JP4457897B2 - Inspection and analysis method of double oxide powder for catalyst - Google Patents

Inspection and analysis method of double oxide powder for catalyst Download PDF

Info

Publication number
JP4457897B2
JP4457897B2 JP2005009171A JP2005009171A JP4457897B2 JP 4457897 B2 JP4457897 B2 JP 4457897B2 JP 2005009171 A JP2005009171 A JP 2005009171A JP 2005009171 A JP2005009171 A JP 2005009171A JP 4457897 B2 JP4457897 B2 JP 4457897B2
Authority
JP
Japan
Prior art keywords
double oxide
oxide powder
peak intensity
wave number
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005009171A
Other languages
Japanese (ja)
Other versions
JP2006194827A (en
Inventor
麻子 定井
秀治 岩国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2005009171A priority Critical patent/JP4457897B2/en
Publication of JP2006194827A publication Critical patent/JP2006194827A/en
Application granted granted Critical
Publication of JP4457897B2 publication Critical patent/JP4457897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

本発明は触媒用複酸化物粉末の検査分析方法に関するものである。     The present invention relates to a method for inspection and analysis of a double oxide powder for a catalyst.

エンジンの排ガス浄化用触媒に酸素吸蔵材を添加することが行なわれている。例えば三元触媒では、HC(炭化水素)、CO及びNOx(窒素酸化物)を同時に浄化することができる空燃比領域を拡大するために酸素吸蔵材が添加されている。     An oxygen storage material is added to an exhaust gas purification catalyst for an engine. For example, in a three-way catalyst, an oxygen storage material is added to expand an air-fuel ratio region where HC (hydrocarbon), CO, and NOx (nitrogen oxide) can be simultaneously purified.

酸素吸蔵材としては、セリアが古くから知られ、最近ではその耐熱性を高めるべく、Ceの他にZrを含有させた複酸化物(複合酸化物ともいう。)、Ceの他にCe以外の希土類元素を含有させた複酸化物も知られている。このような酸素吸蔵材は、Ceが3価から4価になる際に結晶構造が歪み、この歪みによって酸素が取り込まれることから、その結晶構造が酸素吸蔵特性の良否に影響を与える。     As an oxygen storage material, ceria has been known for a long time, and recently, in order to improve its heat resistance, a double oxide containing Zr in addition to Ce (also referred to as a composite oxide), in addition to Ce, other than Ce. Double oxides containing rare earth elements are also known. In such an oxygen storage material, the crystal structure is distorted when Ce is changed from trivalent to tetravalent, and oxygen is taken in by this distortion. Therefore, the crystal structure affects the quality of the oxygen storage characteristics.

ところが、同じ工程で調製され、X線回折による解析でも同じ結晶構造になっていると判定される酸素吸蔵材であっても、理由は定かではないが、酸素吸蔵能は必ずしも同じではない。すなわち、例えばロット間で酸素吸蔵能にバラツキを生じ、それが触媒性能に影響を及ぼすことがあり、X線回折による構造解析では酸素吸蔵能の良否を正確に判定することができない。     However, even if the oxygen storage material is prepared in the same process and is determined to have the same crystal structure by X-ray diffraction analysis, the reason is not clear, but the oxygen storage capacity is not necessarily the same. That is, for example, the oxygen storage capacity varies among lots, which may affect the catalyst performance, and the structural analysis by X-ray diffraction cannot accurately determine the quality of the oxygen storage capacity.

これに対して、特許文献1には、ラマン分光分析によって触媒用複合酸化物粉末の選別を行なうことが記載されている。それは、ラマンスペクトルの約450cm-1付近に存するピーク強度(I450)と約300cm-1付近に存するピーク強度(I300)との比(I300/I450)が所定値以下であるものを選別することにより、特性のバラツキを少なくするというものである。
特開2004−237168号公報
On the other hand, Patent Document 1 describes that the composite oxide powder for catalyst is selected by Raman spectroscopic analysis. It is intended the ratio of about 450cm peak intensity existing in the vicinity of -1 of the Raman spectrum (I 450) and about 300cm peak intensity existing in the vicinity of -1 (I 300) (I 300 / I 450) is less than a predetermined value By sorting, the variation in characteristics is reduced.
JP 2004-237168 A

しかし、本発明者が以前から行なっていた実験・研究の結果によれば、上述の如きピーク強度比が同じ複酸化物であっても、実際に触媒に使用すると、排気ガス浄化性能に比較的大きな差違を生ずることがあった。     However, according to the results of experiments and research that the inventor has conducted in the past, even if a double oxide having the same peak intensity ratio as described above is actually used as a catalyst, the exhaust gas purification performance is relatively low. There could be a big difference.

そこで、本発明は、複酸化物を実際に触媒に使用したときにどのような排気ガス浄化特性になるかを事前に知る上で有用な触媒用複酸化物の検査分析方法を提供することを課題とする。     Accordingly, the present invention provides a method for inspecting and analyzing catalytic double oxides, which is useful for knowing in advance what kind of exhaust gas purification characteristics will be obtained when double oxides are actually used as catalysts. Let it be an issue.

本発明は、このような課題に対して、ラマン分光分析によって得られる上記ピーク強度比の温度による変化如何が、当該複酸化物を触媒に利用したときの触媒性能に関連していることを見いだして完成されたものであり、当該ピーク強度比の温度による変化に基いて当該複酸化物の結晶構造特性を検査するようにした。     The present invention has found that the change in the peak intensity ratio obtained by Raman spectroscopic analysis with respect to such a problem is related to the catalyst performance when the double oxide is used as a catalyst. The crystal structure characteristics of the double oxide were examined based on the change in the peak intensity ratio with temperature.

請求項1に係る発明は、Zrを含有する触媒用複酸化物粉末の検査分析方法であって、
ラマン分光分析により、上記複酸化物粉末に含まれる酸素原子に関連するラマンシフトの第1波数域のピーク強度I1と第2波数域のピーク強度I2との比I1/I2を、還元雰囲気中、複数の温度において求め、
上記ピーク強度比I1/I2が温度に依存して変化する度合を求め、
上記ピーク強度比I1/I2の変化度合に基いて上記複酸化物粉末の酸素原子が関与する結晶構造特性を検査することを特徴とする。
The invention according to claim 1 is a method for inspecting and analyzing catalyst double oxide powder containing Zr,
By Raman spectroscopic analysis, the ratio I 1 / I 2 of the peak intensity I 1 in the first wave number region and the peak intensity I 2 in the second wave number region of the Raman shift related to oxygen atoms contained in the above-mentioned double oxide powder is Obtained at multiple temperatures in a reducing atmosphere,
The degree to which the peak intensity ratio I 1 / I 2 changes depending on the temperature is determined,
The crystal structure characteristics of the double oxide powder in which oxygen atoms are involved are examined based on the degree of change in the peak intensity ratio I 1 / I 2 .

すなわち、触媒には活性を呈する温度があり、その活性温度は一般には常温よりも高い。例えば排気ガス浄化用触媒にあっては、通常は250℃以上の温度で活性を呈するようになり、また、排ガスに晒されることによって600℃、700℃という高温になることもある。このような温度変化は、その触媒に使用されている複酸化物の結晶構造に影響を及ぼし、その構造変化は当該触媒の性能に影響を及ぼす。     That is, the catalyst has a temperature exhibiting activity, and the activation temperature is generally higher than room temperature. For example, an exhaust gas purifying catalyst normally exhibits activity at a temperature of 250 ° C. or higher, and may become high temperatures of 600 ° C. and 700 ° C. when exposed to exhaust gas. Such a temperature change affects the crystal structure of the double oxide used in the catalyst, and the structure change affects the performance of the catalyst.

この結晶構造の変化とラマンシフト特性との関係を図1に模式的に示す。同図の2つのラマンシフト特性のうち上側は複酸化物が高温時に示す特性であり、下側は同じ複酸化物が低温時に示す特性である。このように、低温時と高温時のラマンシフト特性は相異なり、従って、この複酸化物に含まれる酸素原子が関連する第1波数域のピーク強度I1と第2波数域のピーク強度I2との比I1/I2も温度によって異なる。 The relationship between the change in crystal structure and the Raman shift characteristic is schematically shown in FIG. Of the two Raman shift characteristics in the figure, the upper side is a characteristic exhibited by the double oxide at a high temperature, and the lower side is a characteristic exhibited by the same double oxide at a low temperature. As described above, the Raman shift characteristics at the low temperature and the high temperature are different. Therefore, the peak intensity I 1 in the first wave number region and the peak intensity I 2 in the second wave number region related to the oxygen atoms contained in the complex oxide are different. And the ratio I 1 / I 2 also depends on the temperature.

このピーク強度比I1/I2の違いは、図1の右側に示す当該複酸化物の結晶において、酸素原子が占める位置のずれの大小に起因するものである。この場合、破線の丸は酸素原子の理想位置を示し、実線の丸は酸素原子が実際に占める位置を示している。ピーク強度比I1/I2が大きい低温時は酸素原子の位置ずれが大きく、ピーク強度比I1/I2が小さい高温時は酸素原子の位置ずれが小さい。 The difference in the peak intensity ratio I 1 / I 2 is due to the difference in the position occupied by oxygen atoms in the double oxide crystal shown on the right side of FIG. In this case, the broken-line circle indicates the ideal position of the oxygen atom, and the solid-line circle indicates the position actually occupied by the oxygen atom. When the peak intensity ratio I 1 / I 2 is large, the oxygen atom has a large positional shift, and when the peak intensity ratio I 1 / I 2 is small, the oxygen atom has a small positional shift.

そうして、低温時と高温時とでピーク強度比I1/I2が大きく変化するということは、それだけ当該複酸化物の結晶構造が歪み易いことを意味し、例えば排ガス浄化用触媒の酸素吸蔵材であれば、酸素吸蔵能が高くなって排ガス浄化性能が良くなる。 Thus, the fact that the peak intensity ratio I 1 / I 2 changes greatly between low temperature and high temperature means that the crystal structure of the double oxide is easily distorted. If it is an occlusion material, the oxygen occlusion ability is increased and the exhaust gas purification performance is improved.

そこで、本発明は、上記ピーク強度比I1/I2が温度に依存して変化する度合を求め、この変化度合に基いて上記複酸化物粉末の結晶構造特性を検査するようにしたものである。また、還元雰囲気中でラマン分光分析を行なうようにしたから、温度が変化するときの酸素原子の挙動が関連するラマンシフト特性を精度良く捉える上で有利になる。 Therefore, the present invention obtains the degree to which the peak intensity ratio I 1 / I 2 changes depending on the temperature, and examines the crystal structure characteristics of the double oxide powder based on the degree of change. is there. In addition, since the Raman spectroscopic analysis is performed in a reducing atmosphere, it is advantageous in accurately capturing the Raman shift characteristics related to the behavior of oxygen atoms when the temperature changes.

よって、本発明によれば、当該複酸化物粉末を触媒に利用したときの触媒性能を事前に評価することができ、この検査結果に基づいて複酸化物を選別して触媒に使用すれば、品質が安定した触媒を調製することができる。     Therefore, according to the present invention, it is possible to evaluate in advance the catalyst performance when the double oxide powder is used as a catalyst, and if the double oxide is selected based on the inspection result and used in the catalyst, A catalyst with stable quality can be prepared.

上記変化度合としては、第1温度でのピーク強度比(I1/I2T1から第1温度とは異なる第2温度でのピーク強度比(I1/I2T2への変化率、ピーク強度比(I1/I2T1に対するピーク強度比(I1/I2T2の比率(I1/I2T2/(I1/I2T1、或いはピーク強度比(I1/I2T1からピーク強度比(I1/I2T2への変化量(両ピーク強度比の差)のいずれを採用してもよい。 As the degree of change, the rate of change from the peak intensity ratio (I 1 / I 2 ) T1 at the first temperature to the peak intensity ratio (I 1 / I 2 ) T2 at the second temperature different from the first temperature, peak intensity ratio (I 1 / I 2) peak intensity ratio T1 (I 1 / I 2) T2 ratio of (I 1 / I 2) T2 / (I 1 / I 2) T1, or the peak intensity ratio (I 1 / I 2 ) Any amount of change from T1 to peak intensity ratio (I 1 / I 2 ) T2 (difference between both peak intensity ratios) may be employed.

請求項2に係る発明は、請求項1において、
上記複酸化物粉末は、Zrを50モル%以上含有する立方晶構造のZr系複酸化物であり、
上記第1波数域及び第2波数域のうちの一方は470cm-1付近の波数域であり、他方は630cm-1付近の波数域であることを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
The complex oxide powder is a Zr complex oxide having a cubic structure containing 50 mol% or more of Zr,
One of the first wave number region and the second wave number region is a wave number region near 470 cm −1 , and the other is a wave number region near 630 cm −1 .

すなわち、Zrリッチの複酸化物の場合、その酸素原子が関連するラマンシフトのピークは、470cm-1付近と630cm-1付近とに現れる。よって、第1波数域及び第2波数域を上述の如く設定することにより、上記ピーク強度比I1/I2の温度による変化度合に基いて複酸化物粉末の結晶構造特性を的確に検査することができる。 That is, in the case of a Zr-rich double oxide, the Raman shift peaks associated with the oxygen atoms appear around 470 cm −1 and 630 cm −1 . Therefore, by setting the first wave number region and the second wave number region as described above, the crystal structure characteristics of the double oxide powder are accurately inspected based on the degree of change of the peak intensity ratio I 1 / I 2 with temperature. be able to.

請求項3に係る発明は、請求項1において、
上記複酸化物粉末は、Ceを50モル%以上含有する立方晶構造のCe−Zr系複酸化物であり、
上記第1波数域及び第2波数域のうちの一方は300cm-1付近の波数域であり、他方は470cm-1付近の波数域であることを特徴とする。
The invention according to claim 3 is the invention according to claim 1,
The double oxide powder is a Ce-Zr double oxide having a cubic structure containing 50 mol% or more of Ce,
One of the first wavenumber range and the second wavenumber range is the wave number range near 300 cm -1, the other is being a wavenumber range near 470 cm -1.

すなわち、Zrリッチの複酸化物の場合、その酸素原子が関連するラマンシフトのピークは、300cm-1付近と470cm-1付近とに現れる。よって、第1波数域及び第2波数域を上述の如く設定することにより、上記ピーク強度比I1/I2の温度による変化度合に基いて複酸化物粉末の結晶構造特性を的確に検査することができる。 That is, in the case of Zr rich composite oxide, the peak of the Raman shift the oxygen atoms associated appears in the vicinity of 300 cm -1 and near 470 cm -1. Therefore, by setting the first wave number region and the second wave number region as described above, the crystal structure characteristics of the double oxide powder are accurately inspected based on the degree of change of the peak intensity ratio I 1 / I 2 with temperature. be able to.

以上のように本発明によれば、ラマン分光分析により、Zrを含有する複酸化物粉末に含まれる酸素原子に関連するラマンシフトの第1波数域のピーク強度I1と第2波数域のピーク強度I2との比I1/I2を、還元雰囲気中、複数の温度において求め、このピーク強度比I1/I2が温度に依存して変化する度合を求め、この変化度合に基いて上記複酸化物粉末の酸素原子が関与する結晶構造特性を検査するようにしたから、当該複酸化物粉末を触媒に利用したときの触媒性能を事前に評価することができ、この検査結果に基づいて複酸化物を選別して触媒に使用すれば、品質が安定した触媒を調製することができる。 As described above, according to the present invention, by Raman spectroscopy, the peak intensity I 1 in the first wavenumber region and the peak in the second wavenumber region of the Raman shift related to oxygen atoms contained in the complex oxide powder containing Zr. The ratio I 1 / I 2 to the intensity I 2 is obtained at a plurality of temperatures in a reducing atmosphere, the degree to which this peak intensity ratio I 1 / I 2 changes depending on the temperature is obtained, and based on this degree of change Since the crystal structure characteristics involving oxygen atoms of the double oxide powder are inspected, the catalyst performance when the double oxide powder is used as a catalyst can be evaluated in advance. Thus, if a double oxide is selected and used as a catalyst, a catalyst with stable quality can be prepared.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<複酸化物の調製>
本発明に係る方法を適用する試料として、表1に示すように組成が異なる2種類の複酸化物粉末、すなわち、Zrリッチ複酸化物及びCeリッチ複酸化物の各粉末をそれぞれ複数ロット調製した。
<Preparation of double oxide>
As a sample to which the method according to the present invention is applied, two types of double oxide powders having different compositions as shown in Table 1, that is, a plurality of lots of each powder of Zr rich double oxide and Ce rich double oxide were prepared. .

Figure 0004457897
上記2種類の複酸化物粉末は材料組成が異なるだけで調製法は同じであり、それは次の通りである。オキシ硝酸ジルコニウム、硝酸第一セリウム、硝酸ネオジム(III)含水、硝酸ロジウム溶液の所定量を混合し、水を加えて室温で約1時間撹拌した。この混合溶液を80℃まで加熱昇温させた後、これに撹拌しながら28%アンモニア水を所定量加えて混合した。アンモニア水の混合により白濁した溶液を一昼夜放置し、生成したゲルを遠心分離器にかけて十分に水洗した。この水洗したゲルを約150℃の温度で乾燥させた後、400℃の温度に5時間保持し、次いで500℃の温度に2時間保持するという条件で焼成した。
Figure 0004457897
The above two types of double oxide powders are different in material composition and the preparation method is the same, which is as follows. Predetermined amounts of zirconium oxynitrate, cerium nitrate, water containing neodymium (III) nitrate, and rhodium nitrate solution were mixed, water was added, and the mixture was stirred at room temperature for about 1 hour. This mixed solution was heated up to 80 ° C., and then a predetermined amount of 28% ammonia water was added and mixed with stirring. The solution clouded by mixing with aqueous ammonia was left for a whole day and night, and the resulting gel was sufficiently washed with a centrifuge. The water-washed gel was dried at a temperature of about 150 ° C. and then calcined under the condition that it was held at a temperature of 400 ° C. for 5 hours and then held at a temperature of 500 ° C. for 2 hours.

<X線回折による解析>
上記Zrリッチ複酸化物粉末(ロットA〜D)のX線回折測定の結果を図2に示し、Ceリッチ複酸化物粉末(ロットE〜G)のX線回折測定の結果を図3に示す。図2から明らかなように、ロットA〜DのZrリッチ複酸化物粉末の回折ピークはいずれも同じように現れており、このX線回折ではロットA〜Dの各複酸化物粉末が立方晶構造をとることはわかるが、ロット間の結晶構造の違いは認められない。この点は図3に示すロットE〜GのZrリッチ複酸化物粉末も同じであり、X線回折ではロットE〜G間の結晶構造の違いは認められない。
<Analysis by X-ray diffraction>
The result of the X-ray diffraction measurement of the Zr-rich double oxide powder (lots A to D) is shown in FIG. 2, and the result of the X-ray diffraction measurement of the Ce-rich double oxide powder (lots E to G) is shown in FIG. . As is clear from FIG. 2, the diffraction peaks of the Zr-rich double oxide powders of lots A to D all appear in the same manner. In this X-ray diffraction, the double oxide powders of lots A to D are cubic crystals. Although it can be seen that it has a structure, there is no difference in crystal structure between lots. This is the same for the Zr-rich double oxide powders of lots E to G shown in FIG. 3, and no difference in crystal structure between lots E to G is observed by X-ray diffraction.

<ラマン分光分析>
上記Zrリッチ複酸化物粉末(ロットA〜D)及びCeリッチ複酸化物粉末(ロットE〜G)について、還元雰囲気(水素ガス雰囲気)中で、前者は第1温度30℃及び第2温度600℃の各々で、後者は第1温度30℃及び第2温度100℃の各々で、ラマン分光分析を行なった。結果は、Zrリッチ複酸化物粉末(ロットA〜D)については図4に、Ceリッチ複酸化物粉末(ロットE〜G)については図5に示す。
<Raman spectroscopy>
Regarding the Zr-rich double oxide powder (lots A to D) and the Ce-rich double oxide powder (lots E to G), the former has a first temperature of 30 ° C. and a second temperature of 600 in a reducing atmosphere (hydrogen gas atmosphere). At each temperature, Raman spectroscopy analysis was performed at a first temperature of 30 ° C. and a second temperature of 100 ° C., respectively. The results are shown in FIG. 4 for the Zr-rich double oxide powder (lots A to D) and in FIG. 5 for the Ce-rich double oxide powder (lots E to G).

図4及び図5において、A〜Gはロット記号を、温度は分析温度を、I1は第1波数域のピーク強度を、I2は第2波数域のピーク強度をそれぞれ表す。図4のZrリッチ複酸化物粉末(ロットA〜D)の第1波数域は470cm-1付近の波数域(440cm-1〜500cm-1)、第2波数域は630cm-1付近の波数域(600cm-1〜660cm-1)、図5のCeリッチ複酸化物粉末(ロットE〜G)の第1波数域は300cm-1付近の波数域(270cm-1〜330cm-1)、第2波数域は470cm-1付近の波数域(440cm-1〜500cm-1)である。 4 and 5, AG are lot symbols, temperature is analysis temperature, I 1 is peak intensity in the first wave number region, and I 2 is peak intensity in the second wave number region. The first wavenumber range is the wave number region around 470 cm -1 of the Zr-rich mixed oxide powder of FIG. 4 (Lot A~D) (440cm -1 ~500cm -1) , wavenumber range near the second wavenumber range is 630 cm -1 (600cm -1 ~660cm -1), the first wavenumber range is the wave number region around 300 cm -1 of Ce rich composite oxide powder of FIG. 5 (lot E~G) (270cm -1 ~330cm -1) , a second wavenumber range is the wave number range near 470cm -1 (440cm -1 ~500cm -1) .

上記各ロットの上記各測定温度での第1周波数域のピーク強度I1、第2波数域のピーク強度I2、第1温度でのピーク強度比(I1/I2T1、第2温度でのピーク強度比(I1/I2T2、ピーク強度比(I1/I2T1からピーク強度比(I1/I2T2への下記変化率、並びにピーク強度比(I1/I2T1に対するピーク強度比(I1/I2T2の比率(I1/I2T2/(I1/I2T1は表2に示す通りである。 Peak intensity I 1 of the first frequency range above the respective measured temperature of each lot, the peak intensity I 2 of the second wavenumber range, the peak intensity ratio of the first temperature (I 1 / I 2) T1, a second temperature Peak intensity ratio (I 1 / I 2 ) T2 , peak intensity ratio (I 1 / I 2 ) T1 to peak intensity ratio (I 1 / I 2 ) T2 below change rate, and peak intensity ratio (I 1 / I 2 ) Ratio of peak intensity to T 1 (I 1 / I 2 ) T 2 ratio (I 1 / I 2 ) T 2 / (I 1 / I 2 ) T 1 is as shown in Table 2.

変化率=((I1/I2T1−(I1/I2T2)/(I1/I2T1
なお、図1に示すように、第1周波数域のピーク強度I1は、ピークの両端の終点を結ぶベースラインを基準(強度零)として、第2波数域のピーク強度I2は、ピークの高波数側の終点より水平に引いたベースラインを基準(強度零)として測定した。
Rate of change = ((I 1 / I 2 ) T 1 − (I 1 / I 2 ) T 2 ) / (I 1 / I 2 ) T 1
As shown in FIG. 1, the peak intensity I 1 in the first frequency range is based on the baseline connecting the end points at both ends of the peak (zero intensity), and the peak intensity I 2 in the second frequency range is A baseline drawn horizontally from the end point on the high wavenumber side was used as a reference (zero intensity).

Figure 0004457897
Zrリッチ複酸化物粉末では低温側のピーク強度比(I1/I2T1から高温側のピーク強度比(I1/I2T2への変化率がプラスの値になり、Ceリッチ複酸化物粉末ではマイナスの値になっているのは、前者は温度上昇と共に酸素原子の理想位置からのずれが小さくなり、後者は逆にそのずれが大きくなるためである。
Figure 0004457897
Zr is the value of the rate of change plus low temperature side peak intensity ratio of from (I 1 / I 2) T1 peak intensity ratio of the high temperature side to the (I 1 / I 2) T2 is rich mixed oxide powder, Ce-rich double The reason why the oxide powder has a negative value is that, in the former, the deviation from the ideal position of the oxygen atom decreases as the temperature rises, and in the latter, the deviation increases.

<排ガス浄化性能>
上記各ロットA〜Gの複酸化物粉末について、これに活性アルミナ、バインダ及び水の所定量を混合することによりスラリーを調製し、これにコージェライト製ハニカム状担体を浸漬して引き上げ、余分なスラリーを吹き飛ばした後、500℃の温度に2時間保持する焼成を行なうことにより、各供試触媒を得た。これら供試触媒に対しては、大気雰囲気において1000℃の温度に24時間保持するエージングを行なった。
<Exhaust gas purification performance>
About the mixed oxide powder of each of the above lots A to G, a slurry is prepared by mixing a predetermined amount of activated alumina, a binder and water, and a honeycomb carrier made of cordierite is dipped in this and pulled up. After the slurry was blown off, each test catalyst was obtained by performing calcination that was held at a temperature of 500 ° C. for 2 hours. These test catalysts were aged by holding them at a temperature of 1000 ° C. for 24 hours in an air atmosphere.

そうして、上記各供試触媒をモデルガス流通反応装置に取り付け、触媒に流入するモデルガス温度を100℃から500℃まで漸次上昇させていき、触媒入口ガス温度400℃のときのNOx浄化率を測定した。モデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h-1、昇温速度は30℃/分である。 Then, each test catalyst is attached to the model gas flow reactor, and the model gas temperature flowing into the catalyst is gradually increased from 100 ° C. to 500 ° C., and the NOx purification rate when the catalyst inlet gas temperature is 400 ° C. Was measured. The model gas was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min.

結果は、Zrリッチ複酸化物粉末(ロットA〜D)については図6に、Ceリッチ複酸化物粉末(ロットE〜G)については図7に示す。同図のA〜Gはロット記号である。     The results are shown in FIG. 6 for the Zr-rich double oxide powder (lots A to D) and in FIG. 7 for the Ce-rich double oxide powder (lots E to G). A to G in the figure are lot symbols.

ロットA〜DのZrリッチ複酸化物粉末は、先の表2によれば30℃でのピーク強度比は略同じであるが、図6に示すようにそれらのNO浄化率には比較的大きな差を生じている。この点は図7に示すCeリッチ複酸化物粉末も同じである。一方、ピーク強度比の変化率とNOx浄化率との関係をみると、Zrリッチ複酸化物粉末及びCeリッチ複酸化物粉末のいずれも、ピーク強度比の変化率が大きくなるに従ってNOx浄化率が高くなる傾向を示している。また、表2のピーク強度比の比率でみれば、比率1(ピーク強度比の変化なし)からのずれが大きくなるほどNOx浄化率が高くなるということができる。すなわち、ピーク強度比I1/I2が温度に依存して変化する度合が大きいほどNOx浄化率が高くなっている。上記ロット間のNOx浄化率の差違は、上記複酸化物粉末は触媒の酸素吸蔵材として働くところ、各ロットの酸素原子が位置ずれを生じ易いか否か、換言すれば結晶が歪み易いか否かが相違し、そのためにその酸素吸蔵能が相異なることによると認められる。 According to Table 2 above, the Zr-rich double oxide powders of lots A to D have substantially the same peak intensity ratio at 30 ° C., but their NO purification rates are relatively large as shown in FIG. There is a difference. This also applies to the Ce-rich double oxide powder shown in FIG. On the other hand, looking at the relationship between the change rate of the peak intensity ratio and the NOx purification rate, both the Zr-rich double oxide powder and the Ce-rich double oxide powder have a NOx purification rate that increases as the change rate of the peak intensity ratio increases. It shows a tendency to increase. Further, in terms of the ratio of the peak intensity ratio in Table 2, it can be said that the NOx purification rate increases as the deviation from the ratio 1 (no change in the peak intensity ratio) increases. That is, the NOx purification rate becomes higher as the degree to which the peak intensity ratio I 1 / I 2 changes depending on the temperature is larger. The difference in the NOx purification rate between the lots is that the double oxide powder works as an oxygen storage material for the catalyst, so whether or not the oxygen atoms in each lot are likely to be displaced, in other words, whether the crystals are easily distorted. It is recognized that this is due to the difference in oxygen storage capacity.

以上により、本発明に係る検査分析方法によれば、複酸化物粉末の酸素原子が関与する結晶構造特性を分析することができ、これにより、この複酸化物粉末を触媒に利用したときの触媒性能を事前に的確に評価することができ、よって、その検査結果に基づいて複酸化物粉末を選別して触媒に使用すれば、品質が安定した触媒を調製することができることがわかる。     As described above, according to the inspection analysis method according to the present invention, it is possible to analyze the crystal structure characteristics in which oxygen atoms of the double oxide powder are involved. It can be seen that the performance can be accurately evaluated in advance, and therefore a catalyst with stable quality can be prepared by selecting the double oxide powder based on the inspection result and using it as the catalyst.

なお、本発明は、上述のCeとZrとを含有する複酸化物粉末以外に、ZrとCe以外の希土類元素(例えばPr)とを含有する複酸化物などにも適用することができる。     The present invention can be applied to a double oxide containing a rare earth element other than Zr and Ce (for example, Pr) in addition to the above-mentioned double oxide powder containing Ce and Zr.

複酸化物粉末の低温時及び高温時のラマンシフト特性とその結晶における酸素位置のずれとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the Raman shift characteristic at the time of low temperature and high temperature of double oxide powder, and the shift | offset | difference of oxygen position in the crystal | crystallization. ロットA〜DのZrリッチ複酸化物粉末のX線回折チャート図である。It is an X-ray diffraction chart of the Zr rich double oxide powder of lots A to D. ロットE〜GのCeリッチ複酸化物粉末のX線回折チャート図である。FIG. 3 is an X-ray diffraction chart of Ce-rich double oxide powders of lots E to G. ロットA〜DのZrリッチ複酸化物粉末の低温時及び高温時のラマンシフト特性図である。It is a Raman shift characteristic view at the time of low temperature and high temperature of the Zr rich double oxide powder of lots A to D. ロットE〜GのCeリッチ複酸化物粉末の低温時及び高温時のラマンシフト特性図である。It is a Raman shift characteristic view at the time of low temperature and high temperature of the Ce rich double oxide powder of lots E to G. Zrリッチ複酸化物粉末のピーク強度比の変化率とNOx浄化率との関係を示すグラフ図である。It is a graph which shows the relationship between the change rate of the peak intensity ratio of Zr rich complex oxide powder, and a NOx purification rate. Ceリッチ複酸化物粉末のピーク強度比の変化率とNOx浄化率との関係を示すグラフ図である。It is a graph which shows the relationship between the change rate of the peak intensity ratio of Ce rich complex oxide powder, and a NOx purification rate.

符号の説明Explanation of symbols

なし     None

Claims (3)

Zrを含有する触媒用複酸化物粉末の検査分析方法であって、
ラマン分光分析により、上記複酸化物粉末に含まれる酸素原子に関連するラマンシフトの第1波数域のピーク強度I1と第2波数域のピーク強度I2との比I1/I2を、還元雰囲気中、複数の温度において求め、
上記ピーク強度比I1/I2が温度に依存して変化する度合を求め、
上記ピーク強度比I1/I2の変化度合に基いて上記複酸化物粉末の酸素原子が関与する結晶構造特性を検査することを特徴とする触媒用複酸化物の検査分析方法。
A method for inspecting and analyzing a double oxide powder for a catalyst containing Zr,
By Raman spectroscopic analysis, the ratio I 1 / I 2 of the peak intensity I 1 in the first wave number region and the peak intensity I 2 in the second wave number region of the Raman shift related to oxygen atoms contained in the above-mentioned double oxide powder is Obtained at multiple temperatures in a reducing atmosphere,
The degree to which the peak intensity ratio I 1 / I 2 changes depending on the temperature is determined,
A method for inspecting and analyzing a catalyst double oxide, comprising: examining a crystal structure characteristic involving oxygen atoms of the double oxide powder based on a degree of change in the peak intensity ratio I 1 / I 2 .
請求項1において、
上記複酸化物粉末は、Zrを50モル%以上含有する立方晶構造のZr系複酸化物であり、
上記第1波数域及び第2波数域のうちの一方は470cm-1付近の波数域であり、他方は630cm-1付近の波数域であることを特徴とする触媒用複酸化物粉末の検査分析方法。
In claim 1,
The complex oxide powder is a Zr complex oxide having a cubic structure containing 50 mol% or more of Zr,
One of the first wave number region and the second wave number region is a wave number region near 470 cm −1 , and the other is a wave number region near 630 cm −1. Method.
請求項1において、
上記複酸化物粉末は、Ceを50モル%以上含有する立方晶構造のCe−Zr系複酸化物であり、
上記第1波数域及び第2波数域のうちの一方は300cm-1付近の波数域であり、他方は470cm-1付近の波数域であることを特徴とする触媒用複酸化物粉末の検査分析方法。
In claim 1,
The double oxide powder is a Ce-Zr double oxide having a cubic structure containing 50 mol% or more of Ce,
Above one of the first wavenumber range and the second wavenumber range and the wave number range near 300 cm -1, the other test analysis of catalyst for double oxide powder which is a wave number range near 470 cm -1 Method.
JP2005009171A 2005-01-17 2005-01-17 Inspection and analysis method of double oxide powder for catalyst Expired - Fee Related JP4457897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009171A JP4457897B2 (en) 2005-01-17 2005-01-17 Inspection and analysis method of double oxide powder for catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009171A JP4457897B2 (en) 2005-01-17 2005-01-17 Inspection and analysis method of double oxide powder for catalyst

Publications (2)

Publication Number Publication Date
JP2006194827A JP2006194827A (en) 2006-07-27
JP4457897B2 true JP4457897B2 (en) 2010-04-28

Family

ID=36801015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009171A Expired - Fee Related JP4457897B2 (en) 2005-01-17 2005-01-17 Inspection and analysis method of double oxide powder for catalyst

Country Status (1)

Country Link
JP (1) JP4457897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211584A (en) * 2009-03-11 2010-09-24 Oki Electric Ind Co Ltd Reception data management system and server used for the same
CN104128603B (en) * 2014-08-13 2016-04-06 厦门大学 Metal nanoparticle of a kind of zirconium base porous crust parcel and preparation method thereof

Also Published As

Publication number Publication date
JP2006194827A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US9511353B2 (en) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US7498288B2 (en) Exhaust gas-purifying catalyst and method of manufacturing the same
US9433930B2 (en) Methods for selecting and applying a layer of Cu—Mn spinel phase to ZPGM catalyst systems for TWC application
US20150105245A1 (en) Zero-PGM Catalyst with Oxygen Storage Capacity for TWC Systems
JP5812987B2 (en) Catalyst for lean burn engine
US20150051067A1 (en) Oxygen storage material without rare earth metals
US20140271387A1 (en) Optimal Composition of Copper-Manganese Spinel in ZPGM Catalyst for TWC Applications
JP2016540641A (en) OSM heat-stable composition containing no rare earth metal
JP5773337B2 (en) Oxidation catalyst and diesel particulate filter
BR112017028424B1 (en) NITROUS OXIDE REMOVAL CATALYST COMPOSITE, EMISSION TREATMENT SYSTEM, AND, METHOD TO TREAT EXHAUST GASES
US20150148222A1 (en) Effect of Support Oxides on Optimal Performance and Stability of ZPGM Catalyst Systems
JP3812567B2 (en) Exhaust gas purification catalyst material and method for producing the same
WO2014183005A1 (en) Zpgm catalytic converters (twc application)
WO2012120349A1 (en) Exhaust gas purification catalyst
JP2006334490A (en) Catalyst for cleaning exhaust gas
WO2012093600A1 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP2005161143A5 (en)
JP4269831B2 (en) Exhaust gas purification catalyst
JP2010030823A (en) Compound oxide and catalyst containing the compound oxide for cleaning exhaust gas
JP4457897B2 (en) Inspection and analysis method of double oxide powder for catalyst
JP4835028B2 (en) Exhaust gas purification catalyst
JP2008212833A (en) Composite oxide for exhaust gas purifying catalyst and exhaust gas purifying catalyst containing this composite oxide
JP2006297259A (en) Exhaust gas clarifying catalyst
JP4577408B2 (en) Exhaust gas purification catalyst
JPH06106062A (en) Catalyst for purification of exhaust gas and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees