JP4455468B2 - Induction heating coil and high-frequency heating device - Google Patents

Induction heating coil and high-frequency heating device Download PDF

Info

Publication number
JP4455468B2
JP4455468B2 JP2005300831A JP2005300831A JP4455468B2 JP 4455468 B2 JP4455468 B2 JP 4455468B2 JP 2005300831 A JP2005300831 A JP 2005300831A JP 2005300831 A JP2005300831 A JP 2005300831A JP 4455468 B2 JP4455468 B2 JP 4455468B2
Authority
JP
Japan
Prior art keywords
magnetostrictive
coil
induction heating
heating coil
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005300831A
Other languages
Japanese (ja)
Other versions
JP2007109578A (en
Inventor
祐一 福田
仁 原田
之哉 樫村
智弘 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005300831A priority Critical patent/JP4455468B2/en
Publication of JP2007109578A publication Critical patent/JP2007109578A/en
Application granted granted Critical
Publication of JP4455468B2 publication Critical patent/JP4455468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

本発明は誘導加熱コイルと高周波加熱装置に関し、特に、磁歪式トルクセンサの製造方法での磁気異方性付加工程で使用される誘導加熱コイルと、これを備える高周波加熱装置に関する。   The present invention relates to an induction heating coil and a high-frequency heating device, and more particularly to an induction heating coil used in a magnetic anisotropy adding step in a method of manufacturing a magnetostrictive torque sensor and a high-frequency heating device including the induction heating coil.

例えば自動車の操舵系として装備される電動パワーステアリング装置では、一般的に、運転者の操舵操作によってステアリングホイールからステアリング軸に加えられる操舵トルクを操舵トルク検出部によって検出する。操舵トルク検出部は、通常、トーションバー式トルクセンサで構成され、最近では磁歪式トルクセンサも提案されている。上記のステアリング軸は、操舵操作による回転力を受けて回転する回転軸として機能し、操舵トルク検出部でその回転軸となっている。電動パワーステアリング装置は、当該操舵トルク検出部から検出されたトルク信号に応じて、操舵力補助用のモータを駆動制御し、運転者の操舵力を軽減して快適な操舵フィーリングを与える。   For example, in an electric power steering apparatus equipped as a steering system for an automobile, a steering torque applied to a steering shaft from a steering wheel by a driver's steering operation is generally detected by a steering torque detector. The steering torque detector is usually composed of a torsion bar type torque sensor, and recently a magnetostrictive type torque sensor has also been proposed. The steering shaft functions as a rotating shaft that rotates by receiving a rotational force generated by a steering operation, and is a rotating shaft of the steering torque detector. The electric power steering device drives and controls a motor for assisting steering force in accordance with the torque signal detected from the steering torque detector, thereby reducing the driver's steering force and providing a comfortable steering feeling.

上記電動パワーステアリング装置に用いられる操舵トルク検出部として、上記のごとく磁歪式トルクセンサが知られている。この磁歪式トルクセンサは、ステアリング軸の表面の所定の2箇所に、互いに逆向きの磁気異方性を持つ磁歪膜を備えている。磁歪式トルクセンサは、ステアリング軸にステアリングホイールからトルクが作用したときに、ステアリング軸に生じる捩れに応じた磁歪膜の磁歪特性の変化を非接触で検出するセンサ構成を有している。   As described above, a magnetostrictive torque sensor is known as a steering torque detector used in the electric power steering apparatus. This magnetostrictive torque sensor includes magnetostrictive films having magnetic anisotropies opposite to each other at two predetermined positions on the surface of the steering shaft. The magnetostrictive torque sensor has a sensor configuration that detects, in a non-contact manner, a change in magnetostrictive characteristics of the magnetostrictive film in accordance with torsion that occurs on the steering shaft when torque is applied to the steering shaft from the steering wheel.

上記のごとき磁歪式トルクセンサを製造するプロセスでは、上記ステアリング軸の一部の所定表面、すなわち回転軸における所定の軸方向幅の円周表面に磁歪膜を形成し、この磁歪膜に磁気異方性を付加する工程が必要である。磁歪式トルクセンサの製造において磁歪膜に磁気異方性を付加する従来の方法は、例えばめっき処理により磁歪材めっき部(磁歪膜)を形成した回転軸に対して捩りトルクを作用させ、回転軸の円周表面に応力を付与し、この応力付与状態にて当該回転軸を高周波による誘導加熱により所定時間の間加熱処理するという方法であった(例えば特許文献1参照)。   In the process of manufacturing the magnetostrictive torque sensor as described above, a magnetostrictive film is formed on a predetermined surface of a part of the steering shaft, that is, a circumferential surface having a predetermined axial width on the rotating shaft, and the magnetostrictive film is magnetically anisotropic. A process of adding sex is necessary. A conventional method for adding magnetic anisotropy to a magnetostrictive film in the manufacture of a magnetostrictive torque sensor is to apply a torsional torque to a rotating shaft on which a magnetostrictive material plating part (magnetostrictive film) is formed by, for example, plating, thereby rotating the rotating shaft. This is a method in which stress is applied to the circumferential surface, and the rotating shaft is heated for a predetermined time by high-frequency induction heating in this stress-applied state (see, for example, Patent Document 1).

また関連する従来の加熱コイルとして特許文献2に記載された一巻線誘導加熱コイルが存在する。
特開2004−340744号公報 特表2001−509633号公報
Further, there is a one-winding induction heating coil described in Patent Document 2 as a related conventional heating coil.
JP 2004-340744 A JP 2001-509633 A

従来の磁歪式トルクセンサの製造方法によれば、回転軸の磁歪膜に磁気異方性を付加する工程では、磁歪材めっき部を加熱する加熱手段として、誘導加熱コイルと誘導加熱電源を使用している。従来の高周波加熱装置では、誘導加熱コイルは円筒形状の一巻コイル部を有し、一巻コイル部の内周面については、内径が内周面の全面に渡って一定で、かつ凹凸のない滑らかな面であった。このような一巻コイル部を利用した場合、一巻コイル部における高周波電流導入端子部に対応する近傍箇所での誘導加熱が不十分であり、そのため磁歪膜で温度分布の中心ずれが生じ、加熱ばらつきが生じてしまうという問題があった。   According to the conventional method of manufacturing a magnetostrictive torque sensor, in the step of adding magnetic anisotropy to the magnetostrictive film of the rotating shaft, an induction heating coil and an induction heating power source are used as heating means for heating the magnetostrictive material plating part. ing. In the conventional high-frequency heating device, the induction heating coil has a cylindrical one-turn coil portion, and the inner peripheral surface of the one-turn coil portion has a constant inner diameter over the entire inner peripheral surface and is free of irregularities. It was a smooth surface. When such a one-turn coil part is used, induction heating is not sufficient in the vicinity of the one-turn coil part corresponding to the high-frequency current introduction terminal part, so that the center deviation of the temperature distribution occurs in the magnetostrictive film, and the heating There was a problem that variations would occur.

本発明の目的は、上記の課題を鑑み、磁歪式トルクセンサの回転軸の磁歪膜に磁気異方性を付加する工程で回転軸の磁歪膜基礎部分(磁歪材めっき部)を高周波加熱するとき、加熱コイル中心を温度中心と一致させることによって磁歪膜の感度性能を向上できる誘導加熱コイルと高周波加熱装置を提供することにある。   In view of the above problems, the object of the present invention is to heat the magnetostrictive film base portion (magnetostrictive material plating portion) of the rotating shaft at high frequency in the step of adding magnetic anisotropy to the magnetostrictive film of the rotating shaft of the magnetostrictive torque sensor. An object of the present invention is to provide an induction heating coil and a high-frequency heating device that can improve the sensitivity performance of the magnetostrictive film by matching the center of the heating coil with the temperature center.

本発明に係る誘導加熱コイルと高周波加熱装置は、上記の目的を達成するため、次のように構成される。   The induction heating coil and the high-frequency heating device according to the present invention are configured as follows in order to achieve the above object.

本発明に係る誘導加熱コイル(請求項1に対応)は、捩りトルクが印加された磁歪式トルクセンサの円柱棒状ワーク(回転軸)の円周表面に形成された磁歪膜(磁歪材めっき部)高周波加熱した後に回転軸の捩りトルクを解放することによって磁歪膜に磁気異方性を付加する磁歪式トルクセンサの磁気異方性付加工程において、磁歪膜を高周波加熱する誘導加熱コイルであって、この誘導加熱コイルは、磁歪膜を囲むように配置された一巻コイル部(リング部)を有し、さらに一巻コイル部は、円筒形状および隙間を介して対向して配置される2つのプレート状高周波電流導入端子部を有し、一巻コイル部の内周面にその軸方向に平行な少なくとも1本の線状溝が隙間が形成する平面に含まれる位置関係で内周面に形成され、一巻コイル部の軸方向寸法は、円柱棒状ワークの磁歪膜の軸方向幅より大きく、上側開口部と下側開口部の内周面には全周にわたり突起部が形成され、この突起部は、磁歪膜に対して軸方向でその外側に位置するように配置されている。 An induction heating coil according to the present invention (corresponding to claim 1) is a magnetostrictive film (magnetostrictive material plating portion) formed on the circumferential surface of a cylindrical bar-shaped workpiece (rotary shaft) of a magnetostrictive torque sensor to which a torsional torque is applied. An induction heating coil that heats the magnetostrictive film at a high frequency in the magnetic anisotropy adding step of the magnetostrictive torque sensor that adds the magnetic anisotropy to the magnetostrictive film by releasing the torsion torque of the rotating shaft after high-frequency heating, 2 the induction heating coil has one turn coil portion disposed to surround the magnetostrictive film (ring portion), first turn coil portion is La, which oppose each other through the cylindrical shape and a gap It has two plate-like high-frequency current introduction terminal portions, and at least one linear groove parallel to the axial direction is included in the inner peripheral surface of the one-turn coil portion on the inner peripheral surface due to the positional relationship included in the plane formed by the gap. Formed of one-turn coil part Dimension is greater than the axial width of the magnetostrictive film of the columnar bar-shaped workpiece, the protrusion is formed over the entire circumference on the inner peripheral surface of the upper opening and the lower opening, the protrusions relative to the magnetostrictive film that it is arranged so as to be positioned on the outside in the axial direction.

上記の誘導加熱コイルでは、一巻コイル部の内周面に形成された線状溝を設けたため、磁歪膜を高周波加熱するとき当該加熱の円周方向対称性を高めることが可能となり、磁歪膜での温度分布をなくし、検出感度を向上することが可能となる。   In the induction heating coil, since the linear groove formed on the inner peripheral surface of the one-turn coil portion is provided, it becomes possible to enhance the circumferential symmetry of the heating when the magnetostrictive film is heated at a high frequency. It is possible to eliminate the temperature distribution at the point and improve the detection sensitivity.

他の誘導加熱コイル(請求項2に対応)は、上記の構成において、好ましくは、上記線状溝は、一端の開口部から他端の開口部まで形成されることを特徴とする。   Another induction heating coil (corresponding to claim 2) is preferably characterized in that, in the above configuration, the linear groove is formed from the opening at one end to the opening at the other end.

さらに他の誘導加熱コイル(請求項3に対応)は、上記の各構成において、好ましくは、一巻コイル部は、隙間を介して対向して配置される2つのプレート状高周波電流導入端子部を有し、上記線状溝は、隙間が形成する平面に含まれる位置関係でその内周面に形成されることを特徴とする。Still another induction heating coil (corresponding to claim 3), in each of the above configurations, preferably, the one-turn coil portion has two plate-like high-frequency current introduction terminal portions arranged to face each other via a gap. And the linear groove is formed on the inner peripheral surface in a positional relationship included in a plane formed by the gap.

本発明に係る誘導加熱コイル(請求項に対応)は、上述したいずれかの誘導加熱コイルと、この誘導加熱コイルに高周波を給電する高周波電源とを備えるように構成される。 An induction heating coil according to the present invention (corresponding to claim 4 ) is configured to include any of the induction heating coils described above and a high-frequency power source that supplies a high frequency to the induction heating coil.

本発明によれば次の効果を奏する。本発明に係る誘導加熱コイル、またはこれを利用して構成される高周波加熱装置によれば、加熱誘導コイルの一巻コイル部を、その内周面に所定の線状溝を形成するようにしたため、磁歪式トルクセンサ等の回転軸の磁歪膜(磁歪材めっき部)を高周波加熱するとき、回転軸中心と温度中心とを一致させることができ、これにより磁歪膜で精密でかつ均質の磁気異方性を付加することができる。   The present invention has the following effects. According to the induction heating coil according to the present invention or the high-frequency heating device configured using the induction heating coil, the one-turn coil portion of the heating induction coil is formed with a predetermined linear groove on the inner peripheral surface thereof. When the magnetostrictive film (magnetostrictive material plating part) of the rotating shaft, such as a magnetostrictive torque sensor, is heated at a high frequency, the center of the rotating shaft and the temperature center can be made to coincide with each other. A direction can be added.

さらに上記回転軸を磁歪式トルクセンサに用いれば、この磁歪式トルクセンサの検出感度を向上することができる。   Further, if the rotating shaft is used in a magnetostrictive torque sensor, the detection sensitivity of the magnetostrictive torque sensor can be improved.

以下に、本発明の好適な実施形態(実施例)を添付図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Preferred embodiments (examples) of the present invention will be described below with reference to the accompanying drawings.

最初に図1と図2を参照して磁歪式トルクセンサの基本的構成について説明する。図1と図2は磁歪式トルクセンサの一構造例を示している。図1は磁歪式トルクセンサの基本的構造を示す一部断面側面図を示し、図2は磁歪式トルクセンサの基本的構成を概念的に示す側面図を示している。   First, the basic configuration of the magnetostrictive torque sensor will be described with reference to FIGS. 1 and 2 show an example of the structure of a magnetostrictive torque sensor. FIG. 1 is a partially sectional side view showing a basic structure of a magnetostrictive torque sensor, and FIG. 2 is a side view conceptually showing a basic structure of the magnetostrictive torque sensor.

図1と図2に示すように磁歪式トルクセンサ10は、回転軸11と、この回転軸11の周囲に配置される1つの励磁コイル12と2つの検出コイル13A,13Bとから構成されている。回転軸11は、図1と図2では、説明の便宜上、上部および下部を切断し省略して示している。   As shown in FIGS. 1 and 2, the magnetostrictive torque sensor 10 includes a rotation shaft 11, one excitation coil 12 and two detection coils 13 </ b> A and 13 </ b> B arranged around the rotation shaft 11. . In FIG. 1 and FIG. 2, the rotating shaft 11 is shown with its upper and lower parts cut away and omitted for convenience of explanation.

回転軸11は、例えばステアリング軸の一部として構成される。回転軸11は、その軸心11aの周りに矢印Aのごとく右回転(時計回り)または左回転(反時計回り)の回転力(トルク)を受ける。回転軸11は例えばクロムモリブデン鋼材(SCM材)等の金属棒で形成されている。回転軸11には、軸方向にて上下2箇所に磁歪膜14A,14Bが設けられている。磁歪膜14A,14Bの各々は、回転軸11の軸方向にて一定の幅(軸方向幅)を有しかつ回転軸11の円周方向の全周に渡って形成されている。各磁歪膜14A,14Bの軸方向の幅寸法、および2つの磁歪膜14A,14Bの間隔寸法は条件に応じて任意に設定される。磁歪膜14A,14Bは、実際には、電解めっき加工処理等により回転軸11の表面に磁歪材めっき部として形成される。この磁歪材めっき部に磁気異方性加工を施すことにより、磁気異方性を有する磁歪膜14A,14Bが形成される。   The rotating shaft 11 is configured as a part of a steering shaft, for example. The rotating shaft 11 receives a rotational force (torque) of clockwise rotation (clockwise) or counterclockwise rotation (counterclockwise) as indicated by an arrow A around the axis 11a. The rotating shaft 11 is formed of a metal rod such as a chromium molybdenum steel material (SCM material). Magnetostrictive films 14 </ b> A and 14 </ b> B are provided on the rotary shaft 11 at two locations in the upper and lower directions in the axial direction. Each of the magnetostrictive films 14 </ b> A and 14 </ b> B has a constant width (axial width) in the axial direction of the rotating shaft 11 and is formed over the entire circumference of the rotating shaft 11 in the circumferential direction. The width dimension in the axial direction of each of the magnetostrictive films 14A and 14B and the distance between the two magnetostrictive films 14A and 14B are arbitrarily set according to conditions. The magnetostrictive films 14A and 14B are actually formed as magnetostrictive material plating portions on the surface of the rotating shaft 11 by electrolytic plating processing or the like. The magnetostrictive films 14A and 14B having magnetic anisotropy are formed by applying magnetic anisotropy processing to the magnetostrictive material plated portion.

以下の説明では、説明の便宜上、「磁歪膜14A,14B」と「磁歪材めっき部(14A,14B)」は同一物を指すが、製造の段階・状況に応じて使い分けている。原則的に、磁気異方性を付加されて完成した段階を「磁歪膜14A,14B」といい、その前の段階では「磁歪材めっき部(14A,14B)」という。   In the following description, for the convenience of explanation, “magnetostrictive films 14A and 14B” and “magnetostrictive material plating portions (14A and 14B)” indicate the same thing, but are used properly according to the stage and situation of manufacture. In principle, a stage completed by adding magnetic anisotropy is referred to as “magnetostrictive films 14A and 14B”, and in the previous stage, it is referred to as “magnetostrictive material plating portions (14A and 14B)”.

上記の励磁コイル12と検出コイル13A,13Bは、図1に示すごとく、回転軸11の表面に形成された2つの磁歪膜14A,14Bのそれぞれに対応して設けられる。すなわち、図1に示されるように、磁歪膜14Aの周囲には隙間を介在させて検出コイル13Aが配置される。リング状の検出コイル13Aは、磁歪膜14Aの全周囲を囲み、かつ検出コイル13Aの軸方向の幅寸法は磁歪膜14Aの軸方向の幅寸法と略等しい。また磁歪膜14Bの周囲には隙間を介在させて検出コイル13Bが配置される。同様に、リング状の検出コイル13Bは、磁歪膜14Bの全周囲を囲み、かつ検出コイル13Bの軸方向の幅寸法は磁歪膜14Bの軸方向の幅寸法と略等しい。さらに、2つの検出コイル13A,13Bのそれぞれの周囲にはリング状の励磁コイル12が配置される。図1では、磁歪膜14A,14Bのそれぞれに対応して個別に励磁コイル12が設けられるように図示されているが、実際には1つの励磁コイル12の2つの部分を分けて示したものである。検出コイル13A,13Bと励磁コイル12は、回転軸11の周囲に回転軸11を囲むように設けられたリング状の支持枠体部15A,15Bを利用して磁歪膜14A,14Bの周囲スペースに巻設されている。   The excitation coil 12 and the detection coils 13A and 13B are provided in correspondence with the two magnetostrictive films 14A and 14B formed on the surface of the rotating shaft 11, as shown in FIG. That is, as shown in FIG. 1, the detection coil 13A is disposed around the magnetostrictive film 14A with a gap interposed therebetween. The ring-shaped detection coil 13A surrounds the entire circumference of the magnetostrictive film 14A, and the axial width dimension of the detection coil 13A is substantially equal to the axial width dimension of the magnetostrictive film 14A. A detection coil 13B is disposed around the magnetostrictive film 14B with a gap interposed therebetween. Similarly, the ring-shaped detection coil 13B surrounds the entire circumference of the magnetostrictive film 14B, and the axial width dimension of the detection coil 13B is substantially equal to the axial width dimension of the magnetostrictive film 14B. Further, a ring-shaped excitation coil 12 is disposed around each of the two detection coils 13A and 13B. In FIG. 1, the exciting coils 12 are individually provided corresponding to the magnetostrictive films 14 </ b> A and 14 </ b> B, respectively, but actually, two portions of one exciting coil 12 are shown separately. is there. The detection coils 13A and 13B and the excitation coil 12 are provided in a space around the magnetostrictive films 14A and 14B using ring-shaped support frame bodies 15A and 15B provided around the rotation shaft 11 so as to surround the rotation shaft 11. It is wound.

図2では、回転軸11の磁歪膜14A,14Bに対して配置される励磁コイル12と検出コイル13A,13Bを電気的関係として概念的に示している。磁歪膜14A,14Bに対して共通に配置される励磁コイル12には、励磁用交流電流を常時に供給する交流電源16が接続されている。また、磁歪膜14A,14Bのそれぞれに対応して配置される検出コイル13A,13Bの各出力端子からは、検出対象であるトルクに対応する誘導電圧V,Vが出力される。 In FIG. 2, the excitation coil 12 and the detection coils 13A and 13B arranged with respect to the magnetostrictive films 14A and 14B of the rotating shaft 11 are conceptually shown as electrical relationships. An AC power supply 16 that constantly supplies an AC current for excitation is connected to the excitation coil 12 that is arranged in common with respect to the magnetostrictive films 14A and 14B. Inductive voltages V A and V B corresponding to the torque to be detected are output from the output terminals of the detection coils 13A and 13B arranged corresponding to the magnetostrictive films 14A and 14B, respectively.

回転軸11の表面に形成された磁歪膜14A,14Bは、例えばNi−Feめっきによる電解めっき加工処理で作られた磁気異方性を有する磁歪膜である。2つの磁歪膜14A,14Bの各々は、互いに逆方向の磁気異方性を有するように作られている。回転軸11に対して回転力によるトルクが作用したとき、磁歪膜14A,14Bの各々に生じる逆の磁歪特性を、磁歪膜14A,14Bの周囲に配設した検出コイル13A,13Bを利用して検出する。   The magnetostrictive films 14A and 14B formed on the surface of the rotating shaft 11 are magnetostrictive films having magnetic anisotropy made by, for example, electrolytic plating processing by Ni-Fe plating. Each of the two magnetostrictive films 14A and 14B is made to have magnetic anisotropies in opposite directions. When torque due to rotational force is applied to the rotating shaft 11, reverse magnetostrictive characteristics generated in the magnetostrictive films 14A and 14B are detected by using the detection coils 13A and 13B arranged around the magnetostrictive films 14A and 14B. To detect.

上記磁歪式トルクセンサ10は、例えば、電動パワーステアリング装置のステアリング軸に操舵トルク検出部として組み込まれて利用される。   The magnetostrictive torque sensor 10 is used by being incorporated as a steering torque detector on a steering shaft of an electric power steering device, for example.

図3についてさらに詳述する。図3は2つの磁歪膜14A,14Bのそれぞれの磁歪特性曲線51A,51Bを示す図である。図3において、横軸は、ステアリング軸21に加えられた操舵トルクを意味し、正側(+)が右回転に対応し、負側(−)が左回転に対応している。また図3の縦軸は電圧軸を意味する。   FIG. 3 will be further described in detail. FIG. 3 is a diagram showing the magnetostrictive characteristic curves 51A and 51B of the two magnetostrictive films 14A and 14B, respectively. In FIG. 3, the horizontal axis means the steering torque applied to the steering shaft 21, and the positive side (+) corresponds to the right rotation and the negative side (−) corresponds to the left rotation. The vertical axis in FIG. 3 means the voltage axis.

磁歪膜14A,14Bについての上記磁歪特性曲線51A,51Bは同時に検出コイル13A,13Bの検出出力特性を表している。すなわち、磁歪特性曲線51A,51Bを有する磁歪膜14A,14Bに対して共通の励磁コイル12により励磁用交流電流を供給し、この励磁用交流電流に感応して検出コイル13A,13Bは誘導電圧を出力していることから、検出コイル13A,13Bの誘導電圧の変化特性は、磁歪膜14A,14Bの磁歪特性曲線51A,51Bに対応している。換言すれば、磁歪特性曲線51Aは検出コイル13Aから出力される誘導電圧Vの変化特性を示し、他方、磁歪特性曲線51Bは検出コイル13Bから出力される誘導電圧Vの変化特性を示している。 The magnetostrictive characteristic curves 51A and 51B for the magnetostrictive films 14A and 14B simultaneously represent the detection output characteristics of the detection coils 13A and 13B. That is, an exciting alternating current is supplied to the magnetostrictive films 14A and 14B having the magnetostrictive characteristic curves 51A and 51B by the common exciting coil 12, and the detecting coils 13A and 13B generate an induced voltage in response to the exciting alternating current. Since the voltage is output, the change characteristic of the induced voltage of the detection coils 13A and 13B corresponds to the magnetostriction characteristic curves 51A and 51B of the magnetostrictive films 14A and 14B. In other words, the magnetostrictive characteristic curve 51A shows the changing characteristics of the induced voltage V A output from the sensor coil 13A, the magnetostrictive characteristic curve 51B shows the changing characteristics of the induced voltage V B output from the detection coil 13B Yes.

磁歪特性曲線51Aによれば、検出コイル13Aから出力される誘導電圧Vの値は、操舵トルクの値が負領域から正領域に変化しさらに操舵トルクの正の値T1に到るにつれて略線形特性にて増加し、操舵トルクが正の値T1となったときにピーク値となり、操舵トルクがT1よりさらに増加すると徐々に減少するという特性を有する。他方、磁歪特性曲線51Bによれば、検出コイル13Bから出力される誘導電圧Vの値は、操舵トルクの値が負の値−T1に到るまでは徐々に増加し、操舵トルクが負の値−T1のときにピーク値をとり、操舵トルクがさらに−T1よりも増加して負領域から正領域に変化すると略線形特性にて減少するという特性を有する。 According to the magnetostrictive characteristic curve 51A, the value of the induced voltage VA output from the detection coil 13A is substantially linear as the steering torque value changes from the negative region to the positive region and further reaches the positive value T1 of the steering torque. It has a characteristic that it increases in the characteristic, reaches a peak value when the steering torque becomes a positive value T1, and gradually decreases when the steering torque further increases from T1. On the other hand, according to the magnetostrictive characteristic curve 51B, the value of the induced voltage V B output from the detection coil 13B gradually increases until the steering torque reaches a negative value −T1, and the steering torque is negative. When the value is -T1, the peak value is obtained, and when the steering torque further increases from -T1 and changes from the negative region to the positive region, it has a characteristic of decreasing in a substantially linear characteristic.

図3に示すように、検出コイル13Aに関連する磁歪特性曲線51Aと検出コイル13Bに関連する磁歪特性曲線51Bは、磁歪膜14A,14Bのそれぞれで互いに逆方向となる磁気異方性を有することが反映して、両磁歪特性曲線が交わる点を含む縦軸に関して略線対称との関係になっている。   As shown in FIG. 3, the magnetostrictive characteristic curve 51A related to the detection coil 13A and the magnetostrictive characteristic curve 51B related to the detection coil 13B have magnetic anisotropies that are opposite to each other in the magnetostrictive films 14A and 14B. As a result, the relationship between the vertical axis and the vertical axis including the point where both magnetostrictive characteristic curves intersect is substantially symmetrical.

図3において示された線52は、磁歪特性曲線51A,51Bの共通領域であって略線形特性を有する領域において、検出コイル13Aの出力電圧として得られる磁歪特性曲線51Aの各値から、検出コイル13Bの出力電圧として得られる磁歪特性曲線51Bの対応する各値を差し引いた値に基づいて作成されるグラフを示す。操舵トルクがゼロのときに、各検出コイル13A,13Bから出力される誘導電圧は等しいので、その差の値はゼロとなる。操舵トルク検出部20では、上記の磁歪特性曲線51A,51Bにおける操舵トルクの中立点(ゼロ点)付近の略一定勾配とみなされる領域を使用することで、上記線52を略直線特性を有するものとして形成している。なお線52の特性グラフに関しては、図3の縦軸は差電圧の値を示す軸を意味している。特性グラフである直線52は、原点(0,0)を通る直線であって、縦軸および横軸の正側・負側に存在する。操舵トルク検出部20の検出出力値は前述のごとく検出コイル13A,13Bから出力される誘導電圧の差(V−V)として得られることから、上記直線52を利用することに基づいて、回転軸11に加えられた操舵トルクの方向と大きさを検出することができる。 A line 52 shown in FIG. 3 represents a detection coil from each value of the magnetostrictive characteristic curve 51A obtained as an output voltage of the detection coil 13A in an area having a substantially linear characteristic, which is a common area of the magnetostrictive characteristic curves 51A and 51B. The graph produced based on the value which subtracted each corresponding value of the magnetostriction characteristic curve 51B obtained as an output voltage of 13B is shown. When the steering torque is zero, the induced voltages output from the detection coils 13A and 13B are equal, so the difference value is zero. The steering torque detector 20 uses the region regarded as a substantially constant gradient near the neutral point (zero point) of the steering torque in the magnetostrictive characteristic curves 51A and 51B, so that the line 52 has a substantially linear characteristic. It is formed as. Regarding the characteristic graph of the line 52, the vertical axis in FIG. 3 means the axis indicating the value of the differential voltage. A straight line 52 which is a characteristic graph is a straight line passing through the origin (0, 0), and exists on the positive and negative sides of the vertical axis and the horizontal axis. Since the detection output value of the steering torque detection unit 20 is obtained as the difference (V A −V B ) between the induction voltages output from the detection coils 13A and 13B as described above, based on the use of the straight line 52, The direction and magnitude of the steering torque applied to the rotating shaft 11 can be detected.

次に図4〜図7を参照して磁歪式トルクセンサ10の製造方法の全体工程を説明する。図4に示した磁歪式トルクセンサ10の製造方法は磁歪式トルクセンサ10の回転軸11の製造工程である。   Next, with reference to FIGS. 4-7, the whole process of the manufacturing method of the magnetostrictive torque sensor 10 is demonstrated. The manufacturing method of the magnetostrictive torque sensor 10 shown in FIG. 4 is a manufacturing process of the rotating shaft 11 of the magnetostrictive torque sensor 10.

図4において、回転軸11の製造工程は、大きく分けると、磁歪膜形成工程P1と磁気異方性付加工程P2と特性安定化工程P3と検査工程P4から構成されている。特性安定化工程P3はアニール工程P31を含み、検査工程P4は、製造された回転軸11の品質を抜取り検査にて検査する工程である。なお磁歪式トルクセンサ10として完成するためには、検査工程P4の後に、回転軸11に対して励磁コイル12や検出コイル13A,13B等の検出器を付設する検出器付設工程が設けられている。   In FIG. 4, the manufacturing process of the rotating shaft 11 is roughly divided into a magnetostrictive film forming process P1, a magnetic anisotropy adding process P2, a characteristic stabilizing process P3, and an inspection process P4. The characteristic stabilization process P3 includes an annealing process P31, and the inspection process P4 is a process of inspecting the quality of the manufactured rotating shaft 11 by sampling inspection. In order to complete the magnetostrictive torque sensor 10, a detector attaching step for attaching detectors such as the excitation coil 12 and the detection coils 13A and 13B to the rotating shaft 11 is provided after the inspection step P4. .

最初に磁歪膜形成工程P1が実行される。この磁歪膜形成工程P1では、電解めっき処理により回転軸11の表面の所定箇所に磁歪材めっき部が磁歪膜の基礎となる部分として形成される。   First, the magnetostrictive film forming step P1 is executed. In the magnetostrictive film forming step P1, a magnetostrictive material plated portion is formed as a base portion of the magnetostrictive film at a predetermined location on the surface of the rotating shaft 11 by electrolytic plating.

磁歪膜形成工程P1では、まず、回転軸11の洗浄等の前処理が行われる(ステップS11)。その後に電解めっきが行われる(ステップS12)。この電解めっき工程では、回転軸11の上下の箇所で磁歪材が所定の膜厚になるように施される。上下の磁歪材めっき部は、後述する後処理によって磁気異方性を有する磁歪膜14A,14Bになる部分である。その後、乾燥が行われる(ステップS13)。   In the magnetostrictive film forming step P1, first, pretreatment such as cleaning of the rotating shaft 11 is performed (step S11). Thereafter, electrolytic plating is performed (step S12). In this electrolytic plating step, the magnetostrictive material is applied at a location above and below the rotating shaft 11 so as to have a predetermined film thickness. The upper and lower magnetostrictive plating portions are portions that become magnetostrictive films 14A and 14B having magnetic anisotropy by post-processing described later. Thereafter, drying is performed (step S13).

上記の磁歪膜形成工程P1では、回転軸11の表面に前述した磁歪膜14A,14Bを形成するために電解めっき処理法を用いた。しかしながら、回転軸11における磁歪膜14A,14Bを形成する基礎部分は、電解めっき法以外の方法、例えばスパッタリング法、イオンプレーティング法等のPVD法、プラズマ溶射法などの方法によって形成することもできる。   In the magnetostrictive film forming step P1, the electroplating method is used to form the above-described magnetostrictive films 14A and 14B on the surface of the rotating shaft 11. However, the basic portion for forming the magnetostrictive films 14A and 14B on the rotating shaft 11 can also be formed by a method other than the electrolytic plating method, for example, a PVD method such as a sputtering method or an ion plating method, or a plasma spraying method. .

次に、磁気異方性付加工程P2が実行される。この磁気異方性付加工程P2は、回転軸11に形成された上下2箇所の磁歪材めっき部に対して磁気異方性を付加し前述の磁歪膜14A,14Bを形成する工程である。磁気異方性付加工程P2は、上側の磁歪材めっき部に対して高周波加熱を行うステップS21と、下側の磁歪材めっき部に対して高周波加熱を行うステップS22とを有している。   Next, the magnetic anisotropy adding step P2 is performed. This magnetic anisotropy adding step P2 is a step of adding the magnetic anisotropy to the two upper and lower magnetostrictive material plated portions formed on the rotating shaft 11 to form the above-described magnetostrictive films 14A and 14B. The magnetic anisotropy adding process P2 includes a step S21 for performing high-frequency heating on the upper magnetostrictive material plating portion, and a step S22 for performing high-frequency heating on the lower magnetostrictive material plating portion.

図5は、磁気異方性付加工程P2の各ステップS21,S22で実施される処理工程のフローチャートを示す。図6は、磁気異方性付加工程P2の各ステップS21,S22における回転軸11の磁歪材めっき部での軸径方向の温度分布と軸径方向の歪分布を示す図である。   FIG. 5 shows a flowchart of processing steps performed in steps S21 and S22 of the magnetic anisotropy adding step P2. FIG. 6 is a diagram showing the temperature distribution in the axial radial direction and the strain distribution in the axial radial direction at the magnetostrictive material plating portion of the rotating shaft 11 in steps S21 and S22 of the magnetic anisotropy adding step P2.

磁気異方性付加工程P2の上側磁歪材めっき部を高周波加熱するステップS21は、図5に示すごとく、トルク印加装置により回転軸11に所定の捩りトルクを印加するステップS201、所定の捩りトルクを印加した状態の回転軸11の上側磁歪材めっき部に対して所定時間だけ高周波電流を供給し電磁誘導により加熱処理を行う熱処理ステップS202、加熱した回転軸11を自然に冷却するステップS203、最後に捩りトルクを解放することによって上側磁歪材めっき部に磁気異方性を付加して上記磁歪膜14Aを形成するトルク解放ステップS204から構成されている。   As shown in FIG. 5, step S21 of applying high-frequency heating to the upper magnetostrictive material plating portion in the magnetic anisotropy adding step P2 applies a predetermined torsion torque to the rotating shaft 11 by a torque application device, as shown in FIG. A heat treatment step S202 for supplying a high-frequency current to the upper magnetostrictive material plating portion of the rotating shaft 11 in an applied state for a predetermined time and performing a heat treatment by electromagnetic induction, a step S203 for naturally cooling the heated rotating shaft 11, and finally It comprises a torque release step S204 for forming the magnetostrictive film 14A by adding magnetic anisotropy to the upper magnetostrictive material plated portion by releasing the torsional torque.

上記の熱処理ステップS202では、回転軸11の上側磁歪材めっき部を囲むごとくその周囲に誘導加熱コイルを配置し、この誘導加熱コイルに誘導加熱電源の高周波発振回路から高周波を供給して上側磁歪材めっき部のみを誘導加熱する。   In the heat treatment step S202, an induction heating coil is disposed around the upper magnetostrictive material plating portion of the rotary shaft 11, and a high frequency is supplied to the induction heating coil from a high frequency oscillation circuit of an induction heating power source to thereby provide upper magnetostrictive material. Only the plated part is induction heated.

上記のステップS201〜S204により、回転軸11の上側磁歪材めっき部は磁気異方性が付加され、これにより磁気異方性を有する磁歪膜14Aが形成される。   Through the above steps S201 to S204, magnetic anisotropy is added to the upper magnetostrictive material plated portion of the rotating shaft 11, thereby forming a magnetostrictive film 14A having magnetic anisotropy.

回転軸11の下側磁歪材めっき部に対する高周波加熱ステップS22においても同様に上記のステップS201〜S204が実行され、下側磁歪材めっき部に対して磁気異方性が付加され、これにより磁気異方性を有する磁歪膜14Bが形成される。下側磁歪材めっき部に磁気異方性を付加するときには、磁歪膜14Bの磁気異方性とは逆向きになるように、回転軸11に与えるトルクの印加方向を逆向きにする。   In the high-frequency heating step S22 for the lower magnetostrictive material plated portion of the rotary shaft 11, the above steps S201 to S204 are performed in the same manner, and magnetic anisotropy is added to the lower magnetostrictive material plated portion, thereby causing magnetic anomalies. An anisotropic magnetostrictive film 14B is formed. When magnetic anisotropy is added to the lower magnetostrictive material plating portion, the direction of application of torque applied to the rotating shaft 11 is reversed so as to be opposite to the magnetic anisotropy of the magnetostrictive film 14B.

次に図6と図7を参照して、磁気異方性付加工程P2で磁歪材めっき部に磁気異方性を付加し磁歪膜14Aを形成するメカニズムについて詳述する。   Next, with reference to FIG. 6 and FIG. 7, the mechanism for adding the magnetic anisotropy to the magnetostrictive material plating portion in the magnetic anisotropy adding step P2 to form the magnetostrictive film 14A will be described in detail.

図6では、縦方向に示された回転軸11の径方向の温度分布(1)と歪み分布(2)について、横方向に(a)トルク印加状態、(b)誘導加熱状態、(c)めっき部歪み解放状態、(d)トルク解放状態の4つの状態が示されている。トルク印加状態(a)は図5に示したステップS201に対応し、誘導加熱状態(b)は同図のステップS202に対応し、めっき部歪み解放状態(c)は同図のステップS203に対応し、トルク解放状態(d)は同図のステップS204に対応している。図6の(1)で軸61は温度を表す軸を示し、(2)で軸62は歪みを表す軸を示す。   In FIG. 6, regarding the temperature distribution (1) and strain distribution (2) in the radial direction of the rotating shaft 11 shown in the vertical direction, (a) torque application state, (b) induction heating state, (c) in the horizontal direction. Four states are shown: a plated portion strain release state, and (d) a torque release state. The torque application state (a) corresponds to step S201 shown in FIG. 5, the induction heating state (b) corresponds to step S202 in FIG. 5, and the plated portion strain release state (c) corresponds to step S203 in FIG. The torque release state (d) corresponds to step S204 in FIG. In FIG. 6 (1), the axis 61 indicates the temperature axis, and in (2) the axis 62 indicates the strain axis.

図6の(a)では、捩りトルクTqを回転軸11に作用させ、回転軸11の円周表面に応力を与える。これにより捩りトルクTqが作用する。この場合、回転軸11の径方向の歪み分布は、回転軸11の中心に位置する軸心11aから周縁方向に向かって増加した分布ST1となる。ただし、分布ST1では、歪みの分布方向も含めて考えると、軸心11aの右側と左側では反対になるので、右側の歪み分布は正側(+)に示され、左側の歪み分布は負側(−)に示されている。さらに、図6(a)で回転軸11の径方向の温度分布は、破線で示すごとくなり、回転軸11の軸心11aから周縁方向まで室温であって一定の分布T1となる。この室温は回転軸11の温度の基準温度になる。   In FIG. 6A, the torsion torque Tq is applied to the rotating shaft 11 to apply stress to the circumferential surface of the rotating shaft 11. Thereby, the torsion torque Tq acts. In this case, the radial strain distribution of the rotating shaft 11 is a distribution ST1 that increases from the axial center 11a located at the center of the rotating shaft 11 in the peripheral direction. However, in the distribution ST1, considering the strain distribution direction, the right and left sides of the axis 11a are opposite, so the right side strain distribution is shown on the positive side (+) and the left side strain distribution is on the negative side. (-). Furthermore, the temperature distribution in the radial direction of the rotating shaft 11 in FIG. 6A is as indicated by a broken line, and is a constant distribution T1 from the axis 11a of the rotating shaft 11 to the peripheral direction at room temperature. This room temperature becomes a reference temperature of the temperature of the rotating shaft 11.

図6の(b)では、回転軸11に捩りトルクTqを作用させたまま、磁歪材めっき部の周囲を誘導加熱コイルで囲み、この誘導加熱コイルに対して高周波電流を流し、磁歪材めっき部を加熱処理する。図6の(b)で、回転軸11の径方向の歪み分布は、図6(a)の場合と同じである。また回転軸11の径方向の温度分布は、回転軸11の外周縁部に近いところから当該外周縁に向かって急激に増加する分布T2となる。   In FIG. 6B, the magnetostrictive material plated portion is surrounded by the induction heating coil while the torsion torque Tq is applied to the rotating shaft 11, and a high frequency current is passed through the induction heating coil to thereby generate the magnetostrictive material plated portion. Heat treatment. In FIG. 6B, the radial strain distribution of the rotating shaft 11 is the same as that in FIG. In addition, the temperature distribution in the radial direction of the rotating shaft 11 is a distribution T2 that increases rapidly from the vicinity of the outer peripheral edge of the rotating shaft 11 toward the outer peripheral edge.

図6の(c)では、冷却が行われ、その結果、磁歪材めっき部にクリープが生じ、磁歪材めっき部での歪みがゼロとなる。このときの回転軸11の径方向の歪み分布は符号ST2で示される。図6(c)の状態を示すステップは、加熱処理後、自然に冷却させるステップS203である。回転軸11の径方向の温度分布T2の形状については実質的には変化がなく、冷却過程の推移と共に全体に温度は低下する。   In FIG. 6C, cooling is performed. As a result, creep occurs in the magnetostrictive material plated portion, and the strain in the magnetostrictive material plated portion becomes zero. The strain distribution in the radial direction of the rotating shaft 11 at this time is indicated by reference ST2. The step showing the state of FIG. 6C is a step S203 for naturally cooling after the heat treatment. There is substantially no change in the shape of the temperature distribution T2 in the radial direction of the rotating shaft 11, and the temperature decreases as the cooling process progresses.

図6の(d)では、冷却後、回転軸11に印加されていた捩りトルクTqを解除し、トルク解放を行う。これにより、歪み分布ST3に示されるごとく、回転軸11内での径方向での歪み分布はゼロとなる。他方、反対に、歪み分布ST3に示されるごとく、磁歪材めっき部においてのみ歪み分布が生じる。この結果、当該歪み分布ST3によって磁歪材めっき部に磁気異方性を付加することができ、これにより磁気異方性を有する磁歪膜14Aを形成することができる。なお、図6(d)で温度分布は、T3に示すごとく全体になだらかに分布するように低減する。   In FIG. 6D, after cooling, the torsional torque Tq applied to the rotating shaft 11 is released, and the torque is released. As a result, as indicated by the strain distribution ST3, the radial strain distribution in the rotating shaft 11 becomes zero. On the other hand, as shown in the strain distribution ST3, a strain distribution is generated only in the magnetostrictive material plated portion. As a result, it is possible to add magnetic anisotropy to the magnetostrictive material plated portion by the strain distribution ST3, thereby forming the magnetostrictive film 14A having magnetic anisotropy. In FIG. 6 (d), the temperature distribution is reduced so as to be distributed gently as shown in T3.

なお磁歪膜14Bを作る場合には、磁歪膜14Aに比較して逆向きの磁気異方性を付加するため、上記の捩りトルクTqとは逆方向の時計回りの捩りトルクを与えて前述のプロセスを実行する。   When forming the magnetostrictive film 14B, in order to add a magnetic anisotropy in the opposite direction compared to the magnetostrictive film 14A, a clockwise torsional torque in the direction opposite to the torsional torque Tq is applied to the process described above. Execute.

図7では、回転軸11の上下2箇所に設けられる磁歪材めっき部のインピーダンス特性Zと、磁歪材めっき部に磁気異方性を付加して形成された磁歪膜14A,14Bのインピーダンス特性Z,Zを示す。図7において、横軸はトルク(Nm)を意味し、縦軸はインピーダンス(Ω)を意味している。磁気異方性が付加される前の段階の磁歪材めっき部のインピーダンス特性Zは、磁気異方性が付加されることにより、磁歪膜14Aの場合にはインピーダンス特性Zに、または磁歪膜14Bの場合にはインピーダンス特性Zに変化する。磁歪膜14Aはインピーダンス特性Zを有するため、磁歪膜14Aに対応する検出コイル13Aは前述した磁歪特性曲線51Aを有することになる。また磁歪膜14BはインピーダンスZを有するため、磁歪膜14Bに対応する検出コイル13Bは前述した磁歪特性曲線51Bを有することになる。 In Figure 7, the magnetostrictive films 14A and impedance characteristics Z 0 of the magnetostrictive plating part which is provided at the upper portion and the lower portion, which is formed by adding a magnetic anisotropy in the magnetostrictive plating part of the rotating shaft 11, 14B of the impedance characteristics Z a, it shows a Z B. In FIG. 7, the horizontal axis represents torque (Nm) and the vertical axis represents impedance (Ω). Impedance characteristics Z 0 of the magnetostrictive plating part of the stage before the magnetic anisotropy is added, by magnetic anisotropy is added, in the case of the magnetostrictive film 14A to the impedance characteristics Z A, or magnetostrictive films changes in impedance characteristics Z B in the case of 14B. Since the magnetostrictive film 14A is having impedance characteristics Z A, the detection coils 13A corresponding to the magnetostrictive films 14A will have a magnetostrictive characteristic curve 51A described above. The magnetostrictive film 14B is for having an impedance Z B, the sensor coil 13B corresponding to the magnetostrictive film 14B will have a magnetostrictive characteristic curve 51B described above.

なお図7において、範囲73は、インピーダンス特性Z,Zの重複部分として略線形の変化特性が得られる範囲である。この範囲73が磁歪式トルクセンサ10のセンサ使用範囲として利用される。 In FIG. 7, a range 73 is a range in which a substantially linear change characteristic is obtained as an overlapping portion of the impedance characteristics Z A and Z B. This range 73 is used as the sensor use range of the magnetostrictive torque sensor 10.

上記の磁気異方性付加工程P2の後に特性安定化工程P3が行われる。特性安定化工程P3ではアニール工程P31が行われる。アニール工程P31では、例えば操舵トルク検出部20が使用される状況での使用温度以上の温度で所定時間加熱処理を行う。   A characteristic stabilization step P3 is performed after the magnetic anisotropy addition step P2. In the characteristic stabilization process P3, an annealing process P31 is performed. In the annealing step P31, for example, the heat treatment is performed for a predetermined time at a temperature equal to or higher than the use temperature in the situation where the steering torque detector 20 is used.

次に前述の磁気異方性付加工程P2における磁歪材めっき部の高周波加熱(誘導加熱)の工程(ステップS202)について、さらに詳述する。   Next, the step (step S202) of high-frequency heating (induction heating) of the magnetostrictive material plating portion in the magnetic anisotropy adding step P2 will be described in detail.

図8〜図10を参照して高周波加熱工程を実施する高周波加熱装置の構成を説明する。図8は誘導加熱コイルの要部側面図を示し、図9は誘導加熱電源の構成を示し、図10は誘導加熱コイルの詳細な形状と構造を示す要部断面図である。   The configuration of a high-frequency heating apparatus that performs the high-frequency heating step will be described with reference to FIGS. FIG. 8 shows a side view of the main part of the induction heating coil, FIG. 9 shows the configuration of the induction heating power source, and FIG. 10 is a cross-sectional view of the main part showing the detailed shape and structure of the induction heating coil.

図8において、円柱棒形状の回転軸11は誘導加熱コイル101の先部のリング部101aに挿通させて配置されている。図8の回転軸11は、図1等に示した回転軸11と同じものである。回転軸11には前述した上側磁歪材めっき部114Aと下側磁歪材めっき部114Bが形成されている。   In FIG. 8, the cylindrical rod-shaped rotating shaft 11 is disposed so as to be inserted through the ring portion 101 a at the tip of the induction heating coil 101. The rotating shaft 11 in FIG. 8 is the same as the rotating shaft 11 shown in FIG. The rotary shaft 11 is formed with the above-described upper magnetostrictive material plating portion 114A and lower magnetostrictive material plating portion 114B.

誘導加熱コイル101はその先部にリング部101aを有する。このリング部101aはコイル部を形成している。リング部101aによるコイル部は、板状物を一巻きにして形成された一巻コイル部である。リング部101aはその軸方向に所定の幅を有する。リング部101aは、この図示例では、上側磁歪材めっき部114Aを囲むごとく配置されている。リング部101aの幅は、上側磁歪材めっき部114Aの幅によりも大きくなるように設定されている。この誘導加熱コイル101は、全体として、板条物を、先部にリング部101aを形成するように形成した一巻誘導加熱コイルである。誘導加熱コイル101は、図9に示すごとく狭い隙間102を介して近接して対向して配置される同形の2枚のプレート部101bを備える。誘導加熱コイル101の2枚のプレート部101bの先部には上記のリング部101aが設けられ、2枚のプレート部101bはリング部101aを介してつながっている。   The induction heating coil 101 has a ring portion 101a at its tip. The ring portion 101a forms a coil portion. The coil portion formed by the ring portion 101a is a one-turn coil portion formed by winding a plate-like object. The ring portion 101a has a predetermined width in the axial direction. In the illustrated example, the ring portion 101a is disposed so as to surround the upper magnetostrictive plating portion 114A. The width of the ring portion 101a is set to be larger than the width of the upper magnetostrictive material plating portion 114A. The induction heating coil 101 is a one-turn induction heating coil in which a sheet is formed as a whole so as to form a ring portion 101a at the tip. As shown in FIG. 9, the induction heating coil 101 includes two plate portions 101 b having the same shape and disposed in close proximity to each other through a narrow gap 102. The ring portion 101a is provided at the tip of the two plate portions 101b of the induction heating coil 101, and the two plate portions 101b are connected via the ring portion 101a.

図9では、回転軸11と誘導加熱コイル101を上側から見ている。誘導加熱コイル101の2枚のプレート部101bのそれぞれは誘導加熱電源103のワンポートの出力端子104に接続されている。高周波電源である誘導加熱電源103の出力端子104から出力される高周波電流は、誘導加熱コイル101のプレート部101bに供給される。誘導加熱コイル101において、2枚のプレート部101bは、リング部101aに対して高周波電流を導入するための高周波電流導入端子部として機能する。   In FIG. 9, the rotating shaft 11 and the induction heating coil 101 are viewed from above. Each of the two plate portions 101 b of the induction heating coil 101 is connected to a one-port output terminal 104 of the induction heating power source 103. The high frequency current output from the output terminal 104 of the induction heating power source 103 which is a high frequency power source is supplied to the plate portion 101 b of the induction heating coil 101. In the induction heating coil 101, the two plate portions 101b function as high frequency current introduction terminal portions for introducing a high frequency current to the ring portion 101a.

誘導加熱電源121の入力側には、三相交流122を変圧する三相変圧器123と、三相変圧器123から出力される三相交流を整流する三相整流器124を備える。三相整流器124から出力される直流電流は投入電力として誘導加熱電源121に入力される。誘導加熱電源121内には高周波発振回路125を備える。高周波発振回路125は、発振用3極真空管とLC回路とで構成される発振回路である。誘導加熱電源121に投入された直流電流は高周波発振回路125の3極真空管のアノードに供給される。高周波発振回路125は、発振作用を生じ、給電された直流電流を入力として所要周波数の高周波電流(I)を出力する。当該高周波電流は上記出力端子104に供給される。 On the input side of the induction heating power supply 121, a three-phase transformer 123 that transforms the three-phase AC 122 and a three-phase rectifier 124 that rectifies the three-phase AC output from the three-phase transformer 123 are provided. The direct current output from the three-phase rectifier 124 is input to the induction heating power supply 121 as input power. A high frequency oscillation circuit 125 is provided in the induction heating power supply 121. The high-frequency oscillation circuit 125 is an oscillation circuit that includes an oscillation triode vacuum tube and an LC circuit. The direct current supplied to the induction heating power supply 121 is supplied to the anode of the triode vacuum tube of the high-frequency oscillation circuit 125. The high frequency oscillating circuit 125 generates an oscillating action and outputs a high frequency current (I H ) having a required frequency with the supplied direct current as an input. The high frequency current is supplied to the output terminal 104.

図10を参照して誘導加熱コイル101のリング部(一巻コイル部)101aの形状および構造を説明する。図10は、円柱棒状の回転軸11の上側磁歪材めっき部114Aを誘導加熱コイル101で高周波加熱するときの配置状態を示している。   The shape and structure of the ring portion (one-turn coil portion) 101a of the induction heating coil 101 will be described with reference to FIG. FIG. 10 shows an arrangement state when the upper magnetostrictive material plating portion 114 </ b> A of the cylindrical rod-shaped rotating shaft 11 is heated by the induction heating coil 101.

図10に示した配置状態において、リング部101aの軸方向幅aは、回転軸11の上側磁歪材めっき部114Aの軸方向幅dよりも長くなるように設定されている。リング部101aの上端部は上側磁歪材めっき部114Aの上端部よりも上側にあり、そのリング部101aの下端部は上側磁歪材めっき部114Aの下端部よりも下側にある。リング部101aの上側開口部と下側開口部の内周面には全周にわたり突起部131が形成されている。突起部131の軸方向幅はcである。リング部101aで、両側開口部の突起部131の幅を除いた部分の軸方向寸法はbである。この軸方向寸法bは好ましくは上側磁歪材めっき部114Aの軸方向幅dよりも大きい。従って、リング部101aの上下端の両端開口部に形成された突起部131は前述の通り上側磁歪材めっき部114Aに対して軸方向でその外側に位置するように配置されている。またリング部101aの軸方向中央部の内径eに対して、突起部131の内径fは小さくなっている。リング部101aの内周面において両端開口部の内周部の全周に形成された突起部131は、当該内周面に内径小径部を形成している。   In the arrangement state shown in FIG. 10, the axial width a of the ring portion 101 a is set to be longer than the axial width d of the upper magnetostrictive material plating portion 114 </ b> A of the rotating shaft 11. The upper end portion of the ring portion 101a is above the upper end portion of the upper magnetostrictive material plating portion 114A, and the lower end portion of the ring portion 101a is below the lower end portion of the upper magnetostrictive material plating portion 114A. Projections 131 are formed on the inner peripheral surfaces of the upper opening and the lower opening of the ring portion 101a over the entire circumference. The axial width of the protrusion 131 is c. In the ring portion 101a, the axial dimension of the portion excluding the width of the protruding portion 131 at both side openings is b. The axial dimension b is preferably larger than the axial width d of the upper magnetostrictive material plating portion 114A. Accordingly, the protrusions 131 formed at the opening portions at both the upper and lower ends of the ring portion 101a are arranged so as to be positioned outside the upper magnetostrictive material plating portion 114A in the axial direction as described above. Further, the inner diameter f of the protrusion 131 is smaller than the inner diameter e of the central portion in the axial direction of the ring portion 101a. The protrusion 131 formed on the inner peripheral surface of the ring portion 101a on the entire circumference of the inner peripheral portion of the opening at both ends forms a small inner diameter portion on the inner peripheral surface.

さらに図11〜図14を参照して上記誘導加熱コイルの特徴的形状とその作用効果を説明する。図11は誘導加熱コイル101の平面図を示し、図12は図11におけるC1−C1線断面図を示し、図13は図11におけるC2−C2線断面図を示し、図14はリング部(一巻コイル部)の円周方向の温度分布とコイルの温度中心を示す。   Furthermore, with reference to FIGS. 11-14, the characteristic shape of the said induction heating coil and its effect are demonstrated. 11 shows a plan view of the induction heating coil 101, FIG. 12 shows a sectional view taken along line C1-C1 in FIG. 11, FIG. 13 shows a sectional view taken along line C2-C2 in FIG. 11, and FIG. The temperature distribution in the circumferential direction of the winding coil portion and the temperature center of the coil are shown.

図11に示すごとく、誘導加熱コイル101は、前述のように2枚のプレート部101bと円筒形状のリング部(一巻コイル部)101aを備え、全体として1枚の板状物に基づいて作られている。2枚のプレート部101bは隙間102を介在させている。誘導加熱コイル101において、プレート部101bは誘導加熱電源121の出力端子104に接続されており、出力端子104から供給された高周波電流をリング部101aに導入する。一方のプレート部101bから導入された高周波電流は、リング部101aをその円周方向に流れ、さらに他方のプレート部101bへ流れる。2枚のプレート部101bは、誘導加熱を行うリング部101aに対して高周波電流を導入する部分となる。従ってリング部101aで、その円周方向においてプレート部分101bの部分Dは高周波電流導入の端子部となる。   As shown in FIG. 11, the induction heating coil 101 includes the two plate portions 101 b and the cylindrical ring portion (one-turn coil portion) 101 a as described above, and is made based on one plate-like object as a whole. It has been. The two plate portions 101b have a gap 102 interposed therebetween. In the induction heating coil 101, the plate portion 101b is connected to the output terminal 104 of the induction heating power source 121, and introduces a high-frequency current supplied from the output terminal 104 into the ring portion 101a. The high-frequency current introduced from one plate portion 101b flows through the ring portion 101a in the circumferential direction and further flows to the other plate portion 101b. The two plate portions 101b are portions for introducing a high-frequency current to the ring portion 101a that performs induction heating. Accordingly, in the ring portion 101a, the portion D of the plate portion 101b in the circumferential direction serves as a terminal portion for introducing a high-frequency current.

上記において、プレート部101bの厚みは例えば4mmであり、隙間102の幅は例えば1mmである。また、2枚のプレート部101bの間に形成される隙間102によって平面が定義される。隙間102で定義される平面は、図11中のC1−C1線断面の断面線と一致している。   In the above, the thickness of the plate portion 101b is, for example, 4 mm, and the width of the gap 102 is, for example, 1 mm. A plane is defined by a gap 102 formed between the two plate portions 101b. The plane defined by the gap 102 matches the cross-sectional line of the C1-C1 line cross section in FIG.

次に、リング部101aの内周面には、その軸方向に平行な線状の溝141が形成されている。溝141は、上記隙間102で定義される上記平面に含まれ、当該隙間102に対向するごとく形成される。溝141の深さ方向は隙間102で定義される平面の方向である。換言すれば、誘導加熱コイル101のリング部(一巻コイル部)101aの高周波電流導入端子部の中心対称位置に線状溝141を形成するようにしている。溝141の幅は好ましくは1mm、その深さは好ましくは1.5mmである。さらに溝141は、好ましくは、リング部101aの上側開口部から下側開口部に至るまで形成されている。溝141の個数、形成場所、形状は、図11に示されたものに限定されない。例えば、複数のスリット状のものであってもよい。   Next, a linear groove 141 parallel to the axial direction is formed on the inner peripheral surface of the ring portion 101a. The groove 141 is included in the plane defined by the gap 102 and is formed so as to face the gap 102. The depth direction of the groove 141 is a plane direction defined by the gap 102. In other words, the linear groove 141 is formed at the center symmetrical position of the high-frequency current introducing terminal portion of the ring portion (one-turn coil portion) 101 a of the induction heating coil 101. The width of the groove 141 is preferably 1 mm, and the depth is preferably 1.5 mm. Further, the groove 141 is preferably formed from the upper opening to the lower opening of the ring portion 101a. The number, location, and shape of the grooves 141 are not limited to those shown in FIG. For example, a plurality of slits may be used.

次に上記のリング部101aを備える誘導加熱コイル101を用いて回転軸11の上側磁歪材めっき部114A等を高周波加熱を行うことにより次の作用効果が生じる。   Next, by using the induction heating coil 101 provided with the ring portion 101a, the upper magnetostrictive material plating portion 114A of the rotating shaft 11 and the like are subjected to high-frequency heating, thereby producing the following effects.

誘導加熱コイル101のリング部(一巻コイル部)101aの内周面において、高周波電流導入端子部の中心対称位置に線状溝141を形成するようにしたため、すなわち、図11に示すように2枚のプレート部101bの間の隙間102の延長線上の位置に線状溝141を形成するようにしたため、上側磁歪材めっき部114Aでの電磁誘導加熱の円周方向における加熱分布(温度分布)を、偏りを生じさせることなく、均一にすることができる。これを図14を参照して説明する。   Since the linear groove 141 is formed at the center symmetrical position of the high-frequency current introduction terminal portion on the inner peripheral surface of the ring portion (one-turn coil portion) 101a of the induction heating coil 101, that is, as shown in FIG. Since the linear groove 141 is formed at a position on the extended line of the gap 102 between the plate portions 101b, the heating distribution (temperature distribution) in the circumferential direction of electromagnetic induction heating in the upper magnetostrictive material plating portion 114A is changed. It can be made uniform without causing bias. This will be described with reference to FIG.

図14では、本実施形態に係る誘導加熱コイル101と従来コイルとの特性の比較を示している。図14は、上記コイル部101aを有する誘導加熱コイル101(以下「コイル101」と記す)と、上記溝141が形成されないコイル部を有する従来の誘導加熱コイル(以下「従来コイル」と記す)について、円周方向の温度分布を比較するためのグラフを示している。コイル101と従来コイルの形状と寸法を同じであり、溝141の有無を除いて同形である。図14において、横軸はコイルの幾何中心(0.0)を基準として当該幾何中心からの距離(mm)を示し、縦軸は温度(℃)を示している。横軸については、さらに図11に示すように、コイル部101aで、高周波電流導入端子部の位置にを表す点P1と、溝141の位置を表す点P2と、点P1,P2で定義される直径上におけるコイル中心点P3とに関して、コイルの幾何中心はコイル中心点P3を意味している。従来のコイルの場合にもそのコイルの幾何中心はコイル101の幾何中心と同じである。   In FIG. 14, the characteristic comparison of the induction heating coil 101 which concerns on this embodiment, and the conventional coil is shown. FIG. 14 shows an induction heating coil 101 having the coil portion 101a (hereinafter referred to as “coil 101”) and a conventional induction heating coil having a coil portion in which the groove 141 is not formed (hereinafter referred to as “conventional coil”). The graph for comparing the temperature distribution of the circumferential direction is shown. The shape and dimensions of the coil 101 and the conventional coil are the same, and are the same except for the presence or absence of the groove 141. In FIG. 14, the horizontal axis indicates the distance (mm) from the geometric center (0.0) of the coil, and the vertical axis indicates the temperature (° C.). As shown in FIG. 11, the horizontal axis is defined by a point P1 representing the position of the high-frequency current introduction terminal portion, a point P2 representing the position of the groove 141, and points P1 and P2 in the coil portion 101a. With respect to the coil center point P3 on the diameter, the geometric center of the coil means the coil center point P3. In the case of a conventional coil, the geometric center of the coil is the same as the geometric center of the coil 101.

図14に基づくコイル101と従来コイルとの比較において、結論を先に述べると、従来コイルの場合にはそのコイル温度中心O2がコイルの幾何中心に対してずれていたのに対して、コイル101のコイル温度中心O1はコイルの幾何中心に一致している。この結果、従来コイルの場合には、誘導加熱工程で回転軸をコイルに設置するとき、回転軸をコイルの幾何中心よりも高周波電流導入端子部側にオフセットしていた。これに対して、コイル101を利用する場合には、コイルの幾何中心とコイル温度中心が一致するので、位置調整が不要となり、位置調整工程が大幅に簡略化される。   In the comparison between the coil 101 based on FIG. 14 and the conventional coil, the conclusion will be described first. In the case of the conventional coil, the coil temperature center O2 is deviated from the geometric center of the coil. The coil temperature center O1 coincides with the geometric center of the coil. As a result, in the case of the conventional coil, when the rotary shaft is installed in the coil in the induction heating process, the rotary shaft is offset to the high-frequency current introduction terminal portion side from the geometric center of the coil. On the other hand, when the coil 101 is used, the geometric center of the coil coincides with the coil temperature center, so that position adjustment is not required, and the position adjustment process is greatly simplified.

コイル101の上記コイル温度中心O1は、コイル101の高周波電流導入端子部側の円周方向温度分布特性N1と溝側の円周方向温度分布特性N2の交点として決まる。また従来コイルの上記コイル温度中心O2は、従来コイルの高周波電流導入端子部側の円周方向温度分布特性M1と溝側の円周方向温度分布特性M2の交点として決まる。円周方向温度分布特性N1,N2,M1,M2で明らかなように、コイル101の円周方向温度分布特性N1,N2は、コイルの幾何中心にほぼ一致している。   The coil temperature center O1 of the coil 101 is determined as an intersection of the circumferential temperature distribution characteristic N1 on the high frequency current introduction terminal portion side of the coil 101 and the circumferential temperature distribution characteristic N2 on the groove side. The coil temperature center O2 of the conventional coil is determined as an intersection of the circumferential temperature distribution characteristic M1 on the high frequency current introduction terminal portion side of the conventional coil and the circumferential temperature distribution characteristic M2 on the groove side. As is apparent from the circumferential temperature distribution characteristics N1, N2, M1, and M2, the circumferential temperature distribution characteristics N1 and N2 of the coil 101 substantially coincide with the geometric center of the coil.

以上によって、本実施形態に係る誘導加熱コイル101では、そのコイル部101aの内周面の所定位置に所定形状の溝141を形成するようにしたため、コイル加熱による円周方向の温度分布が改善され、コイル幾何中心とコイル温度中心とを一致させることが可能となる。   As described above, in the induction heating coil 101 according to the present embodiment, since the groove 141 having a predetermined shape is formed at a predetermined position on the inner peripheral surface of the coil portion 101a, the temperature distribution in the circumferential direction due to the coil heating is improved. It is possible to make the coil geometric center coincide with the coil temperature center.

以上の実施形態で説明された構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値および各構成の組成(材質)については例示にすぎない。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。   The configurations, shapes, sizes, and arrangement relationships described in the above embodiments are merely shown to the extent that the present invention can be understood and implemented, and the numerical values and the compositions (materials) of the respective configurations are as follows. It is only an example. Therefore, the present invention is not limited to the described embodiments, and can be variously modified without departing from the scope of the technical idea shown in the claims.

本発明は、電動パワーステアリング装置などで操舵トルクを検出する磁歪式トルクセンサを製造する工程で用いられる高周波加熱装置の誘導加熱コイルとして利用される。   The present invention is used as an induction heating coil of a high-frequency heating device used in a process of manufacturing a magnetostrictive torque sensor that detects steering torque with an electric power steering device or the like.

本発明が利用される磁歪式トルクセンサの基本的構造を示す一部断面側面図である。It is a partial cross section side view which shows the basic structure of the magnetostrictive torque sensor in which this invention is utilized. 磁歪式トルクセンサの基本的構成を概念的に示す側面図である。It is a side view which shows notionally the basic composition of a magnetostriction type torque sensor. 磁歪式トルクセンサにおける各検出コイルに関する磁歪特性曲線とセンサ検出特性を示すグラフである。It is a graph which shows the magnetostriction characteristic curve and sensor detection characteristic regarding each detection coil in a magnetostriction type torque sensor. 磁歪式トルクセンサの製造方法であり、回転軸の製造プロセスを示す工程図である。It is a manufacturing method of a magnetostrictive torque sensor, and is a process diagram showing a manufacturing process of a rotating shaft. 磁気異方性付加工程のフローチャートである。It is a flowchart of a magnetic anisotropy addition process. 磁気異方性付加工程の各ステップ(a)〜(d)での回転軸における径方向の温度分布(1)と歪み分布(2)を示す図である。It is a figure which shows temperature distribution (1) and distortion distribution (2) of the radial direction in the rotating shaft in each step (a)-(d) of a magnetic anisotropy addition process. 磁歪式トルクセンサの製造方法での磁歪材めっき部形成直後の磁歪式トルクセンサのインピーダンス特性と磁気異方性付加後の磁歪膜を用いた磁歪式トルクセンサのインピーダンス特性を示す図である。It is a figure which shows the impedance characteristic of the magnetostriction type torque sensor using the magnetostriction film | membrane after the magnetostriction type torque sensor after the magnetostriction type torque sensor manufacturing method in the manufacturing method of a magnetostriction type torque sensor formation part and magnetic anisotropy addition. 誘導加熱コイルの要部側面図である。It is a principal part side view of an induction heating coil. 誘導加熱電源の構成を示すブロック図である。It is a block diagram which shows the structure of an induction heating power supply. 誘導加熱コイルのリング部(一巻コイル部)の特徴的形状を示す要部断面図である。It is principal part sectional drawing which shows the characteristic shape of the ring part (one-turn coil part) of an induction heating coil. 本実施形態に係る誘導加熱コイルの実際の形状を示す平面図である。It is a top view which shows the actual shape of the induction heating coil which concerns on this embodiment. 図11におけるC1−C1線断面図である。It is the C1-C1 sectional view taken on the line in FIG. 図11におけるC2−C2線断面図である。It is the C2-C2 sectional view taken on the line in FIG. 本発明に係る誘導加熱コイルのリング部(一巻コイル部)と従来の誘導加熱コイルのコイル部における円周方向の温度分布とコイルの温度中心を示すグラフである。It is a graph which shows the temperature distribution of the circumferential direction in the ring part (one-turn coil part) of the induction heating coil which concerns on this invention, and the coil part of the conventional induction heating coil, and the temperature center of a coil.

符号の説明Explanation of symbols

10 磁歪式トルクセンサ
11 回転軸
12 励磁コイル
13A,13B 検出コイル
14A,14B 磁歪膜
51A,51B 磁歪特性曲線(インピーダンス特性曲線)
101 誘導加熱コイル
101a リング部(一巻コイル部)
121 誘導加熱電源
125 高周波発振回路
131 突起部(内径小径部)
141 線状溝
P1 磁性膜形成工程
P2 磁気異方性付加工程
P3 特性安定化工程
DESCRIPTION OF SYMBOLS 10 Magnetostrictive torque sensor 11 Rotating shaft 12 Excitation coil 13A, 13B Detection coil 14A, 14B Magnetostrictive film 51A, 51B Magnetostrictive characteristic curve (impedance characteristic curve)
101 Induction heating coil 101a Ring part (one-turn coil part)
121 Induction heating power supply 125 High frequency oscillation circuit 131 Projection (inner diameter small diameter part)
141 Linear groove P1 Magnetic film formation process P2 Magnetic anisotropy addition process P3 Characteristic stabilization process

Claims (4)

捩りトルクが印加された磁歪式トルクセンサの円柱棒状回転軸の円周表面に形成された磁歪膜を高周波加熱した後に前記回転軸の捩りトルクを解放することによって前記磁歪膜に磁気異方性を付加する磁歪式トルクセンサの磁気異方性付加工程において、前記磁歪膜を高周波加熱する誘導加熱コイルであって、
この誘導加熱コイルは、前記磁歪膜を囲むように配置された一巻コイル部を有し、
前記一巻コイル部は円筒形状および隙間を介して対向して配置される2つのプレート状高周波電流導入端子部を有し、前記一巻コイル部の内周面にその軸方向に平行な少なくとも1本の線状溝が前記隙間が形成する平面に含まれる位置関係で前記内周面に形成され、
前記一巻コイル部の軸方向寸法は、前記円柱棒状回転軸の磁歪膜の軸方向幅より大きく、上側開口部と下側開口部の内周面には全周にわたり突起部が形成され
この突起部は、前記磁歪膜に対して軸方向でその外側に位置するように配置されていることを特徴とする誘導加熱コイル。
The magnetostrictive film is magnetically anisotropic by releasing the torsional torque of the rotating shaft after high-frequency heating of the magnetostrictive film formed on the circumferential surface of the cylindrical rod-shaped rotating shaft of the magnetostrictive torque sensor to which the torsional torque is applied. In the magnetic anisotropy adding step of the magnetostrictive torque sensor to be added, an induction heating coil for heating the magnetostrictive film at a high frequency,
This induction heating coil has a one-turn coil portion arranged so as to surround the magnetostrictive film,
The one-turn coil portion has two plate-shaped high-frequency current introduction terminal portions arranged to face each other with a cylindrical shape and a gap, and is at least parallel to the axial direction on the inner peripheral surface of the one-turn coil portion. One linear groove is formed on the inner peripheral surface in a positional relationship included in a plane formed by the gap,
The axial dimension of the one-turn coil part is larger than the axial width of the magnetostrictive film of the cylindrical rod-shaped rotary shaft , and a protrusion is formed on the inner peripheral surface of the upper opening and the lower opening over the entire circumference .
The protrusions induction heating coil, wherein that you have been arranged so as to be positioned on the outside in the axial direction with respect to the magnetostrictive film.
前記線状溝は、一端の開口部から他端の開口部まで形成されることを特徴とする請求項1記載の磁歪式トルクセンサの製造方法での磁気異方性付加工程で使用される誘導加熱コイル。 The induction used in the magnetic anisotropy adding step in the method of manufacturing a magnetostrictive torque sensor according to claim 1, wherein the linear groove is formed from an opening at one end to an opening at the other end. Heating coil. 前記一巻コイル部は、隙間を介して対向して配置される2つのプレート状高周波電流導入端子部を有し、前記線状溝は、前記隙間が形成する平面に含まれる位置関係で前記内周面に形成されることを特徴とする請求項1または請求項2記載の磁歪式トルクセンサの製造方法での磁気異方性付加工程で使用される誘導加熱コイル。The one-turn coil portion has two plate-shaped high-frequency current introduction terminal portions arranged to face each other with a gap therebetween, and the linear groove is positioned in a positional relationship included in a plane formed by the gap. The induction heating coil used in the magnetic anisotropy adding step in the method of manufacturing a magnetostrictive torque sensor according to claim 1 or 2, wherein the induction heating coil is formed on a peripheral surface. 請求項1〜のいずれか1項に記載される誘導加熱コイルと、
前記誘導加熱コイルに高周波を給電する高周波電源と、
を備えることを特徴とする高周波加熱装置。
The induction heating coil according to any one of claims 1 to 3 ,
A high frequency power source for supplying a high frequency to the induction heating coil;
A high-frequency heating device comprising:
JP2005300831A 2005-10-14 2005-10-14 Induction heating coil and high-frequency heating device Expired - Fee Related JP4455468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300831A JP4455468B2 (en) 2005-10-14 2005-10-14 Induction heating coil and high-frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300831A JP4455468B2 (en) 2005-10-14 2005-10-14 Induction heating coil and high-frequency heating device

Publications (2)

Publication Number Publication Date
JP2007109578A JP2007109578A (en) 2007-04-26
JP4455468B2 true JP4455468B2 (en) 2010-04-21

Family

ID=38035280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300831A Expired - Fee Related JP4455468B2 (en) 2005-10-14 2005-10-14 Induction heating coil and high-frequency heating device

Country Status (1)

Country Link
JP (1) JP4455468B2 (en)

Also Published As

Publication number Publication date
JP2007109578A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
US7677115B2 (en) Magnetostrictive torque sensor and electric power steering apparatus
JP4283263B2 (en) Manufacturing method of magnetostrictive torque sensor
JP2007101248A (en) Magnetostrictive torque sensor manufacturing method
JP2009204533A (en) Magnetostrictive torque sensor, its manufacturing method, and electric power steering device
JP5091555B2 (en) Magnetostrictive torque sensor and electric power steering apparatus
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
JP2007086018A (en) Magnetostrictive torque sensor
US11346731B2 (en) Detection circuit and detection method for magnetostrictive torque sensor
JP2008122138A (en) Method and instrument for measuring magnetic characteristics and mechanical strength of steel sheet
JP4860981B2 (en) Induction heating coil, manufacturing method thereof, and high-frequency heating apparatus
JP4455468B2 (en) Induction heating coil and high-frequency heating device
JP4986815B2 (en) Manufacturing method of magnetostrictive torque sensor
JP2008256662A (en) Method of manufacturing magnetostrictive torque sensor
JP2007335378A (en) Induction heating coil and high frequency heating apparatus
JP2007114060A (en) Manufacturing method of magnetostrictive torque sensor
JP2010230484A (en) Device and method of detecting grinding burning
JP3868495B2 (en) Torque transducer
JP2013185902A (en) Method and device for measuring crystal orientation
JP4878507B2 (en) Magnetostrictive torque sensor manufacturing method and electric power steering apparatus
JP2009245850A (en) Electromagnetic induction heating device
JP7111315B2 (en) Strain sensor structure
JP7228605B2 (en) Torque detection sensor
JP2009115761A (en) Magnetostrictive torque sensor and electric power steering system
JP2004053434A (en) Method for manufacturing magnetostrictive torque sensor shaft
JP2011032535A (en) Induction heating coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees