JP4455902B2 - Oxide superconducting thin film and manufacturing method thereof - Google Patents

Oxide superconducting thin film and manufacturing method thereof Download PDF

Info

Publication number
JP4455902B2
JP4455902B2 JP2004061414A JP2004061414A JP4455902B2 JP 4455902 B2 JP4455902 B2 JP 4455902B2 JP 2004061414 A JP2004061414 A JP 2004061414A JP 2004061414 A JP2004061414 A JP 2004061414A JP 4455902 B2 JP4455902 B2 JP 4455902B2
Authority
JP
Japan
Prior art keywords
superconducting
thin film
superconducting thin
film according
superconducting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004061414A
Other languages
Japanese (ja)
Other versions
JP2005251592A (en
Inventor
堀井  滋
昌志 向田
要 松本
中 一瀬
吉田  隆
光二 岸尾
淳一 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Japan Science and Technology Agency
University of Tokyo NUC
National Institute of Japan Science and Technology Agency
Original Assignee
Central Research Institute of Electric Power Industry
Japan Science and Technology Agency
University of Tokyo NUC
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Japan Science and Technology Agency, University of Tokyo NUC, National Institute of Japan Science and Technology Agency filed Critical Central Research Institute of Electric Power Industry
Priority to JP2004061414A priority Critical patent/JP4455902B2/en
Publication of JP2005251592A publication Critical patent/JP2005251592A/en
Application granted granted Critical
Publication of JP4455902B2 publication Critical patent/JP4455902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、超伝導線材や超伝導フィルタ等に利用される酸化物系超伝導薄膜およびその製造方法に関する。   The present invention relates to an oxide-based superconducting thin film used for a superconducting wire or a superconducting filter, and a method for producing the same.

Y−Ba−Cu−O系に代表される酸化物系超伝導体は、液体窒素温度(77K)よりも高い臨界温度Tを示すため、超伝導線材や超伝導フィルタへの応用が期待されている。このような酸化物系超伝導体を超伝導線材や超伝導フィルタに応用する際には、臨界電流密度Jを向上させる必要がある。これまでの研究では、臨界温度Tおよび臨界電流密度Jを向上させるための超伝導体の組成は、該超伝導体の成膜条件の最適化のみによって制御されてきた。 Oxide superconductors as represented by Y-Ba-Cu-O system, in order to show a high critical temperature T C than the liquid nitrogen temperature (77K), its application to superconducting wire and the superconducting filter is expected ing. When such an oxide-based superconductor is applied to a superconducting wire or a superconducting filter, it is necessary to improve the critical current density JC . Previous studies, the composition of the superconductor for improving the critical temperature T C and the critical current density J C has been controlled only by optimizing the deposition conditions for the superconductor.

Y−Ba−Cu−O系酸化物超伝導体は、一般的にYBaCu7−δの組成を有し、ab面内に超伝導面を形成するCuO構造を含むことが知られている。ここで、高いTを実現するためには、δの値を小さくする、すなわち酸素を充分に導入することによって、Cu上に最適濃度のホールをドープすることが必要である。しかしながら、Y−Ba−Cu−O系酸化物超伝導体を形成するための温度(約900℃)においては、酸素が充分に導入されない。平衡条件で作製されるバルク試料の場合、酸素気流中で徐冷することによって酸素を導入することが行われてきている(非特許文献1および非特許文献2参照)。 It is known that a Y-Ba-Cu-O-based oxide superconductor generally has a composition of YBa 2 Cu 3 O 7-δ and includes a CuO 2 structure that forms a superconductive surface in the ab plane. It has been. Here, in order to realize a high T c , it is necessary to dope the optimum concentration of holes on Cu by reducing the value of δ, that is, by sufficiently introducing oxygen. However, oxygen is not sufficiently introduced at the temperature (about 900 ° C.) for forming the Y—Ba—Cu—O-based oxide superconductor. In the case of a bulk sample prepared under equilibrium conditions, oxygen has been introduced by slow cooling in an oxygen stream (see Non-Patent Document 1 and Non-Patent Document 2).

一方、Y−Ba−Cu−O系酸化物超伝導体の薄膜(非平衡条件で作製される)においては、成膜条件により、あるいは成膜後の酸素分圧もしくは冷却方法により、膜内のTの不均質な分布および組成のずれが発生し、さらにJの低下が見られると考えられる。それゆえ、TおよびJを成膜条件のみによって再現性よく最適化することは非常に困難である。 On the other hand, in a thin film of Y—Ba—Cu—O-based oxide superconductor (made under non-equilibrium conditions) It is considered that an inhomogeneous distribution of T c and a compositional deviation occur, and further a decrease in J c is observed. Therefore, it is very difficult to optimize T c and J c with good reproducibility only by the film forming conditions.

K. Kishio, J. Shimoyama, T. Hasegawa, K. Kitazawa and K. Fueki: Jpn. J. Appl. Phys. 26 (1987) L1228K. Kishio, J. Shimoyama, T. Hasegawa, K. Kitazawa and K. Fueki: Jpn. J. Appl. Phys. 26 (1987) L1228 J. Shimoyama, S. Horii, K. Otzschi and K. Kishio: Mat. Res. Soc. Symp. Proc. 689 (2002) E8.18J. Shimoyama, S. Horii, K. Otzschi and K. Kishio: Mat. Res. Soc. Symp. Proc. 689 (2002) E8.18

酸化物系超伝導薄膜を超伝導線材や超伝導フィルタに応用する際には、高い臨界電流密度Jを高い再現性で実現する必要がある。酸化物超伝導体薄膜のTおよびJの再現性を低下させる1つの要因として、酸化物超伝導体の酸素不定比性が考えられる。成膜条件によっては、膜中への酸素の導入が均一に行われずに、TおよびJの不均質な分布が発生し、結果として膜全体としてのTおよびJの低下をもたらすと考えられる。 When an oxide-based superconducting thin film is applied to a superconducting wire or a superconducting filter, it is necessary to realize a high critical current density Jc with high reproducibility. One factor that reduces the reproducibility of the T c and J c of the oxide superconductor thin film, oxygen nonstoichiometry of oxide superconductor are contemplated. Depending on the film forming conditions, without performing uniform introduction of oxygen into the film, T inhomogeneous distribution of c and J c occurs and results in a decrease in T c and J c of the film as a whole as a result Conceivable.

さらに、超伝導体薄膜中への酸素の導入を行うために、長時間にわたって超伝導体薄膜を高温にさらすと、超伝導体の経時劣化が進行すること(特に、大気中に暴露した超伝導薄膜において顕著である)が知られており、必要量の酸素の導入を短時間で実施できる方法が求められている。   Furthermore, if superconductor thin film is exposed to high temperature for a long time to introduce oxygen into superconductor thin film, the deterioration of superconductor over time will progress (especially superconductivity exposed to the atmosphere). This is remarkable in a thin film), and a method for introducing a necessary amount of oxygen in a short time is required.

したがって、本発明の目的は、高い臨界電流密度Jを高い再現性で実現した超伝導薄膜を提供することである。また、本発明の別の目的は、超伝導体の経時劣化を進行させることなく超伝導体の酸素量制御を速やかに行いながら、高い再現性を持って高い臨界電流密度を有する超伝導薄膜を製造する方法を提供することである。 Accordingly, an object of the present invention is to provide a superconducting thin film that realizes a high critical current density Jc with high reproducibility. Another object of the present invention is to provide a superconducting thin film having a high critical current density with high reproducibility while promptly controlling the oxygen content of the superconductor without causing deterioration of the superconductor over time. It is to provide a method of manufacturing.

本発明の第1の実施形態である超伝導薄膜は、基板と、該基板上に形成され、ErBaCu7−δ(0≦δ≦1)なる組成を有する酸化物超伝導相を含む超伝導層とを含む超伝導薄膜であって、前記超伝導層は少なくとも1つの空孔を含むことを特徴とする。該空孔は、1cm平方当たり1つ以上配置されていることが望ましい。また、空孔は、前記超伝導層を貫通していてもよい。望ましくは、本実施形態の超伝導薄膜は、絶対温度77K、5Tの磁場の下で1×10A/cm以上の臨界電流密度を有する。本実施形態の超伝導薄膜を、超伝導線材または超伝導デバイスとして利用することが可能である。 A superconducting thin film according to the first embodiment of the present invention comprises a substrate and an oxide superconducting phase formed on the substrate and having a composition of ErBa 2 Cu 3 O 7-δ (0 ≦ δ ≦ 1). A superconducting thin film including the superconducting layer, wherein the superconducting layer includes at least one hole. It is desirable that one or more holes are arranged per 1 cm 2. Moreover, the void | hole may penetrate the said superconductive layer. Desirably, the superconducting thin film of the present embodiment has a critical current density of 1 × 10 5 A / cm 2 or more under a magnetic field having an absolute temperature of 77K and 5T. The superconducting thin film of this embodiment can be used as a superconducting wire or a superconducting device.

本発明の第2の実施形態である超伝導薄膜の製造方法は、基板上にErBaCu7−δ(0≦δ≦1)なる組成を有する酸化物超伝導相を含む超伝導層を形成する工程と、前記超伝導層に少なくとも1つの空孔を形成する工程と、前記超伝導層を酸化性雰囲気下で熱処理する工程とを備えたことを特徴とする。該熱処理工程を、200〜600℃の範囲内の温度、1分〜45分間の範囲内の時間で実施することが望ましい。また、酸化性雰囲気は、200Torr(26.7kPa)以上の分圧を有する酸化性ガスを含むことが望ましい。該空孔を1cm平方当たり1つ以上配置することが望ましく、また、前記超伝導層を貫通していてもよい。本実施形態の製造方法を、超伝導線材または超伝導デバイスの製造に利用することが可能である。 The superconducting thin film manufacturing method according to the second embodiment of the present invention includes a superconducting layer including an oxide superconducting phase having a composition of ErBa 2 Cu 3 O 7-δ (0 ≦ δ ≦ 1) on a substrate. , A step of forming at least one hole in the superconducting layer, and a step of heat-treating the superconducting layer in an oxidizing atmosphere. The heat treatment step is desirably performed at a temperature in the range of 200 to 600 ° C. and for a time in the range of 1 minute to 45 minutes. The oxidizing atmosphere preferably contains an oxidizing gas having a partial pressure of 200 Torr (26.7 kPa) or more. It is desirable to arrange one or more holes per 1 cm 2, and it may penetrate through the superconducting layer. The manufacturing method of this embodiment can be used for manufacturing a superconducting wire or a superconducting device.

以上のような実施形態を採ることにより、ErBaCu7−δ酸化物超伝導薄膜を非平衡条件で作製する際にも、形成時の加熱における経時劣化を起こすことなしに、超伝導体の酸素量制御を速やかに行い、全体にわたって組成が均質で、高い臨界電流密度を有するErBaCu7−δ酸化物超伝導薄膜を、高い再現性を持って提供することが可能となる。特に、得られる超伝導薄膜は、磁場の印加の下でも優れた臨界電流特性を示す。本発明の超伝導薄膜およびその製造方法は、超伝導線材および超伝導デバイスならびにその製造に利用することができる。 By adopting the embodiment as described above, even when an ErBa 2 Cu 3 O 7-δ oxide superconducting thin film is produced under non-equilibrium conditions, superconductivity can be achieved without causing deterioration over time in heating during formation. It is possible to provide an ErBa 2 Cu 3 O 7-δ oxide superconducting thin film with high reproducibility, which can quickly control the oxygen content of the body, has a uniform composition throughout, and has a high critical current density. Become. In particular, the obtained superconducting thin film exhibits excellent critical current characteristics even under application of a magnetic field. The superconducting thin film and the method for producing the same of the present invention can be used for superconducting wires and superconducting devices and the production thereof.

本発明の超伝導薄膜の例示的構成を図1に示す。図1の超伝導薄膜は、基板1上に超伝導層2が形成された構造を有し、該超伝導層は少なくとも1つの空孔3を含む。   An exemplary configuration of the superconducting thin film of the present invention is shown in FIG. The superconducting thin film of FIG. 1 has a structure in which a superconducting layer 2 is formed on a substrate 1, and the superconducting layer includes at least one hole 3.

本発明の基板1として、SrTiO、LaAlOなどのペロブスカイト型結晶;MgO、NiOなどの岩塩型結晶;MgAlなどのスピネル型結晶;イットリウム安定化ジルコニア、CeOなどの蛍石型結晶;希土類C型結晶;パイクロア型結晶などの酸化物;ならびに金属基板(純Ni、Ni−Cr、Ni−WなどのNi基合金基板、純Cu、Cu−NiなどのCu基合金基板、またはFe−Si、ステンレスなどのFe基合金基板)を用いることができる。また、前述の酸化物基板、前述の金属基板、窒化物基板、半導体基板の表面に前述の酸化物または硼化物(MgBなど)からなるバッファー層を形成したものを基板1として用いてもよい。より好ましい基板は、MgO基板、金属基板、酸化物で被覆された金属基板を含む。特に、酸化物で被覆された長尺状の金属基板を用いることは、超伝導線材を形成する際に有利である。基板1を形成するための材料は特に限定されるものではないが、超伝導体層を形成する酸化物系超伝導材料の格子定数に近い格子定数を有することが望ましい。 As the substrate 1 of the present invention, perovskite crystals such as SrTiO 3 and LaAlO 3 ; rock salt crystals such as MgO and NiO; spinel crystals such as MgAl 2 O 4 ; fluorite crystals such as yttrium-stabilized zirconia and CeO 2 A rare earth C-type crystal; an oxide such as a Pikuroa-type crystal; and a metal substrate (a Ni-based alloy substrate such as pure Ni, Ni-Cr and Ni-W, a Cu-based alloy substrate such as pure Cu and Cu-Ni, or Fe) -Fe-based alloy substrates such as Si and stainless steel) can be used. Alternatively, the substrate 1 may be the above-described oxide substrate, the above-described metal substrate, nitride substrate, or semiconductor substrate on which a buffer layer made of the above-described oxide or boride (such as MgB 2 ) is formed. . More preferred substrates include MgO substrates, metal substrates, and metal substrates coated with oxides. In particular, it is advantageous to use a long metal substrate covered with an oxide when forming a superconducting wire. The material for forming the substrate 1 is not particularly limited, but desirably has a lattice constant close to that of the oxide-based superconductive material forming the superconductor layer.

本発明の超伝導層2は、化学式ErBaCu7−δ(0≦δ≦1)で示される酸化物系超伝導材料から形成される超伝導相を含む。超伝導層2を形成する超伝導材料がc軸配向(基板面に対してc軸が垂直である)していることによって、超伝導面であるab面が基板と平行になり、基板と平行方向に大きな電流を流すことが可能になる。 The superconducting layer 2 of the present invention includes a superconducting phase formed from an oxide-based superconducting material represented by the chemical formula ErBa 2 Cu 3 O 7-δ (0 ≦ δ ≦ 1). Since the superconducting material forming the superconducting layer 2 is c-axis oriented (the c-axis is perpendicular to the substrate surface), the ab surface which is the superconducting surface is parallel to the substrate and parallel to the substrate. A large current can be passed in the direction.

超伝導層2は、レーザ蒸着法またはスパッタ蒸着法のような物理気相成長法、または有機化学蒸着法などの化学気相成長法などの非平衡条件を用いる方法、好ましくはパルスレーザ蒸着法(PLD)を用いて形成することができる。   The superconducting layer 2 is formed by a method using non-equilibrium conditions such as physical vapor deposition such as laser vapor deposition or sputtering vapor deposition, or chemical vapor deposition such as organic chemical vapor deposition, preferably pulsed laser vapor deposition ( PLD) can be used.

超伝導層2をPLD法によって積層する場合、超伝導層2を形成する金属の酸化物(Er、BaO、CuO)を所望の比率において混合し焼結させたものをターゲットとして用い、酸素を含有する雰囲気中でターゲットにレーザを照射する。この際に、基板を700〜790℃、好ましくは750〜780℃の温度に加熱することが、積層される超伝導体をc軸配向させるために重要である。ターゲットに照射するレーザとしては、当該技術において知られている任意のもの、たとえばAr−Fエキシマーレーザなどを用いることができる。また、超伝導体材料中に酸素を導入するために、PLDを0.1Torr(13.3Pa)以上、好ましくは0.1〜1.0Torr(13.3〜133Pa)、より好ましくは0.2〜0.65Torr(26.7〜86.7Pa)の酸素分圧で実施することが望ましい。 When the superconducting layer 2 is laminated by the PLD method, a metal oxide (Er 2 O 3 , BaO, CuO) that forms the superconducting layer 2 is mixed and sintered at a desired ratio, and used as a target. The target is irradiated with a laser in an atmosphere containing oxygen. At this time, heating the substrate to a temperature of 700 to 790 ° C., preferably 750 to 780 ° C. is important in order to align the superconductor to be laminated in the c-axis orientation. As the laser for irradiating the target, any laser known in the art, such as an Ar—F excimer laser, can be used. In order to introduce oxygen into the superconductor material, the PLD is 0.1 Torr (13.3 Pa) or more, preferably 0.1 to 1.0 Torr (13.3 to 133 Pa), more preferably 0.2. It is desirable to carry out at an oxygen partial pressure of ˜0.65 Torr (26.7 to 86.7 Pa).

超伝導層2は、所望される量の電流を流すのに充分な膜厚を有することが望ましい。超伝導層2は、好ましくは300nm以上、より好ましくは300nm〜3.0μm、もっとも好ましくは0.5〜2.0μmの範囲内の膜厚を有することが適当である。ただし、より大きな電流量を実現する必要がある特定の用途においては、より大きな膜厚を用いてもよい。   It is desirable that the superconducting layer 2 has a film thickness sufficient to pass a desired amount of current. The superconductive layer 2 is preferably 300 nm or more, more preferably 300 nm to 3.0 μm, and most preferably 0.5 to 2.0 μm. However, a larger film thickness may be used in a specific application where a larger amount of current needs to be realized.

上記のように非平衡条件において超伝導層2を作製した場合、形成されたままの超伝導層2には、所望される組成比の酸素が導入されていない可能性がある。また、膜内の組成(特に酸素組成比)のずれが存在し、それによって不均質なTおよびJの分布が存在する可能性がある。超伝導層2全体にわたる均質なTおよびJの分布を達成するために、超伝導層2中に1つ以上の空孔3が設けられ、そして酸化性雰囲気下での加熱処理を迅速に実施する。 When the superconducting layer 2 is produced under non-equilibrium conditions as described above, oxygen having a desired composition ratio may not be introduced into the superconducting layer 2 as it is formed. In addition, there is a deviation in the composition (particularly the oxygen composition ratio) in the film, which may cause an inhomogeneous distribution of T c and J c . In order to achieve a homogeneous T c and J c distribution throughout the superconducting layer 2, one or more pores 3 are provided in the superconducting layer 2, and the heat treatment under an oxidizing atmosphere can be performed quickly. carry out.

空孔3は、後述する加熱処理中に酸素をより短時間でより均質に導入するための酸素吸入口である。空孔3を設けることにより、後述の加熱処理中に、超伝導層2表面に加えて空孔3の側壁からも酸素が侵入し、超伝導層2中に拡散することが可能となる。1つ以上設けられる空孔3は、その全てが超伝導層2を貫通していなくてもよいが、より効率的な酸素の拡散を実施するために、その大部分が超伝導層2を貫通していることが好ましく、より好ましくはその全てが超伝導層2を貫通する。空孔3は、円形、多角柱形、円錐台形、角錐台形など任意の形状を有してもよい。円形の空孔3を用いる場合、超伝導層2の上表面において、50μm以下、好ましくは30μm以下、より好ましくは10μm以下の直径を有することが望ましい。他の形状の空孔を用いる場合にも、これに相当する開口部の径を有すること(たとえば、超伝導層2の上表面における開口部に内接する円の直径が上述の範囲のものであること)が望ましい。   The air holes 3 are oxygen inlets for introducing oxygen more uniformly in a shorter time during the heat treatment described later. By providing the holes 3, oxygen enters from the side walls of the holes 3 in addition to the surface of the superconducting layer 2 during the heat treatment described later, and can diffuse into the superconducting layer 2. One or more of the holes 3 provided may not all penetrate the superconducting layer 2, but most of them penetrate the superconducting layer 2 in order to perform more efficient oxygen diffusion. It is preferable that all of them penetrate the superconducting layer 2. The air holes 3 may have an arbitrary shape such as a circular shape, a polygonal column shape, a truncated cone shape, and a truncated pyramid shape. When the circular holes 3 are used, it is desirable that the upper surface of the superconductive layer 2 has a diameter of 50 μm or less, preferably 30 μm or less, more preferably 10 μm or less. Even when holes having other shapes are used, they have the diameter of the opening corresponding to this (for example, the diameter of the circle inscribed in the opening on the upper surface of the superconducting layer 2 is in the above range). Is desirable).

大面積あるいは長尺の超伝導層2を用いる場合、超伝導層2の全体にわたって均一な酸素の拡散を実施するために、1cm平方当たり1つ以上、好ましくは1mm平方当たり1つ以上、より好ましくは500μm平方当たり1つ以上の密度において、複数の空孔3を設けることが好ましい。複数の空孔3は、必ずしも一定の間隔で整列させる必要はないが、超伝導層2の均質性を保証するために、できるだけ均等に配置されていることが好ましい。長尺の超伝導層2を線材として使用する場合には、電流方向に複数の空孔3を整列させることが望ましい。   When a large area or long superconducting layer 2 is used, one or more per cm square, preferably one or more per mm square, more preferably, in order to perform uniform oxygen diffusion throughout the superconducting layer 2 Is preferably provided with a plurality of holes 3 at a density of 1 or more per 500 μm square. The plurality of holes 3 are not necessarily arranged at regular intervals, but are preferably arranged as evenly as possible in order to ensure the uniformity of the superconducting layer 2. When the long superconducting layer 2 is used as a wire, it is desirable to align a plurality of holes 3 in the current direction.

空孔3は、イオンビームエッチング、電子ビームエッチング、スパッタエッチング、レーザアブレーションなどのエッチング方法、あるいはマイクロニードル、マイクロドリルなどの微小加工穿孔器具を用いる当該技術に知られている任意の機械加工法を用いて形成することができる。   The hole 3 is formed by any machining method known in the art using an etching method such as ion beam etching, electron beam etching, sputter etching, or laser ablation, or a microfabrication drilling device such as a microneedle or a microdrill. Can be formed.

超伝導層2に1つ以上の空孔3を配置した後に、酸化性雰囲気下での加熱処理を行って、超伝導層2中への酸素の拡散を行う。酸化性雰囲気は、OおよびOなどの酸化性ガスを含み、好ましくはOを含む。酸化性雰囲気は、酸化性ガス以外にN,He、Arなどの不活性ガスを含んでもよい。酸化性雰囲気中の酸化性ガスは、200Torr(26.7kPa)以上、好ましくは300Torr(40kPa)以上、より好ましくは760Torr(101.3kPa)以上の分圧を有する。上記の分圧を有することによって、加熱処理の時間を短くして超伝導層2の経時劣化を抑制しつつ、充分な量の酸素を導入することが可能となる。 After disposing one or more holes 3 in the superconducting layer 2, heat treatment is performed in an oxidizing atmosphere to diffuse oxygen into the superconducting layer 2. The oxidizing atmosphere includes an oxidizing gas such as O 2 and O 3 , and preferably includes O 2 . The oxidizing atmosphere may contain an inert gas such as N 2 , He, or Ar in addition to the oxidizing gas. The oxidizing gas in the oxidizing atmosphere has a partial pressure of 200 Torr (26.7 kPa) or more, preferably 300 Torr (40 kPa) or more, more preferably 760 Torr (101.3 kPa) or more. By having the above partial pressure, it is possible to introduce a sufficient amount of oxygen while shortening the heat treatment time and suppressing the deterioration of the superconducting layer 2 over time.

加熱処理は、250〜600℃、好ましくは300〜600℃、より好ましくは350〜550℃まで基板1および超伝導層2の積層体を加熱することによって実施される。また、加熱処理は、1分〜45分間、好ましくは3分〜30分間、より好ましくは5分〜20分間にわたって実施することが好ましい。前述のような処理温度および処理時間を設定することによって、加熱による超伝導層2の経時劣化を抑制すると同時に、酸素が速やかに超伝導層2中に拡散して、所望の組成比を有する超伝導体ErBaCu7−δを得ることができる。 The heat treatment is performed by heating the laminate of the substrate 1 and the superconducting layer 2 to 250 to 600 ° C., preferably 300 to 600 ° C., more preferably 350 to 550 ° C. The heat treatment is preferably performed for 1 minute to 45 minutes, preferably 3 minutes to 30 minutes, more preferably 5 minutes to 20 minutes. By setting the treatment temperature and the treatment time as described above, it is possible to suppress the deterioration of the superconducting layer 2 due to heating with time, and at the same time, oxygen is quickly diffused into the superconducting layer 2 and has a desired composition ratio. The conductor ErBa 2 Cu 3 O 7-δ can be obtained.

加熱処理は、基板支持部材に設けた抵抗体による抵抗加熱、赤外線ランプなどを超伝導層2に照射することによる放射加熱、基板支持部材または基板に対して交流電界を印加することによる誘導加熱など、当該技術において知られている任意の加熱手段を用いて実施することが可能である。   The heat treatment includes resistance heating by a resistor provided on the substrate support member, radiation heating by irradiating the superconducting layer 2 with an infrared lamp or the like, induction heating by applying an AC electric field to the substrate support member or the substrate, etc. It can be carried out using any heating means known in the art.

(実施例1)
PLD法により、SrTiO基板上に、ErBaCu7−δ酸化物超伝導積層体を積層した超伝導薄膜を作製した。
Example 1
A superconducting thin film in which an ErBa 2 Cu 3 O 7-δ oxide superconducting laminate was laminated on a SrTiO 3 substrate was produced by the PLD method.

最初に、ErBaCu7−δのターゲットにエキシマレーザを照射し、1cm平方のSrTiO基板1上に、膜厚620nmの超伝導層2を積層した。このとき、基板温度を760℃に、真空チャンバ内の酸素分圧を0.4Torr(53Pa)に設定した。 First, an excimer laser was irradiated to an ErBa 2 Cu 3 O 7-δ target, and a superconducting layer 2 having a thickness of 620 nm was laminated on a 1 cm square SrTiO 3 substrate 1. At this time, the substrate temperature was set to 760 ° C., and the oxygen partial pressure in the vacuum chamber was set to 0.4 Torr (53 Pa).

得られた超伝導層をX線回折法にて分析したところ、ErBaCu7−δ結晶のc軸は、基板の成膜面に対して垂直であることが確認された。さらに、X線回折法において、ロッキングカーブを測定したところ、ピークの半値幅は0.2度であり、得られた超伝導体層が高い結晶性を有していることが明らかとなった。得られた超伝導層2は、90.9KのTを示した。 When the obtained superconducting layer was analyzed by the X-ray diffraction method, it was confirmed that the c-axis of the ErBa 2 Cu 3 O 7-δ crystal was perpendicular to the film formation surface of the substrate. Furthermore, when the rocking curve was measured by the X-ray diffraction method, the half width of the peak was 0.2 degrees, and it was revealed that the obtained superconductor layer has high crystallinity. The resulting superconducting layer 2 exhibited a T c of 90.9K.

得られた超伝導層2を試料幅100μmに加工した後に、絶対温度77Kに冷却し、その臨界電流密度を測定したところ、磁界無印加時(自己磁場条件)において1.2×10A/cm、5Tの磁界印加時において1×10A/cm未満の臨界電流密度を示した。印加される磁場の強さに対する加熱処理前の超伝導層の臨界電流密度の変化を図2に示した(非加熱)。 After processing the obtained superconducting layer 2 to a sample width of 100 μm, it was cooled to an absolute temperature of 77 K and its critical current density was measured. When no magnetic field was applied (self-magnetic field condition), 1.2 × 10 5 A / When a magnetic field of cm 2 and 5 T was applied, a critical current density of less than 1 × 10 4 A / cm 2 was exhibited. The change in the critical current density of the superconducting layer before the heat treatment with respect to the strength of the applied magnetic field is shown in FIG. 2 (non-heated).

次に、前述と同様の条件にて超伝導層2を積層した別のサンプルに対して、マイクロニードルを用いて、300μm平方あたり1つの割合で、超伝導層2を完全に貫通する複数の直径10μm〜30μmの空孔3を形成した。空孔3を形成した積層体を、酸素分圧760Torr(101.3kPa)のイメージ炉内に配置し、15分間にわたって450℃に加熱して、超伝導薄膜を得た。得られた超伝導薄膜は、90.5KのTを示した。 Next, with respect to another sample in which the superconducting layer 2 is laminated under the same conditions as described above, a plurality of diameters completely penetrating the superconducting layer 2 at a rate of one per 300 μm square using a microneedle. Holes 3 of 10 μm to 30 μm were formed. The laminated body in which the holes 3 were formed was placed in an image furnace having an oxygen partial pressure of 760 Torr (101.3 kPa) and heated to 450 ° C. for 15 minutes to obtain a superconducting thin film. The resulting superconducting thin films showed T c of 90.5K.

加熱処理後の超伝導薄膜を、試料幅100μmに加工した後に、絶対温度77Kに冷却し、その臨界電流密度を測定したところ、磁界無印加時において1.9×10A/cm、5Tの磁界印加時において1.2×10A/cmの臨界電流密度を示した。印加される磁場の強さに対する本実施例で得られた超伝導薄膜の臨界電流密度の変化を図2に示した(450℃加熱)。 After processing the heat-treated superconducting thin film to a sample width of 100 μm, it was cooled to an absolute temperature of 77 K and its critical current density was measured. When no magnetic field was applied, 1.9 × 10 6 A / cm 2 , 5T The critical current density of 1.2 × 10 5 A / cm 2 was exhibited when the magnetic field was applied. FIG. 2 shows the change in critical current density of the superconducting thin film obtained in this example with respect to the strength of the applied magnetic field (heating at 450 ° C.).

加熱処理の有無によらずTはほぼ同等の値を示したにもかかわらず、加熱処理後の超伝導薄膜において得られた臨界電流密度は、磁界無印加時および磁界印加時の両方において加熱処理前の値よりも遥かに大きくなった。このことは、非平衡条件における成膜直後の超伝導層には、少なくとも部分的に超伝導性を示す領域が形成されたために良好なTを示したが、全体が均一な組成になっていないために低いJを示したと考えられる。一方、空孔を設けた後の加熱処理を行う本発明の方法によって得られたサンプルにおいては、該加熱処理によって酸素の組成比の均一化が行われ、良好なTおよびJを示したと考えられる。 The critical current density obtained in the superconducting thin film after the heat treatment was heated both when no magnetic field was applied and when the magnetic field was applied, although Tc showed almost the same value regardless of the presence or absence of the heat treatment. It became much larger than the value before processing. This indicates that the superconducting layer immediately after film formation under non-equilibrium conditions has a good T c because a region exhibiting superconductivity is formed at least partially, but the whole has a uniform composition. It believed showed low J c for free. On the other hand, in the sample obtained by the method of the present invention in which the heat treatment after providing the holes was performed, the oxygen composition ratio was made uniform by the heat treatment, and good Tc and Jc were exhibited. Conceivable.

(実施例2)
加熱処理を15分間にわたって425℃に加熱することにより実施したことを除いて、実施例1を繰り返して、超伝導薄膜を形成した。
(Example 2)
Example 1 was repeated to form a superconducting thin film, except that the heat treatment was carried out by heating to 425 ° C. for 15 minutes.

加熱処理後の超伝導薄膜を絶対温度77Kに冷却し、その臨界電流密度を測定したところ、磁界無印加時において2.5×10A/cm、5Tの磁界印加時において1.0×10A/cmの臨界電流密度を示した。印加される磁場の強さに対する本実施例で得られた超伝導薄膜の臨界電流密度の変化を図2に示した(425℃加熱)。 The superconducting thin film after the heat treatment was cooled to an absolute temperature of 77 K, and its critical current density was measured. When no magnetic field was applied, 2.5 × 10 6 A / cm 2 , and when a magnetic field of 5 T was applied, 1.0 × A critical current density of 10 5 A / cm 2 was exhibited. The change in critical current density of the superconducting thin film obtained in this example with respect to the strength of the applied magnetic field is shown in FIG. 2 (at 425 ° C. heating).

得られた臨界電流密度は、磁界無印加時において加熱処理前の3倍、5Tの磁界印加時においては加熱処理前の約2倍の値を示した。この効果は、空孔を設けた後の加熱処理によって酸素の導入が均一に行われたことによるものと考えられる。   The obtained critical current density was three times that before heat treatment when no magnetic field was applied, and about twice that before heat treatment when a magnetic field of 5T was applied. This effect is considered to be due to the uniform introduction of oxygen by the heat treatment after providing the holes.

(実施例3)
加熱処理を60分間にわたって450℃に加熱することにより実施したことを除いて、実施例1を繰り返して、超伝導薄膜を形成した。
(Example 3)
Example 1 was repeated to form a superconducting thin film, except that the heat treatment was carried out by heating to 450 ° C. for 60 minutes.

加熱処理後の超伝導薄膜を絶対温度77Kに冷却し、その臨界電流密度を測定したところ、磁界無印加時において5×10A/cm、5Tの磁界印加時において1×10A/cmの臨界電流密度を示した。 The superconducting thin film after the heat treatment was cooled to an absolute temperature of 77 K, and its critical current density was measured. As a result, it was 5 × 10 5 A / cm 2 when no magnetic field was applied, and 1 × 10 4 A / when a magnetic field of 5 T was applied. A critical current density of cm 2 was shown.

得られた臨界電流密度は、磁界無印加時において加熱処理前の約2倍に増大したものの、5Tの磁界印加時においては加熱処理前後において同等の値を示した。この結果は、加熱処理によって、超伝導層全体にわたって酸素の組成比を均質にすることができたものの、加熱時間の延長により超伝導層の経時劣化が進行したためと考えられる。   The obtained critical current density increased approximately twice before the heat treatment when no magnetic field was applied, but showed the same value before and after the heat treatment when a 5T magnetic field was applied. This result is considered to be because although the oxygen composition ratio was made uniform over the entire superconducting layer by the heat treatment, the superconducting layer was deteriorated with time by extending the heating time.

本発明の超伝導薄膜の例示的構成を示す断面図である。It is sectional drawing which shows the exemplary structure of the superconducting thin film of this invention. 非加熱、ならびに450℃および425℃に加熱した場合の、印加される磁場に対する超伝導層の臨界電流密度の変化を示すグラフである。It is a graph which shows the change of the critical current density of the superconducting layer with respect to the applied magnetic field at the time of heating at 450 degreeC and 425 degreeC when not heating.

符号の説明Explanation of symbols

1 基板
2 超伝導層
3 空孔
1 Substrate 2 Superconducting layer 3 Hole

Claims (14)

基板と、該基板上に形成され、ErBaCu7−δ(0≦δ≦1)なる組成を有する酸化物超伝導相を含む超伝導層とを含む超伝導薄膜であって、前記超伝導層は少なくとも1つの空孔を含み、前記少なくとも1つの空孔は、前記超伝導層を貫通していることを特徴とする超伝導薄膜。 A superconducting thin film comprising a substrate and a superconducting layer formed on the substrate and including an oxide superconducting phase having a composition of ErBa 2 Cu 3 O 7-δ (0 ≦ δ ≦ 1), superconducting layer viewed contains at least one pore, wherein the at least one cavity is superconducting thin film characterized in that through said superconducting layer. 前記少なくとも1つの空孔は、1cm平方当たり1つ以上配置されていることを特徴とする請求項1に記載の超伝導薄膜。   2. The superconducting thin film according to claim 1, wherein at least one of the holes is arranged per 1 cm 2. 絶対温度77K、5Tの磁場の下で1×10A/cm以上の臨界電流密度を有することを特徴とする請求項1または2に記載の超伝導薄膜。 3. The superconducting thin film according to claim 1 , having a critical current density of 1 × 10 5 A / cm 2 or more under a magnetic field having an absolute temperature of 77 K and 5 T. 4. 請求項1から3のいずれかに記載の超伝導薄膜で構成される超伝導線材。 A superconducting wire comprising the superconducting thin film according to any one of claims 1 to 3 . 請求項1から3のいずれかに記載の超伝導薄膜で構成される超伝導デバイス。 A superconducting device comprising the superconducting thin film according to any one of claims 1 to 3 . 基板上にErBaCu7−δなる組成を有する酸化物超伝導相を含む超伝導層を形成する工程と、
前記超伝導層に、少なくとも1つの空孔を形成する工程と、
前記超伝導層を、酸化性雰囲気下で熱処理する工程と
を備えたことを特徴とする超伝導薄膜の製造方法。
Forming a superconducting layer including an oxide superconducting phase having a composition of ErBa 2 Cu 3 O 7-δ on a substrate;
Forming at least one hole in the superconducting layer;
And a step of heat-treating the superconducting layer in an oxidizing atmosphere.
前記熱処理工程を、250〜600℃の範囲内の温度で実施することを特徴とする請求項6に記載の超伝導薄膜の製造方法。   The method of manufacturing a superconducting thin film according to claim 6, wherein the heat treatment step is performed at a temperature within a range of 250 to 600 ° C. 前記酸化性雰囲気は、200Torr(26.7kPa)以上の分圧を有する酸化性ガスを含むことを特徴とする請求項6または7に記載の超伝導薄膜の製造方法。 The method of manufacturing a superconducting thin film according to claim 6 or 7 , wherein the oxidizing atmosphere includes an oxidizing gas having a partial pressure of 200 Torr (26.7 kPa) or more. 前記熱処理工程は、1分〜45分間の範囲内の時間にわたって実施することを特徴とする請求項6から8のいずれかに記載の超伝導薄膜の製造方法。 The method of manufacturing a superconducting thin film according to any one of claims 6 to 8 , wherein the heat treatment step is performed for a time within a range of 1 minute to 45 minutes. 前記超伝導層を形成する工程において、PLD法を用いたことを特徴とする請求項6から9のいずれかに記載の超伝導薄膜の製造方法。 The method for producing a superconducting thin film according to any one of claims 6 to 9 , wherein a PLD method is used in the step of forming the superconducting layer. 前記少なくとも1つの空孔を、1cm平方当たり1つ以上配置することを特徴とする請求項6から10のいずれかに記載の超伝導薄膜の製造方法。 The method for producing a superconducting thin film according to any one of claims 6 to 10 , wherein one or more of the at least one hole is arranged per 1 cm 2. 前記少なくとも1つの空孔は、前記超伝導層を貫通していることを特徴とする請求項6から11のいずれかに記載の超伝導薄膜の製造方法。 12. The method of manufacturing a superconducting thin film according to claim 6, wherein the at least one hole penetrates the superconducting layer. 請求項6から12のいずれかに記載の製造方法を用いることを特徴とする超伝導線材の製造方法。 A method for producing a superconducting wire, comprising using the production method according to claim 6 . 請求項6から12のいずれかに記載の製造方法を用いることを特徴とする超伝導デバイスの製造方法。 A method for manufacturing a superconducting device, wherein the method according to any one of claims 6 to 12 is used.
JP2004061414A 2004-03-04 2004-03-04 Oxide superconducting thin film and manufacturing method thereof Expired - Fee Related JP4455902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061414A JP4455902B2 (en) 2004-03-04 2004-03-04 Oxide superconducting thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061414A JP4455902B2 (en) 2004-03-04 2004-03-04 Oxide superconducting thin film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005251592A JP2005251592A (en) 2005-09-15
JP4455902B2 true JP4455902B2 (en) 2010-04-21

Family

ID=35031852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061414A Expired - Fee Related JP4455902B2 (en) 2004-03-04 2004-03-04 Oxide superconducting thin film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4455902B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111098385A (en) * 2019-12-10 2020-05-05 南昌大学 Crystal growth system and method based on laser heat control solution method 3D printing

Also Published As

Publication number Publication date
JP2005251592A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4495426B2 (en) Superconducting film and manufacturing method thereof
Bao et al. YBaCuO superconducting thin films with zero resistance at 84 K by multilayer deposition
JPH01157579A (en) Manufacture of superconductor and superconductive circuit
JP2008130291A (en) Superconductor film and its manufacturing method
JP2000150974A (en) High-temperature superconducting josephson junction and manufacture thereof
JP2013524434A (en) Thick oxide film with single layer coating
JP4455902B2 (en) Oxide superconducting thin film and manufacturing method thereof
US20040157747A1 (en) Biaxially textured single buffer layer for superconductive articles
JP2015198057A (en) Application method of superconductive film and superconductive film
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
US7544273B2 (en) Deposition methods and stacked film formed thereby
KR100721901B1 (en) Superconducting article and its manufacturing method
JP2007109717A (en) Superconducting element and its fabrication process
US20090036313A1 (en) Coated superconducting materials
JP2005001935A (en) Method for producing thin oxide film
EP3176793A1 (en) Oxide superconductor, superconducting wire, and manufacturing method therefor
JP2011249162A (en) Method for manufacturing superconducting wire rod
Uchiyama et al. Control of crystal orientation in YBCO thin films by an oxygen diffusion process
JP2005294240A (en) Oriented polycrystalline intermediate thin film, its manufacturing method, oxide superconductive conductor and its manufacturing method
JP4741787B2 (en) Method for producing high-temperature superconducting film
Varanasi et al. Pulsed Laser Deposition of Nd-Doped YBa2Cu3O7-x Films for Coated Conductor Applications
EP1662514A1 (en) Process for producing oxide superconductive wire
JP6167443B2 (en) Superconducting wire and manufacturing method thereof
JP5481180B2 (en) Base material for oxide superconductor and oxide superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees