JP4460043B2 - Optical fiber built-in insulator - Google Patents

Optical fiber built-in insulator Download PDF

Info

Publication number
JP4460043B2
JP4460043B2 JP2001222061A JP2001222061A JP4460043B2 JP 4460043 B2 JP4460043 B2 JP 4460043B2 JP 2001222061 A JP2001222061 A JP 2001222061A JP 2001222061 A JP2001222061 A JP 2001222061A JP 4460043 B2 JP4460043 B2 JP 4460043B2
Authority
JP
Japan
Prior art keywords
reinforced resin
optical fiber
fiber reinforced
insulator
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001222061A
Other languages
Japanese (ja)
Other versions
JP2003035852A (en
Inventor
望 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2001222061A priority Critical patent/JP4460043B2/en
Publication of JP2003035852A publication Critical patent/JP2003035852A/en
Application granted granted Critical
Publication of JP4460043B2 publication Critical patent/JP4460043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Insulators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は非磁器製長幹型の光ファイバ内蔵碍子に関するものである。
【0002】
【従来の技術】
一般に、送配電線、発電所、変電所等では、落雷事故等により発生した故障箇所を速やかに検出して、故障箇所を早急に復旧する必要があり、この故障箇所の検出、監視制御のために、ファラデー効果、ポッケルス効果を利用した光学式センサと、高電圧部側の光学式センサで検出された光信号を接地側の監視制御システムに伝送するための光ファイバを内蔵した光ファイバ内蔵碍子が使用される。
【0003】
従来、このような光ファイバ内蔵碍子としては、磁器製のものが使用されていたが、重くて据付作業に労力を要し、且つ、製法も複雑で高価なため、このような問題を解決する目的で非磁器(ノンセラミック)製の光ファイバ内蔵碍子が開発され、使用されつつある。
【0004】
この種の光ファイバ内蔵碍子の基本構造は、図に示すように、光ファイバ1が組み込まれる繊維強化樹脂筒2の外周に、シリコーンゴム等の弾性絶縁材料を、例えば、モールド成形することにより、外周面にその長手方向へ所定間隔を隔てて多数の笠3Aを有する笠付有機絶縁体3が設けられ、且つ、繊維強化樹脂筒2には、棒状の繊維強化樹脂補強体4Aの外周面に形成された螺旋溝4Bに光ファイバ1が収納された繊維強化樹脂ロッド4が内設されて、光ファイバ1が組み込まれる構成になっている。
【0005】
また、繊維強化樹脂筒2及び笠付有機絶縁体3の両端部側には、繊維強化樹脂筒2から延出した光ファイバ1の余長分をループ状に形成して多角形箱内に収めた光ファイバ余長部6を収納する光ファイバ余長部収納ケース5、5が設けられている。この光ファイバ余長部収納ケース5、5は、繊維強化樹脂筒2の両端部外周に嵌挿されて接着又は締め付けにより固定されると共に笠付有機絶縁体3の両端部内に一部埋設される取付フランジ7と、この取付フランジ7に被せられるように取り付けられるキャップカバー8とからなる。
【0006】
なお、9は取付フランジ7にキャップカバー8を締め付け固定して取り付けるためのボルト、10は光ファイバ余長部収納ケース5、5内を密封シールして該ケース5内に塵や湿気等が侵入するのを防止するパッキング、11は光ファイバ余長部収納ケース5を構成するキャップカバー8の側部に取り付けられた、光信号の入出力伝送を行う光コネクタで、光ファイバ余長部6の光ファイバ1に接続される。
【0007】
【発明が解決しようとする課題】
近年、送電効率を高めて送電容量を増大させるために、送配電線の使用電圧が高くなる傾向にあり、光ファイバ内蔵碍子の外表面の沿面距離を長くするために、光ファイバ内蔵碍子の全長を長くする必要がある。
光ファイバ内蔵碍子の全長が長くなると、前記繊維強化樹脂筒2、笠付有機絶縁体3及び繊維強化樹脂ロッド4の全長も必然的に長くなり長尺品となる。
【0008】
ところで、前記繊維強化樹脂ロッド4及び笠付有機絶縁体3の長尺品は製造が比較的容易だが、前記繊維強化樹脂筒2の長尺品はその長さに相当する専用長尺円筒芯(マンドレル)を用意して、その長尺円筒芯の外周にガラスその他の補強繊維を巻き付け、樹脂をモールド成形しなければならず、補強繊維巻き付け工程等に手間と時間がかかるので、その長尺品の製造が容易でなく、光ファイバ内蔵碍子の製造コストが高くなるという問題がある。
【0009】
また、このような問題を解決するために、図に示すように、前記構成の光ファイバ内蔵碍子を2段以上に積み重ねて接続することも考えられる。この場合には、複数の光ファイバ内蔵碍子を接続する箇所における光ファイバ余長部収納ケース5のキャップカバー8の底板8A中央に、繊維強化樹脂ロッド4を挿入させる穴8Bを形成すると共に、該穴8Bと同心状に底板8Aから外方へ突出するように筒状ボス8Cを形成し、繊維強化樹脂筒2の端部をその筒状ボス8C内に嵌挿し、接着又は締め付けにより筒状ボス8Cに固定させると共に、筒状ボス8Cの先端部を笠付有機絶縁体3の端部内に一部埋設させ、複数の光ファイバ内蔵碍子を光ファイバ余長部収納ケース5を介して相互に接続する構成になる。
【0010】
しかしながら、このような構成の光ファイバ内蔵碍子は、複数の光ファイバ内蔵碍子を相互に接続する箇所に、光ファイバ余長部収納ケース5が介在され、内部に光ファイバ余長部6が収納されるため、光ファイバ内蔵碍子が過度に嵩張って、輸送、据付等が面倒である。また、不要な光ファイバ余長部6があるため光ファイバ内蔵碍子の製造及び組立が煩雑である。更に、この光ファイバ余長部6の部位で上下の碍子に内蔵されている光ファイバ1同士を接続しなければならず、光ファイバ接続部で光ファイバの断線や光伝送不良を生じる度合いが増加し、光信号伝送の信頼性が低下する恐れがある。
【0011】
本発明の目的は、製造が容易で、製造コストを安くすることができ、また、必要以上に嵩張らず、輸送、据付等が容易になるほか、光接続個所が少なく、光信号伝送の信頼性を向上させることができる光ファイバ内蔵碍子を提供することにある。
【0012】
【課題を解決するための手段】
上記の課題を解決する手段として、本発明の請求項1に記載された光ファイバ内蔵碍子は、光ファイバが組み込まれた繊維強化樹脂筒及び笠付有機絶縁体を有する光ファイバ内蔵碍子において、前記繊維強化樹脂筒が複数の繊維強化樹脂筒単体を接続部材により接続して構成され、前記接続部材が複数の繊維強化樹脂筒単体の端部を両端から嵌挿し、内向き環状突起に当接した状態で固定することにより繊維強化樹脂筒単体同士を接続する中空スリーブで構成され、かつ前記繊維強化樹脂筒の少なくとも繊維強化樹脂筒単体の外周に前記笠付有機絶縁体が設けられ、前記繊維強化樹脂筒に光ファイバが組み込まれており、
前記笠付有機絶縁体が、前記繊維強化樹脂筒の繊維強化樹脂筒単体の外周と、前記中空スリーブの端部の外周とに連続して設けられており、前記中空スリーブの両端部の間の途中部分の外周には設けられていないことを特徴とするものである。
【0013】
このように、繊維強化樹脂筒が複数の繊維強化樹脂筒単体を接続部材により接続して構成されるので、繊維強化樹脂筒単体が短尺品となり、補強繊維巻き付け工程が簡単になって、その作業に要する負担が軽減される。従って、繊維強化樹脂筒の製造が容易になり、光ファイバ内蔵碍子の製造コストを低減させることができる。また、繊維強化樹脂筒単体が光ファイバ余長部収納ケースではなく、専用の接続部材により接続されるので、繊維強化樹脂筒単体の接続部の形状が嵩張らず、光ファイバ内蔵碍子の運搬、据付等が容易で施工性を向上させることができる。更に、複数の繊維強化樹脂筒単体を光ファイバ余長部を介して接続しないため、光接続個所が減少し、光信号伝送の信頼性を向上させることができる。また、このように、接続部材が中空スリーブという接続専用部材で構成されている場合には、複数の繊維強化樹脂筒単体を更に容易、確実に接続して繊維強化樹脂筒を形成することができ、接続構造もよりコンパクトになり、光ファイバ内蔵碍子の製造コストを更に低減させることができる。
また、笠付有機絶縁体が、繊維強化樹脂筒の繊維強化樹脂筒単体の外周と、中空スリーブの端部の外周とに連続して設けられている場合には、一種類の小型な成形金型等の形成装置を用いて各繊維強化樹脂筒単体の外周に笠付有機絶縁体を設けることが可能になる。そうすると、笠付有機絶縁体の形成が一層簡易になるほか、設備費用も安くなり、光ファイバ内蔵碍子の製造コストを更に低減させることができる
【002
笠付有機絶縁体24、24は、繊維強化樹脂筒22の各繊維強化樹脂筒単体26、26の外周に、シリコーンゴム、エチレンプロピレンゴム等の弾性絶縁材料を、例えば、モールド成形することにより、外周面にその長手方向へ所定間隔を隔てて多数の笠24Aが一体に形成されるように設けられる。なお、この実施形態のものでは、笠付有機絶縁体24、24が、前記繊維強化樹脂筒単体26、26同士を接続する接続部材である中空スリーブ28の外周の一部には設けられない。
【002
また、繊維強化樹脂筒22には、それを構成する繊維強化樹脂筒単体26、26内へ、棒状の繊維強化樹脂補強体30Aの外周面に形成された螺旋溝30Bに1本若しくは複数本の光ファイバ20が巻き付け収納された繊維強化樹脂ロッド30を挿着することにより、光ファイバ20が組み込まれる。図示するものでは、該螺旋溝30Bは1条形成されているが、必要に応じて複数条形成し、各螺旋溝30Bに光ファイバ20を収納するようにしてもよい。
【002
更に、繊維強化樹脂筒22及び笠付有機絶縁体24、24の両端部側には、繊維強化樹脂筒22から延出した光ファイバ20の余長分をループ状に形成して多角形箱内に収めた光ファイバ余長部34を収納する光ファイバ余長部収納ケース32、32が設けられている。この光ファイバ余長部収納ケース32、32は、繊維強化樹脂筒22の両端部外周に嵌挿されて接着、圧着又は螺合等により固定されると共に笠付有機絶縁体24、24の両端部内に一部埋設される取付フランジ36と、この取付フランジ36に被せられるように取り付けられるキャップカバー38とからなる。
【002
なお、40は取付フランジ36にキャップカバー38を締め付け固定して取り付けるためのボルト、42は光ファイバ余長部収納ケース32、32内を密封シールして光ファイバ余長部収納ケース32、32内に塵や湿気等が侵入するのを防止するパッキング、44は光ファイバ余長部収納ケース32を構成するキャップカバー38の側部に取り付けられた、光信号の入出力伝送を行う光コネクタで、光ファイバ余長部34の光ファイバ20に接続される。
【002
第1実施形態の光ファイバ内蔵碍子は上記のように構成されている。このような構成によると、繊維強化樹脂筒22は短尺な繊維強化樹脂筒単体26、26を接続して形成するので、その製造が容易になり、光ファイバ内蔵碍子の製造コストを低減させることができる。また、繊維強化樹脂筒単体26、26の接続は光ファイバ余長部収納ケース32ではなく、専用の接続部材で行うので、碍子がコンパクトになり、その運搬、据付等に便利である。
【002
なお、複数の繊維強化樹脂筒単体26、26を接続する接続部材が前記中空スリーブ28で構成されていると、複数の繊維強化樹脂筒単体26、26を更に容易、確実に接続して繊維強化樹脂筒22を形成することができ、接続構造もよりコンパクトになり、光ファイバ内蔵碍子の製造コストを更に低減させることができる。
【002
この光ファイバ内蔵碍子を製造する場合には、予め、各繊維強化樹脂筒単体26、26の一端部に光ファイバ余長部収納ケース32を構成する取付フランジ36を固定した後、前記繊維強化樹脂筒単体26、26の他端部を中空スリーブ28により接続して繊維強化樹脂筒22を形成する。
【002
次に、このように形成された繊維強化樹脂筒22の各繊維強化樹脂筒単体26、26の外周に、笠付有機絶縁体24を、取付フランジ36の一部(筒状ボス部)及び中空スリーブ28の一部を覆うように、成形金型等の形成装置でモールド成形等することにより設ける。
【0028
次に、前記繊維強化樹脂筒22内に、棒状の繊維強化樹脂補強体30Aの外周面に形成された螺旋溝30Bに1本若しくは複数本の光ファイバ20が巻き付け収納された繊維強化樹脂ロッド30を挿着して光ファイバ20を組み込む。
【0029
次に、繊維強化樹脂筒22の両端側に光ファイバ余長部34、34を形成し、取付フランジ36にキャップカバー38を被せて、光ファイバ余長部34、34を光ファイバ余長部収納ケース32、32に収納する。
【003
このように、笠付有機絶縁体24、24を繊維強化樹脂筒22の各繊維強化樹脂筒単体26、26の方だけ全体に設け、接続部材である中空スリープ28の外周の一部には設けられていない場合には、一種類の小型な成形金型等の形成装置を用いて笠付有機絶縁体24、24を設けることが可能になる。そうすると、笠付有機絶縁体24、24の形成がより簡易になるほか、設備費用も安くなり、光ファイバ内蔵碍子の製造コストを更に低減させることができる。
【003
なお、本実施形態のものは、繊維強化樹脂筒22を、2個の短尺な繊維強化樹脂筒単体26、26を接続して形成したが、3個以上の繊維強化樹脂筒単体26を接続して形成するようにしてもよい。この場合は笠付有機絶縁体24が3段以上に積み重ねられることになる。
【003
(第2実施形態)
図2は本発明に係る光ファイバ内蔵碍子の第2実施形態を示す縦断面図である。この実施形態の光ファイバ内蔵碍子は、笠付有機絶縁体30が、前記繊維強化樹脂筒22の繊維強化樹脂筒単体26、26及び接続部材である中空スリーブ28の両外周に連続的に形成して設けられている。その他の構成は図1に示す第1実施形態ものと実質的に同じなので説明を省略する。
【003
この実施形態の光ファイバ内蔵碍子を製造する場合には、前記第1実施形態の光ファイバ内蔵碍子を製造する場合と同様に、予め、各繊維強化樹脂筒単体26、26の一端部に光ファイバ余長部収納ケース32を構成する取付フランジ36を固定した後、前記繊維強化樹脂筒単体26、26の他端部を中空スリーブ28により接続して繊維強化樹脂筒22を形成する。
【003
次に、各繊維強化樹脂筒単体26、26及び中空スリーブ28の両方の外周に、笠付有機絶縁体24を、取付フランジ36、36の一部(筒状ボス部)を覆うように、成形金型等の形成装置でモールド成形等することにより連続して設ける。
【003
次に、前記繊維強化樹脂筒22内に、光ファイバ20が収納された繊維強化樹脂ロッド30を挿着して光ファイバ20を組み込む。その後の製造工程は第1実施形態の光ファイバ内蔵碍子を製造する工程と実質的に同じなので説明を省略する。
【003
この実施形態の光ファイバ内蔵碍子のように、笠付有機絶縁体24が繊維強化樹脂筒22の外周全体を覆うように設けられていると、光ファイバ内蔵碍子の長さ当たりの沿面距離を長く取ることが可能になり、光ファイバ内蔵碍子の高電圧性能及び信頼性を向上させ、寿命を伸ばすことができる。
【007】
(第実施形態)
は本発明に係る光ファイバ内蔵碍子の第実施形態を示す縦断面図である。この実施形態の光ファイバ内蔵碍子の特徴は、繊維強化樹脂筒22、52に光ファイバ20を組み込む手段として、前記第1乃至第3実施形態のような、繊維強化樹脂筒22、52を構成する繊維強化樹脂筒単体26、26内へ、外周に光ファイバ20が螺旋状に巻き付け収納された繊維強化樹脂ロッド30を挿着して組み込む手段とは異なる手段を採用していることである。
【008】
即ち、この実施形態のものでは、例えば、図2に示す第2実施形態の光ファイバ内蔵碍子における繊維強化樹脂筒22の繊維強化樹脂筒単体26、26内に、少なくとも1本の光ファイバ20を挿通させ、その樹脂単体26、26内に、液状のシリコーンゴム、エポキシ樹脂等の有機絶縁充填材54を加圧又は吸引等して注入充填させ、加熱硬化させることにより、光ファイバ20を組み込むものである。なお、繊維強化樹脂筒22内に充填された有機絶縁充填材54が漏出する恐れがある場合には、繊維強化樹脂筒22の両端部又は取付フランジ36、36の光ファイバ20を挿通させ、且つ、有機絶縁充填材54を注入する穴口部分に、必要に応じてシール部材(図示せず)を設けることが望ましい。
【009】
このような手段で光ファイバ20を組み込むことにより、光ファイバ20の移動を防止して保護することができるほか、繊維強化樹脂筒22、52内に水分が侵入するのを防止し、更に、繊維強化樹脂筒22、52内を漏洩電流が流れて地絡事故を引き起こすのを防止することができる。なお、このような光ファイバ20の組み込み手段は、第1実施形態の光ファイバ内蔵碍子にも適用することができる。
【000】
前記各実施形態のものでは、繊維強化樹脂筒22、52を構成する繊維強化樹脂筒単体26、26が中空スリーブ28の接続部材で接続されているが、これのみに限定されない
【001】
【発明の効果】
以上説明したように、本発明の請求項1に記載された光ファイバ内蔵碍子によると、繊維強化樹脂筒が複数の繊維強化樹脂筒単体を接続部材により接続して構成されるので、繊維強化樹脂筒単体が短尺品となり、従って、繊維強化樹脂筒の製造が容易になり、光ファイバ内蔵碍子の製造コストを低減させることができる。また、繊維強化樹脂筒単体が専用の接続部材により接続されるので、繊維強化樹脂筒単体の接続部の形状が嵩張らず、光ファイバ内蔵碍子の運搬、据付等が容易で施工性を向上させることができる。更に、複数の繊維強化樹脂筒単体を光ファイバ余長部を介して接続しないので、光接続個所が減少し、光信号伝送の信頼性を向上させることができる。また、繊維強化樹脂筒を構成する複数の繊維強化樹脂筒単体の接続部材が、複数の繊維強化樹脂筒単体の端部を両端から嵌挿し、内向き環状突起に当接した状態で固定することにより繊維強化樹脂筒単体同士を接続する中空スリーブという接続専用部材で構成されているので、複数の繊維強化樹脂筒単体を更に容易、確実に接続して繊維強化樹脂筒を形成することができ、接続構造もよりコンパクトになり、光ファイバ内蔵碍子の製造コストを更に低減させることができる。
【002】
本発明の請求項2に記載された光ファイバ内蔵碍子によると、前記笠付有機絶縁体が、前記繊維強化樹脂筒の繊維強化樹脂筒単体の外周に設けられ、前記繊維強化樹脂筒単体を接続する接続部材の方の一部には設けられないので、一種類の小型な成形金型等の形成装置を用いて各繊維強化樹脂筒単体の外周に笠付有機絶縁体を設けることが可能になる。そうすると、笠付有機絶縁体の形成がより簡易になるほか、設備費用も安くなるので、光ファイバ内蔵碍子の製造コストを更に低減させることができる。
【003】
本発明の請求項3に記載された光ファイバ内蔵碍子によると、前記笠付有機絶縁体が、前記繊維強化樹脂筒の繊維強化樹脂筒単体及び接続部材の両外周に連続して設けられるので、光ファイバ内蔵碍子の長さ当たりの沿面距離を長く取ることが可能になり、光ファイバ内蔵碍子の高電圧性能及び信頼性を向上させ、寿命を伸ばすことができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態を示す縦断面図である。
【図2】 本発明の第2実施形態を示す縦断面図である。
【図3】 本発明の第3実施形態を示す縦断面図である。
【図4】 従来光ファイバ内蔵碍子の縦断面図である。
【図5】 従来の他の光ファイバ内蔵碍子を示す縦断面図である。
【符号の説明】
20 光ファイバ
22 繊維強化樹脂筒
24 笠付有機絶縁体
24A 笠
26 繊維強化樹脂筒単体
28 中空スリーブ
28A 内向き環状突起
30 繊維強化樹脂ロッド
30A 繊維強化樹脂補強体
30B 螺旋溝
32 光ファイバ余長部収納ケース
34 光ファイバ余長部
36 取付フランジ
38 キャップカバー
40 ボルト
42 パッキング
44 光コネクタ
46 接続フランジ
48 ねじ締め付け部材
50 パッキング
52 繊維強化樹脂筒
54 有機絶縁充填材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-porcelain long-span type optical fiber built-in insulator.
[0002]
[Prior art]
Generally, in transmission lines, power stations, substations, etc., it is necessary to promptly detect the failure location caused by a lightning strike, etc., and quickly recover from the failure location. In addition, an optical sensor using the Faraday effect and Pockels effect, and an optical fiber built-in insulator that incorporates an optical fiber for transmitting the optical signal detected by the optical sensor on the high voltage side to the monitoring control system on the ground side Is used.
[0003]
Conventionally, a porcelain product has been used as such an optical fiber built-in insulator. However, it is heavy, requires labor for installation work, and the manufacturing method is complicated and expensive. For this purpose, non-ceramic (non-ceramic) optical fiber built-in insulators have been developed and used.
[0004]
As shown in FIG. 4 , the basic structure of this kind of optical fiber built-in insulator is obtained by molding an elastic insulating material such as silicone rubber on the outer periphery of a fiber reinforced resin cylinder 2 in which the optical fiber 1 is incorporated, for example. An organic insulator 3 with a shade having a large number of shades 3A at predetermined intervals in the longitudinal direction is provided on the outer circumferential surface, and the fiber reinforced resin cylinder 2 is provided on the outer circumferential surface of the rod-like fiber reinforced resin reinforcing body 4A. A fiber reinforced resin rod 4 in which the optical fiber 1 is housed is provided in the formed spiral groove 4B, and the optical fiber 1 is incorporated.
[0005]
Further, the extra length of the optical fiber 1 extending from the fiber reinforced resin cylinder 2 is formed in a loop shape on both ends of the fiber reinforced resin cylinder 2 and the organic insulator 3 with shade and accommodated in a polygonal box. Optical fiber surplus length storage cases 5 and 5 for storing the optical fiber surplus length 6 are provided. The optical fiber extra length storage cases 5 and 5 are attached to the outer periphery of both ends of the fiber reinforced resin tube 2 and fixed by bonding or tightening, and are partially embedded in both ends of the shaded organic insulator 3. It consists of a flange 7 and a cap cover 8 that is attached so as to cover the attachment flange 7.
[0006]
Reference numeral 9 denotes a bolt for tightening and fixing the cap cover 8 to the mounting flange 7. Reference numeral 10 denotes an optical fiber extra-length storage case 5 and 5 hermetically sealed so that dust, moisture, etc. enter the case 5. Packing 11 for preventing the optical fiber is attached to the side of the cap cover 8 constituting the optical fiber extra length storage case 5 and is an optical connector for transmitting and receiving optical signals. Connected to the optical fiber 1.
[0007]
[Problems to be solved by the invention]
In recent years, in order to increase the transmission efficiency and increase the transmission capacity, the working voltage of transmission and distribution lines tends to increase, and in order to increase the creepage distance of the outer surface of the optical fiber built-in insulator, the total length of the optical fiber built-in insulator Need to be long.
When the overall length of the optical fiber built-in insulator becomes longer, the overall lengths of the fiber reinforced resin cylinder 2, the shaded organic insulator 3 and the fiber reinforced resin rod 4 are inevitably longer and become a long product.
[0008]
By the way, although the long product of the fiber reinforced resin rod 4 and the organic insulator 3 with shade is relatively easy to manufacture, the long product of the fiber reinforced resin cylinder 2 is a dedicated long cylindrical core (mandrel) corresponding to the length. ) Is prepared, and glass or other reinforcing fibers are wound around the outer periphery of the long cylindrical core, and the resin must be molded, and the process of winding the reinforcing fibers takes time and effort. There is a problem that the manufacturing is not easy and the manufacturing cost of the optical fiber built-in insulator becomes high.
[0009]
In order to solve such a problem, as shown in FIG. 5 , it is also conceivable to stack and connect the optical fiber built-in insulators having the above-described structure in two or more stages. In this case, a hole 8B into which the fiber reinforced resin rod 4 is inserted is formed in the center of the bottom plate 8A of the cap cover 8 of the optical fiber surplus length storage case 5 at a location where a plurality of optical fiber built-in insulators are connected, A cylindrical boss 8C is formed so as to protrude outward from the bottom plate 8A concentrically with the hole 8B, and the end of the fiber reinforced resin cylinder 2 is inserted into the cylindrical boss 8C, and the cylindrical boss is bonded or tightened. While fixing to 8C, the front-end | tip part of the cylindrical boss | hub 8C is partially embedded in the end part of the organic insulator 3 with a shade, and a some optical fiber built-in insulator is mutually connected through the optical fiber extra length part storage case 5 It becomes a composition.
[0010]
However, the optical fiber built-in insulator having such a configuration has an optical fiber extra length storage case 5 interposed at a location where a plurality of optical fiber built-in insulators are connected to each other, and the optical fiber extra length section 6 is accommodated therein. Therefore, the insulator with built-in optical fiber is excessively bulky, and transportation, installation and the like are troublesome. Moreover, since there is an unnecessary optical fiber extra length 6, the manufacture and assembly of the optical fiber built-in insulator is complicated. Furthermore, the optical fibers 1 built in the upper and lower insulators must be connected to each other at the portion of the optical fiber extra length portion 6, and the degree of occurrence of optical fiber disconnection and optical transmission failure at the optical fiber connection portion increases. In addition, the reliability of optical signal transmission may be reduced.
[0011]
The object of the present invention is easy to manufacture, can reduce the manufacturing cost, is not bulky more than necessary, facilitates transportation, installation, etc., has few optical connection points, and is reliable in optical signal transmission. An object of the present invention is to provide an optical fiber built-in insulator that can improve the performance.
[0012]
[Means for Solving the Problems]
As a means for solving the above problems, an optical fiber built-in insulator according to claim 1 of the present invention is an optical fiber built-in insulator having a fiber reinforced resin tube and an organic insulator with a shade, in which the optical fiber is incorporated. The reinforced resin cylinder is configured by connecting a plurality of fiber reinforced resin cylinders with a connecting member, and the connecting member is fitted with the end portions of the plurality of fiber reinforced resin cylinders from both ends and is in contact with the inward annular protrusion. The fiber reinforced resin cylinder is formed of a hollow sleeve that connects the fiber reinforced resin cylinders by fixing them with each other, and the shaded organic insulator is provided at least on the outer periphery of the fiber reinforced resin cylinder alone. The optical fiber is built in,
The organic insulator with shade is provided continuously on the outer periphery of the fiber-reinforced resin cylinder of the fiber-reinforced resin cylinder and on the outer periphery of the end of the hollow sleeve, and halfway between the both ends of the hollow sleeve. It is not provided in the outer periphery of the part .
[0013]
In this way, the fiber reinforced resin cylinder is constituted by connecting a plurality of fiber reinforced resin cylinders by the connecting member, so that the fiber reinforced resin cylinder alone becomes a short product, the reinforcing fiber winding process is simplified, and the work Is reduced. Therefore, the manufacture of the fiber reinforced resin cylinder becomes easy, and the manufacturing cost of the optical fiber built-in insulator can be reduced. Also, since the fiber reinforced resin cylinder alone is connected not by the optical fiber extra length storage case but by a dedicated connection member, the shape of the connection part of the fiber reinforced resin cylinder alone is not bulky, and the optical fiber built-in insulator is transported and installed. Etc. are easy and the workability can be improved. Furthermore, since a plurality of fiber reinforced resin cylinders are not connected via the extra length of the optical fiber, the number of optical connection points is reduced, and the reliability of optical signal transmission can be improved. Further, when the connection member is constituted by a connection dedicated member such as a hollow sleeve, a plurality of fiber reinforced resin cylinders can be connected more easily and reliably to form a fiber reinforced resin cylinder. The connection structure is also more compact, and the manufacturing cost of the optical fiber built-in insulator can be further reduced.
In addition, when the shaded organic insulator is continuously provided on the outer periphery of the fiber reinforced resin cylinder of the fiber reinforced resin cylinder and the outer periphery of the end portion of the hollow sleeve, it is one type of small molding die. It becomes possible to provide a shaded organic insulator on the outer periphery of each fiber reinforced resin cylinder using a forming apparatus such as the above. In this case, the formation of the organic insulator with the shade is further simplified, the equipment cost is reduced, and the manufacturing cost of the optical fiber built-in insulator can be further reduced .
[002 0 ]
The shaded organic insulators 24, 24 are formed by molding an elastic insulating material such as silicone rubber or ethylene propylene rubber on the outer periphery of each fiber reinforced resin cylinder 26, 26 of the fiber reinforced resin cylinder 22, for example. A large number of shades 24 </ b> A are integrally formed on the surface at predetermined intervals in the longitudinal direction. In this embodiment, the shaded organic insulators 24, 24 are not provided on a part of the outer periphery of the hollow sleeve 28 which is a connecting member for connecting the fiber reinforced resin cylinders 26, 26 together.
[002 1 ]
The fiber reinforced resin cylinder 22 has one or more spiral grooves 30B formed in the outer peripheral surface of the rod-like fiber reinforced resin reinforcing body 30A into the fiber reinforced resin cylinders 26, 26 constituting the fiber reinforced resin cylinder. The optical fiber 20 is assembled by inserting the fiber reinforced resin rod 30 around which the optical fiber 20 is wound and housed. In the illustrated example, one spiral groove 30B is formed, but a plurality of spiral grooves 30B may be formed as necessary, and the optical fiber 20 may be accommodated in each spiral groove 30B.
[002 2 ]
Further, on both ends of the fiber reinforced resin cylinder 22 and the shaded organic insulators 24, 24, an extra length of the optical fiber 20 extending from the fiber reinforced resin cylinder 22 is formed in a loop shape in a polygonal box. Optical fiber surplus length storage cases 32 and 32 for storing the stored optical fiber surplus length 34 are provided. The optical fiber extra-length storage cases 32 and 32 are inserted into the outer periphery of both ends of the fiber reinforced resin tube 22 and fixed by adhesion, pressure bonding, screwing, or the like, and in the both ends of the shaded organic insulators 24 and 24. A mounting flange 36 that is partially embedded and a cap cover 38 that is mounted so as to cover the mounting flange 36 are included.
[002 3 ]
Reference numeral 40 denotes a bolt for fastening and fixing the cap cover 38 to the mounting flange 36, and 42 denotes an inside of the optical fiber extra length storage cases 32, 32 by hermetically sealing the inside of the optical fiber extra length storage cases 32, 32. A packing 44 for preventing dust, moisture, etc. from entering the optical connector 44 is an optical connector that is attached to the side of the cap cover 38 that constitutes the optical fiber extra-length storage case 32 and that transmits and receives optical signals. It is connected to the optical fiber 20 of the optical fiber extra length portion 34.
[002 4 ]
The insulator with a built-in optical fiber according to the first embodiment is configured as described above. According to such a configuration, since the fiber reinforced resin cylinder 22 is formed by connecting the short fiber reinforced resin cylinders 26 and 26, the manufacture becomes easy and the manufacturing cost of the optical fiber built-in insulator can be reduced. it can. Further, since the fiber reinforced resin cylinders 26 and 26 are connected not by the optical fiber extra length storage case 32 but by a dedicated connection member, the insulator becomes compact and convenient for its transportation and installation.
[002 5 ]
When the connecting member for connecting the plurality of fiber reinforced resin cylinders 26, 26 is constituted by the hollow sleeve 28, the plurality of fiber reinforced resin cylinders 26, 26 are more easily and reliably connected to strengthen the fiber. The resin cylinder 22 can be formed, the connection structure can be made more compact, and the manufacturing cost of the optical fiber built-in insulator can be further reduced.
[002 6 ]
When manufacturing this optical fiber built-in insulator, after fixing the mounting flange 36 which comprises the optical fiber extra length storage case 32 to the one end part of each fiber reinforced resin cylinder single-piece | unit 26, 26 previously, the said fiber reinforced resin The fiber reinforced resin cylinder 22 is formed by connecting the other ends of the cylinders 26 and 26 with a hollow sleeve 28.
[002 7 ]
Next, on the outer periphery of each fiber reinforced resin cylinder 26, 26 of the fiber reinforced resin cylinder 22 formed in this way, the shaded organic insulator 24, a part of the mounting flange 36 (cylindrical boss part), and a hollow sleeve 28 is provided by molding with a forming device such as a molding die so as to cover a part of 28.
[00 28 ]
Next, a fiber reinforced resin rod 30 in which one or a plurality of optical fibers 20 are wound and housed in a spiral groove 30B formed on the outer peripheral surface of a rod-shaped fiber reinforced resin reinforcing body 30A in the fiber reinforced resin cylinder 22. And the optical fiber 20 is assembled.
[00 29 ]
Next, the optical fiber extra length portions 34 and 34 are formed on both ends of the fiber reinforced resin cylinder 22, and the cap cover 38 is put on the mounting flange 36, so that the optical fiber extra length portions 34 and 34 are accommodated in the optical fiber extra length portion. Store in cases 32, 32.
[003 0 ]
Thus, the shaded organic insulators 24, 24 are provided only on the fiber reinforced resin cylinders 26, 26 of the fiber reinforced resin cylinder 22 as a whole, and are provided on a part of the outer periphery of the hollow sleep 28 which is a connecting member. If not, the organic insulators with caps 24 and 24 can be provided using a forming apparatus such as a single small mold. As a result, the formation of the shaded organic insulators 24 and 24 becomes simpler, the facility cost is reduced, and the manufacturing cost of the optical fiber built-in insulator can be further reduced.
[003 1 ]
In this embodiment, the fiber reinforced resin cylinder 22 is formed by connecting two short fiber reinforced resin cylinders 26, 26, but three or more fiber reinforced resin cylinders 26 are connected. You may make it form. In this case, the shaded organic insulators 24 are stacked in three or more stages.
[003 2 ]
(Second Embodiment)
FIG. 2 is a longitudinal sectional view showing a second embodiment of an optical fiber built-in insulator according to the present invention. In the insulator with built-in optical fiber of this embodiment, the organic insulator 30 with shade is continuously formed on both outer peripheries of the fiber reinforced resin cylinders 26 and 26 of the fiber reinforced resin cylinder 22 and the hollow sleeve 28 as a connecting member. Is provided. Other configurations are substantially the same as those of the first embodiment shown in FIG.
[003 3 ]
In the case of manufacturing the optical fiber built-in insulator of this embodiment, in the same manner as the case of manufacturing the optical fiber built-in insulator of the first embodiment, an optical fiber is previously attached to one end portion of each of the fiber reinforced resin cylinders 26 and 26. After fixing the attachment flange 36 constituting the surplus length storage case 32, the other ends of the fiber reinforced resin cylinders 26, 26 are connected by a hollow sleeve 28 to form the fiber reinforced resin cylinder 22.
[003 4 ]
Next, the shaded organic insulator 24 is formed on the outer periphery of each of the fiber reinforced resin cylinders 26 and 26 and the hollow sleeve 28 so as to cover part of the mounting flanges 36 and 36 (cylindrical boss portions). It is provided continuously by molding with a forming apparatus such as a mold.
[003 5 ]
Next, the fiber reinforced resin rod 30 in which the optical fiber 20 is accommodated is inserted into the fiber reinforced resin cylinder 22 to incorporate the optical fiber 20. Since the subsequent manufacturing process is substantially the same as the process of manufacturing the optical fiber built-in insulator of the first embodiment, the description thereof is omitted.
[003 6 ]
When the shaded organic insulator 24 is provided so as to cover the entire outer periphery of the fiber reinforced resin tube 22 as in the optical fiber built-in insulator of this embodiment, the creepage distance per length of the optical fiber built-in insulator is increased. Thus, the high voltage performance and reliability of the optical fiber built-in insulator can be improved, and the life can be extended.
[00 3 7]
( Third embodiment)
FIG. 3 is a longitudinal sectional view showing a third embodiment of an optical fiber built-in insulator according to the present invention. The feature of the optical fiber built-in insulator of this embodiment is that the fiber reinforced resin cylinders 22, 52 as in the first to third embodiments are configured as means for incorporating the optical fiber 20 into the fiber reinforced resin cylinders 22, 52. This means that means different from the means for inserting and incorporating the fiber reinforced resin rod 30 in which the optical fiber 20 is spirally wound and housed in the outer periphery of the fiber reinforced resin cylinders 26 and 26 is employed.
[00 3 8]
That is, in this embodiment, for example, at least one optical fiber 20 is placed in the fiber reinforced resin cylinders 26 and 26 of the fiber reinforced resin cylinder 22 in the insulator with built-in optical fiber of the second embodiment shown in FIG. The optical fiber 20 is incorporated by inserting, filling and filling an organic insulating filler material 54 such as liquid silicone rubber, epoxy resin or the like into the resin simple substance 26, 26 by pressurizing or sucking, and curing it. It is. If there is a risk of leakage of the organic insulating filler 54 filled in the fiber reinforced resin cylinder 22, the optical fibers 20 of both ends of the fiber reinforced resin cylinder 22 or the mounting flanges 36 and 36 are inserted, and It is desirable to provide a seal member (not shown) in the hole portion where the organic insulating filler 54 is injected, if necessary.
[00 3 9]
By incorporating the optical fiber 20 by such means, the movement of the optical fiber 20 can be prevented and protected, and moisture can be prevented from entering the fiber reinforced resin cylinders 22 and 52. It is possible to prevent a leakage current from flowing through the reinforced resin cylinders 22 and 52 to cause a ground fault. Incidentally, incorporation unit of such an optical fiber 20 can be applied to an optical fiber built-in insulator of the first implementation embodiment.
[00 4 0]
In each of the above embodiments, the fiber reinforced resin cylinders 26 and 26 constituting the fiber reinforced resin cylinders 22 and 52 are connected by the connection member of the hollow sleeve 28, but the invention is not limited to this .
[00 4 1]
【The invention's effect】
As described above, according to the optical fiber built-in insulator as claimed in claim 1 of the present invention, since the fiber-reinforced resin tube is configured to reset connection by the connecting member a plurality of fiber-reinforced resin tube itself, The fiber reinforced resin cylinder alone becomes a short product, and therefore, the manufacture of the fiber reinforced resin cylinder becomes easy and the manufacturing cost of the optical fiber built-in insulator can be reduced. Further, since the fiber-reinforced resin pipe itself is continued reset by a dedicated connection member is not bulky shape of the connection portion of a single fiber-reinforced resin tube, the transportation of the optical fiber built-in insulator, the easy workability installation etc. Can be improved. Furthermore, since a plurality of fiber reinforced resin cylinders are not connected via the optical fiber extra length, the number of optical connection points is reduced, and the reliability of optical signal transmission can be improved. Also, a plurality of fiber reinforced resin cylinder single-piece connecting members constituting the fiber reinforced resin cylinder are fixed with the end portions of the plurality of fiber reinforced resin cylinder single pieces inserted from both ends and in contact with the inward annular projection. Because it is composed of a connection-dedicated member called a hollow sleeve that connects fiber reinforced resin cylinders alone, a plurality of fiber reinforced resin cylinders can be more easily and reliably connected to form a fiber reinforced resin cylinder, The connection structure is also more compact, and the manufacturing cost of the optical fiber built-in insulator can be further reduced.
[00 4 2]
According to the optical fiber built-in insulator described in claim 2 of the present invention, the organic insulator with shade is provided on the outer periphery of the fiber reinforced resin cylinder alone of the fiber reinforced resin cylinder, and connects the fiber reinforced resin cylinder alone. Since it is not provided in a part of the connecting member, it is possible to provide a shaded organic insulator on the outer periphery of each fiber-reinforced resin cylinder using a forming device such as a single small molding die. This makes it easier to form the organic insulator with shade and reduces the equipment cost, thereby further reducing the production cost of the optical fiber built-in insulator.
[00 4 3]
According to the insulator with a built-in optical fiber according to claim 3 of the present invention, the organic insulator with shade is provided continuously on both outer circumferences of the fiber reinforced resin cylinder and the connection member of the fiber reinforced resin cylinder. The creepage distance per length of the fiber built-in insulator can be increased, and the high voltage performance and reliability of the optical fiber built-in insulator can be improved and the life can be extended.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a second embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing a third embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of a conventional optical fiber built-in insulator .
FIG. 5 is a longitudinal sectional view showing another conventional optical fiber built-in insulator .
[Explanation of symbols]
20 Optical Fiber 22 Fiber Reinforced Resin Tube 24 Organic Insulator with Shade 24A Shade 26 Fiber Reinforced Resin Tube Single 28 Hollow Sleeve 28A Inward Ring Protrusion 30 Fiber Reinforced Resin Rod 30A Fiber Reinforced Resin Reinforcing Body 30B Spiral Groove 32 Optical Fiber Extra Length Storage Case 34 Extra length of optical fiber 36 Mounting flange 38 Cap cover 40 Bolt 42 Packing 44 Optical connector 46 Connection flange 48 Screw fastening member 50 Packing 52 Fiber reinforced resin tube 54 Organic insulating filler

Claims (1)

光ファイバが組み込まれた繊維強化樹脂筒及び笠付有機絶縁体を有する光ファイバ内蔵碍子において、前記繊維強化樹脂筒が複数の繊維強化樹脂筒単体を接続部材により接続して構成され、前記接続部材が複数の繊維強化樹脂筒単体の端部を両端から嵌挿し、内向き環状突起に当接した状態で固定することにより繊維強化樹脂筒単体同士を接続する中空スリーブで構成され、かつ前記繊維強化樹脂筒の少なくとも繊維強化樹脂筒単体の外周に前記笠付有機絶縁体が設けられ、前記繊維強化樹脂筒に光ファイバが組み込まれており、
前記笠付有機絶縁体が、前記繊維強化樹脂筒の繊維強化樹脂筒単体の外周と、前記中空スリーブの端部の外周とに連続して設けられており、前記中空スリーブの両端部の間の途中部分の外周には設けられていないことを特徴とする光ファイバ内蔵碍子。
In an optical fiber built-in insulator having a fiber reinforced resin cylinder and a shaded organic insulator in which an optical fiber is incorporated, the fiber reinforced resin cylinder is configured by connecting a plurality of fiber reinforced resin cylinders alone with a connecting member, and the connecting member The fiber reinforced resin is composed of a hollow sleeve that connects the fiber reinforced resin cylinders by inserting the ends of the fiber reinforced resin cylinders from both ends and fixing the fiber reinforced resin cylinders in contact with the inward annular projections. The shaded organic insulator is provided on the outer periphery of at least the fiber reinforced resin cylinder of the cylinder, and an optical fiber is incorporated in the fiber reinforced resin cylinder
The organic insulator with shade is provided continuously on the outer periphery of the fiber-reinforced resin cylinder of the fiber-reinforced resin cylinder and on the outer periphery of the end of the hollow sleeve, and halfway between the both ends of the hollow sleeve. An optical fiber built-in insulator which is not provided on the outer periphery of the portion .
JP2001222061A 2001-07-23 2001-07-23 Optical fiber built-in insulator Expired - Fee Related JP4460043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222061A JP4460043B2 (en) 2001-07-23 2001-07-23 Optical fiber built-in insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222061A JP4460043B2 (en) 2001-07-23 2001-07-23 Optical fiber built-in insulator

Publications (2)

Publication Number Publication Date
JP2003035852A JP2003035852A (en) 2003-02-07
JP4460043B2 true JP4460043B2 (en) 2010-05-12

Family

ID=19055617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222061A Expired - Fee Related JP4460043B2 (en) 2001-07-23 2001-07-23 Optical fiber built-in insulator

Country Status (1)

Country Link
JP (1) JP4460043B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524183B (en) * 2018-11-15 2020-07-24 武汉理工大学 Isolation voltage-sharing loss-reducing device for high-power long-wave communication antenna

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103762U (en) * 1976-02-05 1977-08-06
JPS6021275B2 (en) * 1976-05-07 1985-05-27 電気化学工業株式会社 Joint parts for reinforced concrete pipes
JPS60182586U (en) * 1984-05-15 1985-12-04 積水化学工業株式会社 pipe fittings
JPH0736293B2 (en) * 1986-05-31 1995-04-19 日本碍子株式会社 Anti-thunder insulator
FR2604821B1 (en) * 1986-10-02 1990-01-12 Ceraver COMPOSITE INSULATOR WITH OVER-MOLDED INSULATING COATING
JPH02253523A (en) * 1989-03-24 1990-10-12 Ngk Insulators Ltd Optical fiber built-in stacked insulator
JPH02250007A (en) * 1989-03-23 1990-10-05 Ngk Insulators Ltd Mutli-stage stacked glasses incorporated with optical fiber
JP2612932B2 (en) * 1989-03-23 1997-05-21 日本碍子株式会社 Multi-stack optical fiber built-in insulator
JPH0292614U (en) * 1989-01-09 1990-07-23
US5124634A (en) * 1989-03-14 1992-06-23 Square D Company Ring optical current transducer
JPH06162845A (en) * 1992-11-19 1994-06-10 Furukawa Electric Co Ltd:The Insulator with built-in optical fiber
JPH06325648A (en) * 1993-05-14 1994-11-25 Furukawa Electric Co Ltd:The Insulator wire built-in optical fiber
JP3745865B2 (en) * 1996-03-18 2006-02-15 古河電気工業株式会社 Compound eggplant
JPH10149732A (en) * 1996-11-18 1998-06-02 Ngk Insulators Ltd Polymer insulator tube
EP0926516A4 (en) * 1997-07-03 2000-07-19 Ngk Insulators Ltd Organic insulating device with built-in optical fiber and manufacturing method therefor
JP2000011781A (en) * 1998-06-19 2000-01-14 Ngk Insulators Ltd Method for joining frp tube to flange fitting for polymer bushing
JP2000213671A (en) * 1999-01-27 2000-08-02 Inax Corp Connecting method of piping
JP3418163B2 (en) * 1999-08-04 2003-06-16 ナスコフィッティング株式会社 Pipe fittings

Also Published As

Publication number Publication date
JP2003035852A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
US5088001A (en) Surge arrester with rigid insulating housing
US4701577A (en) Cable support for an electric power-line pole
US6031186A (en) Solid polymer insulators with eye and clevis ends
CN211294756U (en) Combined split porcelain insulator
KR101887190B1 (en) Polymer lightening arrester with insulation hanger and manufacturing method of the same
JP4460043B2 (en) Optical fiber built-in insulator
JPH06162845A (en) Insulator with built-in optical fiber
CN209912631U (en) Composite insulator
KR200453986Y1 (en) Arrester in an elbow type
KR101115849B1 (en) insulator assembly
CN113031179B (en) Built-in water-blocking joint and semi-dry optical cable
CA1136181A (en) High-voltage device having a one-piece enclosure of glass-reinforced resin
KR100502436B1 (en) A polymer busing for an overhead recloser
JPH04249816A (en) Lightening insulator
KR20120107802A (en) Module type of non-touch power supply
JP3568093B2 (en) Polymer support insulator
JP2771380B2 (en) Non-ceramic insulator
CN218633258U (en) Corrosion-resistant high-performance stainless steel semicircular hoop
KR200296588Y1 (en) A polymer busing for an overhead recloser
CN221101856U (en) High leakproofness voltage transformer
CN114063233B (en) Optical fiber sealing sleeve
CN221547171U (en) Blade root pitch circle, wind power blade and wind driven generator
CN214897922U (en) Insulating sleeve
CN210429434U (en) Composite insulator
CN113161086A (en) Insulator and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090907

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees