JP4455725B2 - Method for correcting shape of quartz glass base material for optical fiber - Google Patents

Method for correcting shape of quartz glass base material for optical fiber Download PDF

Info

Publication number
JP4455725B2
JP4455725B2 JP2000119186A JP2000119186A JP4455725B2 JP 4455725 B2 JP4455725 B2 JP 4455725B2 JP 2000119186 A JP2000119186 A JP 2000119186A JP 2000119186 A JP2000119186 A JP 2000119186A JP 4455725 B2 JP4455725 B2 JP 4455725B2
Authority
JP
Japan
Prior art keywords
base material
glass base
shape
etching solution
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000119186A
Other languages
Japanese (ja)
Other versions
JP2001302267A (en
Inventor
浩史 町田
哲也 乙坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000119186A priority Critical patent/JP4455725B2/en
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to EP00126272A priority patent/EP1106584B1/en
Priority to EP07075824A priority patent/EP1894898B1/en
Priority to US09/727,386 priority patent/US20020020193A1/en
Priority to KR1020000072378A priority patent/KR100615545B1/en
Priority to DE60037098T priority patent/DE60037098T2/en
Publication of JP2001302267A publication Critical patent/JP2001302267A/en
Priority to US10/934,473 priority patent/US20050147367A1/en
Application granted granted Critical
Publication of JP4455725B2 publication Critical patent/JP4455725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

【0001】
【発明の属する技術分野】
本発明は、光通信用ファイバの製造に用いられる光ファイバ用石英ガラス母材(以下、単にガラス母材と称する)、特には、ガラス母材の形状修正方法に関する。
【0002】
【従来の技術】
光通信用ファイバの製造に用いられる透明ガラス化されたコアとクラッドからなるガラス母材の構造特性の一つとして非円形状が挙げられる。
この非円形状は、ガラス母材の外周形状に対する真円からのズレで表し、パラメーターとして非円率Nc(%)にて次式のように表わすことができる。
Nc=(Dmax−Dmin)/D×100(%)
上式において、符号Dmax、Dmin、Dは、それぞれ順にガラス母材の最大径(mm)、最小径(mm)、平均径(mm)である。
【0003】
一般に、ガラス母材の非円率Ncが大きくなると、ガラス母材を線引きして得られる光ファイバの接続損失が大きくなる。このため、従来、ガラス母材の評価工程において、非円率がある一定値(規格値)以上のガラス母材は、構造不良品として廃棄処分とされていた。
【0004】
一方では、非円率Ncが規格値を超えるガラス母材を良品とするために、様々な形状修正方法が考えられてきた。例えば、ガラス母材の周囲を機械的に研磨する方法、あるいはHF液で化学的に溶解してエッチングする方法が挙げられる。
しかし、ガラス母材の周囲を機械的に研磨する方法は、表面の微小な突起物を除去することはできても、周形状まで修正して真円形状とすることは困難である。また、HF液で化学的に溶解してエッチングする方法においても、単純にHF液内に浸けておくだけでは、表面から均一に溶解してゆくだけで周形状はそのままであり、非円形状を修正するのは困難であり、修正技術は確立されていないのが現状である。
【0005】
【発明が解決しようとする課題】
本発明は、ガラス母材の非円形状を修正して真円形状とするガラス母材の形状修正方法を提供することを課題としている。
【0006】
【課題を解決するための手段】
ガラス母材の非円形状を修正するために、HF液中にガラス母材を単に水没させるだけでは、ガラス母材の半径方向に均一に研削されるだけで、非円形状を真円形状にする点では効果が全く認められない。そこで、エッチング液にガラス母材を浸水させるときのガラス母材の状態等について鋭意検討を加えた結果、ガラス母材の軸に垂直な断面での最大径(Dmax)方向が、エッチング液面に対して垂直となるように最大半径までエッチング液に浸水させることで、ガラス母材の非円形状を修正することができることを見出し、本発明を完成したものである。
【0007】
すなわち、請求項1に記載のガラス母材の形状修正方法は、非円形状を有するガラス母材の断面形状を、エッチング液を用いて真円形状に修正するに際し、水平に保持された該ガラス母材の軸に垂直な断面での最大径(Dmax)方向が、エッチング液面に対して垂直となるように、かつ浸水最大深さをガラス母材の最大径(Dmax)の0.5倍以下として、該ガラス母材の下面側からエッチング液に速度Vで浸水させ、該速度Vを非円形状の修正初期から後期にかけて変化させることにより、ガラス母材の非円形状を修正することを特徴としている。
なお、ガラス母材をエッチング液に浸水させる速度Vは、エッチング液中でのガラス母材の浸水深さLの関数として表される。すなわち、
V={a(1/D) 3 L 3 + b(1/D) 2 L 2 + c(1/D)L + d(1/D)} Ve/Nc
(D:ガラス母材の平均外径[mm]、L:エッチング液中への浸水深さ[mm]、Ve:エッチング速度[mm/min]、Nc:非円率[%]、a,b,c,d:定数)で表される。
【0008】
請求項4に記載のガラス母材の形状修正方法は、非円形状を有するガラス母材の断面形状を、エッチング液を用いて真円形状に修正するに際し、水平に保持された該ガラス母材の軸に垂直な断面での最大径(Dmax)方向がエッチング液面に対して垂直となるように、かつ浸水最大深さをガラス母材の最大径(Dmax)の0.5倍以下としてエッチング液に浸水させ、該ガラス母材を浸水状態からエッチング液面を速度V'で下降させ、該速度V'を非円形状の修正初期から後期にかけて変化させることにより、ガラス母材の非円形状を修正することを特徴としている。
なお、ガラス母材を浸水状態からエッチング液面を下降させる速度V’は、エッチング液中でのガラス母材の浸水深さLの関数として表される。すなわち、 V'={a(1/D) 3 (Dmax/2−L) 3 + b(1/D) 2 (Dmax/2−L) 2 + c(1/D) (Dmax/2−L) + d(1/D)} Ve/Nc
(D:ガラス母材の平均外径[mm]、L:エッチング液中への浸水深さ[mm]、Ve:エッチング速度[mm/min]、Nc:非円率[%]、a,b,c,d:定数)で表される。
【0009】
ガラス母材の非円形状の修正は、上記したように水平に保持されたガラス母材の下面側からエッチング液に浸水させて、あるいはガラス母材を浸水状態からエッチング液面を下降させて修正してもよいが、ガラス母材の一方の最大半径側をエッチング液で修正した後、該ガラス母材をこの軸回りに180°回転させて他方の最大半径側を修正することで完了する。
【0010】
【発明の実施の形態】
本発明は、ガラス母材の非円形状をエッチング液を用いて真円形状に修正するものであり、図1(a),(b),(c)に示すように、ガラス母材1の軸に垂直な断面での最大径(Dmax)2の方向が、エッチング液面3に対して垂直となるように行なわれる。なお、エッチング液には、HF液を用いるのが望ましく、これに他の酸や塩を適宜加えたものであってもよい。
【0011】
ガラス母材をエッチング液に浸水させるには、水平に保持されたガラス母材の下面側からエッチング液に浸水させるか、あるいは、ガラス母材を当初の浸水状態から、エッチング液を槽外に排出することでエッチング液面を下降させてもよい。
例えば、図1(a)に示すように、水平に保持されたガラス母材1をエッチング処理槽5内に載置した後、槽内にエッチング液4を供給して、液面3から液面3へと上昇させ、ガラス母材1の下面側からエッチング液4に浸水させるか、図1(b)に示すように、ガラス母材1を上方からエッチング液面3に向けて下ろし、ガラス母材1の下面側からエッチング液4中に浸水させてもよい。あるいは、図1(c)に示すように、ガラス母材1を浸水状態から、エッチング液4を槽外に排出することで液面3から液面3へと下降させてもよい。なお、符号6は、ガラス母材の設置台である。
【0012】
なお、修正に際しては、ガラス母材のエッチング液への浸水最大深さ(Lmax)は最大半径までとし、ガラス母材の一方の最大半径側をエッチング液で修正した後、軸回りに180°回転させて他方の最大半径側を修正する。このとき、ガラス母材の浸水速度V、V’を浸水初期から後半にかけて変化させて行なう。このようにしてガラス母材の非円形状は真円形状に修正される。
【0013】
ガラス母材の浸水速度V、V’は、シミュレーション及び実際の実験結果より、浸水初期から後半にかけて速度を変化させて修正することで、より、真円に近い形状にすることができ、図1(a),(b)の態様では、初期の浸水速度Vは遅く、後半の浸水速度Vを速くする。図1(c)の態様では、初期の浸水速度V’は速く、後半の浸水速度V’を遅くする。これらの浸水速度V,V’は、ガラス母材がエッチング液中に浸水している深さLの関数として上記式で表わすことができ、浸水速度V,V’を浸水している深さLに基づき制御することにより、非円形状を真円に修正することができる。
【0014】
【実施例】
以下、本発明の実施例および比較例の各1例を示すが、本発明はこの実施例に限定されるものではなく、請求項に記載の範囲内で様々な態様が可能である。
(実施例1)
非円率Nc1.0%、最大径50.250mm、最小径49.750mm、平均径D50.000mm、長さ250mmのガラス母材をHF液槽内に載置し、液槽の下部からHF液を供給した。HF液の供給を開始して、ガラス母材がHF液に浸かり始めてからの、ガラス母材の浸水速度Vを以下の式で制御し変化させた。このときのエッチング速度Veは0.001667mm/分である。
V={6330(1/50.00)3L3 ‐1720(1/50.00)2L2 + 235(1/50.00)L + 50(1/50.00)}×0.001667/1.0
【0015】
このときの液面上昇速度(浸水速度)Vとガラス母材の浸水距離(浸水深さ)Lとの関係を図2に示した。
ここで、ガラス母材の一方の最大半径までの部分、すなわち最大半径部の修正を149分かけて行い、その後、ガラス母材を180°回転させて、対称となる他方の最大半径部の修正をさらに149分かけて行った結果、ガラス母材の形状は、以下のように修正された。
非円率Nc0.01%、最大径49.752mm、最小径49.746mm、平均径D49.750mmであった。
【0016】
(比較例1)
非円率Nc0.86%、最大径52.200mm、最小径51.750mm、平均径D51.975mm、長さ250mmのガラス母材を、あらかじめHF液で満たされた液槽内に180分間水没させた状態でエッチングした。その形状は以下のようになった。
非円率Nc0.87%、最大径51.600mm、最小径51.150mm、平均径D51.375mmであった。
【0017】
【発明の効果】
本発明によれば、従来、エッチング液に浸水させる方法では困難であった非円形状の修正が容易となり、従来は構造不良品として廃棄されていた非円率が大きいガラス母材を再生させることができ、生産性を大幅に向上させることができる。
【図面の簡単な説明】
【図1】 本発明によるエッチング液への浸水方法を説明する概略説明図であり、(a),(b),(c)はそれぞれ浸水方法の異なる態様を示している。
【図2】 本発明の実施例での浸水速度V(液面上昇速度)とガラス母材の浸水深さL(浸水距離)との関係を示すグラフである。
【符号の説明】
1 ガラス母材
2 最大径(Dmax)
3,3 液面
4 エッチング液
5 エッチング処理槽
6 ガラス母材設置台
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber quartz glass base material (hereinafter simply referred to as a glass base material) used for manufacturing an optical communication fiber, and in particular, to a glass base material shape correcting method.
[0002]
[Prior art]
Non-circular shape is one of the structural characteristics of a glass base material composed of a transparent vitrified core and clad used in the manufacture of optical communication fibers.
This non-circular shape is expressed by a deviation from a perfect circle with respect to the outer peripheral shape of the glass base material, and can be expressed as a non-circularity Nc (%) as a parameter as follows.
Nc = (Dmax−Dmin) / D × 100 (%)
In the above equation, symbols Dmax, Dmin, and D are the maximum diameter (mm), minimum diameter (mm), and average diameter (mm) of the glass base material, respectively.
[0003]
In general, when the non-circularity Nc of the glass base material increases, the connection loss of the optical fiber obtained by drawing the glass base material increases. For this reason, conventionally, in a glass base material evaluation process, a glass base material having a non-circularity of a certain value (standard value) or more has been disposed of as a defective product.
[0004]
On the other hand, various shape correction methods have been considered in order to make a glass base material having a non-circularity Nc exceeding a standard value a non-defective product. For example, a method of mechanically polishing the periphery of a glass base material, or a method of chemically dissolving with an HF solution and etching is used.
However, although the method of mechanically polishing the periphery of the glass base material can remove minute projections on the surface, it is difficult to correct the peripheral shape to obtain a perfect circle. Also, in the method of chemically dissolving with HF solution and etching, simply by dipping in HF solution, the peripheral shape remains as it is evenly dissolved from the surface, and the non-circular shape is not changed. It is difficult to correct, and no correction technology has been established.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a glass base material shape correcting method for correcting a non-circular shape of a glass base material into a perfect circle.
[0006]
[Means for Solving the Problems]
To correct the non-circular shape of the glass base material, simply immersing the glass base material in the HF liquid simply turns the non-circular shape into a perfect circle shape by grinding uniformly in the radial direction of the glass base material. The effect is not recognized at all. Therefore, as a result of intensive studies on the state of the glass base material when the glass base material is immersed in the etching solution, the maximum diameter (Dmax) direction in the cross section perpendicular to the axis of the glass base material is on the etching liquid surface. The inventors have found that the non-circular shape of the glass base material can be corrected by immersing it in an etching solution up to the maximum radius so as to be perpendicular to the invention, and have completed the present invention.
[0007]
That is, in the glass base material shape correcting method according to claim 1, when the cross-sectional shape of the non-circular glass base material is corrected to a perfect circular shape using an etching solution, the glass held horizontally is maintained. The maximum diameter (Dmax) direction in the cross section perpendicular to the base metal axis is perpendicular to the etching liquid surface , and the maximum depth of water immersion is 0.5 times or less the maximum diameter (Dmax) of the glass base material. The non-circular shape of the glass base material is corrected by immersing the etchant in the etching solution from the lower surface side of the glass base material at a speed V and changing the speed V from the initial stage to the late stage of the non-circular correction. Yes.
Note that the rate V at which the glass base material is immersed in the etching solution is expressed as a function of the immersion depth L of the glass base material in the etching solution. That is,
V = {a (1 / D) 3 L 3 + b (1 / D) 2 L 2 + c (1 / D) L + d (1 / D)} Ve / Nc
(D: average outer diameter [mm] of glass base material, L: depth of immersion in etching solution [mm], Ve: etching rate [mm / min], Nc: non-circularity [%], a, b , C, d: constants).
[0008]
The glass base material shape correcting method according to claim 4, wherein the glass base material held horizontally when the cross-sectional shape of the non-circular glass base material is corrected to a perfect circular shape by using an etching solution. In the etching solution, the maximum diameter (Dmax) direction in the cross section perpendicular to the axis of the glass is perpendicular to the etching solution surface, and the maximum immersion depth is 0.5 times or less the maximum diameter (Dmax) of the glass base material. Non-circular shape of the glass base material is corrected by submerging the glass base material from the submerged state by lowering the etching liquid surface at a speed V ′ and changing the speed V ′ from the initial stage to the late stage of non-circular correction. It is characterized by doing.
The speed V ′ for lowering the etching liquid surface from the water immersion state is expressed as a function of the water immersion depth L of the glass base material in the etching liquid. That is, V ′ = {a (1 / D) 3 (Dmax / 2−L) 3 + b (1 / D) 2 (Dmax / 2−L) 2 + c (1 / D) (Dmax / 2−L ) + d (1 / D)} Ve / Nc
(D: average outer diameter [mm] of glass base material, L: depth of immersion in etching solution [mm], Ve: etching rate [mm / min], Nc: non-circularity [%], a, b , C, d: constants).
[0009]
To correct the non-circular shape of the glass base material, correct the glass base material by immersing it in the etchant from the lower surface side of the glass base material held horizontally, or by lowering the etchant surface from the submerged state. However, after correcting one maximum radius side of the glass base material with an etching solution, the glass base material is rotated by 180 ° around this axis to complete the other maximum radius side.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the non-circular shape of the glass base material is corrected to a perfect circular shape by using an etching solution. As shown in FIGS. 1 (a), (b), and (c), the glass base material 1 The direction of the maximum diameter (Dmax) 2 in the cross section perpendicular to the axis is performed so as to be perpendicular to the etching liquid surface 3. Note that it is desirable to use an HF solution as the etching solution, and another acid or salt may be appropriately added thereto.
[0011]
To immerse the glass base material in the etchant, immerse the etchant in the etchant from the lower side of the horizontally held glass base material, or discharge the etchant out of the tank from the original submerged state. By doing so, the etching liquid level may be lowered.
For example, as shown in FIG. 1 (a), after the glass base material 1 held horizontally is placed in the etching treatment tank 5, the etching liquid 4 is supplied into the tank, and the liquid surface 3 The glass base material 1 is immersed in the etching liquid 4 from the lower surface side of the glass base material 1 or the glass base material 1 is lowered from above toward the etching liquid surface 3 as shown in FIG. The etching solution 4 may be immersed from the lower surface side of the material 1. Alternatively, as shown in FIG. 1 (c), the glass base material 1 may be lowered from the liquid level 3 to the liquid level 3 by discharging the etching solution 4 out of the bath from the submerged state. Reference numeral 6 denotes an installation base for the glass base material.
[0012]
In the correction, the maximum water immersion depth (Lmax) of the glass base material into the etching solution is set to the maximum radius, and one of the glass base materials is corrected by the etching solution and then rotated 180 ° around the axis. And correct the other largest radius side. At this time, the water immersion speeds V and V ′ of the glass base material are changed from the initial stage of the flooding to the latter half. In this way, the non-circular shape of the glass base material is corrected to a perfect circular shape.
[0013]
The water immersion speeds V and V ′ of the glass base material can be made a shape closer to a perfect circle by changing the speed from the initial stage to the latter half of the water immersion and correcting it based on the simulation and actual experimental results. In the modes (a) and (b), the initial water immersion speed V is slow, and the latter water immersion speed V is increased. In the embodiment of FIG. 1 (c), the initial flooding speed V ′ is fast and the latter flooding speed V ′ is slowed. These submergence speeds V and V ′ can be expressed by the above formula as a function of the depth L at which the glass base material is submerged in the etching solution, and the submergence depths V and V ′ are submerged in depth L. By controlling based on the above, the non-circular shape can be corrected to a perfect circle.
[0014]
【Example】
Hereinafter, one example of each of the examples and comparative examples of the present invention will be described, but the present invention is not limited to these examples, and various modes are possible within the scope of the claims.
Example 1
A glass base material having a non-circularity Nc of 1.0%, a maximum diameter of 50.250 mm, a minimum diameter of 49.750 mm, an average diameter of D 50.000 mm, and a length of 250 mm is placed in the HF liquid tank, and HF liquid is added from the bottom of the liquid tank. Supplied. Supply of the HF liquid was started, and the water immersion speed V of the glass base material after the glass base material began to be immersed in the HF liquid was controlled and changed by the following formula. The etching rate Ve at this time is 0.001667 mm / min.
V = {6330 (1 / 50.00) 3 L 3 -1720 (1 / 50.00) 2 L 2 + 235 (1 / 50.00) L + 50 (1 / 50.00)} × 0.001667 / 1.0
[0015]
The relationship between the liquid level rising speed (flooding speed) V and the flooding distance (flooding depth) L of the glass base material at this time is shown in FIG.
Here, the portion up to one maximum radius of the glass base material, that is, the maximum radius portion is corrected over 149 minutes, and then the glass base material is rotated 180 ° to correct the other maximum radius portion that is symmetric. As a result of further performing 149 minutes, the shape of the glass base material was corrected as follows.
The non-circularity Nc was 0.01%, the maximum diameter was 49.752 mm, the minimum diameter was 49.746 mm, and the average diameter was 49.750 mm.
[0016]
(Comparative Example 1)
A glass base material having a non-circularity Nc of 0.86%, a maximum diameter of 52.200 mm, a minimum diameter of 51.750 mm, an average diameter of D 51.975 mm, and a length of 250 mm is submerged in a liquid tank previously filled with HF liquid for 180 minutes. Etching was performed. The shape was as follows.
The non-circularity Nc was 0.87%, the maximum diameter was 51.600 mm, the minimum diameter was 51.150 mm, and the average diameter was D51.375 mm.
[0017]
【The invention's effect】
According to the present invention, correction of a non-circular shape that has been difficult with a conventional method of immersing in an etching solution is facilitated, and a glass base material having a large non-circularity that has been discarded as a defective structure can be regenerated. Productivity, and productivity can be greatly improved.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic explanatory view for explaining a method for immersing an etchant in accordance with the present invention, wherein FIGS.
FIG. 2 is a graph showing the relationship between the water immersion speed V (liquid level rising speed) and the water immersion depth L (water immersion distance) of the glass base material in an example of the present invention.
[Explanation of symbols]
1 Glass base material 2 Maximum diameter (Dmax)
3, 3 Liquid level 4 Etching solution 5 Etching tank 6 Glass base

Claims (7)

非円形状を有するガラス母材の断面形状を、エッチング液を用いて真円形状に修正するに際し、水平に保持された該ガラス母材の軸に垂直な断面での最大径(Dmax)方向エッチング液面に対して垂直となるように、かつ浸水最大深さをガラス母材の最大径(Dmax)の0.5倍以下として、該ガラス母材の下面側からエッチング液に速度Vで浸水させ、該速度Vを非円形状の修正初期から後期にかけて変化させることにより、ガラス母材の非円形状を修正することを特徴とする光ファイバ用石英ガラス母材の形状修正方法。When the cross-sectional shape of the glass base material having a non-circular shape is corrected to a perfect circular shape using an etching solution, the maximum diameter (Dmax) direction in the cross-section perpendicular to the axis of the glass base material held horizontally is In order to be perpendicular to the etching liquid surface and the maximum water immersion depth is 0.5 times or less the maximum diameter (Dmax) of the glass base material, the etching liquid is submerged at a speed V from the lower surface side of the glass base material, A method for correcting a shape of a quartz glass preform for optical fibers, wherein the velocity V is changed from the initial stage to the later stage of correcting the non-circular shape, thereby correcting the non-circular shape of the glass preform. ガラス母材をエッチング液に浸水させる速度Vが、エッチング液中でのガラス母材の浸水深さLの関数として表される請求項1に記載の光ファイバ用石英ガラス母材の形状修正方法。The method for correcting a shape of a quartz glass preform for an optical fiber according to claim 1 , wherein the rate V at which the glass preform is immersed in the etching solution is expressed as a function of the immersion depth L of the glass preform in the etching solution. 前記関数が、次式
V={a(1/D)3 L3 + b(1/D)2 L2 + c(1/D)L + d(1/D)} Ve/Nc
(D:ガラス母材の平均外径[mm]、L:エッチング液中への浸水深さ[mm]、Ve:エッチング速度[mm/min]、Nc:非円率[%]、a,b,c,d:定数)で表される請求項2に記載の光ファイバ用石英ガラス母材の形状修正方法。
The function has the following expression V = {a (1 / D ) 3 L 3 + b (1 / D) 2 L 2 + c (1 / D) L + d (1 / D)} Ve / Nc
(D: average outer diameter [mm] of glass base material, L: depth of immersion in etching solution [mm], Ve: etching rate [mm / min], Nc: non-circularity [%], a, b , C, d: constant) The method for correcting the shape of a quartz glass preform for optical fiber according to claim 2 .
非円形状を有するガラス母材の断面形状を、エッチング液を用いて真円形状に修正するに際し、水平に保持された該ガラス母材の軸に垂直な断面での最大径(Dmax)方向がエッチング液面に対して垂直となるように、かつ浸水最大深さをガラス母材の最大径(Dmax)の0.5倍以下としてエッチング液に浸水させ、該ガラス母材を浸水状態からエッチング液面を速度V'で下降させ、該速度V'を非円形状の修正初期から後期にかけて変化させることにより、ガラス母材の非円形状を修正することを特徴とする光ファイバ用石英ガラス母材の形状修正方法。 When the cross-sectional shape of the glass base material having a non-circular shape is corrected to a perfect circular shape using an etching solution, the maximum diameter (Dmax) direction in the cross-section perpendicular to the axis of the glass base material held horizontally is The etching liquid surface is immersed in the etching liquid so that it is perpendicular to the etching liquid surface and the maximum water immersion depth is 0.5 times or less of the maximum diameter (Dmax) of the glass base material. The shape of the quartz glass base material for optical fiber, wherein the non-circular shape of the glass base material is corrected by lowering at a speed V ′ and changing the speed V ′ from the initial stage to the late stage of the non-circular shape correction. How to fix. ガラス母材を浸水状態からエッチング液面を下降させる速度V'が、エッチング液中でのガラス母材の浸水深さLの関数として表される請求項4に記載の光ファイバ用石英ガラス母材の形状修正方法。The quartz glass preform for an optical fiber according to claim 4 , wherein the rate V 'of lowering the etching solution surface from the water immersion state is expressed as a function of the water immersion depth L of the glass substrate in the etching solution. Shape correction method. 前記関数が、次式
V'={a(1/D)3 (Dmax/2−L)3 + b(1/D)2 (Dmax/2−L)2 + c(1/D) (Dmax/2−L) + d(1/D)} Ve/Nc
(D:ガラス母材の平均外径[mm]、L:エッチング液中への浸水深さ[mm]、Ve:エッチング速度[mm/min]、Nc:非円率[%]、a,b,c,d:定数)で表される請求項5に記載の光ファイバ用石英ガラス母材の形状修正方法。
The function is expressed by the following formula: V ′ = {a (1 / D) 3 (Dmax / 2−L) 3 + b (1 / D) 2 (Dmax / 2−L) 2 + c (1 / D) (Dmax / 2−L) + d (1 / D)} Ve / Nc
(D: average outer diameter [mm] of glass base material, L: depth of immersion in etching solution [mm], Ve: etching rate [mm / min], Nc: non-circularity [%], a, b , C, d: constants) The method for correcting the shape of the quartz glass preform for optical fiber according to claim 5 .
水平に保持されたガラス母材の一方の最大半径側をエッチング液で修正した後、該ガラス母材をこの軸回りに180°回転させて他方の最大半径側を修正する請求項1乃至6のいずれかに記載の光ファイバ用石英ガラス母材の形状修正方法。After modifying one maximum radius side of the glass base material which is horizontally held in an etching solution of claim 1 to 6 said glass base material by 180 ° rotation to the axis to correct the other maximum radius side A method for correcting the shape of a quartz glass preform for an optical fiber according to any one of the above.
JP2000119186A 1999-12-01 2000-04-20 Method for correcting shape of quartz glass base material for optical fiber Expired - Fee Related JP4455725B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000119186A JP4455725B2 (en) 2000-04-20 2000-04-20 Method for correcting shape of quartz glass base material for optical fiber
EP07075824A EP1894898B1 (en) 1999-12-01 2000-12-01 Method for modifying a glass base material for an optical fiber
US09/727,386 US20020020193A1 (en) 1999-12-01 2000-12-01 Method for manufacturing base material for optical fiber, apparatus therefor, and base material manufactured by the same
KR1020000072378A KR100615545B1 (en) 1999-12-01 2000-12-01 Method for manufacturing base material for optical fiber, apparatus therefor, and base material manufactured by the same
EP00126272A EP1106584B1 (en) 1999-12-01 2000-12-01 Method and apparatus for manufacturing a preform for an optical fibre
DE60037098T DE60037098T2 (en) 1999-12-01 2000-12-01 Method and apparatus for producing a preform for optical fibers
US10/934,473 US20050147367A1 (en) 1999-12-01 2004-09-07 Method for manufacturing base material for optical fiber, apparatus therefor, and base material manufactured by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000119186A JP4455725B2 (en) 2000-04-20 2000-04-20 Method for correcting shape of quartz glass base material for optical fiber

Publications (2)

Publication Number Publication Date
JP2001302267A JP2001302267A (en) 2001-10-31
JP4455725B2 true JP4455725B2 (en) 2010-04-21

Family

ID=18630211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000119186A Expired - Fee Related JP4455725B2 (en) 1999-12-01 2000-04-20 Method for correcting shape of quartz glass base material for optical fiber

Country Status (1)

Country Link
JP (1) JP4455725B2 (en)

Also Published As

Publication number Publication date
JP2001302267A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
WO2002056070A1 (en) Optical fiber for transmitting ultraviolet ray, optical fiber probe, and method of manufacturing the optical fiber and optical fiber probe
JP4455725B2 (en) Method for correcting shape of quartz glass base material for optical fiber
JP2015193507A (en) Production method of multicore optical fiber
CN104126153B (en) Method for manufacturing resonator
CN111170628B (en) Preparation method of tensile optical fiber
JP5329991B2 (en) Rare earth element-doped optical fiber preform manufacturing method
JPS6158407B2 (en)
JP4297320B2 (en) Cleaning method for optical fiber preform
JP6268137B2 (en) Manufacturing method of concave lens
JPH1171125A (en) Production of preform for optical fiber
CN113985529B (en) Multi-core optical fiber end face grinding method
JPH02102142A (en) Regeneration of jig made of quartz
JPH08218185A (en) Surface roughening etching solution for platinum plating pretreatment of titanium or titanium alloy and surface roughening etching method for platinum plating pretreatment
JPH04260609A (en) Production of optical element with refractive index distribution type
JP3489104B2 (en) Manufacturing method of polarization maintaining optical fiber
JPH05323131A (en) Production of optical fiber base material
JPH028973B2 (en)
JP2003167161A (en) Manufacturing method for capillary
JPS58213652A (en) Method for treating surface of optical glass rod
CN111732335A (en) Method for restoring concentricity of optical fiber preform
JPS61256934A (en) Surface treatment of quartz pipe
JPS58176138A (en) Surface treatment of parent material for optical fiber
JPH01257149A (en) Production of stress imparted constant polarization optical fiber
JP2014136270A (en) Wire saw, and manufacturing method of wire saw
JP5890150B2 (en) Manufacturing method of concave lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4455725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees