JP4457673B2 - Plating cold-rolled steel sheet for high formability fuel tank excellent in secondary work brittleness resistance and plating adhesion and method for producing the same - Google Patents
Plating cold-rolled steel sheet for high formability fuel tank excellent in secondary work brittleness resistance and plating adhesion and method for producing the same Download PDFInfo
- Publication number
- JP4457673B2 JP4457673B2 JP2004010969A JP2004010969A JP4457673B2 JP 4457673 B2 JP4457673 B2 JP 4457673B2 JP 2004010969 A JP2004010969 A JP 2004010969A JP 2004010969 A JP2004010969 A JP 2004010969A JP 4457673 B2 JP4457673 B2 JP 4457673B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- plating
- temperature
- cold
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、引張強さが 440 MPa以上で、かつr値が 2.0以上という優れた強度−r値バランスを有し、しかも耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷間鋼板およびその製造方法に関するものである。 The present invention has an excellent strength-r value balance with a tensile strength of 440 MPa or more and an r value of 2.0 or more, and also has a high formability fuel tank excellent in secondary work brittleness resistance and plating adhesion. The present invention relates to a plated cold steel sheet and a manufacturing method thereof.
自動車の燃料タンクは、孔あき腐食や腐食生成物のないことが要求される。そのため、性能としては耐食性を主目的にした開発が行われてきた。
ところが、近年、自動車の軽量化のために、燃料タンク用の鋼板には薄肉化による軽量化と複雑な形状への加工性が求められるようになってきた。
この要求に応えるためには、下地鋼板の引張強さを 420 MPa級以上に高強度化すると共に、加工性の一層の向上を図らなければならない。
Automotive fuel tanks are required to be free of perforated corrosion and corrosion products. For this reason, development has been carried out mainly for corrosion resistance as performance.
However, in recent years, in order to reduce the weight of automobiles, steel plates for fuel tanks have been required to be lightened by thinning and workability into complicated shapes.
In order to meet this requirement, it is necessary to increase the tensile strength of the base steel plate to 420 MPa class or higher and further improve the workability.
燃料タンク用鋼板としては、従来、例えば特許文献1では、鋼板表面に、Niめっき、ZnリッチめっきおよびSnリッチめっきのような多層めっきを施すことによって、燃料タンクの耐食性の向上を図る技術が提案されている。
しかしながら、この鋼板は、耐食性には優れるものの、下地鋼板の強度を上げた場合、タンクへの成形性としては下地鋼板の成形性を超えるものではないため、複雑なタンク形状に成形することはできないという問題があった。
Conventionally, as a steel plate for a fuel tank, for example, Patent Document 1 proposes a technique for improving the corrosion resistance of a fuel tank by applying multilayer plating such as Ni plating, Zn rich plating and Sn rich plating on the surface of the steel plate. Has been.
However, although this steel plate is excellent in corrosion resistance, when the strength of the base steel plate is increased, the formability to the tank does not exceed the formability of the base steel plate, so it cannot be formed into a complicated tank shape. There was a problem.
この点、下地鋼板の加工性の向上を試みたものとして、特許文献2には、極低炭素鋼にTiとNbを加えて成形性を向上させ、またBの添加で耐衝撃性を付与し、さらにめっき密着性の向上のためにめっき皮膜中へのFeの拡散防止を目的として0.5 mass%以下のCuを添加した燃料タンク用防錆鋼板が提案されている。
しかしながら、この鋼板では、燃料タンクに必要とされる強度:420 MPa 級以上の強度を得ることができない上に、深絞り成形性を示すr値は1.5 程度と成形性の点でも十分ではなかった。しかも、この鋼板は、結晶粒が大きく、めっきと下地の反応が下地鋼板の粒界に集中するため、めっき密着性が部分的に低いという問題があった。この様に一部でもめっき密着性が低い場合、プレス時にめっきが剥がれ、タンク加工後に必要な耐食性を保持できない。
In this respect, as an attempt to improve the workability of the base steel sheet, Patent Document 2 describes that ultra-low carbon steel is added with Ti and Nb to improve formability, and addition of B gives impact resistance. In order to further improve the plating adhesion, a rust-proof steel sheet for fuel tanks with addition of 0.5 mass% or less of Cu has been proposed for the purpose of preventing the diffusion of Fe into the plating film.
However, with this steel sheet, it is not possible to obtain the strength required for the fuel tank: 420 MPa class or higher, and the r value indicating deep drawability is about 1.5, which is not sufficient in terms of formability. . Moreover, this steel sheet has a problem that the plating adhesion is partially low because the crystal grains are large and the reaction between the plating and the base concentrates on the grain boundary of the base steel. In this way, if even a part of the plating adhesion is low, the plating is peeled off during pressing, and the necessary corrosion resistance cannot be maintained after tank processing.
また、特に燃料タンクを意図したものではないが、成形性を改善したものとして、特許文献3には、極低炭素鋼にTi,Nbを添加し、さらにCuを 0.5〜1.5 mass%添加した鋼を、Ar3点以下の温度で仕上圧延し、さらにCu析出処理を行うことにより、440 MPa 以上の強度と優れた成形性を有する熱延鋼板の製造技術が開示されている。
しかしながら、この技術では、スラブ加熱温度を 950℃程度と超低温化しなければならず、このような低い温度で熱間圧延することは圧延機への負荷を考えると、実際には不可能である。
Also, although not specifically intended for a fuel tank, Patent Document 3 describes steel in which Ti and Nb are added to ultra-low carbon steel and Cu is further added in an amount of 0.5 to 1.5 mass%, as having improved formability. Is manufactured and rolled at a temperature of 3 points or less of Ar, and further subjected to Cu precipitation treatment, thereby manufacturing a hot rolled steel sheet having a strength of 440 MPa or more and excellent formability.
However, with this technology, the slab heating temperature must be reduced to an ultra-low temperature of about 950 ° C., and hot rolling at such a low temperature is actually impossible in view of the load on the rolling mill.
さらに、特許文献4には、極低炭素鋼に、Nb,Tiを添加し、さらにCuを添加した鋼を、Ar3点以下で潤滑圧延し、再結晶焼鈍する技術が開示されている。
しかしながら、この技術で得られる鋼板の強度とr値のバランスは、490 MPa 級でr値1.3 程度であり、十分な深絞り性を有しているとはいえなかった。
Further, Patent Document 4 discloses a technique in which Nb, Ti is added to ultra-low carbon steel, and steel added with Cu is lubricated and rolled at an Ar 3 point or less and recrystallized and annealed.
However, the balance between the strength and the r value of the steel sheet obtained by this technique is about 490 MPa class with an r value of about 1.3, and it cannot be said that the steel sheet has sufficient deep drawability.
その他、特許文献5には、極低炭素鋼にTi,Nb,Cuを添加し、 500℃から 750℃の温度範囲で50%以上の圧延を行い、焼鈍後、 450〜650 ℃の温度でCuを析出させることからなる加工性に優れた熱延鋼板の製造方法が開示されている。
しかしながら、この方法では、粒界のCがTiとNbによって固定除去されてしまうため、粒界強度が弱く、耐二次加工性の点に問題を残していた。しかも、例えば溶融めっきを行った場合には、粒界にめっきが浸透して液体金属脆化を起こしてしまうという問題があった。従って、このような鋼板に溶融めっきを施しても、耐二次加工脆性およびめっき密着性の優れた高成形性燃料タンク用めっき熱延鋼板を得ることは事実上不可能である。
In addition, in Patent Document 5, Ti, Nb, and Cu are added to ultra-low carbon steel, and rolling is performed at 50% or more in a temperature range of 500 ° C to 750 ° C. After annealing, Cu is heated at a temperature of 450 to 650 ° C. A method for producing a hot-rolled steel sheet having excellent workability comprising precipitating steel is disclosed.
However, in this method, C at the grain boundary is fixedly removed by Ti and Nb, so the grain boundary strength is weak, and there remains a problem in terms of secondary work resistance. Moreover, for example, when hot-dip plating is performed, there is a problem that the plating penetrates into the grain boundary and causes liquid metal embrittlement. Therefore, even if hot-plating is applied to such a steel sheet, it is practically impossible to obtain a hot-formed steel sheet for high formability fuel tank excellent in secondary work brittleness resistance and plating adhesion.
本発明は、上記の問題を有利に解決するもので、耐二次加工脆性およびめっき密着性に優れ、しかも引張強さ≧440 MPa 、r値≧2.0 と強度およびr値のバランスに優れた燃料タンク用めっき冷延鋼板を、その有利な製造方法と共に提案することを目的とする。 The present invention advantageously solves the above-mentioned problems, is excellent in secondary work brittleness resistance and plating adhesion, and has excellent tensile strength ≧ 440 MPa, r value ≧ 2.0, and a balance between strength and r value. The object is to propose a plated cold-rolled steel sheet for tanks together with its advantageous production method.
さて、発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、以下に述べる知見を得た。
(1) Cuがオーステナイト粒界に偏析するとオーステナイトの粒成長が抑制されるものの、フェライト変態後のフェライト粒界では粒成長が抑制されない。
(2) Bを同時に添加するとめっきによる粒界脆化が抑制され、
(3) しかもその後のCu析出処理により鋼を有利に高強度化でき、
(4) さらにフェライト粒径を20μm 以下に抑制することにより、良好な耐二次加工脆性が得られ、
(5) その結果、引張強さ:440 MPa 以上、r値:2.0 以上という優れた強度−r値バランスを有し、しかも耐二次加工性およびめっき密着性に優れためっき冷延鋼板が得られる。
本発明は、上記の知見に立脚するものである。
As a result of intensive studies to achieve the above object, the inventors have obtained the following knowledge.
(1) When Cu segregates at austenite grain boundaries, grain growth of austenite is suppressed, but grain growth is not suppressed at ferrite grain boundaries after ferrite transformation.
(2) When B is added simultaneously, grain boundary embrittlement due to plating is suppressed,
(3) Moreover, the subsequent Cu precipitation treatment can advantageously increase the strength of the steel,
(4) Further, by suppressing the ferrite grain size to 20 μm or less, good secondary work brittleness resistance is obtained,
(5) As a result, a plated cold-rolled steel sheet having excellent strength-r value balance of tensile strength: 440 MPa or more, r value: 2.0 or more, and excellent secondary work resistance and plating adhesion is obtained. It is done.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.01%以下、
Si:0.5 %以下、
Mn:0.15%以上、0.5 %以下、
P:0.03%以下、
S:0.02%以下、
Al:0.1 %以下、
N:0.006 %以下、
Cu:0.5 %以上、2.0 %以下および
B:0.0002%以上、0.0025%以下
を含み、かつ
Ti:0.01%以上、0.1 %未満および
Nb:0.07%以下
のうちから選んだ1種または2種を含有し、残部はFeおよび不可避不純物の組成になり、フェライト単相でかつフェライト粒径が20μm 以下の鋼組織を有し、引張強さが 440 MPa以上で、表面にめっき層をそなえることを特徴とする、耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板。
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.01% or less,
Si: 0.5% or less,
Mn: 0.15% or more, 0.5% or less,
P: 0.03% or less,
S: 0.02% or less,
Al: 0.1% or less,
N: 0.006% or less,
Cu: 0.5% or more and 2.0% or less and B: 0.0002% or more and 0.0025% or less, and
Ti: 0.01% or more, less than 0.1% and
Nb: Contains one or two selected from 0.07% or less, the balance is Fe and inevitable impurities composition, has a steel structure with ferrite single phase and ferrite grain size of 20μm or less, tensile strength A plated cold-rolled steel sheet for fuel tanks with high formability and excellent secondary work brittleness resistance and plating adhesion, characterized by having a plating layer on the surface with a thickness of 440 MPa or more.
2.上記1において、鋼組成が、さらに質量%で、
V:0.1 %以下および
Ni:0.2 %以上、1.0 %以下
のうちから選んだ1種または2種を含有する組成になることを特徴とする、耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板。
2. In the above 1, the steel composition is further mass%,
V: 0.1% or less and
Ni: High formability fuel tank plating excellent in secondary work brittleness resistance and plating adhesion, characterized by containing one or two selected from 0.2% or more and 1.0% or less Cold rolled steel sheet.
3.質量%で、
C:0.01%以下、
Si:0.5 %以下、
Mn:0.15%以上、0.5 %以下、
P:0.03%以下、
S:0.02%以下、
Al:0.1 %以下、
N:0.006 %以下、
Cu:0.5 %以上、2.0 %以下および
B:0.0002%以上、0.0025%以下、
を含み、かつ
Ti:0.01%以上、0.1 %未満および
Nb:0.07%以下
のうちから選んだ1種または2種を含有し、残部はFeおよび不可避不純物の組成よりなる鋼片を、950℃超え、1100℃未満の温度に加熱したのち、仕上圧延温度:750℃未満、750 ℃以下における圧下率:50%以上の条件で熱間圧延し、550 ℃以下の温度で巻き取り、ついで酸洗後、圧下率:50%以上の冷間圧延を行ったのち、焼鈍処理およびめっき処理を施し、さらに450℃以上、650℃以下の温度でCuの析出処理を行うことを特徴とする、耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板の製造方法。
3. % By mass
C: 0.01% or less,
Si: 0.5% or less,
Mn: 0.15% or more, 0.5% or less,
P: 0.03% or less,
S: 0.02% or less,
Al: 0.1% or less,
N: 0.006% or less,
Cu: 0.5% to 2.0% and B: 0.0002% to 0.0025%,
And including
Ti: 0.01% or more, less than 0.1% and
Nb: contain one or two species selected from among 0.07% or less, after the billet balance consisting Fe and inevitable impurities, exceeding 950 ° C., and heated to a temperature below 1100 ° C., finish rolling temperature : Rolling rate below 750 ° C and below 750 ° C: Hot rolled under conditions of 50% or higher, wound at a temperature of 550 ° C or lower, then pickled, then cold rolled at a rolling reduction of 50% or higher A high formability fuel tank with excellent secondary processing brittleness resistance and plating adhesion, which is then annealed and plated, and further subjected to Cu precipitation at temperatures of 450 ° C or higher and 650 ° C or lower. Method for plating cold-rolled steel sheet.
4.質量%で、
C:0.01%以下、
Si:0.5 %以下、
Mn:0.15%以上、0.5 %以下、
P:0.03%以下、
S:0.02%以下、
Al:0.1 %以下、
N:0.006 %以下、
Cu:0.5 %以上、2.0 %以下および
B:0.0002%以上、0.0025%以下、
を含み、かつ
Ti:0.01%以上、0.1 %未満および
Nb:0.07%以下
のうちから選んだ1種または2種を含有し、残部はFeおよび不可避不純物の組成よりなる鋼片を、950℃超え、1100℃未満の温度に加熱したのち、仕上圧延温度:750℃未満、750 ℃以下における圧下率:50%以上の条件で熱間圧延し、550 ℃以下の温度で巻き取ったのち、600 ℃以上の温度での焼鈍、そして酸洗を施し、ついで圧下率:50%以上の冷間圧延を行ったのち、焼鈍処理およびめっき処理を施し、さらに450℃以上、650℃以下の温度でCuの析出処理を行うことを特徴とする、耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板の製造方法。
5.上記3または4において、鋼片の組成が、さらに質量%で、
V:0.1 %以下および
Ni:0.2 %以上、1.0 %以下
のうちから選んだ1種または2種を含有する組成になることを特徴とする、耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板の製造方法。
4). % By mass
C: 0.01% or less,
Si: 0.5% or less,
Mn: 0.15% or more, 0.5% or less,
P: 0.03% or less,
S: 0.02% or less,
Al: 0.1% or less,
N: 0.006% or less,
Cu: 0.5% to 2.0% and B: 0.0002% to 0.0025%,
And including
Ti: 0.01% or more, less than 0.1% and
Nb: contain one or two species selected from among 0.07% or less, after the billet balance consisting Fe and inevitable impurities, exceeding 950 ° C., and heated to a temperature below 1100 ° C., finish rolling temperature : Rolling ratio below 750 ° C and below 750 ° C: Hot rolled under conditions of 50% or higher, wound at a temperature of 550 ° C or lower, annealed at a temperature of 600 ° C or higher, and then pickled. Rolling ratio: 50% or more of cold rolling, followed by annealing and plating, followed by Cu precipitation at a temperature of 450 ° C or higher and 650 ° C or lower. A method for producing a plated cold-rolled steel sheet for a highly formable fuel tank having excellent brittleness and plating adhesion.
5. In the above 3 or 4, the composition of the steel slab is further mass%,
V: 0.1% or less and
Ni: 0.2% or more, 1.0% or less
A method for producing a plated cold-rolled steel sheet for a high-formability fuel tank excellent in secondary work brittleness resistance and plating adhesion, wherein the composition contains one or two selected from the above.
本発明に従い、適量のCuおよびBを複合添加し、かつフェライト粒径を20μm 以下に抑制することにより、引張強さが 440 MPa以上、r値が 2.0以上という優れた強度−r値バランスを有し、しかも耐二次加工性およびめっき密着性に優れためっき冷延鋼板を得ることができる。 According to the present invention, an appropriate amount of Cu and B is added in combination, and the ferrite grain size is suppressed to 20 μm or less, thereby providing an excellent strength-r value balance with a tensile strength of 440 MPa or more and an r value of 2.0 or more. In addition, a plated cold-rolled steel sheet having excellent secondary work resistance and plating adhesion can be obtained.
以下、本発明を具体的に説明する。
まず、本発明において鋼の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.01%以下
Cは、鋼の高強度化には有用であるが、0.01%を超えて含有されるとプレス成形性の指標であるr値を極端に低下させてしまう。そこで、C量の上限を0.01%とした。
The present invention will be specifically described below.
First, the reason why the composition of steel is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.01% or less C is useful for increasing the strength of steel, but if it exceeds 0.01%, the r value, which is an index of press formability, is extremely lowered. Therefore, the upper limit of the C amount is set to 0.01%.
Si:0.5 %以下
Siは、伸びの顕著な劣化を伴うことなしに鋼を高強度化できる有用元素であるが、熱間圧延時には赤スケールと呼ばれるFe−Si酸化物を生成して表面性状を劣化させる。この表面性状の劣化は、表面の摩擦係数の増大を招いてプレス成形性を劣化させる。そこで、本発明では、Si量の上限を 0.5%とした。
Si: 0.5% or less
Si is a useful element that can increase the strength of steel without accompanied by significant deterioration of elongation, but at the time of hot rolling, it produces Fe-Si oxide called red scale to deteriorate the surface properties. This deterioration of the surface property causes an increase in the coefficient of friction of the surface and deteriorates the press formability. Therefore, in the present invention, the upper limit of Si content is set to 0.5%.
Mn:0.15%以上、0.5 %以下
Mnは、鋼中のSとMnSを形成して、表面欠陥の発生を防止する。そのため、本発明では0.15%以上を添加する。また、Mn量が0.15%未満では、変態点が高くなり微細粒とすることが難しくなる。一方、0.5 %を超えて添加すると表面に薄い酸化物を形成し、めっき密着性の低下を招く。そこで、本発明では、Mn量は0.15%以上、0.5 %以下の範囲に限定した。
Mn: 0.15% or more, 0.5% or less
Mn forms S and MnS in steel and prevents the occurrence of surface defects. Therefore, 0.15% or more is added in the present invention. On the other hand, if the Mn content is less than 0.15%, the transformation point becomes high and it becomes difficult to obtain fine particles. On the other hand, if added over 0.5%, a thin oxide is formed on the surface, resulting in a decrease in plating adhesion. Therefore, in the present invention, the amount of Mn is limited to the range of 0.15% or more and 0.5% or less.
P:0.03%以下
Pは、固溶強化に寄与する元素であるが、多量に添加すると粒界に偏析して耐二次加工脆性を劣化させる。そのため、P量の上限を0.03%とした。
P: 0.03% or less P is an element that contributes to solid solution strengthening, but if added in a large amount, it segregates at the grain boundary and deteriorates the secondary work brittleness resistance. Therefore, the upper limit of the P amount is set to 0.03%.
S:0.02%以下
Sは、Mnと結合してMnSを形成する。このMnSは、上述したとおり、表面欠陥の防止に有効に寄与するが、その反面、粒界で展伸した介在物となり、鋼の局部伸びを低下させる。そのため、S含有量は低いほうが好ましい。そこで、本発明では、S量の上限を0.02%とした。
S: 0.02% or less S combines with Mn to form MnS. As described above, this MnS contributes effectively to the prevention of surface defects, but on the other hand, it becomes inclusions extended at the grain boundaries and reduces the local elongation of the steel. Therefore, it is preferable that the S content is low. Therefore, in the present invention, the upper limit of the amount of S is set to 0.02%.
Al:0.1 %以下
Alは、脱酸剤として使用されるため、鋼中にある程度は含まれる。このAl量が 0.1%を超えると、鋼が硬質化し、延性が極端に低下することから、本発明ではAl量は 0.1%以下に限定した。
Al: 0.1% or less
Since Al is used as a deoxidizer, it is contained in steel to some extent. If the Al content exceeds 0.1%, the steel becomes hard and the ductility is extremely reduced. Therefore, in the present invention, the Al content is limited to 0.1% or less.
N:0.006 %以下
Nは、鋼に固溶して、延性を低下させる。また、AlやTiと結合して、析出物を形成する。特にN量が 0.006%を超えると窒化物による析出強化が顕著となり、延性が低下する。そこで、本発明では、N量の上限を 0.006%とした。
N: 0.006% or less N dissolves in steel and lowers ductility. Moreover, it couple | bonds with Al and Ti and forms a precipitate. In particular, when the N content exceeds 0.006%, precipitation strengthening due to nitride becomes remarkable, and ductility decreases. Therefore, in the present invention, the upper limit of the N amount is set to 0.006%.
Cu:0.5 %以上、2.0 %以下
Cuは、本発明において最も重要な元素である。通常、r値は、冷間圧延前のフェライト粒が微細なほど向上する。また、圧延されたフェライトの再結晶時には、フェライトの粒成長が促進されるほどr値は向上する。低炭素鋼のオーステナイトの粒成長を抑制する元素として、通常Ti, Nbが知られているが、これらは微細析出物で粒界移動を抑制するため、オーステナイトの粒成長を抑制すると同時にフェライトの粒成長まで抑制してしまう。このため、例えば、Cを粒成長抑制に必要な0.01%以上添加してオーステナイトの粒成長を抑制しても、r値の向上は望めない。
これに対し、Cuは、オーステナイト粒界に偏析して熱間圧延の加熱工程や粗圧延工程ではオーステナイトの粒成長を抑制し、結晶粒の微細化に寄与するが、フェライト中ではフェライトの粒成長を抑制しない。このため、γ→α変態直後のフェライト粒を微細とし、フェライト変態完了後は加工フェライトの再結晶時の粒成長を阻害しない。このため、r値はCu無添加の鋼よりも大幅に向上する。
また、Cuは、析出処理を施すと鋼中に微細に析出するため、高強度化にも有効に寄与する。
ここに、Cu量が 0.5%を下回ると、上記の粒成長抑制機能が十分ではなく、強度も 440MPa 級以上にはならない。一方、2.0 %を超えると、オーステナイトの粒成長を過剰に抑制して、整粒組織が得られなくなるだけでなく、Cu固溶量の増加により焼きが入り易くなってしまう。そのため、本発明では、Cu量は 0.5%以上、2.0 %以下の範囲に限定した。
Cu: 0.5% or more, 2.0% or less
Cu is the most important element in the present invention. Usually, the r value increases as the ferrite grains before cold rolling become finer. Further, at the time of recrystallization of the rolled ferrite, the r value increases as the ferrite grain growth is promoted. Ti and Nb are usually known as elements that suppress the austenite grain growth of low-carbon steel, but they suppress the grain boundary migration with fine precipitates. Suppresses growth. For this reason, for example, even if C is added in an amount of 0.01% or more necessary for suppressing grain growth to suppress austenite grain growth, improvement of the r value cannot be expected.
In contrast, Cu segregates at the austenite grain boundaries and suppresses austenite grain growth in the hot rolling heating and rough rolling processes, contributing to the refinement of crystal grains. Do not suppress. For this reason, the ferrite grains immediately after the γ → α transformation are made fine, and after the ferrite transformation is completed, grain growth during recrystallization of the processed ferrite is not hindered. For this reason, r value improves significantly compared with steel without Cu addition.
Moreover, since Cu precipitates finely in steel when it is subjected to a precipitation treatment, it effectively contributes to high strength.
Here, if the Cu content is less than 0.5%, the above-mentioned grain growth suppressing function is not sufficient, and the strength does not exceed the 440 MPa class. On the other hand, if it exceeds 2.0%, not only the grain growth of austenite is suppressed excessively and a grain-sized structure cannot be obtained, but also an increase in the amount of solid solution of Cu makes it easy to burn. Therefore, in this invention, Cu amount was limited to the range of 0.5% or more and 2.0% or less.
B:0.0002%以上、0.0025%以下
Bは、フェライト粒界に偏析して粒界を強化し、耐二次加工脆性を向上させる有用元素である。また、本発明では、上記したCuと複合含有させることによって、めっきによる粒界脆化を効果的に阻止する働きがある。しかしながら、含有量が0.0002%に満たないとその添加効果に乏しく、一方0.0025%を超えて添加されると焼きが入り易くなり、整粒組織が得にくくなるので、B量は0.0002%以上、0.0025%以下の範囲に限定した。
B: 0.0002% or more and 0.0025% or less B is a useful element that segregates at the ferrite grain boundary to strengthen the grain boundary and improve the secondary work brittleness resistance. Moreover, in this invention, it has the effect | action which prevents effectively the intergranular embrittlement by metal plating by making it contain together with above-described Cu. However, if the content is less than 0.0002%, the effect of addition is poor. On the other hand, if added over 0.0025%, baking tends to occur and it becomes difficult to obtain a sized structure, so the amount of B is 0.0002% or more, 0.0025 It was limited to the range of% or less.
Ti:0.01%以上、0.1 %未満
Tiは、鋼中に微量に含まれるCとNを析出物として固定することで、延性やr値を劣化させる固溶C, N量を低下させる効果がある。優れたr値を得るには、0.01%以上の添加が必要であるが、0.1 %以上では、必要以上に圧延荷重が上昇し、圧延材の表面性状が劣化する。また、Ti量が 0.1%以上になると、熱延のスラブ加熱時に未固溶のTiC量が増加して、固溶Ti量が減り、熱延鋼板の結晶粒が微細化し難くなる。そのため、Ti量は0.01%以上、0.1 %未満の範囲に限定した。
Ti: 0.01% or more, less than 0.1%
Ti has the effect of lowering the amount of solid solution C and N that degrade ductility and r value by fixing C and N contained in a trace amount in steel as precipitates. In order to obtain an excellent r value, addition of 0.01% or more is necessary. However, if it is 0.1% or more, the rolling load increases more than necessary, and the surface properties of the rolled material deteriorate. Further, when the Ti amount is 0.1% or more, the amount of undissolved TiC increases at the time of hot rolling slab heating, the amount of solid solution Ti decreases, and the crystal grains of the hot rolled steel sheet are difficult to be refined. Therefore, the Ti content is limited to a range of 0.01% or more and less than 0.1%.
Nb:0.07%以下
Nbは、Tiと同様、Cを析出物として固定して固溶C量を減じる働きがある。そのため、本発明においては、Tiの代わりに、またはTiと共に添加することができる。ただし、含有量が0.07%を超えると熱間圧延荷重が著しく増大して、鋼板の表面性状が劣化すると共に形状も安定しなくなる。また、スラブ加熱時にNbCが溶解せず、微細粒も得難くなる。そのため、Nb量は0.07%以下に限定した。
Nb: 0.07% or less
Nb, like Ti, has the function of fixing C as a precipitate and reducing the amount of dissolved C. Therefore, in this invention, it can add instead of Ti or with Ti. However, if the content exceeds 0.07%, the hot rolling load is remarkably increased, the surface properties of the steel sheet are deteriorated and the shape is not stable. Moreover, NbC does not melt | dissolve at the time of slab heating, and it becomes difficult to obtain a fine grain. Therefore, the Nb content is limited to 0.07% or less.
以上、基本成分について説明したが、本発明ではその他にも、以下に述べる元素を適宜含有させることができる。
V:0.1 %以下
Vは、NやCと鋼中で析出物を形成する。また、熱間圧延時の圧延荷重を上昇させない。このため、C, Nを十分に固定することを目的として、Tiと同時に添加することができる。しかしながら、V含有量が 0.1%を超えると、微細なVCやVNが析出して鋼が低延性化するので、V量は 0.1%以下に限定した。
The basic components have been described above. However, in the present invention, other elements described below can be appropriately contained.
V: 0.1% or less V forms precipitates in steel with N or C. Also, the rolling load during hot rolling is not increased. For this reason, it can be added simultaneously with Ti for the purpose of sufficiently fixing C and N. However, if the V content exceeds 0.1%, fine VC and VN precipitate and the steel becomes low ductility, so the V content is limited to 0.1% or less.
Ni:0.2 %以上、1.0 %以下
Niは、Cu添加で生じる表面疵を軽減するのに有効に寄与する。しかしながら、Ni含有量が 0.2%未満ではその添加効果に乏しく、一方 1.0%を超えて含有されると、焼入れ組織が現れ易くなり、加工性が劣化する。このため、Ni量は 0.2%以上、1.0 %以下の範囲に限定した。
Ni: 0.2% or more, 1.0% or less
Ni contributes effectively to reduce surface flaws caused by Cu addition. However, if the Ni content is less than 0.2%, the effect of addition is poor. On the other hand, if the Ni content exceeds 1.0%, a hardened structure tends to appear and the workability deteriorates. Therefore, the Ni content is limited to the range of 0.2% to 1.0%.
以上、好適成分組成範囲について説明したが、本発明では、成分組成を上記の範囲に限定するだけでは不十分で、鋼組織の調整も重要である。
すなわち、本発明においては、鋼組織をフェライト単相組織にすると共に、フェライト粒径を20μm 以下に規制することが重要である。
本発明において、鋼組織をフェライト単相組織にした理由は、パーライトは、鋼の深絞り性(r値)を低下させ成形性を劣化させるために好ましくなく、またマルテンサイトやベイナイト等の低温変態相の含有もr値を劣化させるからである。
本発明におけるフェライト単相組織とは、ナイタールエッチングした鋼板断面を、光学顕微鏡で 400倍の倍率で観察した時に、炭窒化物などの析出物以外に、フェライト粒のみが観察されるされることをいう。また、本発明のフェライト粒径は、ASTM公称粒径を指す。ASTM公称粒径とは、結晶粒1つ当たりの面積の平方根で定義されており、切断長さlの1.13倍である。すなわち、切断法(JIS G 0552)に従って求めたフェライト粒切片長さを1.13倍して、これをフェライト粒径とする。
Although the preferred component composition range has been described above, in the present invention, it is not sufficient to limit the component composition to the above range, and adjustment of the steel structure is also important.
That is, in the present invention, it is important to make the steel structure a ferrite single phase structure and to regulate the ferrite grain size to 20 μm or less.
In the present invention, the reason why the steel structure is made of a ferrite single phase structure is that pearlite is not preferable because it reduces the deep drawability (r value) of the steel and deteriorates formability, and low temperature transformation such as martensite and bainite. This is because the inclusion of the phase also deteriorates the r value.
The ferrite single-phase structure in the present invention means that only ferrite grains are observed in addition to precipitates such as carbonitrides when a steel sheet cross-section subjected to nital etching is observed with a magnification of 400 times with an optical microscope. Say. The ferrite grain size of the present invention refers to the ASTM nominal grain size. ASTM nominal grain size is defined as the square root of the area per grain and is 1.13 times the cut length l. That is, the ferrite grain section length obtained according to the cutting method (JIS G 0552) is multiplied by 1.13 to obtain the ferrite grain size.
また、本発明において、フェライト粒径を20μm 以下に規制した理由は次のとおりである。
すなわち、r値は、フェライト粒径の増大と共に上昇することから、粒径が粗大なものであれば、良好なr値を得ることができるが、冷延板においてフェライト粒径が20μm を超えると、耐二次加工脆性が著しく劣化する。例えば、通常のIF鋼は、r値は高いものの、フェライト粒径は約40μm と粗大であり、耐二次加工性は良好ではない。そのため、フェライト粒径が20μm 以下で、かつr値が高い鋼板が要望されていたが、従来ではそのような冷延鋼板は開発されていなかった。
この点、本発明では、Cuの利用により、オーステナイト−フェライト変態直後のフェライト粒を微細に保持し、耐二次加工脆性を良好としつつ、優れたr値を実現することができる。このとき、オーステナイトから変態した直後のフェライト粒は微細なため、r値確保のために十分に粒成長させた後でも、フェライト粒径を20μm 以下に保持できる。このため、本発明では、フェライト粒径の上限を20μm とした。
また、冷延鋼板は、表面に元素の濃化がないことから、めっきと下地との反応が進み易い。特にフェライト粒径が20μm を超えると、めっき密着性を劣化させる合金化反応が進行する。この点からも、下地鋼板のフェライト粒径を20μm 以下とすることは有利である。
In the present invention, the reason for restricting the ferrite grain size to 20 μm or less is as follows.
That is, since the r value increases with an increase in the ferrite grain size, if the grain size is coarse, a good r value can be obtained, but if the ferrite grain size exceeds 20 μm in the cold-rolled sheet Further, the secondary work brittleness resistance is significantly deteriorated. For example, although a normal IF steel has a high r value, the ferrite grain size is as coarse as about 40 μm, and the secondary workability is not good. Therefore, there has been a demand for a steel plate having a ferrite grain size of 20 μm or less and a high r value, but no such cold-rolled steel plate has been developed in the past.
In this regard, in the present invention, by using Cu, an excellent r value can be realized while finely retaining the ferrite grains immediately after the austenite-ferrite transformation and improving the secondary work brittleness resistance. At this time, since the ferrite grains immediately after transformation from austenite are fine, the ferrite grain size can be maintained at 20 μm or less even after the grains are sufficiently grown to secure the r value. Therefore, in the present invention, the upper limit of the ferrite grain size is set to 20 μm.
Moreover, since the cold rolled steel sheet has no element concentration on the surface, the reaction between the plating and the base is likely to proceed. In particular, when the ferrite grain size exceeds 20 μm, an alloying reaction that deteriorates plating adhesion proceeds. Also from this point, it is advantageous to make the ferrite grain size of the base steel sheet 20 μm or less.
めっき層
本発明におけるめっき層は、特に限定されるものではないが、例えば、Alを主体としたAl系めっき、Zn系めっき、Zn−Al系めっき、Zn−Sn系めっき等が有利に適合する。また、電気めっきおよび溶融めっきのいずれもが適合する。さらに、めっき層と下地鋼板を合金化させた、いわゆる合金化めっき層でもかまわない。
なお、めっき層の厚みは、5〜10μm 程度とすることが好ましい。
Plating layer Although the plating layer in the present invention is not particularly limited, for example, Al-based plating mainly composed of Al, Zn-based plating, Zn-Al-based plating, Zn-Sn-based plating and the like are advantageously adapted. . Both electroplating and hot dipping are compatible. Furthermore, a so-called alloyed plating layer obtained by alloying the plating layer and the base steel plate may be used.
The thickness of the plating layer is preferably about 5 to 10 μm.
次に、本発明の製造条件について説明する。
加熱温度:950 ℃超え、1100℃未満
加熱温度は、本発明において重要な製造条件である。この加熱温度が1100℃以上になるとスラブのオーステナイト粒が著しく粗大化し、Cuによるオーステナイト粒成長抑制効果が弱くなると共に、組織が混粒化してしまう。また、加熱温度が 950℃未満では、圧延荷重が高くなりすぎて圧延が不可能になるおそれがあるだけでなく、表面性状が著しく劣化する。このため、熱間圧延時のスラブ加熱温度は、950 ℃超え、1100℃未満の範囲に限定した。
Next, the manufacturing conditions of the present invention will be described.
Heating temperature: more than 950 ° C. and less than 1100 ° C. The heating temperature is an important production condition in the present invention. When this heating temperature is 1100 ° C. or higher, the austenite grains of the slab become extremely coarse, the effect of suppressing the austenite grain growth by Cu is weakened, and the structure is mixed. On the other hand, if the heating temperature is less than 950 ° C., the rolling load becomes too high and rolling may not be possible, and the surface properties are significantly deteriorated. For this reason, the slab heating temperature during hot rolling was limited to a range exceeding 950 ° C. and less than 1100 ° C.
仕上圧延温度:750 ℃未満
本発明は、冷延鋼板で良好なr値を実現する。オーステナイトから変態したフェライトの集合組織はランダムに近く、r値は 1.0以下である。冷間圧延前の鋼板のr値が高いほど、冷延・焼鈍後のr値は高い。そのため、750 ℃未満で仕上圧延を完了してフェライト域で圧延することにより、フェライトを再結晶させて、熱延板の段階で好適な集合組織を形成させる。このため、仕上圧延は 750℃未満で終了させるものとした。なお、仕上圧延温度が 500℃を下回ると、表面性状が劣化すると共に平面な鋼板形状を保てなくなるため、仕上圧延温度は500 ℃以上とすることが好ましい。望ましくは 650℃以上である。
Finishing rolling temperature: less than 750 ° C. The present invention achieves a good r value with a cold-rolled steel sheet. The texture of ferrite transformed from austenite is close to random, and the r value is 1.0 or less. The higher the r value of the steel sheet before cold rolling, the higher the r value after cold rolling and annealing. Therefore, finish rolling is completed at less than 750 ° C. and rolling is performed in the ferrite region, so that ferrite is recrystallized and a suitable texture is formed at the stage of hot rolling. For this reason, finish rolling was finished at less than 750 ° C. If the finish rolling temperature is below 500 ° C., the surface properties deteriorate and the flat steel plate shape cannot be maintained. Therefore, the finish rolling temperature is preferably 500 ° C. or higher. Desirably, it is 650 ° C or higher.
750 ℃以下での圧下率:50%以上
本発明において、750 ℃以下での圧下率は極めて重要である。フェライトは、回復し易いため、単純にフェライト域で熱間圧延しただけでは再結晶に必要な歪エネルギーが蓄積されない。そのため、回復の遅い 750℃以下で圧延を行う必要がある。この 750℃以下での圧下率が50%に満たないと、熱延板を焼鈍する場合には、再結晶に必要な歪エネルギーが蓄積されないので、750 ℃以下での圧下率を50%以上とした。そのまま冷延圧延する場合には、冷間圧延の歪に熱延板の歪が上乗せされ、実質の冷延圧下率が上昇して、r値は上昇する。しかし、750 ℃以下での圧下率が50%未満では、やはり歪エネルギーの蓄積量が足りない。
Rolling rate at 750 ° C. or lower: 50% or more In the present invention, the rolling rate at 750 ° C. or lower is extremely important. Since ferrite is easy to recover, the strain energy necessary for recrystallization cannot be accumulated simply by hot rolling in the ferrite region. Therefore, it is necessary to perform rolling at 750 ° C or less, which is slow to recover. If the rolling reduction at 750 ° C or lower is less than 50%, the strain energy necessary for recrystallization is not accumulated when annealing a hot-rolled sheet, so the rolling reduction at 750 ° C or lower is 50% or higher. did. When the cold rolling is performed as it is, the strain of the hot rolled sheet is added to the strain of the cold rolling, the actual cold rolling reduction ratio is increased, and the r value is increased. However, if the rolling reduction at 750 ° C. or lower is less than 50%, the accumulated amount of strain energy is still insufficient.
巻取り温度:550 ℃以下
フェライト域では、回復により歪エネルギーが開放される。従って、巻取り温度が 550℃を超えると歪エネルギーの開放が進行して、熱延板中に残留した歪エネルギーで再結晶することが不可能になる。そして、直接冷延する場合には、実質の蓄積歪エネルギーは少なくなる。このため、巻取り温度は 550℃以下に限定した。
Winding temperature: 550 ° C or less Strain energy is released by recovery in the ferrite region. Therefore, when the coiling temperature exceeds 550 ° C., the release of strain energy proceeds and it becomes impossible to recrystallize with the strain energy remaining in the hot rolled sheet. In the case of direct cold rolling, the substantial accumulated strain energy is reduced. For this reason, the coiling temperature was limited to 550 ° C or lower.
熱延板焼鈍温度:600 ℃以上
冷間圧延前に熱延板を焼鈍して、一度再結晶させた後に冷間圧延を行うと、r値はさらに向上する。従って、本発明では、必要に応じてこの熱延板焼鈍を実施することができる。しかしながら、熱延板焼鈍温度が 600℃未満では、熱延板が十分に再結晶しないので、焼鈍温度は 600℃以上とした。
なお、この焼鈍を行う際には、熱延板を酸洗した後焼鈍しても、焼鈍後酸洗しても問題はない。
Hot-rolled sheet annealing temperature: 600 ° C. or higher When the hot-rolled sheet is annealed before cold rolling and recrystallized once, and then cold-rolled, the r value is further improved. Therefore, in this invention, this hot-rolled sheet annealing can be implemented as needed. However, when the hot-rolled sheet annealing temperature is less than 600 ° C, the hot-rolled sheet does not recrystallize sufficiently, so the annealing temperature was set to 600 ° C or higher.
In this annealing, there is no problem even if the hot-rolled sheet is pickled and then annealed or pickled after annealing.
酸洗処理
本発明では、熱間圧延で生成したスケールを除去した後に、冷間圧延を行う。スケールを除去せずに冷間圧延すると、スケールが鋼板の表面に押し込まれ、表面外観およびめっき密着性が劣化する。このため、冷間圧延前に酸洗を行う。熱延板焼鈍を行う場合には、焼鈍の前後どちらで酸洗してもかまわないが、スケールを焼鈍したときの剥離が表面傷を誘発する場合には、焼鈍前に酸洗を行うことが好ましい。
Pickling process In this invention, after removing the scale produced | generated by hot rolling, cold rolling is performed. When cold rolling is performed without removing the scale, the scale is pushed into the surface of the steel sheet, and the surface appearance and plating adhesion deteriorate. For this reason, pickling is performed before cold rolling. When hot-rolled sheet annealing is performed, it may be pickled before or after annealing, but when peeling occurs when the scale is annealed, surface picking may be performed before annealing. preferable.
冷間圧下率:50%以上
本発明では、熱間仕上圧延時に歪エネルギーを蓄積させ、r値向上に好適な集合組織の形成を促進させているが、熱延後、もしくは熱延板焼鈍後に50%の冷間圧延を行うことにより、さらにr値向上に好ましい圧延集合組織を発達させることが可能である。しかしながら、この冷間圧下率が50%未満では、集合組織に顕著な変化が認められないことから、冷間圧下率を50%以上とした。また、この冷間圧延は、熱延後に焼鈍せずに行ってもよいが、熱延板焼鈍後に行うと、さらにr値が向上する。
Cold reduction ratio: 50% or more In the present invention, strain energy is accumulated during hot finish rolling, and formation of a texture suitable for improving the r value is promoted, but after hot rolling or after hot-rolled sheet annealing. By performing cold rolling at 50%, it is possible to develop a rolling texture that is further favorable for improving the r value. However, when the cold rolling reduction is less than 50%, no significant change is observed in the texture. Therefore, the cold rolling reduction was set to 50% or more. Moreover, although this cold rolling may be performed without annealing after hot rolling, the r value is further improved when it is performed after hot rolling sheet annealing.
冷延板焼鈍処理
冷間圧延板には、冷間圧延で導入された転位が多数存在するため、このままでは硬質、低延性でプレス加工には適さない。そこで、この冷間圧延板を焼鈍し、軟化させることで、延性も回復させる。焼鈍温度に特に制限はないが、 600℃以上、 900℃以下程度が好ましい。特に好ましくは 700℃以上、 900℃以下の範囲である。
Cold-rolled sheet annealing treatment Cold-rolled sheets have many dislocations introduced by cold-rolling, so they are hard and have low ductility and are not suitable for pressing. Therefore, the ductility is also recovered by annealing and softening the cold-rolled sheet. The annealing temperature is not particularly limited, but is preferably about 600 ° C or higher and 900 ° C or lower. Particularly preferred is a range of 700 ° C. or more and 900 ° C. or less.
めっき処理
燃料タンクは重要保安部品であり、腐食によりタンクに穴が開いてはならない。従って、めっきは必須である。本発明においては、燃料タンクに適しためっきを施す必要がある。例えば、Alを主体としたAl系めっき、Zn系めっき、Zn−Al系めっき、Zn−Sn系めっき等が有利に適合する。めっき法としては、電気めっきでも溶融めっきでもどちらでもかまわない。電気めっきの場合には、めっき前に焼鈍工程が入るが、焼鈍温度は 600℃から750℃が好ましい。焼鈍方法は箱焼鈍でも連続焼鈍でもかまわない。また、溶融めっきの場合には、溶融めっき前の加熱処理にこの焼鈍を兼務させればよい。この時の焼鈍温度は 700℃以上 850℃以下とするのが好ましい。さらに、めっき後にめっき層と下地鋼板を合金化させる、いわゆる合金化処理を施しても差し支えない。なお、めっきは、鋼板の少なくとも片面に施せばよい。
Plating treatment The fuel tank is an important safety part and must not be pierced by corrosion. Therefore, plating is essential. In the present invention, it is necessary to perform plating suitable for the fuel tank. For example, Al-based plating mainly composed of Al, Zn-based plating, Zn-Al-based plating, Zn-Sn-based plating and the like are advantageously adapted. As the plating method, either electroplating or hot dipping may be used. In the case of electroplating, an annealing step is performed before plating, but the annealing temperature is preferably 600 ° C to 750 ° C. The annealing method may be box annealing or continuous annealing. In the case of hot dip plating, this annealing may be combined with the heat treatment before hot dip plating. The annealing temperature at this time is preferably 700 ° C. or higher and 850 ° C. or lower. Furthermore, a so-called alloying treatment in which the plating layer and the base steel sheet are alloyed after plating may be performed. Note that the plating may be performed on at least one side of the steel plate.
Cu析出処理:450 ℃以上、650 ℃以下
本発明では、以上のような方法でr値の良好な鋼板を作製した後に、Cu析出処理を行い、r値を高く維持したまま、鋼板強度を 440 MPa以上に高強度化する。ここに、Cu析出処理における処理温度が 450℃未満では、Cuは微細となるが十分な析出量が得られず、440MPa 以上の強度を確保することができない。一方、650 ℃を超えると、Cuが粗大化もしくは再固溶してやはり 440 MPa以上の引張強さを得るのが難しくなる。そこで、Cu析出処理温度は、450 ℃以上、650 ℃以下の範囲に限定した。なお、このCu析出処理は、溶融めっき時のめっき槽浸漬による温度保持や合金化による温度保持に兼務させることも可能である。
Cu precipitation treatment: 450 ° C. or more, 650 ° C. or less In the present invention, after producing a steel plate having a good r value by the above method, Cu precipitation treatment is performed, and the steel plate strength is maintained while maintaining the r value high. Higher strength than MPa. Here, when the treatment temperature in the Cu precipitation treatment is less than 450 ° C., Cu becomes fine, but a sufficient precipitation amount cannot be obtained, and a strength of 440 MPa or more cannot be secured. On the other hand, if it exceeds 650 ° C, Cu becomes coarse or re-solidifies, making it difficult to obtain a tensile strength of 440 MPa or more. Therefore, the Cu precipitation treatment temperature was limited to a range of 450 ° C. or higher and 650 ° C. or lower. In addition, this Cu precipitation process can also serve as the temperature maintenance by the plating tank immersion at the time of hot dipping, and the temperature maintenance by alloying.
表1に示す成分組成になる鋼片を、熱間圧延して熱延鋼板とした。熱間圧延時における加熱温度は1030℃とし、仕上圧延温度は 690℃、 750℃以下での圧下率は55%、巻取温度は 480℃とした。ついで、得られた熱延板を、酸洗後、830 ℃で短時間焼鈍を行ったのち、Sn−Zn溶融めっきを行った。さらに、その後、 500℃のCu析出処理を施した。 Steel slabs having the composition shown in Table 1 were hot-rolled to obtain hot-rolled steel sheets. The heating temperature during hot rolling was 1030 ° C, the finish rolling temperature was 690 ° C, the rolling reduction at 750 ° C or lower was 55%, and the coiling temperature was 480 ° C. Next, the obtained hot-rolled sheet was pickled, annealed at 830 ° C for a short time, and then Sn-Zn hot-dip plated. Further, a Cu precipitation treatment at 500 ° C. was then performed.
かくして得られためっき冷延鋼板から、引張方向が圧延方向と直角になるようにJIS 5号試験片を採取して引張試験を行い、鋼板強度を測定した。
また、圧延方向に平行、45°方向、直角方向にそれぞれJIS 5 号試験片を採取し、r値を測定した。r値の評価は、各方向のr値の平均値(バーr)で行った。圧延方向に平行なr値をr0 、同じく45°方向をr45、直角方向をr90としたとき、バーrは、次式
バーr=(r0 +2r45+r90)/4
で表わされる。
さらに、得られた鋼板から、円盤状のブランクを切り出し、深絞り加工を行った。そして、深絞り品の耳をトリムした後に、頂角:120 °の円錐ポンチで成型品の縁を静的に押し広げた。この時、成形温度を常温から次第に下げていき、成形により割れが生じた時の温度を脆性遷移温度とした。
鋼板のフェライト粒径および組織は、ナイタール腐食した板厚断面の光学顕微鏡組織写真(×400 倍)より切断した。上述のように、切断法(JIS G 0552)で求めたフェライト粒の切片長さを1.13倍して、フェライト粒径とした。
また、得られた鋼板を長さ:100 mm、幅:30mmに切断後、長手方向中央部で密着曲げを行い、曲げ部の外側にセロハンテープを貼着して剥がしたのち、めっきが剥離するか否かを観察し、めっきが剥離しなかったものを○、剥離したものを×として目視評価した。
得られた結果を表2に示す。
なお、表1の成分系に基づく表2の実施例は、発明例、比較例の如何にかかわらず、全てフェライト単相であった。
From the plated cold-rolled steel sheet thus obtained, a JIS No. 5 test piece was sampled and subjected to a tensile test so that the tensile direction was perpendicular to the rolling direction, and the steel sheet strength was measured.
Further, JIS No. 5 test pieces were taken in parallel to the rolling direction, 45 ° direction, and perpendicular direction, respectively, and the r value was measured. Evaluation of r value was performed by the average value (bar r) of r values in each direction. When r value parallel to the rolling direction is r 0 , the 45 ° direction is r 45 , and the perpendicular direction is r 90 , the bar r is expressed by the following formula: bar r = (r 0 + 2r 45 + r 90 ) / 4
It is represented by
Furthermore, a disk-shaped blank was cut out from the obtained steel sheet and deep-drawn. Then, after trimming the ears of the deep-drawn product, the edge of the molded product was statically spread with a conical punch having an apex angle of 120 °. At this time, the molding temperature was gradually lowered from room temperature, and the temperature at which cracking occurred by molding was taken as the brittle transition temperature.
The ferrite grain size and structure of the steel sheet were cut from an optical microscope structure photograph (× 400 times) of the plate thickness cross section subjected to nital corrosion. As described above, the ferrite grain size was obtained by multiplying the ferrite grain segment length obtained by the cutting method (JIS G 0552) by 1.13.
In addition, after cutting the obtained steel sheet into a length of 100 mm and a width of 30 mm, it is tightly bent at the center in the longitudinal direction, and the cellophane tape is attached to the outside of the bent portion and peeled off, and then the plating peels off. Whether or not the plating did not peel off was evaluated as ○, and the peeled off was evaluated as ×.
The obtained results are shown in Table 2.
The examples in Table 2 based on the component systems in Table 1 were all ferrite single-phases regardless of invention examples and comparative examples.
表1,2において、No.1〜9, No.12〜14は発明例である。なお、No.3ではNb、No.4ではC,Nの固定元素としてのTiが添加されていない。また、No.5および8はNi、No.6は、NiとVを添加した例である。一方、No.10 は、Cuの添加がない比較例である。
No.11からNo.15 はCu添加量の影響を示したものである。No.11 はCu添加量が少なく、No.15 はCuの添加量が本発明の上限を超えている。No.16 は、Mnが下限を下回り、No.17と18はそれぞれ、TiとNbを上限を超えて添加した例である。
No.1〜9, No.12〜14は発明例はいずれも、引張強さは 440 MPa以上、r値は 2.0以上、脆性遷移温度も−30℃以下と優れた機械的性質をそなえており、まためっき剥離はなしとめっき密着性もに優れている。
これに対し、No.10 は、Cuが添加されてないため、引張強さが 440 MPaを大きく下回っており、脆性遷移温度も−10℃と高い。また、フェライト粒径が大きいため、めっき密着性にも劣っている。
No.11 は、Cu添加量が少ないことから、引張強さが 440 MPaを下回っていた。また、フェライト粒径が大きいため、めっき密着性も悪い。
No.15 は、Cu量が本発明の上限を超えているため、r値が低く、脆性遷移温度も−10℃と高い。
No.16, 17, 18 はいずれも、フェライト粒径が大きいため、脆性遷移温度が高く、めっき密着性も劣っていた。
In Tables 1 and 2, Nos. 1 to 9 and Nos. 12 to 14 are invention examples. In No. 3, Nb is not added, and in No. 4, Ti as a fixed element of C and N is not added. No. 5 and 8 are examples in which Ni is added, and No. 6 is an example in which Ni and V are added. On the other hand, No. 10 is a comparative example without addition of Cu.
No.11 to No.15 show the influence of Cu addition amount. In No. 11, the amount of Cu added is small, and in No. 15, the amount of Cu exceeds the upper limit of the present invention. No. 16 is an example in which Mn is below the lower limit, and Nos. 17 and 18 are examples in which Ti and Nb are added in excess of the upper limit.
No.1-9 and No.12-14 all have excellent mechanical properties such as tensile strength of 440 MPa or more, r value of 2.0 or more, brittle transition temperature of -30 ° C or less. In addition, there is no plating peeling and excellent plating adhesion.
On the other hand, No. 10 has no added Cu, so its tensile strength is well below 440 MPa and its brittle transition temperature is as high as -10 ° C. Moreover, since the ferrite particle size is large, the plating adhesion is also poor.
No. 11 had a tensile strength of less than 440 MPa due to the small amount of Cu added. Moreover, since the ferrite particle size is large, the plating adhesion is poor.
No. 15 has a low r value and a high brittle transition temperature of −10 ° C. because the Cu content exceeds the upper limit of the present invention.
Nos. 16, 17, and 18 all had a high ferrite grain size, and therefore had a high brittle transition temperature and poor plating adhesion.
C:0.0019%、Si:0.01%、Mn:0.23%、P:0.014 %、S:0.008 %、Ti:0.065 %、Nb:0.012 %、Cu:0.98%、N:0.0020%、Al:0.031 %、Ni:0.55%およびB:0.0004%を含有する組成になる鋼片を、表3のNo.1〜9 に示す条件で、熱間圧延−(熱延板焼鈍)−冷間圧延−焼鈍−溶融めっき−Cu析出処理を行った。
また、C:0.0020%、Si:0.02%、Mn:0.18%、P:0.014 %、S:0.007 %、Ti:0.066 %、Nb:0.009 %、Cu:1.11%、N: 0.0018 %、Al:0.054 %、Ni:0.51%およびB:0.0007%を含有する組成になる鋼片を、表3の No.10〜16に示す条件で、熱間圧延−(熱延板焼鈍)−冷間圧延−焼鈍−溶融めっき−Cu析出処理を行った。
かくして得られためっき冷延鋼板のフェライト粒径、引張強さ(TS)、r値、脆性遷移温度およびめっき密着性について調べた結果を表3に併記する。
なお、表3の実施例は、発明例、比較例の如何にかかわらず、全てフェライト単相であった。
C: 0.0019%, Si: 0.01%, Mn: 0.23%, P: 0.014%, S: 0.008%, Ti: 0.065%, Nb: 0.012%, Cu: 0.98%, N: 0.0020%, Al: 0.031%, A steel slab having a composition containing Ni: 0.55% and B: 0.0004% is subjected to hot rolling- (hot-rolled sheet annealing) -cold rolling-annealing-melting under the conditions shown in Nos. 1 to 9 in Table 3. Plating-Cu deposition treatment was performed.
C: 0.0020%, Si: 0.02%, Mn: 0.18%, P: 0.014%, S: 0.007%, Ti: 0.066%, Nb: 0.009%, Cu: 1.11%, N: 0.0018%, Al: 0.054 %, Ni: 0.51%, and B: 0.0007% of the steel slab with the conditions shown in Nos. 10 to 16 of Table 3, hot rolling-(hot rolled sheet annealing)-cold rolling-annealing -Hot dipping-Cu precipitation treatment was performed.
The results obtained by examining the ferrite grain size, tensile strength (TS), r value, brittle transition temperature and plating adhesion of the plated cold-rolled steel sheet thus obtained are also shown in Table 3.
The examples in Table 3 were all ferrite single phase regardless of invention examples and comparative examples.
No.1〜4は発明例である。No.1と2は、熱延板焼鈍を行わない例であり、No.3と4は熱延板焼鈍を行った例である。いずれも本発明例であるが、熱延板焼鈍を施したNo.3, 4の方が熱延板焼鈍を行わないNo.1, 2よりもr値が優れていた。 No.5は、冷間圧延を行わない比較例であり、r値が 2.0未満であった。
No.6は、仕上圧延温度(FT)が高い例であり、フェライト粒が粗大化して、r値が低く、脆性遷移温度は高く、めっき密着性も劣っていた。
No.7は、熱間圧延時におてる 750℃以下での圧下率が低い例であり、フェライト粒が粗大化して、r値が低く、脆性遷移温度も高く、めっき密着性も劣っていた。
No.8は、加熱温度が高い例であり、フェライト粒径が20μm を超えたため、r値が低く、脆性遷移温度も高く、めっき密着性も劣っていた。
No.9は、巻取り温度が高い例であり、熱延板中における歪エネルギーが不十分なため、r値が低く、フェライト粒も粗大化し、脆性遷移温度も高かった。また、めっき密着性にも劣っていた。
No.10 と11は、発明例であり、熱延板焼鈍を施した No.11の方が熱延板焼鈍を行わないNo.10 もr値が優れていた。
No.12 は、巻取り温度が高い例であり、熱延板中における歪エネルギーが不十分なため、r値が低く、フェライト粒も粗大化し、脆性遷移温度も高かった。また、めっき密着性にも劣っていた。
No.13 〜16は、Cu析出温度の変化による加工性および耐二次加工脆性の変化を示したものである。低温で処理した No.13は、引張強さが 440 MPa未満であった。 No.14および15は、本発明の範囲にあることから、引張強さは 440 MPa以上、r値は 2.0以上、脆性遷移温度も−30℃以下と、良好な値を呈した。また、めっき密着性も良好であった。No.16 は、高温で処理したため、Cu粒子が粗大化してしまい、引張強さが低く、フェライト粒も粗大化してしまい、脆性遷移温度も低かった。また、めっき密着性にも劣っていた。
Nos. 1 to 4 are invention examples. Nos. 1 and 2 are examples in which hot-rolled sheet annealing is not performed, and Nos. 3 and 4 are examples in which hot-rolled sheet annealing is performed. Although both are examples of the present invention, Nos. 3 and 4 subjected to hot-rolled sheet annealing were superior in r value than Nos. 1 and 2 not subjected to hot-rolled sheet annealing. No. 5 was a comparative example in which cold rolling was not performed, and the r value was less than 2.0.
No. 6 is an example having a high finish rolling temperature (FT). Ferrite grains were coarsened, the r value was low, the brittle transition temperature was high, and the plating adhesion was inferior.
No. 7 is an example of a low rolling reduction at 750 ° C. or lower during hot rolling. Ferrite grains were coarsened, the r value was low, the brittle transition temperature was high, and the plating adhesion was poor.
No. 8 is an example in which the heating temperature is high, and since the ferrite particle diameter exceeded 20 μm, the r value was low, the brittle transition temperature was high, and the plating adhesion was inferior.
No. 9 is an example having a high coiling temperature. Since the strain energy in the hot-rolled sheet was insufficient, the r value was low, the ferrite grains were coarsened, and the brittle transition temperature was high. Moreover, it was inferior also to plating adhesiveness.
Nos. 10 and 11 are invention examples, and No. 11 subjected to hot-rolled sheet annealing also had an r value superior to No. 10 not subjected to hot-rolled sheet annealing.
No. 12 is an example with a high coiling temperature. Since the strain energy in the hot-rolled sheet was insufficient, the r value was low, the ferrite grains were coarsened, and the brittle transition temperature was high. Moreover, it was inferior also to plating adhesiveness.
Nos. 13 to 16 show changes in workability and secondary work embrittlement resistance due to changes in the Cu precipitation temperature. No. 13 treated at low temperature had a tensile strength of less than 440 MPa. Since Nos. 14 and 15 were within the scope of the present invention, the tensile strength was 440 MPa or more, the r value was 2.0 or more, and the brittle transition temperature was −30 ° C. or less, showing good values. The plating adhesion was also good. No. 16 was treated at a high temperature, so the Cu particles were coarsened, the tensile strength was low, the ferrite grains were also coarsened, and the brittle transition temperature was low. Moreover, it was inferior also to plating adhesiveness.
Claims (5)
C:0.01%以下、
Si:0.5 %以下、
Mn:0.15%以上、0.5 %以下、
P:0.03%以下、
S:0.02%以下、
Al:0.1 %以下、
N:0.006 %以下、
Cu:0.5 %以上、2.0 %以下および
B:0.0002%以上、0.0025%以下
を含み、かつ
Ti:0.01%以上、0.1 %未満および
Nb:0.07%以下
のうちから選んだ1種または2種を含有し、残部はFeおよび不可避不純物の組成になり、フェライト単相でかつフェライト粒径が20μm 以下の鋼組織を有し、引張強さが 440 MPa以上で、表面にめっき層をそなえることを特徴とする、耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板。 % By mass
C: 0.01% or less,
Si: 0.5% or less,
Mn: 0.15% or more, 0.5% or less,
P: 0.03% or less,
S: 0.02% or less,
Al: 0.1% or less,
N: 0.006% or less,
Cu: 0.5% or more and 2.0% or less and B: 0.0002% or more and 0.0025% or less, and
Ti: 0.01% or more, less than 0.1% and
Nb: Contains one or two selected from 0.07% or less, the balance is Fe and inevitable impurities composition, has a steel structure with ferrite single phase and ferrite grain size of 20μm or less, tensile strength A plated cold-rolled steel sheet for fuel tanks with high formability and excellent secondary work brittleness resistance and plating adhesion, characterized by having a plating layer on the surface with a thickness of 440 MPa or more.
V:0.1 %以下および
Ni:0.2 %以上、1.0 %以下
のうちから選んだ1種または2種を含有する組成になることを特徴とする、耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板。 In claim 1, the steel composition is further in mass%,
V: 0.1% or less and
Ni: High formability fuel tank plating excellent in secondary work brittleness resistance and plating adhesion, characterized by containing one or two selected from 0.2% or more and 1.0% or less Cold rolled steel sheet.
C:0.01%以下、
Si:0.5 %以下、
Mn:0.15%以上、0.5 %以下、
P:0.03%以下、
S:0.02%以下、
Al:0.1 %以下、
N:0.006 %以下、
Cu:0.5 %以上、2.0 %以下および
B:0.0002%以上、0.0025%以下、
を含み、かつ
Ti:0.01%以上、0.1 %未満および
Nb:0.07%以下
のうちから選んだ1種または2種を含有し、残部はFeおよび不可避不純物の組成よりなる鋼片を、950℃超え、1100℃未満の温度に加熱したのち、仕上圧延温度:750℃未満、750 ℃以下における圧下率:50%以上の条件で熱間圧延し、550 ℃以下の温度で巻き取り、ついで酸洗後、圧下率:50%以上の冷間圧延を行ったのち、焼鈍処理およびめっき処理を施し、さらに450℃以上、650℃以下の温度でCuの析出処理を行うことを特徴とする、耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板の製造方法。 % By mass
C: 0.01% or less,
Si: 0.5% or less,
Mn: 0.15% or more, 0.5% or less,
P: 0.03% or less,
S: 0.02% or less,
Al: 0.1% or less,
N: 0.006% or less,
Cu: 0.5% to 2.0% and B: 0.0002% to 0.0025%,
And including
Ti: 0.01% or more, less than 0.1% and
Nb: contain one or two species selected from among 0.07% or less, after the billet balance consisting Fe and inevitable impurities, exceeding 950 ° C., and heated to a temperature below 1100 ° C., finish rolling temperature : Rolling rate below 750 ° C and below 750 ° C: Hot rolled under conditions of 50% or higher, wound at a temperature of 550 ° C or lower, then pickled, then cold rolled at a rolling reduction of 50% or higher A high formability fuel tank with excellent secondary processing brittleness resistance and plating adhesion, which is then annealed and plated, and further subjected to Cu precipitation at temperatures of 450 ° C or higher and 650 ° C or lower. Method for plating cold-rolled steel sheet.
C:0.01%以下、
Si:0.5 %以下、
Mn:0.15%以上、0.5 %以下、
P:0.03%以下、
S:0.02%以下、
Al:0.1 %以下、
N:0.006 %以下、
Cu:0.5 %以上、2.0 %以下および
B:0.0002%以上、0.0025%以下、
を含み、かつ
Ti:0.01%以上、0.1 %未満および
Nb:0.07%以下
のうちから選んだ1種または2種を含有し、残部はFeおよび不可避不純物の組成よりなる鋼片を、950℃超え、1100℃未満の温度に加熱したのち、仕上圧延温度:750℃未満、750 ℃以下における圧下率:50%以上の条件で熱間圧延し、550 ℃以下の温度で巻き取ったのち、600 ℃以上の温度での焼鈍、そして酸洗を施し、ついで圧下率:50%以上の冷間圧延を行ったのち、焼鈍処理およびめっき処理を施し、さらに450℃以上、650℃以下の温度でCuの析出処理を行うことを特徴とする、耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板の製造方法。 % By mass
C: 0.01% or less,
Si: 0.5% or less,
Mn: 0.15% or more, 0.5% or less,
P: 0.03% or less,
S: 0.02% or less,
Al: 0.1% or less,
N: 0.006% or less,
Cu: 0.5% to 2.0% and B: 0.0002% to 0.0025%,
And including
Ti: 0.01% or more, less than 0.1% and
Nb: contain one or two species selected from among 0.07% or less, after the billet balance consisting Fe and inevitable impurities, exceeding 950 ° C., and heated to a temperature below 1100 ° C., finish rolling temperature : Rolling ratio below 750 ° C and below 750 ° C: Hot rolled under conditions of 50% or higher, wound at a temperature of 550 ° C or lower, annealed at a temperature of 600 ° C or higher, and then pickled. Rolling ratio: 50% or more of cold rolling, followed by annealing and plating, followed by Cu precipitation at a temperature of 450 ° C or higher and 650 ° C or lower. A method for producing a plated cold-rolled steel sheet for a highly formable fuel tank having excellent brittleness and plating adhesion.
V:0.1 %以下およびV: 0.1% or less and
Ni:0.2 %以上、1.0 %以下Ni: 0.2% or more, 1.0% or less
のうちから選んだ1種または2種を含有する組成になることを特徴とする、耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板の製造方法。A method for producing a plated cold-rolled steel sheet for a high-formability fuel tank excellent in secondary work brittleness resistance and plating adhesion, wherein the composition contains one or two selected from the above.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004010969A JP4457673B2 (en) | 2004-01-19 | 2004-01-19 | Plating cold-rolled steel sheet for high formability fuel tank excellent in secondary work brittleness resistance and plating adhesion and method for producing the same |
TW94101379A TW200532028A (en) | 2004-01-19 | 2005-01-18 | Highly workable platted steel sheet for fuel tank being excellent in resistance to brittleness in secondary working and in plating adhesiveness and method for production thereof |
PCT/JP2005/000815 WO2005068677A1 (en) | 2004-01-19 | 2005-01-18 | Highly workable platted steel sheet for fuel tank being excellent in resistance to brittleness in secondary working and in plating adhesiveness and method for production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004010969A JP4457673B2 (en) | 2004-01-19 | 2004-01-19 | Plating cold-rolled steel sheet for high formability fuel tank excellent in secondary work brittleness resistance and plating adhesion and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005200750A JP2005200750A (en) | 2005-07-28 |
JP4457673B2 true JP4457673B2 (en) | 2010-04-28 |
Family
ID=34823538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004010969A Expired - Fee Related JP4457673B2 (en) | 2004-01-19 | 2004-01-19 | Plating cold-rolled steel sheet for high formability fuel tank excellent in secondary work brittleness resistance and plating adhesion and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4457673B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6390712B2 (en) | 2014-11-05 | 2018-09-19 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet |
US10113223B2 (en) | 2014-11-05 | 2018-10-30 | Nippon Steel & Sumitomo Metal Corporation | Hot-dip galvanized steel sheet |
EP3216891B1 (en) | 2014-11-05 | 2020-01-15 | Nippon Steel Corporation | Hot-dip galvanized steel sheet |
WO2019026116A1 (en) | 2017-07-31 | 2019-02-07 | 新日鐵住金株式会社 | Zinc hot-dipped steel sheet |
KR102345533B1 (en) | 2017-07-31 | 2021-12-31 | 닛폰세이테츠 가부시키가이샤 | hot dip galvanized steel |
BR112020001437A2 (en) | 2017-07-31 | 2020-07-28 | Nippon Steel Corporation | hot-dip galvanized steel sheet |
-
2004
- 2004-01-19 JP JP2004010969A patent/JP4457673B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005200750A (en) | 2005-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI479028B (en) | High-strength galvanized steel sheet having high tensile strength at a maximum tensile strength of 980 MPa and excellent in formability, high-strength alloyed hot-dip galvanized steel sheet and method of manufacturing the same | |
KR101587968B1 (en) | Alloyed hot-dip zinc coat layer, steel sheet having same, and method for producing same | |
WO2018151331A1 (en) | High strength steel plate | |
JP4589880B2 (en) | High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet | |
JP4555693B2 (en) | High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof | |
JP5499663B2 (en) | High-strength cold-rolled steel sheet having a maximum tensile strength of 900 MPa or more excellent in mechanical cutting characteristics and its manufacturing method, and high-strength galvanized steel sheet and its manufacturing method | |
JP5092507B2 (en) | High tensile alloyed hot dip galvanized steel sheet and its manufacturing method | |
KR20190034600A (en) | Steel sheet and manufacturing method thereof | |
WO2013018722A1 (en) | High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each | |
JPWO2018073919A1 (en) | Patent application title: Galvanized steel sheet, method of manufacturing hot-dip galvanized steel sheet, and method of manufacturing alloyed hot-dip galvanized steel sheet | |
JP6409916B2 (en) | Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet | |
WO2016157258A1 (en) | High-strength steel sheet and production method therefor | |
KR100705243B1 (en) | Hot dip galvanized steel sheets of TRIP steels which have good adhesion property and excellent formability and the method of developing those steels | |
JP4000943B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
WO2020158065A1 (en) | High-strength steel sheet and method for manufacturing same | |
JP2011144414A (en) | Cold rolled steel sheet and method for producing the same | |
KR100264258B1 (en) | Cold rolled steel strip and hot dip coated cold rolled steel strip for use as building material and manufacturing method thereof | |
KR20210118442A (en) | High-strength steel sheet and its manufacturing method | |
JP4888200B2 (en) | High tensile hot dip galvanized steel sheet and manufacturing method | |
JP5034364B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet | |
JP2006219737A (en) | High-strength cold-rolled steel sheet excellent in deep drawability and method for producing the same | |
JP4457673B2 (en) | Plating cold-rolled steel sheet for high formability fuel tank excellent in secondary work brittleness resistance and plating adhesion and method for producing the same | |
JP5655363B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP2005256141A (en) | Method for manufacturing high-strength steel sheet superior in hole expandability | |
JP4457674B2 (en) | High formability plated hot-rolled steel sheet for fuel tank excellent in secondary work brittleness resistance and plating adhesion and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091222 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20091222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100119 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100201 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |