に示す左動位置に切り換えることによって、エアポンプPからの圧搾エアを複動空気シリンダ31の左動室31aに供給し、かつ右動室31bから排気することによって複動空気シリンダ31が収縮して図1に二点鎖線21aで示すように空気ばね21を変形させて台車10に対し車体25が二点鎖線25aで示すように左方向に横移動する。逆に、供給切換電磁弁32を図5(b)に示す右動位置に切り換えてエアポンプPからの圧搾エアを複動空気シリンダ31の右動室31bに供給し、かつ左動室31aから排気することによって複動空気シリンダ31が伸長して空気ばね21を変形させて台車10に対し車体25が右方向に横移動する。
【0031】
また、図4及び図5(c)に示すように、供給切換電磁弁32を中立位置に切り換えて複動空気シリンダ31の左動室31a及び右動室31bを大気開放することによって複動空気シリンダの31による作動力、いわゆるシリンダ力の発生が阻止され、複動空気シリンダ31による抵抗がなくなり、空気ばね21により車体25は中立位置に保持されると共に、空気ばね21による横揺れの緩衝作用が阻害されることがない。
【0032】
次に、このように構成された車体支持構造の作用について説明する。
【0033】
通常走行状態では、供給切換電磁弁32は図4及び図5(c)に示す中立位置に保持されて、エアポンプPから複動空気シリンダ31への圧搾エアの供給が遮断され、かつ左動室31a及び右動室31bが共に大気開放された状態に維持される。この結果、台車枠11と中心ピン27との間に架設された複動空気シリンダ31による抵抗がなく、複動空気シリンダ31による影響が回避されて空気ばね21の横剛性及び緩衝部材28により左右振動の緩和がもたらされて良好な乗心地が確保される。
【0034】
一方、停車駅にてプラットフォーム40の位置と車両及び乗降口位置を一致させて停止させた状態、例えば図1に示すように乗降側となる車両の左側がプラットフォーム40側に位置して停止した状態で、供給切換電磁弁32を図5(a)に示す左動位置に切り換える。
【0035】
この供給切換電磁弁32の切換によって、エアポンプPからの圧搾エアが複動空気シリンダ31の左動室31aに供給され、かつ右動室31bが供給切換電磁弁32及びサイレンサ33を介して大気開放されて右動室31bから排気されて複動空気シリンダ31が収縮する。台車枠11と中心ピン27との間に架設された複動空気シリンダ31の収縮によって、二点鎖線21aで示すように空気ばね21を変形させて車体25が二点鎖線25aで示すように左方向に、例えば40mm横移動して床面26の端部とプラットフォーム40との隙間aが減少して乗降口とプラットフォーム40との隙間が減少せしめられ、乗降性及び安全性が向上する。特に、この乗降口とプラットフォーム40との隙間の減少によって子供や車椅子による乗降性及び安全性が確保される。
【0036】
乗降後、供給切換電磁弁32を図4及び図5(a)に示す中立位置に切り換えることによって、左動室31a及び右動室31bが大気開放され、空気ばね21の横剛性により車体25が図1に示す中立位置に戻り、プラットフォーム40から車体25が離れて隙間aが確保され、通常走行状態に復帰する。
【0037】
また、車両の右側から乗降する場合には、供給切換電磁弁32を図5(b)に示す右動位置に切り換える。この供給切換電磁弁32の切換によって、エアポンプPからの圧搾エアが複動空気シリンダ31の右動室31bに供給され、かつ左動室31aが供給切換電磁弁32及びサイレンサ33を介して大気開放されて排気され、複動空気シリンダ31が伸長する。複動空気シリンダ31の伸長によって、空気ばね21を変形させて車体25が右方向に横移動して床面26の端部とプラットフォームとの隙間が減少して乗降口とプラットフォーム40との隙間が減少して乗降性及び安全性が向上する。
【0038】
従って、本実施の形態によると、通常走行時においては、台車10と車体25との間に架設された複動空気シリンダ31の左動室31a及び右動室31bを供給切換電磁弁32によって大気開放された状態に維持することによって、複動空気シリンダ31による抵抗がなく、複動空気シリンダ31による影響が回避さ空気ばね21の横剛性により左右振動の緩和がもたらされて良好な乗心地が確保される。一方、停車駅にてプラットフォーム40の位置と車両及び乗降口位置を一致させて停止させた状態で、供給切換電磁弁32の切換によって複動空気シリンダ31を収縮或いは伸長させることによって、車体25が横方向に移動してプラットフォーム40と床面26との隙間が減少して乗降性及び安全性が向上する。
【0039】
また、従来のように、各乗降口に各々にステップ装置を設けることなく、台車10と車体25との間に複動空気シリンダ31を架設することから、エア配管や作動制御系の布設の簡素化が可能になり、製造コストやメンテナンスコストの削減が得らると共に、台車10と車体25との間に複動空気シリンダ31を架設する簡単な構造であることから、既存の車両にも大きな変更を要することなく追加的に取り付けることができる。
【0040】
(第2実施の形態)
本発明の第2実施の形態を図6によって説明する。本実施の形態はアクチュエータの作動回路が上記第1実施の形態と異なり、他の構成は第1実施の形態と同一であるので対応する部分に同一符号を付して該部の詳細な説明を省略し、異なる部分を主に説明する。
【0041】
図6は、上記第1実施の形態における図4に対応する本実施の形態におけるアクチュエータ30の作動回路を示すブロック図であり、更に供給切換手段は、供給切換電磁弁32と複動空気シリンダ31の左動室31a、及び供給切換電磁弁32と右動室31bとの間を開閉する開閉弁、本実施の形態ではON、即ち通電することによって閉に切り替わる第1開閉電磁弁34を介在して連通し、かつ複動空気シリンダ31の左動室31aと右動室31bがONによって開に切り換わる第2開閉電磁弁35及びオリフィス36を直列に介在して連結するバイパス通路を有している。
【0042】
この作動回路において、両第1開閉電磁弁34を閉じ、かつ第2開閉電磁弁35を開放することによって、複動空気シリンダ31の左動室31aと右動室31bがオリフィス35を介して連通する閉回路が形成される。また、両第1開閉電磁弁34を開放し、かつ第2開閉電磁弁35を閉じることによって図4に示す作動回路と同様の作動回路が形成される。
【0043】
このように構成された車体支持構造の作用について説明する。通常走行状態では、図6に示すように、供給切換電磁弁32が中立位置に保持されると共に、両第1開閉電磁弁34が閉じ、かつ第2開閉弁35が開放状態に切り換えられて維持される。この結果、台車枠11と中心ピン27との間に架設された複動空気シリンダ31の左動室31aと右動室31bがオリフィス36を介して連通する閉回路が形成される。従って、複動空気シリンダ31の伸長にあたっては左動室31aから右動室31bにオリフィス36を介して緩やかに左動室31a内の圧搾エアが流出して減衰力が得られ、かつ複動空気シリンダ31の収縮にあたっては右動室31bから左動室31aにオリフィス36を介して緩やか圧搾エアが流出して減衰力が得られる。従って、車体25の左右振動の減衰がもたらされて良好な乗心地が確保される。この減衰力は、車両の仕様等によりオリフィス36の孔径を適宜変更することによって種々変更調整することができる。
【0044】
一方、停車駅にてプラットフォーム40の位置と車両及び乗降口位置を一致させ停止させた状態では、両第1開閉電磁弁34を開放し、かつ第2開閉電磁弁35を閉じ、例えば車両の左側から乗降する場合には、供給切換電磁弁32を左動位置に切り換えて、圧搾エアを複動空気シリンダ31の左動室31aに供給し、かつ右動室31bから供給切換電磁弁32及びサイレンサ33を介して排気させて複動空気シリンダ31を収縮させることによって、空気ばね21が変形して車体25が左方向に横移動して乗降口とプラットフォーム40との隙間が減少して乗降性及び安全性が向上する。
【0045】
乗降後、供給切換電磁弁32を中立位置に切り換えることによって、左動室31a及び右動室31bが大気開放され、空気ばね21の横剛性により車体25が中立位置に戻り、プラットフォーム40から車体25が離れ隙間が確保されて通常走行状態に復帰する。
【0046】
また、車両の右側から乗降する場合には、供給切換電磁弁32を右動位置に切り換えて、エア供給源32からの圧搾エアを複動空気シリンダ31の右動室31bに供給し、かつ左動室31aから供給切換電磁弁32及びサイレンサ33を介して排気することによって、複動空気シリンダ31が伸長して、空気ばね21を変形させて車体25が右方向に横移動して乗降口とプラットフォーム40との隙間を減少させる。
【0047】
従って、本実施の形態によると、第1実施の形態に加え、供給切換電磁弁32と複動空気シリンダ31の左動室31a、及び供給切換電磁弁32と右動室31bとの間に各々第1開閉電磁弁34を介装し、かつ複動空気シリンダ31の左動室31aと右動室31bとの間に第2開閉電磁弁35及びオリフィス36を介在して連結する簡単な構成によって、車体25の左右振動の減衰が得られて、更に良好な乗心地が確保できる。
【0048】
(第3実施の形態)
本発明の第3実施の形態をダイレクトマウント式の鉄道車両を例に図7によって説明する。なお、図7の上記図1乃至図6と対応する部分に同一符号を付することで該部の詳細な説明を省略し、異なる部分を主に説明する。
【0049】
図7は、ダイレクトマウント式の鉄道車両の車体支持部の構造の概要を示す要部断面図であって、台車枠11の上方に枕梁23が配置され、台車枠11に形成された下心皿(図示せず)に枕梁23から垂下する中心ピン27が係合している。
【0050】
枕梁23上に左右の空気ばね21を介して車体25が搭載支持され、枕梁23と車体25の床面26との間に車体25を車幅方向に移動させるアクチュエータ30の複動空気シリンダ31が車幅方向に延在して架設されている。
【0051】
このアクチュエータ30は、上記図4に示す作動回路を有し、通常走行状態では、複動空気シリンダ31への圧搾エアの供給を遮断し、かつ左動室31a及び右動室31bを共に大気開放された状態に維持することによって、枕梁23と車体25の床面26のとの間に架設された複動空気シリンダ31による影響が回避されて空気ばね21の横剛性により左右振動の緩和がもたらされて良好な乗心地が確保される。
【0052】
一方、停車駅にてプラットフォーム40の位置と車両及び乗降口位置を一致させて停止させた状態、例えば乗降側となる車両の左側がプラットフォーム側に位置して停止した状態で、供給切換電磁弁32を左動位置に切り換えて圧搾エアを複動空気シリンダ31の左動室31aに供給し、かつ右動室31bを大気開放することによって、複動空気シリンダ31が収縮して空気ばね21を変形させて車体25を左方向に横移動して床面26の端部とプラットフォームとの隙間が減少して乗降口とプラットフォームとの隙間が減少せしめられ、乗降性及び安全性が向上する。乗降後、供給切換電磁弁32を中立位置に切り換えることによって、左動室31a及び右動室31bを開放され、空気ばね21の横剛性により車体25が中立位置に戻り、プラットフォームから車体25が離れて通常走行状態に復帰する。
【0053】
また、車両の右側から乗降する場合には、供給切換電磁弁32を右動位置に切り換え、エア供給源32からの圧搾エアを複動空気シリンダ31の右動室31bに供給し、かつ左動室31aを開放することによって、複動空気シリンダ31の伸長によって、車体25が右方向に横移動して乗降口とプラットフォームとの隙間が減少せしめられ、乗降性及び安全性が向上する。
【0054】
更に、図4に示す作動回路に代えて図6に示す作動回路を設けることによって、第2実施の形態同様に、走行状態における車室25の左右振動の減衰が得られて、更に良好な乗心地が確保できる。
【0055】
(第4実施の形態)
本発明の第4実施の形態をインダイレクトマウント式の鉄道車両を例に図8によって説明する。なお、図8の上記図1乃至図7と対応する部分に同一符号を付することで該部の詳細な説明を省略し、異なる部分を主に説明する。
【0056】
図8は、インダイレクトマウント式の鉄道車両の車体支持部の構造の概要を示す要部断面図であって、台車枠11の上方に左右の空気ばね21を介して枕梁23が支持され、枕梁23上に車体25が配置されて、枕梁23に形成された下心皿(図示せず)に車体25の床面26から垂下する中心ピン27が係合している。
【0057】
台車枠11と枕梁23との間に枕梁23を車体25を車幅方向に横移動させるアクチュエータ30の複動空気シリンダ31が車幅方向に延在して架設されている。
【0058】
このアクチュエータ30は、上記図4に示す作動回路を有し、通常走行状態では、複動空気シリンダ31の左動室31a及び右動室31bを共に大気開放した状態に維持することによって、台車枠11と枕梁23との間に架設された複動空気シリンダ31による影響が回避されて空気ばね21の横剛性により左右振動の緩和がもたらされて良好な乗心地が確保される。
【0059】
一方、停車駅にてプラットフォーム40の位置と車両及び乗降口位置を一致させて停止させた状態、例えば乗降側となる車両の左側がプラットフォーム側に位置して停止した状態で、供給切換電磁弁32を左動位置に切り換えて、圧搾エアを複動空気シリンダ31の左動室31aに供給し、かつ右動室31bを大気開放することによって、複動空気シリンダ31が収縮して空気ばね21を変形させて枕梁23を左方向に横移動して車体25を移動させて床面31の端部とプラットフォームとの隙間を減少させて乗降性及び安全性の向上を図る。乗降後、供給切換電磁弁32を中立位置に切り換えて、左動室31a及び右動室31bを開放し、空気ばね21の横剛性により枕梁23及び車体25を中立位置に戻し、プラットフォームから車体25が離れて通常走行状態に復帰する。
【0060】
また、車両の右側から乗降する場合には、供給切換電磁弁32を右動位置に切り換え、複動空気シリンダ31の右動室31bに圧搾エアを供給し、かつ左動室31aを開放することによって複動空気シリンダ31を伸長させ、枕梁23及び車体25が右方向に横移動して乗降口とプラットフォームとの隙間を減少させる。また、図4に示す作動回路に代えて図6に示す作動回路を設けることによって、第2実施の形態同様に、走行状態における枕梁23を介して支持された車室25の左右振動の減衰が得られて、更に良好な乗心地が確保できる。
【0061】
なお、本発明は上記各実施の形態に限定されることなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えば上記各実施の形態では、枕ばねとして空気ばねを使用したが、コイルばねの横剛性を利用している台車にあっては、空気ばねに代えてコイルばねを使用することも可能である。また、上記実施の形態ではアクチュエータ手段として複動空気シリンダを使用したが電動モータで作動する歯車機構やリンク機構等適宜他の駆動手段を用いることも可能である。
【0062】
【発明の効果】
以上説明した本発明による鉄道車両の車体支持構造によると、台車上に枕ばねを介して車体が搭載された鉄道車両の車体支持構造において、台車と車体の間に台車に対して車体を車幅方向に横移動させるアクチュエータを備えて、停車駅にてアクチュエータにより車体を横移動することによって、乗降口とプラットフォームとの隙間が減少して乗降性及び安全性が向上する。一方、アクチュエータによる横移動を解除すると、枕ばねの横剛性によって車体が中立位置に戻り、プラットフォームから車体が離れて隙間が確保されて通常走行状態に復帰する。
【0063】
また、台車と車体との間に車体を横移動させるアクチュエータを架設することから、従来の各乗降口に各々ステップ装置を設ける構造に対しエア配管や作動制御系の敷設の簡素化が可能になり、製造コストやメンテナンスコストの削減が得らる。
【0064】
更に、他の発明によると、台車の台車枠上に枕ばねを介して枕梁が支持され、枕梁上に車体が搭載された鉄道車両の車体支持構造において、台車枠と枕梁の間に架設されて台車枠に対して枕梁を車幅方向に横移動させるアクチュエータを備えて、アクチュエータにより枕梁を横移動することによって、枕梁上に搭載された車体が横移動し、乗降口とプラットフォームとの隙間が減少して乗降性及び安全性が向上する。一方、アクチュエータによる横移動を解除すると、枕ばねの横剛性によって枕梁が中立位置に戻り、かつ枕梁に搭載された車体が中立位置に戻りプラットフォームから車体が離れて隙間が確保されて通常走行状態に復帰する。また、台車枠と枕梁との間に横移動させるアクチュエータを架設することから、従来の各乗降口に各々ステップ装置を設ける構造に対しエア配管や作動制御系の敷設の簡素化が可能になり、製造コストやメンテナンスコストの削減が得らる。
【図面の簡単な説明】
【図1】本発明による鉄道車両の車体支持構造の第1実施の形態の概要を示す要部断面図である。
【図2】同じく、要部を詳細を示す断面図である。
【図3】同じく、図2のI−I線断面図である。
【図4】同じく、アクチュエータの作動回路を示すブロック図である。
【図5】同じく、アクチュエータの作動説明図である。
【図6】本発明による鉄道車両の車体支持構造の第2実施の形態の概要を示すクチュエータの作動回路を示すブロック図である。
【図7】本発明による鉄道車両の車体支持構造の第3実施の形態の概要を示す要部断面図である。
【図8】本発明による鉄道車両の車体支持構造の第3実施の形態の概要を示す要部断面図である。
【図9】従来鉄道車両に設けられたステップ装置の概要を示す説明図である。
【符号の説明】
10 台車
11 台車枠
21 空気ばね(枕ばね)
23 枕梁
25 車体
26 床面
30 アクチュエータ
31 複動空気シリンダ(アクチュエータ手段)
31a 左動室(シリンダ室)
31b 右動室(シリンダ室)
32 供給切換電磁弁(供給切換手段)
34 第1開閉電磁弁(開閉弁)
35 第2開閉電磁弁(開閉弁)
36 オリフィス
40 プラットフォーム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle body support structure for a railway vehicle.
[0002]
[Prior art]
In a railway vehicle, in particular, a railway passenger vehicle, passengers are generally boarded / mounted on a platform that is substantially the same height as the floor surface of the vehicle or the boarding / alighting step surface. In this horizontal mounting method, a vehicle traveling on a rail performs a braking operation in front of the platform, and the platform position is matched with the vehicle and the entrance / exit position to stop. In this case, a gap must be provided between the vehicle and the platform so that the vehicle and the platform do not come into contact with each other due to the vibration of the vehicle due to running vibration. That is, even if the vehicle limit and the building limit are set to the maximum, a gap of, for example, 50 mm is generated between the vehicle and the platform. In particular, in the case of a pendulum type vehicle that tilts the vehicle body, since the bottom of the vehicle body is narrowed, there is a concern that the gap between the vehicle body and the platform will become larger, making it particularly difficult for children and wheelchairs to get on and off. .
[0003]
As a countermeasure, there is one provided with a step device that protrudes from the side of the vehicle body. This step device supports step 102 via a hinge extending in the front-rear direction on the floor surface 101 of the entrance / exit, for example, as shown in FIG. The air cylinder 103 disposed below the floor surface 101 and the step 102 are connected by a link 104. When the air cylinder 103 is used, the air cylinder 103 contracts to the same level as the floor surface 101 due to contraction of the air cylinder 103. In some cases, the air cylinder 103 is extended so that the step 102 is stored so as to be substantially flush with the side surface of the vehicle body.
[0004]
[Problems to be solved by the invention]
According to the above step device, the gap between the vehicle body and the platform is reduced by pushing the step 102 from the side surface of the vehicle body, so that the boarding / exiting performance and the safety are improved.
[0005]
However, a step device is provided at each entrance and exit, and it is necessary to lay long and complicated air pipes and operation control systems from an air supply source for supplying air to each air cylinder 103. There is a concern that the manufacturing cost and the maintenance cost increase.
[0006]
Accordingly, an object of the present invention made in view of such a point is to provide a vehicle body support structure for a railway vehicle that can ensure boarding / alighting performance and safety with a simple structure, and that can reduce manufacturing and maintenance costs.
[0007]
[Means for Solving the Problems]
The invention of a vehicle body support structure for a railway vehicle according to claim 1 that achieves the above object is a vehicle body support structure for a railway vehicle in which a vehicle body is mounted on a carriage via a pillow spring, and is installed between the carriage and the vehicle body. And an actuator for laterally moving the vehicle body in the vehicle width direction with respect to the carriage, While the vehicle is stopped, the vehicle body is moved laterally in the vehicle width direction with respect to the carriage by the actuator. It is characterized by that.
[0008]
According to the first aspect of the present invention, the vehicle body is moved laterally by the actuator in a state where the platform and the vehicle and the entrance / exit position are stopped at the stop station so that the gap between the entrance / exit and the platform is obtained. As a result, the boarding / alighting performance and the safety during boarding / alighting are improved. On the other hand, when the lateral movement by the actuator is released, the vehicle body returns to the neutral position due to the lateral rigidity of the pillow spring, the vehicle body moves away from the platform, and a clearance between the platform and the vehicle body is secured, thereby returning to the normal running state.
[0009]
In addition, since an actuator that moves the vehicle body between the carriage and the vehicle body is installed, it is possible to simplify the installation of air piping and operation control system compared to the conventional structure in which each step device is provided at each entrance and exit. Because the manufacturing cost and maintenance cost can be reduced, and the actuator is installed between the carriage and the vehicle body, the actuator can be installed on the existing vehicle without any major changes. .
[0010]
According to a second aspect of the present invention, in the vehicle body support structure for a railway vehicle according to the first aspect, the pillow spring is disposed between the bogie frame and the vehicle body of the bogie, and the actuator includes the bogie frame and the vehicle body. And a double-acting air cylinder extending and contracting in the vehicle width direction, and supply switching means for controlling the supply and exhaust of compressed air to each cylinder chamber of the double-acting air cylinder To do.
[0011]
According to the invention of claim 2, in a bolsterless bogie in which a vehicle body is supported on a bogie frame via a pillow spring, a double-action air cylinder is installed between the bogie frame and the vehicle body, and one cylinder chamber is provided by a supply switching means. By supplying compressed air and opening the other cylinder chamber to the atmosphere, the double-acting air cylinder contracts or expands, causing the vehicle body to move sideways, and the clearance between the entrance and exit platform can be reduced at the stop station. On the other hand, the cylinder chambers are opened to the atmosphere by the supply switching means by the supply switching means, and the vehicle body returns to the neutral position by the lateral rigidity of the pillow spring, and the vehicle body is separated from the platform and a clearance is secured to return to the normal running state. To do. Therefore, an actuator can be configured with a simple double-action air cylinder and supply switching means, etc., and reduction in manufacturing cost and maintenance cost can be obtained. This The
[0012]
The invention according to claim 3 is the vehicle body support structure for a railway vehicle according to claim 1, wherein the pillow spring is disposed between a pillow beam disposed on a bogie frame of the bogie and the vehicle body, and the actuator is A double-acting air cylinder that extends between the pillow beam and the vehicle body and expands and contracts in the vehicle width direction, and a supply switching means that controls supply and exhaust of compressed air to each cylinder chamber of the double-acting air cylinder. It is characterized by having.
[0013]
According to a third aspect of the present invention, there is provided a direct mount type vehicle in which a vehicle body is supported on a pillow beam disposed on a carriage frame via a pillow spring, and a double-action air cylinder is installed between the pillow beam and the vehicle body. The compressed air is supplied to one cylinder chamber by the supply switching means, and the other cylinder chamber is opened to the atmosphere, so that the double-acting air cylinder contracts or expands and the vehicle body moves laterally. The clearance with the platform can be reduced, and boarding and safety are improved. Further, by opening the cylinder chambers to the atmosphere by the supply switching means, the vehicle body returns to the neutral position by the lateral rigidity of the pillow spring, the vehicle body is separated from the platform, and a clearance is secured to return to the normal running state. Therefore, an actuator can be obtained by a simple double-action air cylinder and supply switching means, etc., and manufacturing costs and maintenance costs can be reduced. This The
[0014]
According to a fourth aspect of the present invention, there is provided a vehicle body support structure for a railway vehicle in which a pillow beam is supported on a carriage frame of a carriage via a pillow spring and the vehicle body is mounted on the pillow beam. The actuator is installed between the bogie frame and the pillow beam and moves the pillow beam laterally in the vehicle width direction with respect to the bogie frame; While the vehicle is stopped, the pillow beam is laterally moved in the vehicle width direction with respect to the carriage frame by the actuator. It is characterized by that.
[0015]
According to a fourth aspect of the present invention, there is provided an indirect type vehicle in which a pillow beam is supported on a bogie frame of a bogie via a pillow spring and a vehicle body is mounted on the pillow beam, and a pillow is interposed between the bogie frame and the pillow beam. By installing an actuator that moves the beam laterally and moving the pillow beam horizontally by the actuator, the body mounted on the pillow beam moves laterally, and the clearance between the entrance and the platform is reduced, so that it is easy to get on and off. Will improve. On the other hand, when the lateral movement by the actuator is released, the pillow beam returns to the neutral position due to the lateral rigidity of the pillow spring, and the vehicle body mounted on the pillow beam returns to the neutral position, leaving the vehicle body away from the platform and securing a gap, thereby driving normally Return to the state.
[0016]
In addition, since an actuator that is moved laterally between the carriage frame and the pillow beam is installed, it is possible to simplify the installation of the air piping and the operation control system compared to the conventional structure in which each step board is provided with a step device. Reduced manufacturing costs and maintenance costs This The
[0017]
According to a fifth aspect of the present invention, in the vehicle body support structure for a railway vehicle according to the fourth aspect, the actuator is a double-acting air cylinder that extends between the carriage frame and the pillow beam and expands and contracts in the vehicle width direction. Supply switching means for controlling supply and exhaust of compressed air to each cylinder chamber of the double-acting air cylinder is provided.
[0018]
According to the invention of claim 5, the double-action air cylinder is installed between the carriage frame and the pillow beam, the compressed air is supplied to one cylinder chamber by the supply switching means, and the other cylinder chamber is opened to the atmosphere. As a result, the double-acting air cylinder contracts or extends to move the body mounted on the pillow beam laterally, and the gap between the entrance and exit platform can be reduced at the stop station, improving the entry / exit and safety while switching the supply By opening the cylinder chambers to the atmosphere by means, the lateral rigidity of the pillow spring returns the pillow beam and the vehicle body mounted on the pillow beam to the neutral position, the vehicle body is separated from the platform, and a clearance is secured to return to the normal running state. . Therefore, an actuator can be obtained by a simple double-action air cylinder and supply switching means, etc., and manufacturing costs and maintenance costs can be reduced. This The
[0019]
The invention according to claim 6 is any one of claims 2, 3, and 5. 1 item In the vehicle body support structure for a railway vehicle, the actuator further includes a bypass passage through which the cylinder chambers of the double-acting air cylinder communicate with each other via an on-off valve and an orifice arranged in series.
[0020]
According to the invention of claim 6, the supply switching means stops the supply / exhaust of each cylinder chamber of the double-acting air cylinder, and the open / close valve is opened to form a closed circuit in which each cylinder chamber communicates with the orifice. A left-right vibration damping force in a running state is obtained, and a left-right vibration attenuation of the vehicle body is brought about, thereby improving riding comfort.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a railway vehicle body support structure according to the present invention will be described below with reference to the drawings.
[0022]
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. 1 to 5 by taking a railway vehicle using a bolsterless carriage as an example.
[0023]
1 is a cross-sectional view of an essential part showing an outline of the structure of a vehicle body support part, FIG. 2 is a cross-sectional view showing the details thereof, and FIG. 3 is a cross-sectional view taken along the line II of FIG.
[0024]
Reference numeral 10 denotes a cart, and the cart 10 includes a pair of side beams 12 extending in the front-rear direction along both sides, and a horizontal beam 13 that connects a substantially central portion of the left and right side beams 12. An air spring 21 that has a shape of a bogie frame 11, has a spring support portion 14 protruding from the outer side of the center portion in the front-rear direction of the side beam 12, and functions as a pillow spring that supports the vehicle body 25 on the upper surface of the spring support portion 14. A supporting spring seat 15 is formed.
[0025]
The support of the vehicle body 25 by the air spring 21 has an auto leveling mechanism in which the rigidity changes depending on the air pressure of the air spring 21 in the up and down direction, and an automatic leveling valve acts on the up and down movement. Left and right vibration is buffered by the lateral rigidity. In the roll-type vehicle body support device using the air spring 21, a lateral movement of about 40 mm is possible with respect to the neutral position.
[0026]
Further, as schematically shown in FIG. 1, a shaft box 18 containing bearings for supporting both sides of an axle 17 having a pair of wheels 16 is supported by a shaft spring 19 at the front and rear portions of the carriage frame 11. Is provided. Further, a lower center plate 22 is provided at the center of the cross beam 13.
[0027]
On the other hand, the floor 26 of the vehicle body 25 mounted and supported via the air spring 21 is engaged with the lower center plate 22 to share the load, and the upper plate serving as the center of rotation transmits the longitudinal thrust. The center pin 27 is drooped. Reference numeral 28 denotes a cushioning member that is laid between the center pin 27 and the carriage frame 11 to relieve roll.
[0028]
An actuator 30 that drives the vehicle body 25 in the vehicle width direction is disposed between the carriage 10 and the vehicle body 25.
[0029]
FIG. 4 is a block diagram showing an operation circuit of the actuator 30. The actuator 30 is an actuator means that is installed between the carriage 10 and the vehicle body 25 and moves the vehicle body 25 in the vehicle width direction with respect to the carriage 10. In this embodiment, the actuator 30 is provided between the carriage frame 11 and the center pin 27. A double-acting air cylinder 31 that is installed in a swingable manner via a spherical bearing, shock absorbing rubber, etc., extends in the vehicle width direction, and has cylinder chambers of a left working chamber 31a and a right working chamber 31b, and is supplied with air. A compressed air supplied from a source, for example, an air pump P is supplied by a supply switching electromagnetic valve 32 which is a supply switching means. Double acting air The cylinder 31 is supplied to the left dynamic chamber 31a and discharged from the right dynamic chamber 31b, and is switched to supply to the right dynamic chamber 31b and discharge from the left dynamic chamber 31a. Note that the exhaust from the supply switching electromagnetic valve 32 is silenced via the silencer 33.
[0030]
By switching the supply switching electromagnetic valve 32 to the left moving position shown in FIG. 5A, the compressed air from the air pump P is supplied to the left moving chamber 31a of the double acting air cylinder 31 and exhausted from the right moving chamber 31b. As a result, the double-acting air cylinder 31 contracts to deform the air spring 21 as shown by a two-dot chain line 21a in FIG. 1, and the vehicle body 25 moves laterally to the left as shown by the two-dot chain line 25a. . Conversely, the supply switching solenoid valve 32 is switched to the right moving position shown in FIG. 5B to supply the compressed air from the air pump P to the right moving chamber 31b of the double acting air cylinder 31, and exhaust from the left moving chamber 31a. As a result, the double-acting air cylinder 31 extends to deform the air spring 21 and the vehicle body 25 moves laterally relative to the carriage 10.
[0031]
Further, as shown in FIGS. 4 and 5C, the double acting air is opened by switching the supply switching solenoid valve 32 to the neutral position and opening the left and right working chambers 31a and 31b of the double acting air cylinder 31 to the atmosphere. Generation of an operating force by the cylinder 31, so-called cylinder force, is prevented, resistance by the double-acting air cylinder 31 is eliminated, and the vehicle body 25 is held in a neutral position by the air spring 21, and a side shock buffering action by the air spring 21 is maintained. Is not inhibited.
[0032]
Next, the operation of the vehicle body support structure configured as described above will be described.
[0033]
In the normal running state, the supply switching solenoid valve 32 is held at the neutral position shown in FIGS. Double acting air The supply of compressed air to the cylinder 31 is shut off, and the left moving chamber 31a and the right moving chamber 31b are both kept open to the atmosphere. As a result, there is no resistance due to the double-action air cylinder 31 installed between the carriage frame 11 and the center pin 27, and the influence of the double-action air cylinder 31 is avoided, and the lateral rigidity and the cushioning member 28 of the air spring 21 Vibration is reduced and good riding comfort is ensured.
[0034]
On the other hand, the state where the position of the platform 40 is matched with the vehicle and the entrance / exit position at the stop station and stopped, for example, as shown in FIG. 1, the left side of the vehicle on the entrance / exit side is positioned on the platform 40 side and stopped Thus, the supply switching electromagnetic valve 32 is switched to the left movement position shown in FIG.
[0035]
By switching the supply switching electromagnetic valve 32, the compressed air from the air pump P is supplied to the left working chamber 31a of the double-action air cylinder 31, and the right working chamber 31b is opened to the atmosphere via the feeding switching solenoid valve 32 and the silencer 33. As a result, the double acting air cylinder 31 is exhausted from the right working chamber 31b and contracts. As the double-acting air cylinder 31 erected between the carriage frame 11 and the center pin 27 contracts, the air spring 21 is deformed as indicated by a two-dot chain line 21a, and the vehicle body 25 is left as indicated by a two-dot chain line 25a. In the direction, for example, by moving 40 mm laterally, the gap a between the end of the floor surface 26 and the platform 40 is reduced, and the gap between the entrance / exit and the platform 40 is reduced, so that boarding / exiting performance and safety are improved. In particular, by reducing the gap between the entrance and the platform 40, getting on and off by a child or a wheelchair and safety are ensured.
[0036]
After getting on and off, the supply switching electromagnetic valve 32 is switched to the neutral position shown in FIGS. 4 and 5A to open the left moving chamber 31a and the right moving chamber 31b to the atmosphere. Returning to the neutral position shown in FIG. 1, the vehicle body 25 is separated from the platform 40, the clearance a is secured, and the normal traveling state is restored.
[0037]
When getting on and off from the right side of the vehicle, the supply switching electromagnetic valve 32 is switched to the right movement position shown in FIG. By switching the supply switching electromagnetic valve 32, the compressed air from the air pump P is supplied to the right working chamber 31b of the double-action air cylinder 31, and the left working chamber 31a is opened to the atmosphere via the supply switching solenoid valve 32 and the silencer 33. As a result, the double-acting air cylinder 31 extends. Due to the extension of the double-acting air cylinder 31, the air spring 21 is deformed and the vehicle body 25 moves laterally in the right direction, the gap between the end of the floor surface 26 and the platform is reduced, and the gap between the entrance / exit and the platform 40 is reduced. Decrease and boarding and safety are improved.
[0038]
Therefore, according to the present embodiment, during normal running, the left switching chamber 31a and the right switching chamber 31b of the double acting air cylinder 31 installed between the carriage 10 and the vehicle body 25 are supplied to the atmosphere by the supply switching solenoid valve 32. By maintaining the open state, there is no resistance by the double-action air cylinder 31, Double acting air The effect of cylinder 31 is avoided This The lateral rigidity of the air spring 21 provides relaxation of the left and right vibrations and ensures a good riding comfort. On the other hand, in a state where the position of the platform 40 is matched with the vehicle and the entrance / exit position at the stop station, the double-action air cylinder 31 is contracted or extended by switching the supply switching electromagnetic valve 32, whereby the vehicle body 25 is moved. By moving in the lateral direction, the gap between the platform 40 and the floor surface 26 is reduced, so that boarding and safety are improved.
[0039]
Further, unlike the prior art, the double-action air cylinder 31 is installed between the carriage 10 and the vehicle body 25 without providing a step device at each entrance and exit, so that air pipes and operation control systems can be simply installed. And manufacturing costs and maintenance costs can be reduced. This And between the carriage 10 and the vehicle body 25 Double acting air Since it is a simple structure in which the cylinder 31 is installed, it can be additionally attached to an existing vehicle without requiring a large change.
[0040]
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIG. In this embodiment, the actuator operating circuit is different from that of the first embodiment, and the other configurations are the same as those of the first embodiment. Omitted and the different parts are mainly described.
[0041]
FIG. 6 is a block diagram showing an operation circuit of the actuator 30 in the present embodiment corresponding to FIG. 4 in the first embodiment. Further, the supply switching means includes a supply switching electromagnetic valve 32 and a double-action air cylinder 31. In this embodiment, a first open / close solenoid valve 34 that is turned on, that is, closed by being energized, is interposed between the left dynamic chamber 31a and the open / close valve that opens and closes between the supply switching electromagnetic valve 32 and the right dynamic chamber 31b. And a bypass passage for connecting the second open / close solenoid valve 35 and the orifice 36 connected in series with each other, and the left and right working chambers 31a and 31b of the double-acting air cylinder 31 are switched to open by being turned on. Yes.
[0042]
In this operating circuit, both the first open / close solenoid valve 34 and the second open / close solenoid valve 35 are opened, whereby the left and right working chambers 31a and 31b of the double-action air cylinder 31 communicate with each other through the orifice 35. A closed circuit is formed. Further, by opening both the first opening / closing electromagnetic valves 34 and closing the second opening / closing electromagnetic valve 35, an operation circuit similar to the operation circuit shown in FIG. 4 is formed.
[0043]
The operation of the vehicle body support structure configured as described above will be described. In the normal running state, as shown in FIG. 6, the supply switching solenoid valve 32 is held in the neutral position, the first opening / closing solenoid valves 34 are closed, and the second opening / closing valve 35 is switched to the open state and maintained. Is done. As a result, a closed circuit is formed in which the left moving chamber 31 a and the right moving chamber 31 b of the double acting air cylinder 31 installed between the carriage frame 11 and the center pin 27 communicate with each other through the orifice 36. Therefore, when the double acting air cylinder 31 is extended, the compressed air in the left working chamber 31a gently flows out from the left working chamber 31a to the right working chamber 31b via the orifice 36 to obtain a damping force. When the cylinder 31 contracts, it gradually moves from the right moving chamber 31b to the left moving chamber 31a through the orifice 36. In The compressed air flows out and a damping force is obtained. Accordingly, the left and right vibrations of the vehicle body 25 are attenuated, and good riding comfort is ensured. This damping force can be variously changed and adjusted by appropriately changing the hole diameter of the orifice 36 according to the specifications of the vehicle.
[0044]
On the other hand, at the stop station, the position of the platform 40 and the vehicle and the entrance / exit position The Stopped state Then When both the first opening / closing solenoid valves 34 are opened and the second opening / closing solenoid valve 35 is closed, for example, when getting on and off from the left side of the vehicle, the supply switching solenoid valve 32 is switched to the left movement position, and the compressed air is mixed. Supply to the left dynamic chamber 31a of the dynamic air cylinder 31 and exhaust from the right dynamic chamber 31b via the supply switching solenoid valve 32 and the silencer 33. Double acting air By contracting the cylinder 31, the air spring 21 is deformed and the vehicle body 25 is laterally moved in the left direction so that a clearance between the entrance / exit and the platform 40 is reduced, so that the entrance / exit and safety are improved.
[0045]
After getting on and off, by switching the supply switching electromagnetic valve 32 to the neutral position, the left moving chamber 31a and the right moving chamber 31b are opened to the atmosphere, and the vehicle body 25 returns to the neutral position by the lateral rigidity of the air spring 21, and the vehicle body 25 is returned from the platform 40 to the vehicle body 25. , Leaving a gap and returning to the normal running state.
[0046]
In addition, when getting on and off from the right side of the vehicle, the supply switching solenoid valve 32 is switched to the right movement position, and the compressed air from the air supply source 32 is supplied. Double acting air Supplying to the right dynamic chamber 31b of the cylinder 31 and exhausting from the left dynamic chamber 31a through the supply switching solenoid valve 32 and the silencer 33 causes the double-action air cylinder 31 to expand, causing the air spring 21 to deform. The vehicle body 25 moves laterally in the right direction to reduce the gap between the entrance / exit and the platform 40.
[0047]
Therefore, according to the present embodiment, in addition to the first embodiment, the supply switching solenoid valve 32 and the left working chamber 31a of the double acting air cylinder 31 and the supply switching solenoid valve 32 and the right working chamber 31b are respectively provided. With a simple configuration in which the first opening / closing solenoid valve 34 is interposed and the second opening / closing solenoid valve 35 and the orifice 36 are interposed between the left working chamber 31a and the right working chamber 31b of the double acting air cylinder 31. Further, the left and right vibration of the vehicle body 25 is attenuated, and a better riding comfort can be ensured.
[0048]
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIG. 7 by taking a direct mount type railway vehicle as an example. In FIG. 7, parts corresponding to those in FIGS. 1 to 6 are denoted by the same reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.
[0049]
FIG. 7 is a cross-sectional view of the main part showing an outline of the structure of the vehicle body support portion of the direct mount type railway vehicle. The pillow plate 23 is disposed above the carriage frame 11 and the lower center dish formed on the carriage frame 11. A center pin 27 depending from the pillow beam 23 is engaged with (not shown).
[0050]
A vehicle body 25 is mounted and supported on the pillow beam 23 via the left and right air springs 21, and the double-action air cylinder of the actuator 30 moves the vehicle body 25 in the vehicle width direction between the pillow beam 23 and the floor surface 26 of the vehicle body 25. 31 is extended and extended in the vehicle width direction.
[0051]
The actuator 30 has the operation circuit shown in FIG. 4 and shuts off the supply of compressed air to the double-acting air cylinder 31 in the normal running state and opens the left and right working chambers 31a and 31b to the atmosphere. By maintaining this state, the influence of the double-acting air cylinder 31 installed between the pillow beam 23 and the floor surface 26 of the vehicle body 25 is avoided, and the lateral stiffness of the air spring 21 is reduced by the lateral stiffness. As a result, good riding comfort is ensured.
[0052]
On the other hand, in the state where the platform 40 is stopped at the stop station by matching the position of the platform and the vehicle and the entrance / exit, for example, the left side of the vehicle on the entrance / exit side is positioned and stopped on the platform side, and the supply switching solenoid valve 32 Is switched to the left action position, compressed air is supplied to the left action chamber 31a of the double action air cylinder 31, and the right action chamber 31b is opened to the atmosphere, whereby the double action air cylinder 31 contracts and the air spring 21 is deformed. As a result, the vehicle body 25 is laterally moved to the left to reduce the gap between the end of the floor surface 26 and the platform, thereby reducing the gap between the entrance and the platform and improving the boarding / exiting performance and safety. After getting on and off, by switching the supply switching electromagnetic valve 32 to the neutral position, the left moving chamber 31a and the right moving chamber 31b are opened, the vehicle body 25 returns to the neutral position by the lateral rigidity of the air spring 21, and the vehicle body 25 is separated from the platform. To return to normal driving.
[0053]
Further, when getting on and off from the right side of the vehicle, the supply switching solenoid valve 32 is switched to the right moving position, the compressed air from the air supply source 32 is supplied to the right moving chamber 31b of the double acting air cylinder 31, and the left moving By opening the chamber 31a, the double-acting air cylinder 31 extends and the vehicle body 25 moves laterally to the right to reduce the clearance between the entrance and the platform, thereby improving the entrance and exit performance and safety.
[0054]
Furthermore, by providing the operation circuit shown in FIG. 6 in place of the operation circuit shown in FIG. 4, the left and right vibrations of the passenger compartment 25 in the running state can be attenuated in the running state as in the second embodiment. Comfort can be secured.
[0055]
(Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIG. 8 by taking an indirect mount type railway vehicle as an example. 8 that are the same as those in FIGS. 1 to 7 described above are denoted by the same reference numerals, detailed description thereof is omitted, and different portions are mainly described.
[0056]
FIG. 8 is a cross-sectional view of the main part showing the outline of the structure of the vehicle body support part of the indirect mount type railway vehicle. The pillow beam 23 is supported above the carriage frame 11 via the left and right air springs 21. A vehicle body 25 is disposed on the pillow beam 23, and a center pin 27 that hangs down from a floor surface 26 of the vehicle body 25 is engaged with a lower center dish (not shown) formed on the pillow beam 23.
[0057]
Between the carriage frame 11 and the pillow beam 23, a double-acting air cylinder 31 of an actuator 30 that horizontally moves the pillow 25 in the vehicle width direction is extended and extended in the vehicle width direction.
[0058]
This actuator 30 has the operation circuit shown in FIG. 4 and maintains the left moving chamber 31a and the right moving chamber 31b of the double-action air cylinder 31 in an open state in the normal running state, thereby allowing the bogie frame to be opened. 11 and the double-acting air cylinder 31 installed between the pillow beam 23 is avoided, and the lateral stiffness of the air spring 21 reduces the left-right vibration and secures a good riding comfort.
[0059]
On the other hand, in the state where the platform 40 is stopped at the stop station by matching the position of the platform and the vehicle and the entrance / exit, for example, the left side of the vehicle on the entrance / exit side is positioned and stopped on the platform side, and the supply switching solenoid valve 32 Is switched to the left moving position, compressed air is supplied to the left moving chamber 31a of the double acting air cylinder 31, and the right moving chamber 31b is opened to the atmosphere, whereby the double acting air cylinder 31 contracts and the air spring 21 is moved. By deforming, the pillow beam 23 is laterally moved in the left direction to move the vehicle body 25 to reduce the gap between the end portion of the floor surface 31 and the platform, thereby improving boarding / exiting performance and safety. After getting on and off, the supply switching electromagnetic valve 32 is switched to the neutral position, the left moving chamber 31a and the right moving chamber 31b are opened, the pillow beam 23 and the vehicle body 25 are returned to the neutral position by the lateral rigidity of the air spring 21, and 25 leaves and returns to the normal running state.
[0060]
Further, when getting on and off from the right side of the vehicle, the supply switching solenoid valve 32 is switched to the right moving position, compressed air is supplied to the right moving chamber 31b of the double acting air cylinder 31, and the left moving chamber 31a is opened. As a result, the double-acting air cylinder 31 is extended, and the pillow beam 23 and the vehicle body 25 are laterally moved in the right direction to reduce the clearance between the entrance and the platform. Further, by providing the operation circuit shown in FIG. 6 instead of the operation circuit shown in FIG. 4, the left and right vibrations of the passenger compartment 25 supported by the pillow beam 23 in the running state are attenuated as in the second embodiment. Can be obtained, and even better riding comfort can be secured.
[0061]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention. For example, in each of the above embodiments, an air spring is used as a pillow spring. However, in a cart that uses the lateral rigidity of a coil spring, a coil spring can be used instead of the air spring. In the above embodiment, a double-action air cylinder is used as the actuator means. However, other driving means such as a gear mechanism or a link mechanism operated by an electric motor can be used as appropriate.
[0062]
【The invention's effect】
According to the vehicle body support structure for a railway vehicle according to the present invention described above, in the vehicle body support structure for a railway vehicle in which the vehicle body is mounted on the carriage via a pillow spring, the vehicle width is set between the carriage and the vehicle with respect to the carriage. By providing an actuator that moves laterally in the direction and laterally moving the vehicle body by the actuator at the stop station, the clearance between the entrance and the platform is reduced, and boarding and safety are improved. On the other hand, when the lateral movement by the actuator is released, the vehicle body returns to the neutral position due to the lateral rigidity of the pillow spring, the vehicle body is separated from the platform, and a clearance is secured to return to the normal running state.
[0063]
In addition, since an actuator that moves the vehicle body between the carriage and the vehicle body is installed, it is possible to simplify the installation of air piping and operation control system compared to the conventional structure in which each step device is provided at each entrance and exit. Reduced manufacturing costs and maintenance costs This The
[0064]
Furthermore, according to another invention, in a vehicle body support structure for a railway vehicle in which a pillow beam is supported on a bogie frame of a bogie via a pillow spring, and a vehicle body is mounted on the pillow beam, between the bogie frame and the pillow beam. An actuator is installed that moves the pillow beam horizontally in the vehicle width direction with respect to the carriage frame.By moving the pillow beam horizontally by the actuator, the body mounted on the pillow beam moves horizontally, The clearance with the platform is reduced, and boarding and safety are improved. On the other hand, when the lateral movement by the actuator is released, the pillow beam returns to the neutral position due to the lateral rigidity of the pillow spring, and the vehicle body mounted on the pillow beam returns to the neutral position, leaving the vehicle body away from the platform and securing a gap, thereby driving normally Return to the state. In addition, since an actuator that is moved laterally between the carriage frame and the pillow beam is installed, it is possible to simplify the installation of the air piping and the operation control system compared to the conventional structure in which each step board is provided with a step device. Reduced manufacturing costs and maintenance costs This The
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part showing an outline of a first embodiment of a vehicle body support structure for a railway vehicle according to the present invention.
FIG. 2 is a cross-sectional view showing the details of the main part.
3 is a cross-sectional view taken along the line II of FIG.
FIG. 4 is a block diagram similarly showing an operation circuit of the actuator.
FIG. 5 is also an operation explanatory diagram of an actuator.
FIG. 6 is a block diagram showing an operating circuit of the actuator showing an outline of a second embodiment of a vehicle body support structure for a railway vehicle according to the present invention.
FIG. 7 is a cross-sectional view of an essential part showing an outline of a third embodiment of a vehicle body support structure for a railway vehicle according to the present invention.
FIG. 8 is a cross-sectional view of an essential part showing an outline of a third embodiment of a vehicle body support structure for a railway vehicle according to the present invention.
FIG. 9 is an explanatory view showing an outline of a step device provided in a conventional railway vehicle.
[Explanation of symbols]
10 carts
11 Bogie frame
21 Air spring (pillow spring)
23 Pillow
25 body
26 Floor
30 Actuator
31 Double acting air cylinder (actuator means)
31a Left working chamber (cylinder chamber)
31b Right working chamber (cylinder chamber)
32 Supply switching solenoid valve (supply switching means)
34 First solenoid valve (open / close valve)
35 Second solenoid valve (open / close valve)
36 Orifice
40 platforms

Claims (6)

台車上に枕ばねを介して車体が搭載された鉄道車両の車体支持構造において、
上記台車と車体の間に架設されて台車に対して車体を車幅方向に横移動させるアクチュエータを備え、
車両を停止させた状態で上記アクチュエータにより台車に対して車体を車幅方向に横移動させることを特徴とする車体支持構造。
In the vehicle body support structure of a railway vehicle in which the vehicle body is mounted on the carriage via a pillow spring,
An actuator is provided between the carriage and the vehicle body to move the vehicle body in the vehicle width direction relative to the carriage,
A vehicle body support structure in which the vehicle body is moved laterally in the vehicle width direction with respect to the carriage by the actuator while the vehicle is stopped .
上記枕ばねは、
上記台車の台車枠と車体との間に配設され、
上記アクチュエータは、
上記台車枠と車体との間に架設されて車幅方向に伸縮する複動空気シリンダと、
該複動空気シリンダの各シリンダ室への圧搾エアの供給及び排気を制御する供給切換手段と、
を備えたことを特徴とする請求項1に記載の鉄道車両の車体支持構造。
The above pillow spring is
It is arranged between the bogie frame and the car body of the bogie,
The actuator is
A double-action air cylinder that is installed between the carriage frame and the vehicle body and expands and contracts in the vehicle width direction;
Supply switching means for controlling supply and exhaust of compressed air to each cylinder chamber of the double-action air cylinder;
The vehicle body support structure for a railway vehicle according to claim 1.
上記枕ばねは、
上記台車の台車枠上に配置された枕梁と車体との間に配置され、
上記アクチュエータは、
上記枕梁と車体との間に架設されて車幅方向に伸縮する複動空気シリンダと、
該複動空気シリンダの各シリンダ室への圧搾エアの供給及び排気を制御する供給切換手段と、
を備えたことを特徴とする請求項1に記載の鉄道車両の車体支持構造。
The above pillow spring is
It is arranged between the pillow beam and the car body arranged on the bogie frame of the bogie,
The actuator is
A double-acting air cylinder that is installed between the pillow beam and the vehicle body and expands and contracts in the vehicle width direction;
Supply switching means for controlling supply and exhaust of compressed air to each cylinder chamber of the double-action air cylinder;
The vehicle body support structure for a railway vehicle according to claim 1.
台車の台車枠上に枕ばねを介して枕梁が支持され、該枕梁上に車体が搭載された鉄道車両の車体支持構造において、
上記台車枠と枕梁の間に架設されて台車枠に対して枕梁を車幅方向に横移動させるアクチュエータを備え、
車両を停止させた状態で上記アクチュエータにより台車枠に対して枕梁を車幅方向に横移動させることを特徴とする鉄道車両の車体支持構造。
In a vehicle body support structure of a railway vehicle in which a pillow beam is supported via a pillow spring on a bogie frame of the bogie, and a vehicle body is mounted on the pillow beam,
An actuator that is installed between the carriage frame and the pillow beam and moves the pillow beam horizontally in the vehicle width direction with respect to the carriage frame;
A body support structure for a railway vehicle, wherein a pillow beam is laterally moved in a vehicle width direction with respect to a carriage frame by the actuator while the vehicle is stopped .
上記アクチュエータは、
上記台車枠と枕梁との間に架設されて車幅方向に伸縮する複動空気シリンダと、
該複動空気シリンダの各シリンダ室への圧搾エアの供給及び排気を制御する供給切換手段と、
を備えたことを特徴とする請求項4に記載の鉄道車両の車体支持構造。
The actuator is
A double-action air cylinder that is installed between the carriage frame and the pillow beam and expands and contracts in the vehicle width direction;
Supply switching means for controlling supply and exhaust of compressed air to each cylinder chamber of the double-action air cylinder;
The vehicle body support structure for a railway vehicle according to claim 4.
更に、上記アクチュエータは、
複動空気シリンダの各シリンダ室が直列配置された開閉弁及びオリフィスを介して連通させるバイパス通路を備えたことを特徴とする請求項2、3、5のいずれか1項に記載の鉄道車両の車体支持構造。
Furthermore, the actuator is
Railway vehicle according to any one of claims 2, 3 and 5, characterized in that the cylinder chambers of the double acting air cylinder having a bypass passage for communicating via an on-off valve and orifice disposed in series Car body support structure.
JP2000283573A 2000-09-19 2000-09-19 Railcar body support structure Expired - Lifetime JP4462739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000283573A JP4462739B2 (en) 2000-09-19 2000-09-19 Railcar body support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000283573A JP4462739B2 (en) 2000-09-19 2000-09-19 Railcar body support structure

Publications (2)

Publication Number Publication Date
JP2002087258A JP2002087258A (en) 2002-03-27
JP4462739B2 true JP4462739B2 (en) 2010-05-12

Family

ID=18767915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000283573A Expired - Lifetime JP4462739B2 (en) 2000-09-19 2000-09-19 Railcar body support structure

Country Status (1)

Country Link
JP (1) JP4462739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206940A (en) * 2013-03-07 2013-07-17 吉林大学 Clearance probe station of automotive chassis

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996292B2 (en) * 2007-03-19 2012-08-08 日本車輌製造株式会社 Railway vehicle
DE102009024510A1 (en) * 2009-06-08 2010-12-09 Bombardier Transportation Gmbh Rail vehicle and method for operating a rail vehicle
IN2014DN11245A (en) 2012-07-13 2015-10-09 Kawasaki Heavy Ind Ltd
CN107554543B (en) * 2017-10-13 2023-09-19 通号轨道车辆有限公司 Rail vehicle and articulated tramcar bogie thereof
RU180263U1 (en) * 2017-10-13 2018-06-07 Открытое акционерное общество "Тверской вагоностроительный завод" (ОАО "ТВЗ") Pivot beam for rail vehicle body frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206940A (en) * 2013-03-07 2013-07-17 吉林大学 Clearance probe station of automotive chassis

Also Published As

Publication number Publication date
JP2002087258A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP2898410B2 (en) Body level and tilt control system
US4212484A (en) Hydropneumatic suspension system
JP2009149304A (en) Anti-rolling device for rolling stock
JP4462739B2 (en) Railcar body support structure
US4669139A (en) Reclining bunk for sleeper
JP4195257B2 (en) Railcar bogie
WO2018096699A1 (en) Railroad car truck
US3704670A (en) Stabilizing high speed railway trucks
JPH10287241A (en) Car body tilt control device for rolling stock and its car body tilt control method
EP0736438B1 (en) A railway vehicle with variable trim body
JP6022420B2 (en) Rail car axle box support device
JP6629138B2 (en) Compressed air supply device
KR101067915B1 (en) Installation Groove of cargo screen for vehicle
US5558024A (en) Body roll control system for a railway vehicle with variable trim body
US3022749A (en) Pneumatic suspensions for vehicles
JP4012614B2 (en) Bogie with tilting device for railway vehicles
JP4582897B2 (en) Pendulum cart for railway vehicles
JP4799039B2 (en) Railway vehicle body tilting device
EP0683081B1 (en) A bogie equipped with a body-tilt system for a railway car
KR100604380B1 (en) The railway vehicle bogie for having tertiary suspension function
JP2006281981A (en) Suspension device
US11820408B2 (en) Bogie and guideway vehicle
JPH06191405A (en) Running device for railway vehicle
JP3656447B2 (en) Air suspension device
JPS6341787B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4462739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term